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INEXACT NEWTON REGULARIZATION USING CONJUGATE
GRADIENTS AS INNER ITERATION∗

ANDREAS RIEDER†

Abstract. In our papers [Inverse Problems, 15 (1999), pp. 309–327] and [Numer. Math., 88
(2001), pp. 347–365] we proposed algorithm REGINN, an inexact Newton iteration for the stable solu-
tion of nonlinear ill-posed problems. REGINN consists of two components: the outer iteration, which
is a Newton iteration stopped by the discrepancy principle, and an inner iteration, which computes
the Newton correction by solving the linearized system. The convergence analysis presented in both
papers covers virtually any linear regularization method as inner iteration, especially Landweber iter-
ation, ν-methods, and Tikhonov–Phillips regularization. In the present paper we prove convergence
rates for REGINN when the conjugate gradient method, which is nonlinear, serves as inner iteration.
Thereby we add to a convergence analysis of Hanke, who had previously investigated REGINN furnished
with the conjugate gradient method [Numer. Funct. Anal. Optim., 18 (1997), pp. 971–993]. By nu-
merical experiments we illustrate that the conjugate gradient method outperforms the ν-method as
inner iteration.
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1. Introduction. Our goal is to find a stable approximate solution of the non-
linear ill-posed problem

F (x) = yδ,(1.1)

where F : D(F ) ⊂ X → Y operates between the Hilbert spaces X and Y . Here,
D(F ) denotes the domain of definition of F , and yδ is a noisy version of the exact but
unknown data y = F (x+) satisfying

‖y − yδ‖Y ≤ δ.(1.2)

The nonnegative noise level δ is assumed to be known.

In [10, 11] we proposed algorithm REGINN for solving (1.1). As a Newton-type al-
gorithm, REGINN updates the actual iterate xn by adding a correction step sδn obtained
from solving a linearization of (1.1):

xn+1 = xn + sδn, n ∈ N0,

with an initial guess x0. For obvious reasons we like to have sδn as close as possible
to the exact Newton step

se
n = x+ − xn.
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Assuming F to be Fréchet differentiable with derivative F ′ : D(F ) → L(X,Y ), the
exact Newton step satisfies the linear equation

F ′(xn)se
n = y − F (xn) − E(x+, xn) =: bn,(1.3)

where E(v, w) := F (v) − F (w) − F ′(w)(v − w) is the linearization error.
Unfortunately, the above right-hand side bn is not available; however, we know a

perturbed version

bεn := yδ − F (xn) with ‖bn − bεn‖Y ≤ δ + ‖E(x+, xn)‖Y .

Therefore, we determine the correction step sδn as a solution of

F ′(xn)s = bεn.(1.4)

Here, we have to take into account that the ill-posedness of (1.1) is passed on to (1.4).
For instance, if F is completely continuous, then F ′(xn) is a compact operator (see,
e.g., Zeidler [13, Proposition 7.33]); hence, (1.4) is ill-posed.

Depending on how sδn is stably obtained from (1.4), different methods arise, for
instance, the nonlinear Landweber method (Hanke, Neubauer, and Scherzer [6]), the
Gauß–Newton method (see, e.g., Bakushinskii [1] and Kaltenbacher [7]), and the
Levenberg–Marquardt scheme (Hanke [4]).

In the next few lines we recall briefly how REGINN works. First, a regularization
scheme is applied to the linear system (1.4), obtaining

sn,r := gr(A
∗
nAn)A∗

nb
ε
n,

where An = F ′(xn) and gr : [0, ‖An‖2] → R is the piecewise continuous filter function
of the chosen regularization method. The parameter r ∈ N is called the regularization
parameter. For instance, the filter functions belonging to the Tikhonov–Phillips regu-
larization, the Landweber iteration, and the ν-methods are explicitly known; see, e.g.,
[2, 12], where more examples can be found. The filter functions gr of both latter ex-
amples are polynomials of degree r−1. The conjugate gradients method (cg-method)
can also be described by filter polynomials gr of degree r − 1, which, however, do
depend on the right-hand side bεn: gr(·) = gr(·, bεn). Therefore, the cg-method is a
nonlinear scheme in contrast to the other mentioned examples.

Now we have to select a regularization parameter rn. In REGINN rn is picked as
the smallest number at which the relative (linear) residual is smaller than a given
tolerance μn ∈ ]0, 1], that is,

‖Ansn,rn − bεn‖Y < μn ‖bεn‖Y ≤ ‖Ansn,i − bεn‖Y , i = 1, . . . , rn − 1.(1.5)

The tolerances should not be too small to guarantee existence of rn; see Lemma 2.1
below. A meaningful strategy to adapt the μn’s dynamically was proposed in [10].
Setting sδn := sn,rn we end up with the Newton iteration

xn+1 = xn + grn(A∗
nAn)A∗

nb
ε
n, n ∈ N0,

which has to be stopped in time to avoid noise amplification. A well-established
stopping rule is the discrepancy principle: Choose R > 0 and accept iterate xN as an
approximate solution of (1.1) that fulfills

‖yδ − F (xN )‖Y ≤ Rδ < ‖yδ − F (xk)‖Y , k = 0, . . . , N − 1.(1.6)
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REGINN(x,R, {μn})
n := 0; x0 := x;

while ‖F (xn) − yδ‖Y > Rδ do

{ i := 0;

repeat

i := i + 1;

sn,i := gi
(
F ′(xn)∗F ′(xn)

)
F ′(xn)∗

(
yδ − F (xn)

)
;

until ‖F ′(xn) sn,i + F (xn) − yδ‖Y < μn ‖F (xn) − yδ‖Y
xn+1 := xn + sn,i;

n := n + 1;

}
x := xn;

Fig. 1.1. Algorithmic realization of REGINN ( REGularization based on INexact Newton iterations).

For an algorithmic realization of REGINN, see Figure 1.1. The inner repeat-loop
provides the Newton update sn,rn and the outer while-loop implements the Newton
iteration stopped by the discrepancy principle.

In [11] we were able to verify (under reasonable assumptions) that REGINN with a
linear regularization scheme {gr}r∈N is well defined and indeed terminates. Moreover,
we proved the existence of a positive κmin < 1 such that the source condition1

x+ − x0 ∈ R
(∣∣F ′(x+)

∣∣κ) for a κ ∈ ]κmin, 1](1.7)

implies the suboptimal convergence rate2

‖x+ − xN(δ)‖X = O
(
δ (κ−κmin)/(1+κ)

)
as δ → 0.(1.8)

In the present paper we will improve upon the convergence results for REGINN: We will
verify that (1.7) implies (1.8) even when the cg-method serves as inner iteration of
REGINN. Thus we supplement a convergence analysis of Hanke [5], who had previously
investigated REGINN with the cg-method as inner iteration: Under a slightly weaker
version of our general assumption on the nonlinearity (see (2.1) below), Hanke proved
convergence of {xN(δ)}δ>0 to a set of solutions of F (x) = y as δ → 0.

