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Abstract. The Gegenbauer reconstruction method effectively eliminates the Gibbs phenomenon
and restores exponential accuracy to the approximations of piecewise smooth functions. Recent in-
vestigations show that its success depends upon choosing parameters in such a way that the reg-
ularization and the truncation error estimates are equally considered. This paper shows that the
underlying analyticity of the function in smooth regions plays a critical role in the regularization
error estimate. Hence we develop a technique that first analyzes the behavior of the function in its
regions of smoothness and then applies this knowledge to refine the regularization error estimate.
Such refinement yields better parameter choices for the Gegenbauer reconstruction method, and is
confirmed both by better accuracy and more robustness in the approximation of piecewise smooth
functions.
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1. Introduction. The Gegenbauer reconstruction method, originally developed
in [14], effectively eliminates the Gibbs phenomenon from the spectral approximation
of a piecewise smooth function while maintaining its exponential convergence proper-
ties, even up to the discontinuities of the function. Since its conception, investigators
have considered various aspects of the Gegenbauer reconstruction method, including
construction from Fourier and other spectral expansion coefficients (e.g. Chebyshev
and Legendre) in one and two dimensions as well as on spheres. Recent advancements
of the Gegenbauer reconstruction method include an adaptation to noisy environments
[2], avoidance of round–off error [7], parameter optimization techniques [7] and [15],
and an alternative implementation by the inverse method [17]. All have contributed
to making the Gegenbauer reconstruction method a viable option in both high and
low resolution environments for multi-dimensional and multi-scale problems, even in
the presence of noise. Additionally, the Gegenbauer reconstruction method has been
successfully employed in numerous scientific applications, including medical image re-
construction (e.g. [1] [10]) and as a post-processing technique for conservation laws
(e.g. [8], [16]). A good overview of the development and application of the Gegen-
bauer reconstruction method can be found in [11], [12] and [13], and the references
therein.

The success of the Gegenbauer reconstruction method hinges on the underlying
analytic behavior of the piecewise smooth function f(x) in the regions between known
discontinuities. In particular, the approximation of the regularization error of the
Gegenbauer reconstruction method has been guided by an assumption of smoothness,
first described in [14] as:
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Assumption 1.1. Let f(x) be an analytic but non-periodic function on [−1, 1].
There exist constants ρ ≥ 1 and C(ρ) such that for every k ≥ 0,

max
−1≤x≤1

∣∣∣∣∣
dkf(x)

dxk

∣∣∣∣∣ ≤ C(ρ)
k!

ρk
.

The authors proceed to explain that this is a standard assumption for analytic func-
tions where ρ is the distance from [−1, 1] to the nearest singularity of f(x) in the
complex plane. Note that for x ∈ [a, b] the assumption can be easily modified.

Later in [12] the regularization error is validated for functions under the following
assumption:

Assumption 1.2. There exists a constant 0 ≤ r0 < 1 and an analytic extension

of f(x) onto the elliptic domain

D =

{
z : z =

1

2

(
r eiθ +

1

r
e−iθ

)
, 0 ≤ θ ≤ 2π, r0 ≤ r < 1

}
.(1.1)

Once again this assumption is satisfied by all analytic functions defined on [−1, 1]
and can easily be modified for f(x) on general [a, b].

Despite the fact that the smoothness of f(x) is generally unknown, the Gegen-
bauer reconstruction method was shown to yield exponential convergence in most
cases [14]. However, the accuracy of the method was seemingly function dependent,
and varied with the particular parameters used in its construction.

A parameter optimization technique was first suggested for the Fourier based
Gegenbauer reconstruction method in [7], where an ‘average case scenario’ ρ = 1 in
Assumption 1.1 was used to estimate the regularization error, since the underlying
analyticity of the function in smooth regions was unknown. Later in [15] the proce-
dure was refined for the Chebyshev case, where Assumption 1.2 was also considered.
Here it was assumed that the smoothness of f(x) was known explicitly, or equiva-
lently that the values ρ and r0 were somehow pre-determined. As discussed in [15],
such knowledge yields significant improvement to the sharpness of the regularization
error estimate, which in turn produces a more refined technique for choosing optimal
parameters for the reconstruction. It was shown that in some cases the reconstruc-
tion was dramatically improved, in particular when ρ 6= 1. It is therefore of critical
interest to assess the analyticity of the underlying function for reconstruction, since
such knowledge will serve to both refine and automate the parameter optimization
techniques introduced in [7] and [15]. Specifically, we seek to accurately determine
the smoothness parameters ρ and r0 in Assumptions 1.1 and 1.2. Once this is accom-
plished, the parameters for the Gegenbauer reconstruction method can be determined
accordingly. The Gegenbauer reconstruction method can then be directly applied in
any region of smoothness without further consideration of the behavior of the function.

