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MULTIADAPTIVE GALERKIN METHODS FOR ODES III:
A PRIORI ERROR ESTIMATES∗

ANDERS LOGG†

Abstract. The multiadaptive continuous/discontinuous Galerkin methods mcG(q) and mdG(q)
for the numerical solution of initial value problems for ordinary differential equations are based on
piecewise polynomial approximation of degree q on partitions in time with time steps which may vary
for different components of the computed solution. In this paper, we prove general order a priori
error estimates for the mcG(q) and mdG(q) methods. To prove the error estimates, we represent the
error in terms of a discrete dual solution and the residual of an interpolant of the exact solution. The
estimates then follow from interpolation estimates, together with stability estimates for the discrete
dual solution.
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1. Introduction. This is part 3 in a sequence of papers [32, 33] on multiadap-
tive Galerkin methods, mcG(q) and mdG(q), for approximate (numerical) solution of
ODEs of the form

u̇(t) = f(u(t), t), t ∈ (0, T ],

u(0) = u0,
(1.1)

where u : [0, T ] → R
N is the solution to be computed, u0 ∈ R

N a given initial
condition, T > 0 a given final time, and f : RN × (0, T ] → R

N a given function that
is Lipschitz-continuous in u and bounded.

In the previous two parts of our series on multiadaptive Galerkin methods, we
proved a posteriori error estimates, through which the time steps are adaptively de-
termined from residual feedback and stability information, obtained by solving a dual
linearized problem. In this paper, we prove a priori error estimates for mcG(q) and
mdG(q). We also prove the stability estimates and interpolation estimates which are
essential to the a priori error analysis.

Standard methods for the time-discretization of (1.1) require that the resolution
is equal for all components Ui(t) of the computed approximate solution U(t) of (1.1).
This includes all standard Galerkin or Runge–Kutta methods; see [9, 4, 23, 24, 41,
2]. Using the same time step sequence k = k(t) for all components could become
very costly if the different components of the solution exhibit multiple time scales of
different magnitudes. We therefore propose a new representation of the solution in
which the difference in time scales is reflected in the componentwise time-discretization
of (1.1), that is, each component Ui(t) is computed using an individual time step
sequence ki = ki(t).
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The multiadaptive Galerkin methods mcG(q) and mdG(q) first presented in [32]
are formulated as extensions of the standard continuous and discontinuous Galerkin
methods cG(q) and dG(q), studied earlier in detail by Hulme [28, 27], Jamet [29],
Delfour, Hager, and Trochu [7], Eriksson, Johnson, and Thomée [16, 30, 11, 12, 10,
13, 14, 15, 8], and Estep et al. [17, 18, 19, 21, 20]. As such, the analysis of the
mcG(q) and mdG(q) methods can be carried out within the existing framework, but
the extension to multiadaptive time-stepping leads to some technical challenges, in
particular, proving the appropriate interpolation estimates.

Local (multiadaptive) time-stepping has been explored before to some extent for
specific applications, including specialized integrators for the n-body problem [37, 5, 1]
and low-order methods for conservation laws [39, 22, 6]. Early attempts at local
time-stepping include [25, 26]. Recently, a new class of related methods, known as
asynchronous variational integrators (AVI) with local time steps, has been proposed
[31].

1.1. Main results. The main results of this paper are a priori error estimates
for the mcG(q) and mdG(q) methods, respectively, of the form

(1.2) ‖e(T )‖lp ≤ CS(T )
∥

∥k2qu(2q)
∥

∥

L∞([0,T ],l1)

and

(1.3) ‖e(T )‖lp ≤ CS(T )
∥

∥k2q+1u(2q+1)
∥

∥

L∞([0,T ],l1)

for p = 2 or p = ∞, where C is an interpolation constant, S(T ) is a (computable) sta-
bility factor, and k2qu(2q) (or k2q+1u(2q+1)) combines local time steps ki = ki(t) with
derivatives of the exact solution u. The norm L∞(I, ‖ · ‖) is defined by ‖v‖L∞(I,‖·‖) =
supt∈I ‖v(t)‖. These estimates state that the mcG(q) method is of order 2q and that
the mdG(q) method is of order 2q + 1 in the local time step. We refer to section
6.2 for the exact results. It should be noted that superconvergence is obtained only
at synchronized time levels, such as the end-point t = T . For the general nonlinear
problem, we obtain exponential estimates for the stability factor S(T ). In [34], we
prove that for a parabolic model problem, the stability factor remains bounded and
of unit size, independent of T (up to a logarithmic factor).