This paper is structured as follows. In the next two sections we compile facts
about REGINN and the cg-method which we will need later on in our analysis. In
section 4 we show that REGINN is well defined under (1.7) and terminates with an ap-
proximation to x+. Then the regularization property (1.8) will be verified (section 5).
Finally, we present numerical experiments for a parameter identification model prob-
lem and end with concluding remarks in section 7. Some lengthy and technical proofs
from sections 3 and 4 are shifted to Appendices A and B, respectively.

1By R(B) we denote the range of the operator B, and |B| is the square root of B∗B.
2For linear inverse problems Ax = yδ the regularization error cannot decrease faster than

O(δκ/(1+κ)) as δ → 0 under the source condition x+ − x0 ∈ R(|A|κ) in general; see, e.g., [2,
section 3.2] or [12, Kapitel 3.2.3]. Regularization schemes attaining the maximal order are therefore
called order-optimal.
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2. General assumptions and termination of the repeat-loop. Throughout
the paper we assume F : D(F ) ⊂ X → Y to be continuously Fréchet differentiable
with derivative F ′ : D(F ) → L(X,Y ). Moreover, let x+ ∈ D(F ), y = F (x+), yδ ∈ Y
with ‖y − yδ‖Y ≤ δ, A = F ′(x+), and An = F (xn).

Our analysis relies heavily on the local factorization (2.1) of F ′: Let Q : X×X →
L(X,Y ) be a mapping such that

F ′(v) = Q(v, w)F ′(w) with ‖I −Q(v, w)‖ ≤ CQ ‖v − w‖X(2.1)

for all v, w ∈ Bρ(x
+) ⊂ D(F ), the open ball of radius ρ about x+. Here, CQ is a pos-

itive constant. For a discussion of the nontrivial factorization (2.1) and for examples
of meaningful operators satisfying (2.1), we refer to [6, 10, 11], [12, Kapitel 7.3], and
the literature cited therein.

Let CQ ρ < 1. Then (2.1) gives

‖F (v) − F (w)‖Y ≥ (1 − CQ ρ) ‖F ′(w) (v − w)‖Y(2.2)

as well as

‖E(v, w)‖Y ≤ ω ‖F (v) − F (w)‖Y for all v, w ∈ Bρ(x
+),(2.3)

where ω := CQ ρ/(1 − CQ ρ); see [10, section 3] or [12, Lemma 7.3.9]. Observe that
ω < 1 for CQ ρ < 1/2.

In our subsequent analysis we will frequently use the following estimate: For
x, y ∈ Bρ(x

+) and CQρ < 1/2 we have

‖|F ′(x)|−κ |F ′(y)|κ‖ ≤ (1 − 2CQρ)
−κ =: CK,κ for all κ ∈ [0, 1],(2.4)

which is due to Kaltenbacher [7, Lemma 2.2]; see also [12, Lemma 7.5.16].
Using (2.3) we will bound the data error ‖bεn − bn‖Y in terms of δ, ω, and the

nonlinear defect

dn := ‖yδ − F (xn)‖Y = ‖bεn‖Y .

For xn ∈ Bρ(x
+) we find

‖bεn − bn‖Y ≤ (1 + ω) δ + ω dn := ε = ε(xn, δ).

We recall a result from [10] which gives conditions on μn to stop the repeat-loop.
Lemma 2.1. Let {gr}r∈N be the filter function of a linear or nonlinear regu-

larization scheme for which the discrepancy principle returns a well-defined stopping
index; that is, for τ > 1 there exists a smallest index rS with ‖Ansn,rS − bεn‖Y ≤ τ ε.
Further let (2.1) hold true with CQ ρ < 1/2 and assume xn ∈ Bρ(x

+), where n < N .
If R ≥ (1 +ω)/(1−ω), then the repeat-loop of algorithm REGINN terminates for any

μn ∈
]
ω +

(1 + ω) δ

dn
, 1

]
.

The lower bound on R in Lemma 2.1 guarantees that the interval for μn is non-
empty. Since bn ∈ R(An) (see (1.3)), all regularization methods mentioned in sec-
tion 1 (Tikhonov–Phillips, Landweber, ν-method, cg-method) satisfy the requirement
of Lemma 2.1; see, e.g., Engl, Hanke, and Neubauer [2, Chapter 4.3] or [12, Kapi-
tel 3.4].
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3. The method of conjugate gradients: Preliminaries. Here we recall some
basic facts of the cg-method which we will need later in the paper. More details as
well as all proofs can be found in, e.g., Engl, Hanke, and Neubauer [2, Chapter 7] or
[12, Kapitel 5.3].

Let T ∈ L(X,Y ) and η ∈ Y . The cg-method is an iteration for solving the normal
equation T ∗T ζ = T ∗η. Starting with ξ0 ∈ X the cg-method produces a sequence
{ξm}m∈N0

with the minimization property

‖η − Tξm‖Y = min
{
‖η − Tξ‖Y

∣∣ ξ ∈ X, ξ − ξ0 ∈ Um

}
, m ≥ 1,

where Um is the mth Krylov space,

Um := span
{
T ∗r0, (T ∗T )T ∗r0, (T ∗T )2T ∗r0, . . . , (T ∗T )m−1T ∗r0

}
with r0 := η − Tξ0. Therefore, ξm, m ≥ 1, can be expressed by

ξm = ξ0 + qm−1(T
∗T )T ∗(η − Tξ0)

with a polynomial qm−1 of degree m − 1. Closely related to qm−1 is the residual
polynomial pm(λ) = 1 − λ qm−1(λ) of degree m satisfying

η − Tξm = pm(TT ∗)(η − Tξ0).

Both polynomials depend on η: qm−1(·) = qm−1(·,η) and pm(·) = pm(·,η). As soon
as T ∗(η − Tξk) = 0 holds true, the cg-sequence is finite, that is, ξm = ξk for all
m ≥ k. Accordingly,

mT := sup{m ∈ N |T ∗(η − Tξm−1) �= 0}

is called the ultimate termination index of the cg-method (mT = ∞ is allowed and
the supremum of the empty set is understood as zero).

The residual polynomials are orthogonal with respect to the inner product 〈ϕ,ψ〉Π
:= 〈ϕ(T ∗T )T ∗η, ψ(T ∗T )T ∗η〉X , which is defined on the space of all polynomials:

〈pi, pj〉Π = 0 for all 1 ≤ i, j ≤ mT with i �= j.