Our paper is organized in the following way: In §2, the Gegenbauer reconstruction
method based on Fourier coefficients is briefly reviewed. A general parameter opti-
mization technique is described in §3, and a new method for evaluating the analyticity
of f(x) is introduced in §4. Numerical examples for the completely automated proce-
dure are provided in §5. For ease of presentation, we restrict our discussion throughout
this paper to the reconstruction of a smooth non-periodic function f(x) on [−1, 1] from
its Fourier coefficients, and note that although some additional complications involv-
ing edge detection will arise for piecewise smooth functions, the techniques discussed
here for the specific purpose of reconstruction remain the same.
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2. Review of the Gegenbauer reconstruction method. Consider an an-
alytic but non-periodic function f(x) defined on the interval [−1, 1]. The Fourier
partial sum,

fN (x) =

N∑

n=−N

f̂ne
inπx,(2.1)

with Fourier coefficients f̂n defined by

f̂n =
1

2

∫ 1

−1

f(x)e−inπxdx,(2.2)

shows O(1) spurious oscillations near the boundaries ±1. Additionally, the conver-
gence of fN (x) to f(x) on [−1, 1] is reduced to first order. This behavior is the well
known Gibbs phenomenon, and many techniques have been developed to reduce or
eliminate its effects. The Gegenbauer reconstruction method, first introduced in [14],
uses information from the first 2N +1 Fourier coefficients (2.2) to completely resolve
the Gibbs phenomenon and yields exponential convergence to f(x) in the uniform
norm on [−1, 1]. Here we briefly describe the method and refer the reader to [14],
[11], [12] and [13] for more complete details.

Denote by Cλ
l the Gegenbauer polynomials [3], [5], i.e., the polynomials which

are orthonormal with respect to the inner product,

〈Cλ
k , C

λ
l 〉 =

1

hλl

∫ 1

−1

(1− x2)λ−
1
2Cλ

k (x)C
λ
l (x) dx,

where for λ > 0 the scaling factor hλl is defined by

hλl =
√
π Cλ

l (1)
Γ(λ+ 1

2 )

Γ(λ)(l + λ)
, Cλ

l (1) =
Γ(l + 2λ)

l! Γ(2λ)
.

The Gegenbauer reconstruction method consists of approximating the function f(x)
by computing the truncated approximate Gegenbauer series

fm,λ
g (x) =

m∑

l=0

ĝλ(l)Cλ
l (x),(2.3)

where the coefficients ĝλ(l) are given by

ĝλ(l) =
1

hλl

∫ 1

−1

(1− x2)λ−
1
2 fN (x)C

λ
l (x)dx.(2.4)

As first shown in [14], the coefficients (2.4) provide an exponentially accurate approx-
imation to the exact Gegenbauer coefficients, defined by

f̂λ(l) =
1

hλl

∫ 1

−1

(1− x2)λ−
1
2 f(x)Cλ

l (x)dx,(2.5)

provided that λ,m ∼ N, that is, they scale like N . In fact, if λ andm are proportional
to N , i.e.,

λ = αN, m = βN,(2.6)
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then

max
−1≤x≤1

∣∣∣f(x)− fm,λ
g (x)

∣∣∣ ≤ A
(
qNT + qNR

)
,(2.7)

where A is a polynomial in N , qT corresponds to the truncation error

TE = max
−1≤x≤1

∣∣∣∣∣

m∑

l=0

(
f̂λ(l)− ĝλ(l)

)
Cλ
l (x)

∣∣∣∣∣,(2.8)

and qR corresponds to the regularization error

RE = max
−1≤x≤1

∣∣∣∣∣f(x)−
m∑

l=0

f̂λ(l)Cλ
l (x)

∣∣∣∣∣.(2.9)

Both qT and qR are constants less than one. Although it was shown that in general
λ,m ∼ N will yield exponential convergence [14], the parameter choices (2.6) lead to
the convenient analysis of (2.8) and (2.9) and are furthermore shown in [7] to produce
greater theoretical accuracy than other parameter alternatives.