1.2. Notation. The following notation is used throughout this paper. Each
component Ui(t), i = 1, . . . , N , of the approximate m(c/d)G(q) solution U(t) of (1.1)
is a piecewise polynomial on a partition of (0, T ] into Mi subintervals. Subinterval j
for component i is denoted by Iij = (ti,j−1, tij ], and the length of the subinterval is
given by the local time step kij = tij − ti,j−1. This is illustrated in Figure 1. On each
subinterval Iij , Ui|Iij is a polynomial of degree qij and we refer to (Iij , Ui|Iij ) as an
element.

Furthermore, we shall assume that the interval (0, T ] is partitioned into blocks
between certain synchronized time levels 0 = T0 < T1 < · · · < TM = T . We refer to
the set of intervals Tn between two synchronized time levels Tn−1 and Tn as a time
slab:

Tn = {Iij : Tn−1 ≤ ti,j−1 < tij ≤ Tn}.
We denote the length of a time slab by Kn = Tn − Tn−1. We also refer to the entire
collection of intervals Iij as the partition T .

Since different components use different time steps, a local interval Iij may contain
nodal points for other components, that is, some ti′j′ ∈ (ti,j−1, tij). We denote the
set of such internal nodes on a local interval Iij by Nij .
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Fig. 1. Individual partitions of the interval (0, T ] for different components. Elements between
common synchronized time levels are organized in time slabs. In this example, we have N = 6 and
M = 4.

1.3. Outline of the paper. The outline of this paper is as follows. In section 2,
we give the full definition of the multiadaptive Galerkin methods mcG(q) and mdG(q).
We also introduce the dual methods mcG(q)∗ and mdG(q)∗, which are of importance
to the a priori error analysis. In sections 3 and 4, respectively, we then prove existence
and stability of the discrete solutions as defined in section 2.

In section 5, we prove the interpolation estimates that we later use to prove the
a priori error estimates in section 6. Proving the interpolation estimates is technically
challenging, since the function to be interpolated may be discontinuous within the
interval of interpolation. To measure the regularity of the interpolated function, it is
then necessary to take into consideration the size of the jump in function value and
derivatives at each point of discontinuity.

Finally, in section 7, we present some numerical evidence for the a priori error
estimates by solving a simple model problem and showing that we obtain the predicted
convergence rates, k2q and k2q+1, respectively, for the mcG(q) and mdG(q) methods.

2. Definition of methods. In this section, we give the definitions of the mul-
tiadaptive Galerkin methods mcG(q) and mdG(q). The multiadaptive methods are
obtained as extensions of the standard (monoadaptive) Galerkin methods cG(q) and
dG(q) by extending the trial and test spaces to allow individual time step sequences
for different components.

As an important tool for the a priori error analysis in section 6, we also introduce
the discrete dual problem and the discrete dual methods mcG(q)∗ and mdG(q)∗.

2.1. Multiadaptive continuous Galerkin, mcG(q). To formulate the mcG(q)
method, we define the trial space V and the test space V̂ as

V =
{

v ∈ [C([0, T ])]N : vi|Iij ∈ Pqij (Iij), j = 1, . . . ,Mi, i = 1, . . . , N
}

,

V̂ =
{

v : vi|Iij ∈ Pqij−1(Iij), j = 1, . . . ,Mi, i = 1, . . . , N
}

,
(2.1)

where Pq(I) denotes the linear space of polynomials of degree q on an interval I ⊂ R.
In other words, V is the space of vector-valued continuous piecewise polynomials of
degree q = (qi(t)) with qi(t) ≥ 1 on the partition T , and V̂ is the space of vector-
valued (possibly discontinuous) piecewise polynomials of degree q− 1 = (qi(t)− 1) on
the same partition.
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We now define the mcG(q) method for (1.1) as follows: Find U ∈ V with U(0) =
u0 such that

(2.2)

∫ T

0

(U̇ , v) dt =

∫ T

0

(f(U, ·), v) dt ∀v ∈ V̂ ,

where (·, ·) denotes the RN inner product. With a suitable choice of test function v, it
follows that the global problem (2.2) can be restated as a sequence of successive local
problems for each component: For i = 1, . . . , N , j = 1, . . . ,Mi, find Ui|Iij ∈ Pqij (Iij)
with Ui(ti,j−1) given such that

(2.3)

∫

Iij

U̇iv dt =

∫

Iij

fi(U, ·)v dt ∀v ∈ Pqij−1(Iij),

where the initial condition is specified for i = 1, . . . , N by Ui(0) = ui(0).
We define the residual R of the approximate solution U by Ri(U, t) = U̇i(t) −

fi(U(t), t). In terms of the residual, we can rewrite (2.3) in the form

(2.4)

∫

Iij

Ri(U, ·)v dt = 0 ∀v ∈ Pqij−1(Iij), j = 1, . . . ,Mi, i = 1, . . . , N,

that is, the residual is orthogonal to the test space on each local interval. We refer to
(2.4) as the Galerkin orthogonality of the mcG(q) method.