The orthogonality of {pm}1≤m≤mT
has several consequences. The residual polyno-

mials satisfy a three-term recursion which can be used to compute ξm iteratively
from ξm−1 in a rather cheap way; see Figure 3.1. Moreover, pm has m simple roots
λm,j ∈ ]0, ‖T‖2[ , j = 1, . . . ,m, which we order by

0 < λm,1 < λm,2 < · · · < λm,m < ‖A‖2.

Because of its normalization pm(0) = 1, pm decomposes into the following linear
factors:

pm(λ) =

m∏
j=1

(1 − λ/λm,j) =

m∏
j=1

λm,j − λ

λm,j
.(3.1)

Although we know neither qm−1 nor pm explicitly, some useful information about
both polynomials is available.

Lemma 3.1. For 0 < Λ ≤ λm,1 and 1 ≤ m ≤ mT, we have that

sup
0≤λ≤Λ

|qm−1(λ,η)| = qm−1(0,η) = −p′m(0,η) =

m∑
j=1

λ−1
m,j .
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cg-algorithm for T ∈ L(X,Y ), η ∈ Y and starting guess ξ0 ∈ X.

r0 := η − Tξ0; p1 = a0 := T ∗r0;

m := 1;

while (am−1 �= 0)
{ qm := Tpm;

αm := ‖am−1‖2
X/‖qm‖2

Y ;

ξm := ξm−1 + αm pm;

rm := rm−1 − αm qm;

am := T ∗rm;

βm := ‖am‖2
X/‖am−1‖2

X ;

pm+1 := am + βm pm;

m := m + 1; }

Fig. 3.1. Conjugate gradients algorithm.

The next result is proved in Appendix A and will be used twice in our convergence
analysis of REGINN with the cg-method as inner iteration.

Lemma 3.2. Let {ξm}0≤m≤mT , ξ0 = 0, be the cg-sequence with respect to T ∈
L(X,Y ) and η ∈ Y . Further, let ξ be in D(|T |−μ) for a μ ∈ [0, 1]. Then, for any
ν ∈ [0, μ], we have that

‖|T |−ν(ξm − ξ)‖X ≤ qm−1(0,η)(ν+1)/2
(
‖T (ξm − ξ)‖Y + ‖η − Tξ‖Y

)
+ qm−1(0,η)(ν−μ)/2 ‖|T |−μξ‖X .

(3.2)

4. Termination of REGINN with conjugate gradients. The convergence of
REGINN will be established by bounding the Newton corrections sn,rn sharply enough.
Indeed, we will show that the Newton corrections decrease geometrically in n. Thus,
the Newton iterates stay in a ball about x0.

Recall the assumptions and notation from section 2 and let the cg-method be the
inner iteration of REGINN exclusively throughout this section.

Lemma 4.1. Suppose sn,rn is well defined. Then

‖sn,rn‖X < 3 qrn−1(0, b
ε
n)1/2 dn.(4.1)

Proof. We apply Lemma 3.2 with T = An, μ = ν = 0, ξ = 0, η = bεn, ξm =
sn,rn = qrn−1(A

∗
nA, bεn)A∗

nb
ε
n, that is, m = rn. Thus,

‖sn,rn‖X ≤ qrn−1(0, b
ε
n)1/2

(
‖Ansn,rn‖Y + ‖bεn‖Y

)
.

We are done by ‖Ansn,rn‖Y ≤ ‖Ansn,rn − bεn‖Y + ‖bεn‖Y ≤ (μn + 1) ‖bεn‖Y .
In the following we bound each of the factors on the right-hand side of (4.1).

From [10, Lemma 4.1] (see also [12, Lemma 7.5.9]) we already know that the nonlinear
residuals dn decrease linearly.

Lemma 4.2. Suppose that the nth iterate xn of REGINN is well defined and lies in
Bρ(x

+). Further, let (2.3) hold true with

ω < η/(2 + η) for one η < 1.3

3This restriction is satisfied, for instance, if (2.1) holds true and ρ is small enough.
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If, moreover,

R ≥ 1 + ω

η − (2 + η)ω
and μn ∈

]
ω +

(1 + ω) δ

dn
, η − (1 + η)ω

]

as well as xn+1 ∈ Bρ(x
+), then

dn+1

dn
=

‖yδ − F (xn+1)‖Y
‖yδ − F (xn)‖Y

<
μn + ω

1 − ω
≤ η.

4.1. Bounding qrn−1(0, bε
n). We assume the existence of w ∈ X and κ ∈ [0, 1]

such that

se
0 = x+ − x0 = |A|κw,(4.2)

where A = F ′(x+). To formulate the bound for qrk−1(0, b
ε
k) we introduce the ratio

τk := μk dk/ε(xk, δ),(4.3)

which is greater than 1 under the hypotheses of Lemma 2.1.

Lemma 4.3. Let (2.1) hold true with CQρ < 1/2 (thus, ω < 1 in (2.3)) and
assume that the first n < N iterates {x1, . . . , xn} of REGINN exist and stay in Bρ(x

+).
Further, let x0 ∈ Bρ(x

+) satisfy the source condition (4.2).

Then se
k = x+ − xk ∈ D(|Ak|−κ), 0 ≤ k ≤ n. Moreover, if R ≥ (1 + ω)/(1 − ω)

and if μk ∈ ]ω + (1 + ω)δ/dk, 1], 0 ≤ k ≤ n, then for any Θ ∈ ]0, 1[ such that
Θ min{τ0, . . . , τn} > 1 we have

qrk−1(0, b
ε
k)

(κ+1)/2 ≤ aΘ

Θ τk − 1
ε(xk, δ)

−1 ‖|Ak|−κse
k‖X , 0 ≤ k ≤ n,

where aΘ is a positive constant depending only on Θ and κ.

Proof. See Appendix B for the proof.

Let us summarize what we found so far. Starting from (4.1) we are able to bound
the Newton steps under the assumptions of Lemma 4.3 by

‖sk,rk‖X < 3
( aΘ

Θ τk − 1

)1/(κ+1)

ε(xk, δ)
−1/(κ+1) ‖|Ak|−κse

k‖
1/(κ+1)
X dk.(4.4)

4.2. Bounding ‖|Ak|−κse
k‖X . Before we are able to establish termination of

REGINN by (4.4), we have to know how ‖|Ak|−κse
k‖X behaves in k. Since se

k = x+ −
xk = x+ − xk−1 − sk−1,rk−1

= se
k−1 − sk−1,rk−1

we conclude that

‖|Ak|−κse
k‖X = ‖|Ak|−κ(se

k−1 − sk−1,rk−1
)‖X

(2.4)

≤ CK,κ ‖|Ak−1|−κ(se
k−1 − sk−1,rk−1

)‖X .
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We estimate the norm on the right by applying Lemma 3.2 with T = Ak−1, μ = ν = κ,
ξ = se

k−1 η = bεk−1, and ξm = sk−1,rk−1
. Hence,

‖|Ak|−κse
k‖X ≤ CK,κ qrk−1−1(0, b

ε
k−1)