It was shown in [14] that the constant qT for (2.6) takes the form

qT =
(β + 2α)β+2α

(2πe)αααββ
.(2.10)

As discussed in the introduction, the constant qR, representing the regularization
error, can be defined in different ways depending on the smoothness of f(x) on [−1, 1].
If we consider the latter case given in Assumption 1.2, then qR is defined as [12]:

qR = q1R =

(
(1 + 2γ)

1+2γ
2

(2γ)γ
r0

)β

, γ =
λ

m
,(2.11)

The parameters defined in (2.6) yield

q1R =
(β + 2α)

β+2α
2 r

β
0

(2α)αβ
β
2

.(2.12)

On the other hand, Assumption 1.1, gives the ratio qR as [14]:

qR = q2R =

(
(1 + 2γ)1+2γ

ρ 21+2γ γγ (1 + γ)1+γ

)β

, γ =
λ

m
,(2.13)

which assuming (2.6) reduces to

q2R =
(β + 2α)β+2α

2β+2ααα(α+ β)α+βρβ
.(2.14)

In §3 we propose a parameter optimization technique based on the minimization
of the ratio (2.10) corresponding to the truncation error assuming that it is equal to
the respective ratios (2.12) and (2.14) corresponding to the regularization errors. We
note that although the original theoretical discussion [14] is based on the continuous
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Fourier coefficients (2.2), all of our numerical experiments are conducted utilizing the
corresponding pseudo–spectral Fourier coefficients

f̃n =
1

2Ncn

2N∑

j=0

f(xj)e
−inπxj ,(2.15)

based on equally spaced grid points xj , j = 0, 1, . . . , 2N . Here cn =
1
2 for n = −N or

n = N , and cn = 1 otherwise.

3. Determining optimal parameters. Although it was shown in [14] that
the parameter choices λ = αN and m = βN appearing in (2.6) yield exponential
convergence of fm,λ

g (x) to f(x) for a large class of functions, the accuracy of the
approximation, and even the convergence itself, can depend critically on the choices
of these parameters. For instance, numerical experiments in [14] for the reconstruction
of analytic non-periodic functions from Fourier coefficients indicated that choosing the
parameters α = β = 0.4 typically led to more accurate results than for α = β = 0.25,
provided that no round–off error was present. It was additionally shown that for fixed
β ≤ π

4 , the ratio qT defined by (2.10) attains its minimum for

α =
1

4

(
π − 2β +

√
π(π − 4β)

)
.(3.1)

The resulting experiments conducted with β = 0.25 and α chosen according to (3.1)
demonstrated very fast convergence for functions having no regularization error. How-
ever, for more general functions in which both the truncation and regularization errors
are present, the convergence rate was not improved. This was further analyzed in [7]
where a systematic approach was designed to select m and λ to yield exponential con-
vergence for both the truncation and regularization errors. A similar technique was
later developed for the Chebyshev-Gegenbauer reconstruction method in [15], where
it was additionally assumed that the underlying “smoothness” behavior of f(x) in
regions between the discontinuities was known, i.e. the values of ρ and r0 in As-
sumptions 1.1 and 1.2 were given. It was also shown that if the parameters m and
λ were characterized by (2.6), then the contribution of A to the error bound on the
right hand side of (2.7) was negligible since A is only a polynomial in N . Hence the
optimization technique presented in [15] is a function only of the parameters α and
β, and is independent of N . We will follow this approach here.

The strategy for choosing α and β in (2.6) is simple. As in [7] and [15], it is
based on balancing the truncation (2.10) and regularization errors (2.12) or (2.14).
Specifically, we set qT = q1R or qT = q2R, depending on the underlying smoothness of
the function. The optimal parameters are then determined by the minimization of
qT .

We realize that this optimization is valid only for relatively small N or sparse
data sets. Round-off error greatly impacts the ability of the computed Gegenbauer
coefficients to decay at the rate needed to balance the large growth of the Gegenbauer
polynomials. Here we proceed with the discussion without consideration of round–
off error, and note that some numerical results may be more impacted by round–off
error than by lack of analytical convergence. In such cases it was shown in [7] that
rather than forcing the relationship (2.6) of m and λ with N , it is better to determine
maximum admissible values for m and λ such that the Gegenbauer reconstruction is
only minimally affected by round–off error. All admissible combinations m and λ are
then considered in the computation of (2.7), and the smallest value of (2.7) yields
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the “optimal” admissible pair of m and λ. Details are discussed in [7]. However, the
underlying smoothness of a function still plays a critical role in determining suitable
parameters even when round–off error becomes relevant in the reconstruction.