2.2. Multiadaptive discontinuous Galerkin, mdG(q). For mdG(q), we de-
fine the trial and test spaces by

(2.5) V = V̂ =
{

v : vi|Iij ∈ Pqij (Iij), j = 1, . . . ,Mi, i = 1, . . . , N
}

,

that is, both trial and test functions are vector-valued (possibly discontinuous) piece-
wise polynomials of degree q = (qi(t)) with qi(t) ≥ 0 on the partition T . By definition,
the mdG(q) solution U ∈ V is left-continuous.

We now define the mdG(q) method for (1.1) as follows: Find U ∈ V with U(0−) =
u0 such that

(2.6)

N
∑

i=1

Mi
∑

j=1

[

[Ui]i,j−1vi
(

t+i,j−1

)

+

∫

Iij

U̇ivi dt

]

=

∫ T

0

(f(U, ·), v) dt ∀v ∈ V̂ ,

where [Ui]i,j−1 = Ui(t
+
i,j−1)− Ui(t

−
i,j−1) denotes the jump in Ui(t) across the node

t = ti,j−1, and where v(t+) = lims→t+ v(s).
The mdG(q) method in local form, corresponding to (2.3), reads as follows: For

i = 1, . . . , N , j = 1, . . . ,Mi, find Ui|Iij ∈ Pqij (Iij) such that

(2.7) [Ui]i,j−1v(ti,j−1) +

∫

Iij

U̇iv dt =

∫

Iij

fi(U, ·)v dt ∀v ∈ Pqij (Iij),

where the initial condition is specified for i = 1, . . . , N by Ui(0
−) = ui(0).

The residual R is defined on the inner of each local interval Iij by Ri(U, t) =

U̇i(t)− fi(U(t), t). In terms of the residual, (2.7) can be restated in the form

(2.8) [Ui]i,j−1v
(

t+i,j−1

)

+

∫

Iij

Ri(U, ·)v dt = 0 ∀v ∈ Pqij (Iij)

for j = 1, . . . ,Mi, i = 1, . . . , N . We refer to (2.8) as the Galerkin orthogonality of the
mdG(q) method.



2628 ANDERS LOGG

2.3. The dual problem. The dual problem is the standard tool for error anal-
ysis, a priori or a posteriori, of Galerkin finite element methods for the numerical
solution of differential equations; see [8, 3]. For the a posteriori error analysis of the
multiadaptive Galerkin methods mcG(q) and mdG(q) in [32], we formulate a continu-
ous dual problem. For the a priori error analysis of this paper, we formulate instead a
discrete dual problem. The discrete dual problem was first introduced for the family
of discontinuous Galerkin methods dG(q) in [16]. As we shall see, the discrete dual
problem can be expressed as a Galerkin method for a continuous problem.

The discrete dual solution Φ : [0, T ] → R
N is a Galerkin approximation of the

exact solution φ : [0, T ] → R
N of the continuous dual problem

−φ̇(t) = J⊤(πu, U, t)φ(t) + g(t), t ∈ [0, T ),

φ(T ) = ψ,
(2.9)

where πu is an interpolant or a projection of the exact solution u of (1.1), g : [0, T ] →
R
N is a given function, ψ ∈ R

N is a given initial condition, and

(2.10) J⊤(πu, U, t) =

(
∫ 1

0

∂f

∂u
(sπu(t) + (1− s)U(t), t) ds

)

⊤,

that is, an appropriate mean value of the transpose of the Jacobian of the right-hand
side f(·, t) evaluated at πu(t) and U(t). Note that by the chain rule, we have

(2.11) J(πu, U, ·)(U − πu) = f(U, ·)− f(πu, ·).

The data (ψ, g) of the dual problem allow us to obtain error estimates for different
functionals Lψ,g of the error e = U − u.

We define below two new Galerkin methods for the dual problem (2.9): the dual
methods mcG(q)∗ and mdG(q)∗. We will later use the mcG(q)∗ method to express
the error of the mcG(q) solution of (1.1) in terms of the mcG(q)∗ solution of (2.9).
Similarly, we will express the error of the mdG(q) solution of (1.1) in terms of the
mdG(q)∗ solution of (2.9).