(κ+1)/2
(
‖Ak−1sk−1,rk−1

− bk−1‖Y
+‖bεk−1 − bk−1‖Y

)
+ ‖|Ak−1|−κse

k−1‖X

≤ CK,κ qrk−1−1(0, b
ε
k−1)

(κ+1)/2
(

μk−1 dk−1︸ ︷︷ ︸
(4.3)
= τk−1 ε(xk−1,δ)

+2 ε(xk−1, δ)
)

+‖|Ak−1|−κse
k−1‖X

≤ 3CK,κ qrk−1−1(0, b
ε
k−1)

(κ+1)/2 τk−1 ε(xk−1, δ)

+‖|Ak−1|−κse
k−1‖X

≤
(
3CK,κ aΘ

τk−1

Θ τk−1 − 1
+ 1

)
‖|Ak−1|−κse

k−1‖X ,

where we used Lemma 4.3 in the last step. Inductively, we end up with the following
lemma.

Lemma 4.4. Let (2.1) hold true with CQρ < 1/2 (thus, ω < 1 in (2.3)) and
assume that the first n < N iterates {x1, . . . , xn} of REGINN exist and stay in Bρ(x

+).
Further, choose R ≥ (1 + ω)/(1 − ω) and let x0 ∈ Bρ(x

+) satisfy the source condi-
tion (4.2).

If μk ∈ ]ω + (1 + ω)δ/dk, 1], 0 ≤ k ≤ n, and if Θ ∈ ]0, 1[ is such that Θ τk > 1,
0 ≤ k ≤ n, then

‖|Ak|−κse
k‖X ≤ CK,κ Λk

n ‖w‖X for k = 0, . . . , n(4.5a)

with

Λn = 1 + 3CK,κ aΘ
tn

Θ tn − 1
and tn = min{τ0, . . . , τn}.(4.5b)

4.3. Termination. We are now able to verify termination of REGINN with conju-
gate gradients as inner iteration: under reasonable technical assumptions all iterates
remain in Bρ(x0) and REGINN delivers an approximation xN(δ) to x+. The following
theorem is the counterpart of Theorem 3.3 from [11] (see also [12, Satz 7.5.14]) and
will be proved along the same lines.

Theorem 4.5. Let (2.1) hold true with CQρ < 1/2 (thus, ω < 1 in (2.3)). Let
τ > 1 and let Θ ∈ ]0, 1[ be such that Θ τ > 1. Set

Λ = 1 + 3CK,κ aΘ
τ

Θ τ − 1
,

where CK,κ = (1−CQρ)
−κ (see (2.4)), and aΘ comes from the estimate in Lemma 4.3.

Suppose that (2.3) is satisfied with

ω <
η

η + τ + 1
, where ηΛ < 1.4

Assume that the starting guess x0 ∈ Bρ/2(x
+) is chosen such that the source con-

dition (4.2) applies for κ restricted to ] log1/η Λ, 1] and that the product ‖w‖X ‖y −

4This restriction is satisfied, for instance, if (2.1) holds true and ρ is small enough.



612 ANDREAS RIEDER

F (x0)‖κY is sufficiently small. If

R ≥ τ (1 + ω)

η − ω
(
η + τ + 1

) and μk ∈
[
τ

(
ω +

(1 + ω) δ

dk

)
, η − (1 + η)ω

]
for k ≥ 0, then there is an N(δ) ∈ N and a δ > 0 such that all iterates {x1, . . . , xN(δ)}
are well defined and stay in Bρ(x

+) for all noise levels δ ∈ ]0, δ]. Moreover, the final
iterate xN(δ) satisfies the discrepancy principle (1.6) and, for d0 > Rδ,

N(δ) ≤ �logη(Rδ/d0) + 1.5(4.6)

Proof. We will prove Theorem 4.5 by induction. Therefore, assume that the first
n iterates {x0, . . . , xn} are well defined under the hypotheses of Theorem 4.5 and stay
in Bρ(x

+).
If dn ≤ Rδ, the iteration will be stopped by (1.6) with N(δ) = n. Otherwise,

dn > Rδ, and we show that the interval determining μn is not empty. The bound on
ω implies that the denominator of the lower bound of R is positive. The lower bound
on R guarantees that τ(ω + (1 + ω)δ/dn) < τ(ω + (1 + ω)/R) < η − (1 + η)ω.

According to Lemma 2.1, rn and thus the Newton step sn,rn are well defined. By
(4.4) and (4.5),

‖sn,rn‖X ≤ 3

(
CK,κ aΘ ‖w‖X

Θ τn − 1

)1/(κ+1)

Λn/(κ+1)
n ε(xn, δ)

−1/(κ+1) dn.

The lower bound on the μk’s yields τk ≥ τ > 1, k = 0, . . . , n (cf. (4.3)), that is,
Λn ≤ Λ. Moreover, dn/ε(xn, δ) ≤ 1/ω. Taking Lemma 4.2 into account, we obtain

‖sn,in‖X ≤ CS ‖w‖1/(κ+1)
X d

κ/(κ+1)
0 σ(κ)n,

where CS = 3
(
CK,κ aΘ/(Θ τ − 1)/ω

)1/(κ+1)
and

σ(κ) :=
(
Λ ηκ

)1/(κ+1)
< 1.6(4.7)

We define the quantity

α(δ) := CS ‖w‖1/(κ+1)
X ‖F (x0) − yδ‖κ/(κ+1)

X

/(
1 − σ(κ)

)
.(4.8)

In our formulation of Theorem 4.5 we assumed the product ‖w‖X‖F (x0)− y‖κX to be
sufficiently small. Now we can be more precise: assume that ‖w‖X‖F (x0)− y‖κX is so
small that α(0) < ρ/2. Then there exists a δ > 0 yielding α(δ) < ρ/2 for all δ ∈ ]0, δ]
and the new iterate xn+1 = xn + sn,rn = x0 +

∑n
k=0 sk,rk is in Bρ(x

+):

‖x+ − xn+1‖X ≤ ‖x+ − x0‖X +

n∑
k=0

‖sk,rk‖X ≤ ρ/2 + α(δ) ≤ ρ.

Further, dn+1 ≤ ηn+1d0 uniformly in δ ∈ ]0, δ] (Lemma 4.2). This completes the
inductive step, thereby finishing the proof of Theorem 4.5.

5Here, �t� ∈ Z for t ∈ R denotes the greatest integer: �t� ≤ t < �t� + 1.
6Note that σ(κ) is smaller than 1 since κ > log1/η Λ.
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5. Convergence with rates. Finally, we are able to verify the regularization
property of REGINN with conjugate gradients as inner iteration, that is, we will show
convergence of xN(δ) to x+ as the noise level δ decreases.