To illustrate the parameter optimization technique derived here, Figure 3.1 dis-
plays the contours of qT (dash–dotted lines), q

1
R (dotted lines), and the curve qT = q1R

for the given value r0 =
√
2−1 (solid line). For comparison with the previous param-

eter selection strategies, Figure 3.1 also displays the curve defined by (3.1) (dashed
line).
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Fig. 3.1. Contour plots of qT (dash–dotted lines), q1
R

(dotted lines), the curve qT = q1
R

for

r0 =
√

2−1 (solid line), and the curve defined by (3.1) (dashed line). Specific point values for α and
β include α = β = 0.25 (downward triangle), α = β = 0.4 (upward triangle), β = 0.25 and α = 1.31
computed by (3.1) (diamond), and the points obtained using our strategy based on minimization of
(3.2) (square).

Figure 3.2 displays the corresponding contour plots of q2
R for the ‘average case sce-

nario’, i.e., with ρ = 1 which, as discussed in [12] and [15], corresponds to r0 =
√
2−1

assuming that the singularity of f(x) closest to the interval [−1, 1] is located on the
imaginary axis. Both figures display the values for α and β originally suggested in [14]
to illustrate the relationship of the parameters to the truncation and regularization
errors. Here we point out that the strategy proposed in this paper takes into account
both the regularization and truncation errors obtained from the Gegenbauer recon-
struction method. These values are obtained numerically by minimizing the objective
functions

φl(α, β) = qT + C
(
qT − qlR

)2

, l = 1, 2,(3.2)
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where C is a positive penalty constant which was chosen as C = 1000. The resulting
values for qT = q1R with r0 =

√
2 − 1 are α = 0.176, β = 0.343, while the same

algorithm for qT = q2R with ρ = 1 yields α = 0.370, β = 0.401.
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Fig. 3.2. Contour plots of qT (dash–dotted lines), q2
R

(dotted lines), the curve qT = q2
R

for
ρ = 1 (solid line), and the curve defined by (3.1) (dashed line). Specific point values for α and β

include α = β = 0.25 (downward triangle), α = β = 0.4 (upward triangle), β = 0.25 and α = 1.31
computed by (3.1) (diamond), and the points obtained using our strategy based on minimization of
(3.2) (square).

Figures 3.3 and 3.4 depict the optimal choices for α and β obtained by minimizing
(3.2) for 0 ≤ r0 ≤ 1 and ρ ≥ 1 (upper graphs) together with the corresponding values
of qT = qlR, l = 1, 2 (lower graphs). The thin lines plotted in Figure 3.4 illustrate the
values of α and β obtained by using (2.14) for ρ < 1. Once ρ is less than about 0.5,
the resulting estimates are meaningless since qT = q2R is complex.

There are several things to note here:
1. The optimization strategy (3.2) used here assumes knowledge of the smooth-
ness parameters ρ and r0. This information is not inherently known, and
hence in §4 we develop a technique to approximate these values to allow a
more refined strategy for determining optimal parameters α and β.

2. We reiterate that the optimal strategy (3.2) does not consider round–off er-
rors in its minimization. As discussed previously in [7], the Gegenbauer re-
construction method is numerically inhibited by large values of m = βN and
λ = αN , due to the lack of numerical convergence of the Gegenbauer coef-
ficients (2.4). For instance, the values for α shown in Figure 3.4 would be
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Fig. 3.3. Parameters α and β versus r0 (upper graph) and qT = q1
R
versus r0 (lower graph).

unreasonable for N > 32 (conservatively), and in general, the numerically
computed Gegenbauer coefficients cease to decay at the required exponential
rate for even moderate values of α and β.

3. Although the algorithm is derived for smooth functions in [−1, 1], it can be
easily modified to optimize parameter choices for any smooth region [a, b].

To compare the strategy based on minimizing φ1(α, β) or φ2(α, β), Figure 3.5 exhibits
the equations qT = q1R and qT = q2R versus r0 under the assumption that the closest
singularity of f(x) to [−1, 1] is on the imaginary axis. As explained in [15] (see also
[12]), the relationship between r0 and ρ is then given by

ρ =
1

2

( 1
r0
− r0

)
or r0 =

√
1 + ρ2 − ρ.(3.3)

Figure 3.5 indicates that if both strategies for determining α and β are applicable
then minimizing φ2(α, β) will yield smaller analytical truncation and regularization
errors than minimizing φ1(α, β), concurring with previous results described for the
Chebyshev case in [15]. Figures 3.1 and 3.2 suggest the same conclusion. However, as
apparent from the top of Figure 3.4 and prior remarks, minimizing φ2(α, β) for ρ ≥ 2
(0 ≤ r0 ≤

√
5 − 2) can potentially yield large round–off errors in the Gegenbauer

reconstruction case. In fact, the strategy can be inhibited by round–off error even
when ρ < 2 (r0 >