2.4. Multiadaptive dual continuous Galerkin, mcG(q)∗. In the formula-
tion of the dual method of mcG(q), we interchange the trial and test spaces of mcG(q).
With the same definitions of V and V̂ as in (2.1), we thus define the mcG(q)∗ method
for (2.9) as follows: Find Φ ∈ V̂ with Φ(T+) = ψ such that

(2.12)

∫ T

0

(v̇,Φ) dt =

∫ T

0

(J(πu, U, ·)v,Φ) + Lψ,g(v)

for all v ∈ V with v(0) = 0, where

(2.13) Lψ,g(v) ≡ (v(T ), ψ) +

∫ T

0

(v, g) dt.

Notice the extra condition that the test functions should vanish at t = 0, which is
introduced to make the dimension of the test space equal to the dimension of the trial
space. Integrating by parts, (2.12) can alternatively be expressed in the form

(2.14)
N
∑

i=1

Mi
∑

j=1

[

−[Φi]ijvi(tij)−
∫

Iij

Φ̇ivi dt

]

=

∫ T

0

(J⊤(πu, U, ·)Φ + g, v) dt.
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2.5. Multiadaptive dual discontinuous Galerkin, mdG(q)∗.With the same
definitions of V and V̂ as in (2.5), we define the mdG(q)∗ method for (2.9) as follows:
Find Φ ∈ V̂ with Φ(T+) = ψ such that

(2.15)
N
∑

i=1

Mi
∑

j=1

[

[vi]i,j−1Φi
(

t+i,j−1

)

+

∫

Iij

v̇iΦi dt

]

=

∫ T

0

(J(πu, U, ·)v,Φ) dt+ Lψ,g(v)

for all v∈V with v(0−)=0. Integrating by parts, (2.15) can alternatively be expressed
in the form

(2.16)
N
∑

i=1

Mi
∑

j=1

[

−[Φi]ijvi
(

t−ij
)

−
∫

Iij

Φ̇ivi dt

]

=

∫ T

0

(J⊤(πu, U, ·)Φ + g, v) dt.

3. Existence of solutions. To prove existence of the discrete mcG(q), mdG(q),
mcG(q)∗, and mdG(q)∗ solutions defined in the previous section, we formulate fixed
point iterations for the construction of solutions. Existence then follows from the
Banach fixed point theorem if the time steps are sufficiently small.

Lemma 3.1 (fixed point iteration). Let Tn be a time slab with synchronized
time levels Tn−1 and Tn. With time reversed for the dual methods (to simplify the
notation), the mcG(q), mdG(q), mcG(q)∗, and mdG(q)∗ methods can all be expressed
in the following form: For all Iij ∈ Tn, find {ξijn} (the degrees of freedom for Ui on
Iij) such that

(3.1) ξijn = ui(0) +

∫ ti,j−1

0

fi(U, ·) dt+
∫

Iij

w[qij ]
n (τij(t))fi(U, ·) dt,

where τij(t) = (t − ti,j−1)/(tij − ti,j−1) and {w[qij ]
n } is a set of polynomial weight

functions on [0, 1].
Proof. The result follows from the definitions of the mcG(q), mdG(q), mcG(q)∗,

and mdG(q)∗ methods, using an appropriate basis for the trial and test spaces. See
[34] for details.

Theorem 3.2 (existence of solutions). Let K = maxKn be the maximum time
slab length and define the Lipschitz constant Lf > 0 by

(3.2) ‖f(x, t)− f(y, t)‖l∞ ≤ Lf‖x− y‖l∞ ∀t ∈ [0, T ] ∀x, y ∈ R
N .

If now

(3.3) KCLf < 1,

where C = C(q) > 0 is a constant depending only on the order and method, the
fixed point iteration (3.1) converges to the unique solution of (2.2), (2.6), (2.12), and
(2.15), respectively.

Proof. The result follows by Lemma 3.1 and an application of the Banach fixed
point theorem. See [34] for details.

4. Stability of solutions. Write the dual problem (2.9) for φ = φ(t) in the
form

−φ̇(t) +A⊤(t)φ(t) = g, t ∈ [0, T ),

φ(T ) = ψ.
(4.1)
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For simplicity, we consider only the case g = 0. With w(t) = φ(T − t), we have
ẇ(t) = −φ̇(T − t) = −A⊤(T − t)w(t), and so (4.1) can be written as a forward
problem for w in the form

ẇ(t) +B(t)w(t) = 0, t ∈ (0, T ],

w(0) = w0,
(4.2)

where w0 = ψ and B(t) = A⊤(T − t). Below, w represents either u or φ(T − ·) and,
correspondingly, W represents either the discrete mc/dG(q) approximation U of u or
the discrete mc/dG(q)∗ approximation Φ of φ.