As an additional tool we will use the interpolation inequality (5.1): If T ∈ L(X,Y ),
then ∥∥(T ∗T )αx

∥∥
X

≤ ‖(T ∗T )βx‖α/βX ‖x‖1−α/β
X for 0 < α ≤ β;(5.1)

see, e.g., [2, 12].
Under the hypotheses of Theorem 4.5 we have to control the reconstruction error

se
k = x+ − xk of the kth iterate, 0 ≤ k ≤ N(δ):

‖se
k‖2

X = 〈|Ak|κse
k, |Ak|−κse

k〉X ≤ ‖|Ak|κse
k‖X ‖|Ak|−κse

k‖X
(5.1)

≤ ‖|Ak|se
k‖κX ‖se

k‖1−κ
X CK,κ Λk ‖w‖X ,

where we also applied (4.5) with Λk ≤ Λ to obtain the last inequality. Thus,

‖se
k‖X ≤ C

1/(κ+1)
K,κ Λk/(κ+1) ‖w‖1/(κ+1)

X ‖Aks
e
k‖

κ/(κ+1)
Y

(2.2)

≤ C
1/(κ+1)
K,κ Λk/(κ+1) ‖w‖1/(κ+1)

X

(
‖y − F (xk)‖Y

1 − CQ ρ

)κ/(κ+1)

.
(5.2)

Relying on the above estimate, we are now able to copy the proof of Theorem 4.1
from [11] (see also [12, Satz 7.5.17]) to yield the announced convergence result.

Theorem 5.1. Adopt the assumptions of Theorem 4.5; especially, let the source
condition (4.2) be satisfied with κ restricted to ] log1/η Λ, 1]. Additionally, assume that

α(0) < ρ/2 (see (4.8)), as well as F (x0) �= y = F (x+). Then

‖x+ − xN(δ)‖X ≤ Cκ ‖w‖1/(κ+1)
X δ(κ−log1/η Λ)/(κ+1) as δ → 0,(5.3)

where Cκ is a suitable constant.
In the noise-free situation, that is, δ = 0, we have that

‖x+ − xk‖X = O
(
σ(κ)k

)
as k → ∞

with σ(κ) from (4.7).
Proof. Plugging k = N(δ) into (5.2) and taking (1.6) into account give

‖se
N(δ)‖X ≤ C

1/(κ+1)
K,κ ‖w‖1/(κ+1)

X

(
R + 1

1 − CQ ρ

)κ/(κ+1)

ΛN(δ)/(κ+1) δκ/(κ+1).

Thus, (5.3) follows from (4.6). Convergence in the noise-free setting is obtained from
(5.2) in combination with Lemma 4.2.

6. Computational example. By computational experiments we will demon-
strate the increase in numerical efficiency of REGINN when replacing the ν-method by
the conjugate gradient iteration as inner iteration. We distinguish the two variants
by ν-REGINN and cg-REGINN. Throughout this section let ν = 1.7

7Any ν ≥ 1 is admissible [11, Example 2.1]. However, larger ν slow down ν-REGINN in the
numerical computations presented here.
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For our numerical experiments we select a model problem which satisfies our
main assumption (2.1). We like to identify the bivariate parameter c ≥ 0 in the
two-dimensional elliptic PDE

−Δu + c u = f in Ω,

u = g on ∂Ω
(6.1)

from the knowledge of u in the box Ω = ]0, 1[2. In (6.1), −Δ is the Laplacian.
Further, let f and g be continuous functions. If u has no zeros in Ω, then c can be
recovered explicitly by c = (f + Δu)/u. Thus, c is uniquely determined by u but
does not depend continuously on it. In the case of noise-corrupted data the inversion
formula is useless. Further details about our model problem can be found in Hanke,
Neubauer, and Scherzer [6, Example 4.2]. Since we already used our model problem
for numerical experiments in [10, 11, 12] we will be brief in what follows.

We discretize (6.1) by finite differences with respect to the grid points (xi, yj) =
(i h, j h), 1 ≤ i, j ≤ m, where m ∈ N and h = 1/(m+1) is the discretization step size.
Ordering the grid points lexicographically yields the m2 ×m2 linear system(

A + diag(c)
)
u = f ,

where A comes from the difference star of the Laplacian −Δ and where the com-
ponents of c = (c1, . . . , cm2)t are given by c�(i,j) = c(xi, yj) with � : {1, . . . ,m}2 →
{1, . . . ,m2} denoting lexicographical ordering. The boundary values g are incorpo-
rated into the right-hand side f . From the convergence theory for finite differences
(see, e.g., Hackbusch [3]), we know that the solution u of the above linear system
satisfies u�(i,j) = u(xi, yj) + O(h2) as h → 0 whenever u is sufficiently smooth.

In this discrete setting we like to reconstruct c from u. Thus, we have to solve
the nonlinear equation

F (c) = u(6.2)

with F : R
m2

≥0 → R
m2

, F (c) = (A+diag(c))−1 f . The function F is differentiable with

Jacobi-matrix F ′(c)w = −
(
A + diag(c)

)−1(
F (c) � w

)
, where � denotes component-

wise multiplication of vectors. Moreover, F ′ can be factorized according to (2.1) in a
neighborhood of any c > 0 (componentwise), where also F (c) > 0.8 In our numerical
experiments the parameter to be identified is

c+(x, y) = 1.5 sin(2π x) sin(3π y) + 3
(
(x− 0.5)2 + (y − 0.5)2

)
+ 2.

We have chosen f and g such that u(x, y) = 16x (x− 1) y (1− y)+ 1 solves (6.1) with
respect to c+. As perturbed right-hand side uδ for (6.2) we worked with uδ = ũ+δ v,
where ũ�(i,j) = u(xi, yj) and v = z/‖z‖h. The entries of the random vector z are

uniformly distributed in [−1, 1]. Therefore, ‖u − uδ‖h ≤ δ + O(h2) measured in the

weighted Euclidean norm ‖z‖h = h
(∑m2

i=0 z2
i

)1/2
, which approximates the L2-norm

over Ω.
In all computations below we started REGINN with initial guess c0, where (c0)�(i,j) =

c0(xi, xj) and

c0(x, y) = 3
(
(x− 0.5)2 + (y − 0.5)2

)
+ 2 + 128x (x− 1) y (1 − y).

8The implication c > 0 ⇒ F (c) > 0 holds true, for instance, if f > 0 since A + diag(c) is an
M-matrix whose inverse has only nonnegative entries.
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~h 

Fig. 6.1. Relative reconstruction error (6.4) of REGINN as a function of h (solid line with 
:
cg-method as inner iteration; dashed line with ◦: ν-method as inner iteration). The thin solid line
indicates decay O(h) as h → 0.