√
5 − 2) for λ = αN as N increases. In this case, the top of

Figure 3.3 suggests that the strategy based on minimizing φ1(α, β), although not
theoretically optimal, will yield better results as N increases. Additionally, note the
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Fig. 3.4. Parameters α and β versus ρ (upper graph) and qT = q2
R
versus ρ (lower graph).
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Fig. 3.5. Ratios qT = q1
R
and qT = q2

R
versus r0.

thin line in Figure 3.5 corresponding to ρ < 1 or equivalently r0 >
√
2 − 1. In this

case, ρ < 0.5 (r0 > 0.618) produces complex values for qT = q2R and subsequently
yields useless estimates.

Due to the the various factors discussed above, we will employ the parameters α
and β determined by minimizing φ1(α, β) in our numerical experiments discussed in
§5.
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4. Determination of smoothness parameters. As discussed in §3, the notion
of smoothness plays an important role in determining the optimal parameters α and
β for the Gegenbauer reconstruction method. Specifically we wish to determine the
analyticity of the underlying function based on the parameters ρ and r0 described
in Assumptions 1.1 and 1.2. These values are unknown in advance and must be
approximated from the 2N+1 Fourier coefficients (2.2) or pseudo-spectral coefficients
(2.15). This is an inherently difficult problem, since the Fourier approximation (2.1) is
contaminated by Gibbs oscillations and cannot be expected to produce reliable results
for determining factors ρ or r0.

As shown in [9], another way for assessing smoothness of a function is from its
Chebyshev coefficients, namely

lim supk→∞|ak|1/k = r0,(4.1)

where ak, k = 0, 1, . . ., are the Chebyshev coefficients of the function f(x). This sug-
gests that determining the smoothness parameters ρ and r0 is equivalent to evaluating
the decay rate of the Chebyshev coefficients ak as k → ∞. Clearly (4.1) cannot be
used directly since the exact function f(x) is not known. However it is possible to

compute an approximation to the Chebyshev coefficients a
(N)
k based on the partial

sum fN (x) in (2.1). Unfortunately, due to the poor convergence properties of fN (x),
we cannot expect that

r
(N)
0 := lim supk→∞

∣∣∣a(N)
k

∣∣∣
1/k

(4.2)

will give a reliable estimate of r0. Hence we seek a function approximation f̃N (x)
whose Chebyshev coefficients characterize the original function f(x), such that

r̃
(N)
0 := lim supk→∞

∣∣∣ã(N)
k

∣∣∣
1/k

→ r0,(4.3)

where ã
(N)
k , k = 0, 1, . . . ,K, are the computed Chebyshev coefficients of f̃N (x).

One possibility is to compute f̃N (x) = fm,λ
g (x) in (2.3) based on the assumed

value of ρ = 1, as in [7]. This approximation converges exponentially to f(x) when

ρ 6= 1 (although not optimally), yet the computed Chebyshev coefficients ã(N)
k will

not yield the correct r0 in (4.3). This is due to the fact that f
m,λ
g is a polynomial

yielding r0 =∞ irrespective of m and λ.
A second alternative is to exploit the Bernoulli reconstruction method, [4] and

[6], to approximate a function that is characterized by the same analyticity of f(x)
once the discontinuities have been removed. To be more specific, in this approach we
define

f̃N (x) := fN (x)−
σN

2

(
sN (x)− s(x)

)
,(4.4)

where sN (x) is the Fourier partial sum of the function

s(x) = x, −1 ≤ x ≤ 1,

and σN is an approximation to the exact jump σ = f(1)−f(−1) of the function f(x).
This approximation can be computed from the formula [18]

σN =
π

2µ1

(
fN (ξN )− fN (ξN )

)
,(4.5)
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where

µ1 =

∫ π

0

sin t

t
dt ≈ 1.852, ξN =

2N − 1
2N

, and ξN =
1− 2N
2N

.

It can be verified that

f̃N (x)− f(x) = gN (x)− g(x) +
σ − σN

2

(
sN (x)− s(x)

)
,(4.6)

where

g(x) = f(x)− σ

2
s(x), and gN (x) = fN (x)−

σ

2
sN (x).