Further, we always used R = 1.5, and we adapted the tolerances {μk} in (1.5) dy-
namically according to scheme (6.3) below, which was proposed in [10, section 6]
(see also [12, Kapitel 7.5.3.4]): Initialize μstart = 0.1, γ = 0.9, μmax = 0.999, and
μ̃0 = μ̃1 := μstart. For k = 0, . . . , N(δ) − 1 set

μk := μmax max
{
Rδ/‖F (ck) − uδ‖h, μ̃k

}
,(6.3)

where ck is the kth iterate and

μ̃k :=

{
1 − rk−2

rk−1
(1 − μk−1) : rk−1 ≥ rk−2,

γ μk−1 : else.

Figure 6.1 shows relative reconstruction errors by ν-REGINN and cg-REGINN. More
precisely, we plotted

err(h) := ‖cN(δ(h)) − c+‖h/‖c+‖h with δ(h) = 10h2(6.4)

as a function of h ∈ {(10 k)−1 | k = 3, . . . , 12}, where c+
�(i,j) = c+(xi, yj) and where

cN(δ(h)) is the output of either ν-REGINN or cg-REGINN. The auxiliary line in Fig-
ure 6.1 represents exact decay O(h) as h → 0. Thus, our computations indicate that
err(h) = O(h) as h → 0. Since ‖u − uδ(h)‖h ≤ δ(h) + O(h2) := δ(h) = O(h2) the
regularization error achieves maximal order of convergence according to Theorem 5.1,
namely, err(δ) = O(δ1/2) as δ → 0, that is, κ = 1 and Λ = 1.

Both variants of REGINN deliver errors in comparable magnitude. In this respect
there is not much difference between cg-REGINN and ν-REGINN. However, looking at
the numerical efficiency we observe a significant difference. In Figure 6.2 we plotted
the ratio

q(h) :=
cpu-time of ν-REGINN to compute cN(δ(h))

cpu-time of cg-REGINN to compute cN(δ(h))
,(6.5)
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Fig. 6.2. Speedup q (6.5) of cg-REGINN over ν-REGINN.

Table 6.1

Convergence history of ν-REGINN for h = 0.01, δ(h) = 10h2, with respect to the tolerance
selection (6.3), where μstart = 0.1, μmax = 0.999, and γ = 0.9. Overall cpu-time: 240.72 seconds.

k μk−1 rk−1 dk/dk−1 dk/(Rδ) ek
1 0.0999 40 0.2464 43.68 0.4280

2 0.0999 75 0.1128 4.925 0.2204

3 0.5194 99 0.5153 2.538 0.1311

4 0.6353 105 0.6324 1.605 0.0836

5 0.6555 176 0.6550 1.051 0.0443

6 0.9504 242 0.9503 0.999 0.0290

Table 6.2

Convergence history of cg-REGINN for h = 0.01, δ(h) = 10h2, with respect to the tolerance
selection (6.3), where μstart = 0.1, μmax = 0.999, and γ = 0.9. Overall cpu-time: 8.00 seconds.

k μk−1 rk−1 dk/dk−1 dk/(Rδ) ek
1 0.0999 1 0.3997 70.86 0.5598

2 0.0999 1 0.1188 8.418 0.3090

3 0.1187 6 0.1223 1.030 0.0239

4 0.9704 1 0.9629 0.991 0.0238

where we did not count cpu-time for preprocessing steps performed by both vari-
ants.9 Figure 6.2 reveals that cg-REGINN is 10 to 30 times faster than ν-REGINN in
our example.

Tables 6.1 and 6.2 record the convergence history of ν-REGINN and cg-REGINN in
full detail for the discretization step size h = 0.01. In both tables

dk := ‖F (ck) − uδ(h)‖h and ek := ‖ck − c+‖h/‖c+‖h

denote the nonlinear defect and the relative L2-error of the kth iterate, respectively.
Among all Krylov-subspace methods the conjugate gradient iteration is the most

efficient one when the discrepancy principle is the used stopping rule; see, e.g., [2,

9The experiments were carried out under MATLAB 6.5 on a 2.6GHz Intel Pentium 4 processor.
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Chapter 7.1] or [12, Kapitel 5.3.6]. As expected, cg-REGINN outperforms ν-REGINN
since it takes much fewer inner iterations to yield the correction step which we can
observe clearly in the tables (one iteration step of the cg-methods is only slightly more
expensive than one iteration step of the ν-method).

7. Concluding remarks. In this paper we proved local convergence with rates
for a regularization scheme of inexact Newton type with the cg-method as inner iter-
ation. Theoretical aspects are emphasized; ideas and techniques have been presented
to cope with the nonlinearity of the conjugate gradient iteration.

As far as the author knows, the restrictive factorization assumption (2.1) has not
been verified for real applications such as, e.g., impedance tomography, ultrasound
tomography, and SPECT (single photon emission computed tomography). Therefore
the most pressing improvement of the presented analysis is to weaken or to get rid
of (2.1).

Nevertheless the practitioner may benefit from our theoretical results in at least
two ways: (1) The adaptive tolerance selection scheme (6.3) has a sound justification
for cg-REGINN and can be expected to perform well also for more general nonlinearities.
(2) A potential convergence analysis of cg-REGINN for a specific application, which does
not fall into the general category considered, can be based upon techniques developed
here.

Appendix A. Proof of Lemma 3.2. For the sake of simplicity we only prove
Lemma 3.2 for a compact operator T (the general result will follow by integration
over the spectral family of T ∗T ). Most of our arguments have been used before by
Plato [9, Lemma 5.4] (see also [12, Lemma 5.3.11]) to prove another error estimate
for the cg-method.

Let {(σj ; vj , uj)|j ∈ N} ⊂ ]0,∞[×X × Y be the singular system of T , that is,
Tx =

∑∞
j=1 σj 〈x, vj〉X uj with limj→∞ σj = 0 monotonically, and {vj} and {uj} are

orthonormal bases in N(T )⊥ and R(T ), respectively.10

We introduce the spectral family {EΛ}Λ>0 ⊂ L(X) of T ∗T by11

EΛx :=
∑

j∈J (Λ)

〈x, vj〉X vj + PN(T )x, J (Λ) := {j ∈ N |σ2
j ≤ Λ},(A.1)

and start with

‖|T |−ν(ξm − ξ)‖X ≤ ‖|T |−ν(I − EΛ)(ξm − ξ)‖X + ‖|T |−νEΛ(ξm − ξ)‖X .