The function g(x) is periodic and continuous on [−1, 1] and as a result gN (x) is linearly
convergent to g(x) in the uniform norm. Since σN is also linearly convergent to σ,

[18], it follows from (4.6) that f̃N (x) is linearly convergent to f(x). Therefore, (4.4)
can be viewed as a preliminary resolution of the Gibbs phenomenon. More precisely,
since f̃N (x) was obtained by subtracting the oscillatory behavior of fN (x) we can

expect that f̃N (x) and f(x) share similar smoothness characteristics on the interval
[−1, 1] described by the parameters ρ or r0. Hence we expect that the Chebyshev
coefficients ã

(N)
k , k = 0, 1, . . . ,K, for K ≈ N , of the function f̃N (x) will provide an

accurate and reliable estimate of r0 in (4.1). To illustrate that this is indeed the case,

Figure 4.1 exhibits the approximations of r0, r
(N)
0 and r̃

(N)
0 versus ρ for the family of

functions

f(x) =
ex

x2 + ρ2
, −1 ≤ x ≤ 1.(4.7)

In this case, f(x) has singularities on the imaginary axis at x = ±iρ and the rela-
tionship between r0 and ρ is given by (3.3). The approximations to r0 are computed
from the respective formulae

r0 ≈ min
{
|ak|1/k : k0 ≤ k ≤ K

}
,(4.8)

r
(N)
0 ≈ min

{∣∣∣a(N)
k

∣∣∣
1/k

: k0 ≤ k ≤ K
}
,(4.9)

and

r̃
(N)
0 ≈ min

{∣∣∣ã(N)
k

∣∣∣
1/k

: k0 ≤ k ≤ K
}
,(4.10)

which are less susceptible to round–off errors than the approximations based on (4.1),
(4.2) and (4.3). Here, k0 is a small positive integer chosen to eliminate the influence
of the first few Chebyshev coefficients on the estimate of r0 and K < N . The exact
value of r0 given in (3.3) for f(x) given in (4.7) is also plotted in Figure 4.1 by a thick
solid line. It is evident that the approximation for r̃N0 (4.10) converges to the desired

value r0. Figure 4.2 displays the approximations r0, r
(N)
0 , and r̃

(N)
0 versus ρ for the

family of functions

f(x) =
ex

x2 − (1 + ρ)2
, −1 ≤ x ≤ 1,(4.11)
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r 0
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  (4.9)
 (4.10)
  (3.3)

Fig. 4.1. r0, r
(N)
0 and r̃

(N)
0 given by (4.8), (4.9) and (4.10) for K = N = 20 and r0 given by

(3.3) versus ρ for the function (4.7).

which have singularities on the real axis at x = ±(1+ρ). In this case the relationship
of r0 and ρ is given by ([12] and [15]):

ρ =
(r0 − 1)2
2 r0

or r0 = 1 + ρ−
√
ρ2 + 2ρ.(4.12)

As exhibited in Figure 4.2, the value of r̃
(N)
0 computed by (4.10) yields an accurate

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

ρ

r 0

  (4.8)
  (4.9)
 (4.10)
 (4.12)

Fig. 4.2. r0, r
(N)
0 and r̃

(N)
0 given by (4.8), (4.9) and (4.10) for K = N = 20 and r0 given by

(4.12) versus ρ for the function (4.11).

comparison to (4.12), plotted by the thick solid line. The success of the smoothness
predictor (4.10) will be further illustrated in §5.

It is important to consider the following:

1. Recall that when the closest singularity of f(x) to [−1, 1] is on the imagi-
nary axis, then the relationship between r0 and ρ is given by (3.3). This is
further indication that parameter optimization based on Assumption 1.2, or
equivalently the minimization of φ1(α, β) in (3.2), is more convenient since
the computation of r0 is possible without a–priori knowledge of the position
of the closest singularities. To determine ρ for φ2(α, β), it would first be
necessary to determine where these singularities are in the complex plane.
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2. Observe in Figures 4.1 and 4.2 that r0 is approximated for K = 20. Although
theoretically the estimate of r0 should improve as K →∞, numerical imple-
mentation indicates that round–off error will affect the results for large K.
Furthermore, reasonable estimates are already obtained for K = 20 yielding
better computational efficiency for the evaluation of the approximation to the
parameter r0.

3. As explained in [6], the approximation (4.4) to g(x) can be of higher or-

der. It is likely that the smoothness parameter r̃
(N)
0 resulting from a higher

order approximation of g(x) will better match r0 determined from (4.10).
However, numerical experiments suggest that the first order approximation
is good enough in resolving (4.3), and we will therefore confine ourselves to
this approximation.

4. The method described is developed exclusively for one dimensional problems.
Future investigations will address smoothness assessment for higher dimen-
sional functions.