We proceed by

‖|T |−ν(I − EΛ)(ξm − ξ)‖2
X =

∞∑
k=1

σ
−2(ν+1)
k

∣∣〈|T |(I − EΛ)(ξm − ξ), vk
〉
X

∣∣2
=

∑
k �∈J (Λ)

σ
−2(ν+1)
k

∣∣〈|T |(ξm − ξ), vk
〉
X

∣∣2
≤ Λ−(ν+1) ‖T (ξm − ξ)‖2

Y

10N(B) and R(B) denote the null space and the range of a linear operator, respectively.
11PM ∈ L(X) denotes the orthogonal projection onto the closed subspace M of X.
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and

‖|T |−νEΛ(ξm − ξ)‖X
≤ ‖|T |−νEΛpm(T ∗T,η)ξ‖X + ‖|T |−νEΛqm−1(T

∗T,η)T ∗(η − Tξ)‖X
≤ ‖EΛ|T |μ−νpm(T ∗T,η)‖X ‖|T |−μξ‖X

+ ‖|T |−νEΛqm−1(T
∗T,η)T ∗‖X ‖η − Tξ‖X

≤ ‖|T |−μξ‖X sup
0≤λ≤Λ

λ(μ−ν)/2 |pm(λ,η)|

+ ‖EΛqm−1(T
∗T,η)|T |−νT ∗‖X ‖η − Tξ‖X .

Further,

‖EΛqm−1(T
∗T,η)|T |−νT ∗‖2

= ‖EΛ qm−1(T
∗T,η)|T |2(1−ν)qm−1(T

∗T,η)EΛ‖

≤ ‖EΛ qm−1(T
∗T,η)‖ ‖|T |2(1−ν)qm−1(T

∗T,η)EΛ‖

≤ sup
0≤λ≤Λ

|qm−1(λ,η)| sup
0≤λ≤Λ

λ1−ν |qm−1(λ,η)|.

By Lemma 3.1 we have

sup
0≤λ≤Λ

|qm−1(λ,η)| ≤ qm−1(0,η) whenever 0 < Λ ≤ λm,1.

The representation (3.1) of pm shows that 0 ≤ pm(λ) ≤ 1 for λ ∈ [0, λm,1]. Since
pm(λ) = 1 − λ qm−1(λ) we derive that

sup
0≤λ≤Λ

λ1−ν |qm−1(λ,η)| ≤
(

sup
0≤λ≤Λ

λ |qm−1(λ,η)|
)1−ν (

sup
0≤λ≤Λ

|qm−1(λ,η)|
)ν

≤ qm−1(0,η)ν

whenever 0 < Λ ≤ λm,1. Finally, for 0 < Λ ≤ λm,1, we obtain that

‖|T |−ν(ξm − ξ)‖X ≤ Λ−(ν+1)/2 ‖T (ξm − ξ)‖Y + ‖|T |−μξ‖X Λ(μ−ν)/2

+ qm−1(0,η)(ν+1)/2 ‖η − Tξ‖X ,

which yields the stated inequality (3.2) by setting Λ = 1/qm−1(0,η). This choice for
Λ is admissible since 1/qm−1(0,η) < λm,1; see Lemma 3.1.

Appendix B. Proof of Lemma 4.3. Before we can prove Lemma 4.3, we
need some auxiliary results (Lemmas B.1 and B.2 and Corollary B.3 below). Here we
rely on arguments laid out by Plato [9, Kapitel 5] and Nemirovskii [8] (see also [12,
Kapitel 5.3]).

Suppose that the first n iterates {x1, . . . , xn} of REGINN exist and stay in Bρ(x
+).

Point of departure is the inequality

‖bεk −Aksk,m‖Y ≤ ‖Fλm,1ϕm(AkA
∗
k, b

ε
k)bk‖Y + ε, 1 ≤ m ≤ mT,(B.1)

where 0 ≤ k ≤ n, mT = mT(k), and FΛ ∈ L(Y ), Λ > 0, is the orthogonal projection

FΛy :=
∑

i∈J (Λ)

〈y, ui〉Y ui + PN(A∗
k)y(B.2)
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with index set J as in (A.1). In defining FΛ we used the singular system of Ak.
12

Further, the function ϕm(·, bεk) ∈ C(R) in (B.1) is

ϕm(λ, bεk) := pm(λ, bεk)
( λm,1

λm,1 − λ

)1/2
,

where λm,1 is the smallest zero of the mth residual polynomial pm(·, bεk) of the cg-
method with respect to Ak and bεk. A proof of (B.1) is presented, e.g., by Engl, Hanke,
and Neubauer [2, Proof of Theorem 7.10].

As se
k = x+ − xk = se

0 −
∑k−1

j=0 sj,rj we obtain

se
k

(4.2)
= |A|κw −

k−1∑
j=0

A∗
j qrj−1(AjA

∗
j , b

ε
j) b

ε
j .

Note that se
k ∈ D(|Ai|−κ), i = 0, . . . , n. Indeed, in using Aj = Qj,iAi with Qj,i =

Q(xj , xi) (see (2.1)), we obtain that

‖|Ai|−κse
k‖X ≤ ‖|Ai|−κ|A|κw‖X +

k−1∑
j=0

‖|Ai|−κA∗
j qrj−1(AjA

∗
j , b

ε
j) b

ε
j‖X

(2.4)

≤ CK,κ ‖w‖X + ‖|Ai|−κA∗
i ‖︸ ︷︷ ︸

=‖Ai‖1−κ

k−1∑
j=0

‖Q∗
j,iqrj−1(AjA

∗
j , b

ε
j) b

ε
j‖Y .

Thus, by Aks
e
k = bk,

‖Fλm,1ϕm(AkA
∗
k, b

ε
k)bk‖Y

= ‖Fλm,1ϕm(AkA
∗
k, b

ε
k)Ak|Ak|κ|Ak|−κse

k‖Y

≤ sup
0≤λ≤λm,1

λ(κ+1)/2 ϕm(λ, bεk) ‖|Ak|−κse
k‖X .

(B.3)

Techniques from elementary calculus, together with Lemma 3.1, yield

sup
0≤λ≤λm,1

λ(κ+1)/2 ϕm(λ, bεk) ≤ 2 qm−1(0, b
ε
k)

−(κ+1)/2

for κ ∈ [0, 1]; see, e.g., [2, (7.8)] or [12, (5.65)]. Hence,

‖Fλm,1ϕm(AkA
∗
k, b

ε
k)bk‖Y ≤ 2 qm−1(0, b

ε
k)

−(κ+1)/2 ‖|Ak|−κse
k‖X .(B.4)

Finally, (B.1) and (B.4) yield the following lemma.
Lemma B.1. Let (2.1) hold true and assume that the first n iterates {x1, . . . , xn}

of REGINN exist and stay in Bρ(x
+). If x0 ∈ Bρ(x

+) satisfies (4.2), then, for 0 ≤ k ≤ n
and 1 ≤ m ≤ mT(k),

‖bεk −Aksk,m‖Y ≤ ε + 2 qm−1(0, b
ε
k)

−(κ+1)/2 ‖|Ak|−κse
k‖X .