5. Numerical examples. In this section we demonstrate the effectiveness of
using the optimal parameters α and β which is determined by minimizing φ1(α, β)
in (3.2). Recall that this optimization is inherently dependent on the smoothness
parameter r0 (4.8), which is approximated by (4.10). As will become apparent, the
strategy for selecting the Gegenbauer reconstruction parameters α and β is ideal for
sparse data sets, that is, small N . For higher resolution, round–off error prohibits
the Gegenbauer reconstruction method from converging for large m and λ, so other
parameter alternatives must be considered. We experimented with the functions

ρ r0 r̃
(N)
0 α β qT = q1R

0.25 0.781 0.809 0.0035 0.0625 0.998
0.5 0.618 0.618 0.0313 0.177 0.984
1 0.414 0.393 0.176 0.343 0.923
2 0.236 0.249 0.412 0.410 0.837
4 0.123 0.130 0.724 0.395 0.721

Table 5.1

Parameters r0, r̃
(N)
0 for K = N = 20, α, β and qT = q1

R
for ρ = 0.25, 0.5, 1, 2 and 4

corresponding to the function (4.7).

ρ r0 r̃
(N)
0 α β qT = q1R

0.25 0.500 0.540 0.061 0.234 0.970
0.5 0.382 0.405 0.163 0.335 0.929
1 0.268 0.269 0.370 0.401 0.852
2 0.172 0.185 0.566 0.412 0.780
4 0.101 0.113 0.777 0.385 0.700

Table 5.2

Parameters r0, r̃
(N)
0 for K = N = 20, α, β and qT = q1

R
for ρ = 0.25, 0.5, 1, 2 and 4

corresponding to the function (4.11).

defined by (4.7) and (4.11), which have singularities on imaginary and real axis. For
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these respective functions, Tables 5.1 and 5.2 compare the exact values of r0 given by

(3.3) and (4.12) to the values r̃
(N)
0 (4.10). Also displayed are the optimized parameters

α and β corresponding to r̃
(N)
0 , which are computed by the least squares minimization

method described in §3. Finally, the last column shows the minimum balanced values
of qT = q1R which indicate the speed of theoretical exponential convergence of the
resulting Gegenbauer reconstruction.

In the numerical experiments that follow, we consider the following four options
for choosing the Gegenbauer parameters α and β:

• Option 1: β = 0.25 and α = 1.31 computed from the formula (3.1).
• Option 2: α = β = 0.25, as suggested in [14].
• Option 3: α = β = 0.4, also suggested in [14].
• Option 4: α and β computed by the minimization of φ1(α, β) in (3.2).

These values (corresponding to option 4) are listed in Table 5.1 for the function (4.7)
and in Table 5.2 for the function (4.11) for specific values of the parameter ρ.

Figure 5.1 compares the Gegenbauer and Fourier partial sum reconstruction of
(4.7) for ρ = 1 and (4.11) for ρ = 4 based on the parameters chosen by option 4. In
each case we used N = 32. The results for the Gegenbauer reconstruction, using the
parameters suggested by our strategy are clearly Gibbs free and convergent.

−1 −0.5 0 0.5 1
0

0.5

1

1.5

x

f(
x)

ρ=1, function (4.7)

−1 −0.5 0 0.5 1
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

x

ρ=4, function (4.11)

Fig. 5.1. A comparison of the Gegenbauer (denoted by circles) and Fourier partial sum recon-
structions (thin lines) for (a) (4.7) with ρ = 1 and (b) (4.11) with ρ = 4. Original functions are
plotted by thick lines. Here N = 32, and α and β chosen from option 4.

The truncation (2.10) and regularization (2.12) errors can be viewed as compet-
itive. Specifically, we observe that while the overall error converges for λ,m ∼ N,

the results of qT get worse as m increases, and similarly q1
R (and q

2
R) will not decay

as quickly for large λ. This behavior, illustrated in Figures 5.2 and 5.3, demonstrates
why parameter optimization based on the analyticity of the underlying function is
critical for the spectral convergence of the Gegenbauer reconstruction method, and
why option 4 sometimes yields the only convergent approximation. The values of α
and β corresponding to option 4 and specific velues of the parameter ρ are indicated
on Figure 5.2 and 5.3 by white diamonds. This is further punctuated by the example
given in (4.7) for ρ ≤ 0.5. The Gegenbauer method is not convergent when α and β
are chosen according to option 1, option 2, or option 3. Convergence is only observed
when option 4 is used to pick the Gegenbauer parameters. Even in this case, as indi-
cated by the ratio qT = q1R in Table 5.1 the convergence is quite slow and manifests
itself only for large values of N . For example, both for ρ = 0.25 and ρ = 0.5, we
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Fig. 5.2. A comparison of the “competing” regularization and truncation errors for the function
(4.7) with (a) ρ = 0.5 and (b) ρ = 2.
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Fig. 5.3. A comparison of the “competing” regularization and truncation errors for the function
(4.11) with (a) ρ = 0.5 and (b) ρ = 2.

require N ≥ 100 for reasonable convergence and for ρ = 0.5 qT = q1R only for values
close to 1. On the other hand, when ρ = 1, 2, or 4, all of the parameter choosing
options lead to exponential convergence. The fastest rate corresponds to option 4.
Figure 5.4 (left) illustrates a comparison of the convergence rates of the Gegenbauer
reconstruction method utilizing different strategies for determining α and β for the
example in (4.7) with ρ = 1. A least squares fit of these errors is also provided. As
displayed in Table 5.1, when ρ = 2 the values of α and β determined by option 2
and by option 4 are quite similar, leading to similar convergence rates for these two
choices of α and β.

Similar conclusions are also valid for the example given in (4.11), although in this
case we observe exponential convergence for all choices of α and β and all values of
ρ listed in Table 5.2. The parameters chosen by option 4 yield the fastest rate of
convergence with the most pronounced improvement occurring for large values of ρ.
For illustration, the errors of the resulting Gegenbauer reconstruction corresponding
to ρ = 4 and α and β chosen according to option 1, option 2, option 3, and option 4
are displayed in Figure 5.4 (right) along with the least squares fits of these errors.

We note that the results are shown for relatively sparse data sets, or small N .
As N and subsequently λ = αN and m = βN increase, round–off error prohibits the
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Fig. 5.4. Errors of the Gegenbauer reconstruction methods for ρ = 1 and function (4.7) (left
graph) and for ρ = 4 and the function (4.11) (right graph) versus N for different values of the
parameters α and β. Least squares fits of these errors are also plotted by a thick solid lines.

convergence of the numerical Gegenbauer coefficients (2.4), and the overall conver-
gence of the Gegenbauer reconstruction method will start to deteriorate. In fact it
is is possible to observe the beginning of round–off error effects in Figure 5.4 (right),
where option 3 for N = 28 and N = 32 yields errors that do not signify exponential
convergence. The continuation of these numerical experiments for larger N would
yield round–off error for all options, and eventually the Gegenbauer reconstruction
method would fail to converge at all. This problem can be alleviated by restricting
the parameters m and λ by some upper bound where the effects of round–off errors
can be controlled. These topics are discussed further in the recent paper [7].

6. Concluding remarks. The efficient resolution of a discontinuous function f
from its first 2N + 1 Fourier coefficients by the Gegenbauer reconstruction method
requires the determination of the parameters λ = αN and m = βN of the Gegen-
bauer polynomials Cλ

l , and coefficients ĝ
λ(l), l = 0, 1, . . . ,m. These parameters deter-

mine the speed of exponential convergence of the resulting reconstruction. However,
they depend on the smoothness characteristics of the function f and are usually not
known in advance. In this paper we have developed a new technique to estimate these
smoothness characteristics of the function f from the Fourier partial sum fN (x). The
smoothness of the function f can be characterized by a parameter r0 which corre-
sponds to the ‘size’ of the ellipse for which the function f has analytic continuation.
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Our technique of assessing r0 is based on using the information provided by the Cheby-

shev coefficients a
(N)
k corresponding to the partial Fourier sum fN (x) and utilizes the

fundamental formula lim supk→∞|ak|1/k = r0, where ak are Chebyshev coefficients of
f , as discussed in [9]. The approximation method for the smoothness parameter r0

described in this paper is suitable for one dimensional problems, but due to its con-
struction, we anticipate additional complexities in higher dimensions. Future work
will address these issues. Once r0 is computed, the optimal parameters α and β are
then determined by minimizing the objective function (3.2) which assumes that the
convergence rates corresponding to the regularization and truncation errors of the
Gegenbauer reconstruction are asymptotically equal. The effectiveness of this tech-
nique for sparse data sets is demonstrated by numerical experiments for discontinuous
functions which have singularities on the real or imaginary axis. In the case of large
data sets, the smoothness indicator can be combined with other error estimates to
alleviate the effects of round–off errors.

The results given here and other recent investigations suggest that the Gegenbauer
reconstruction method may be beneficial for a wide variety of problems, particularly
in imaging applications, especially if it continues to produce evidence of satisfactory
performance in noisy environments. This will be the topic of future investigations, as
will smoothness parameter approximation in higher dimensions.
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