We need a second auxiliary lemma.

12More precisely, {FΛ}Λ>0 is the spectral family of AkA
∗
k.



620 ANDREAS RIEDER

Lemma B.2. Let (2.1) hold true and assume that the first n iterates {x1, . . . , xn}
of REGINN exist and stay in Bρ(x

+). Further, let x0 ∈ Bρ(x
+) satisfy (4.2). Choose

ϑ > 2 and 2 < r ≤ 2(ϑ− 1). Let 0 ≤ k ≤ n and 1 ≤ m ≤ mT(k).
If ϑ qm−2(0, b

ε
k) ≤ qm−1(0, b

ε
k), then

r − 2

r − 1
‖bεk −Aksk,m−1‖Y ≤ ε + α(κ+1)/2 qm−1(0, b

ε
k)

−(κ+1)/2 ‖|Ak|−κse
k‖X ,

where α = r/(1 − ϑ−1).
Proof. Under our assumptions Plato [9, (5.16)] (see also [12, (5.67)]) established

the bound

r − 2

r − 1
‖bεk −Aksk,m−1‖Y ≤ ‖Frλm,1p(AkA

∗
k)b

ε
k‖Y

with the polynomial p(λ) = pm(λ, bεk)/(1 − λ/λm,1) of degree m − 1. The triangle
inequality leads to

‖Frλm,1p(AkA
∗
k)b

ε
k‖Y ≤ ε sup

0≤λ≤rλm,1

|p(λ)| + ‖Frλm,1p(AkA
∗
k)bk‖Y .

To bound ‖Frλm,1p(AkA
∗
k)bk‖Y we are able to apply exactly the same arguments as

were used in estimating ‖Fλm,1
ϕm(AkA

∗
k)bk‖Y ; cf. (B.3). Accordingly, if

sup
0≤λ≤rλm,1

|p(λ)| ≤ 1(B.5a)

as well as

sup
0≤λ≤rλm,1

λ(κ+1)/2 |p(λ)| ≤ α(κ+1)/2 qm−1(0, b
ε
k)

−(κ+1)/2,(B.5b)

then Lemma B.2 is true. Assume, for the moment, that

rλm,1 < 2λm,2 and λm,1 ≤ qm−1(0, b
ε
k)

−1/(1 − ϑ−1)(B.6)

hold true. The left inequality yields rλm,1/λm,j < 2, j = 2, . . . ,m, whence

|p(λ)| =
m∏
j=2

|1 − λ/λm,j | < 1 for 0 < λ ≤ rλm,1.

Therefore, (B.6) implies (B.5) and we are left with verifying (B.6).
First we look into the estimate on the right in (B.6). Since the residual polynomi-

als {pm(·, bεk)}1≤m≤mT
are orthogonal, their zeros interlace, that is, λm−1,j < λm,j+1,

j = 1, . . . ,m− 1. By Lemma 3.1 we therefore have

qm−1(0, b
ε
k) = λ−1

m,1 +

m−1∑
j=1

λ−1
m,j+1

< λ−1
m,1 +

m−1∑
j=1

λ−1
m−1,j = λ−1

m,1 + qm−2(0, b
ε
k).

(B.7)
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The hypothesis qm−2(0, b
ε
k) ≤ ϑ−1 qm−1(0, b

ε
k) implies qm−1(0, b

ε
k) ≤ λ−1

m,1+ϑ−1qm−1(0, b
ε
k)

and thus the right inequality in (B.6). Since

(ϑ− 1) λ−1
m−1,1 < (ϑ− 1)

m−1∑
j=1

λ−1
m−1,j = ϑ qm−2(0, b

ε
k) − qm−2(0, b

ε
k)

by
assumpt.

≤ qm−1(0, b
ε
k) − qm−2(0, b

ε
k)

(B.7)
< λ−1

m,1,

we obtain λm,1 < (ϑ−1)−1 λm−1,1 < (ϑ−1)−1 λm,2 (interlacing property). In view of
r/(ϑ− 1) ≤ 2 we conclude that the left inequality in (B.6) holds true as well, thereby
finishing the proof of Lemma B.2.

Both latter lemmas merge in the next corollary.
Corollary B.3. Let (2.1) hold true and assume the first n iterates {x1, . . . , xn}

of REGINN exist and stay in Bρ(x
+). Further, let x0 ∈ Bρ(x

+) satisfy (4.2). Then, to
any Θ ∈ ]0, 1[, there exists a number aΘ such that, for 0 ≤ k ≤ n,

Θ ‖bεk −Aksk,m−1‖Y ≤ ε + aΘ qm−1(0, b
ε
k)

−(κ+1)/2 ‖|Ak|−κse
k‖X ,

where 1 ≤ m ≤ mT(k). The number aΘ only depends on Θ and κ.
Proof. There is exactly one r = r(Θ) > 2 such that Θ = r−2

r−1 . Let this r be fixed
and define ϑ = r/2 + 1 > 2, that is, r = 2(ϑ − 1). Exactly one of the following two
cases holds true.

1. In the case of ϑ qm−2(0, b
ε
k) ≤ qm−1(0, b

ε
k) the assertion follows immediately

from Lemma B.2 when setting

aΘ,1 :=
( r

1 − ϑ−1

)(κ+1)/2

=
( r

1 − (r/2 + 1)−1

)(κ+1)/2

.

2. In the case of qm−1(0, b
ε
k) < ϑqm−2(0, b

ε
k) we argue with Lemma B.1. Since

Θ < 1 and qm−2(0, b
ε
k)

−1 < ϑqm−1(0, b
ε
k)

−1 we have

Θ ‖bεk −Ask,m−1‖Y ≤ ε + 2 qm−2(0, b
ε
k)

−(κ+1)/2 ‖|Ak|−κse
k‖X

< ε + aΘ,2 qm−1(0, b
ε
k)

−(κ+1)/2 ‖|Ak|−κse
k‖X

with

aΘ,2 := 2 ϑ(κ+1)/2 = 2 (r/2 + 1)(κ+1)/2.

So, the assertion of Corollary B.3 is verified with aΘ = max{aΘ,1, aΘ,2}.
Finally we are in a position to verify Lemma 4.3: The μk’s and R satisfy the

requirements of Lemma 2.1. Hence, τk > 1 (see (4.3)), and τk ε ≤ ‖bεk −Aksk,rk−1‖Y
(see (1.5)). Since 1 ≤ rk ≤ mT(k) we obtain

Θ τk ε ≤ Θ ‖bεk −Aksk,rk−1‖Y ≤ ε + aΘ qrk−1(0, b
ε
k)

−(κ+1)/2 ‖|Ak|−κse
k‖X

by Corollary B.3. A simple rearrangement of terms yields the assertion of Lemma 4.3.
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