4.1. A general exponential estimate. The general exponential stability esti-
mate is based on the following version of the discrete Gronwall inequality.

Lemma 4.1 (discrete Gronwall inequality). Assume that z, a : N → R are non-
negative, a(m) ≤ 1/2 for all m, and z(n) ≤ C +

∑n

m=1 a(m)z(m) for all n. Then

z(n) ≤ 2C exp(
∑n−1

m=1 2a(m)) for n = 1, 2, . . . .

Proof. By a standard discrete Gronwall inequality [38], z(n) ≤ C exp(
∑n−1

m=0 a(m))

if z(n) ≤ C +
∑n−1

m=0 a(m)z(m) for n ≥ 1 and z(0) ≤ C. Here, (1 − a(n))z(n) ≤
C +

∑n−1
m=1 a(m)z(m), and so z(n) ≤ 2C +

∑n−1
m=1 2a(m)z(m), since 1 − a(n) ≥ 1/2.

The result now follows if we take a(0) = z(0) = 0.

Theorem 4.2 (stability estimate). Let W be the mcG(q), mdG(q), mcG(q)∗, or
mdG(q)∗ solution of (4.2). Then there is a constant C = C(q), depending only on
the highest order max qij , such that if KnC‖B‖L∞([Tn−1,Tn],lp) ≤ 1 for n = 1, . . . ,M ,
then

(4.3) ‖W‖L∞([Tn−1,Tn],lp) ≤ C‖w0‖lp exp
(

n−1
∑

m=1

KmC‖B‖L∞([Tm−1,Tm],lp)

)

for n = 1, . . . ,M , 1 ≤ p ≤ ∞.

Proof. By Lemma 3.1, we can write the mcG(q), mdG(q), mcG(q)∗, and mdG(q)∗

methods in the form ξijn′ = wi(0) +
∫ ti,j−1

0
fi(W, ·) dt+

∫

Iij
w

[qij ]
n′ (τij(t))fi(W, ·) dt.

Applied to the linear model problem (4.2), we have ξijn′ = wi(0)−
∫ ti,j−1

0 (BW )i dt−
∫

Iij
w

[qij ]
n′ (τij(t))(BW )i dt, and so

|ξijn′ | ≤ |wi(0)|+
∣

∣

∣

∣

∫ ti,j−1

0

(BW )i dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Iij

w
[qij ]
n′ (τij(t))(BW )i dt

∣

∣

∣

∣

≤ |wi(0)|+ C

∫ tij

0

|(BW )i| dt ≤ |wi(0)|+ C

∫ Tn

0

|(BW )i| dt,

where Tn is smallest synchronized time level for which tij ≤ Tn. It now follows that

for all t ∈ [Tn−1, Tn], we have |Wi(t)| ≤ C|wi(0)|+ C
∫ Tn

0
|(BW )i| dt, and so

‖W (t)‖lp ≤ C‖w0‖lp + C

∫ Tn

0

‖BW‖lp dt = C‖w0‖lp + C

n
∑

m=1

∫ Tm

Tm−1

‖BW‖lp dt.

The result now follows by letting W̄n = ‖W‖L∞([Tn−1,Tn],lp).

Remark 4.1. See [34] for an extension to multiadaptive time-stepping of the
strong stability estimate Lemma 6.1 for parabolic problems in [11].
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5. Interpolation estimates. In this section, we introduce a pair of carefully
chosen interpolants, π

[q]
cG and π

[q]
dG, which are central to the a priori error analysis

of the mcG(q) and mdG(q) methods. The interpolants are defined in section 5.1.
In section 5.2, we discuss the interpolation of piecewise smooth functions, that is,
the interpolation of functions which may be discontinuous within the interval of in-
terpolation, and then present the basic general interpolation estimates for the two
interpolants π

[q]
cG and π

[q]
dG.

For the a priori error analysis of the mcG(q) and mdG(q) methods, we will also
need a special interpolation estimate for the function ϕ = J⊤Φ, where J is the
Jacobian of the right-hand side f of (1.1) and Φ is the discrete dual solution as
defined in section 2, including estimates for the size of the jump in function value and
derivatives for the function ϕ at points of discontinuity. These estimates are proved in
section 5.3, based on a representation formula for the mcG(q) and mdG(q) solutions
of (1.1).

5.1. Interpolants. The interpolant π
[q]
cG : V → Pq([a, b]) is defined by the fol-

lowing conditions:

π
[q]
cGv(a) = v(a) and π

[q]
cGv(b) = v(b),

∫ b

a

(

v − π
[q]
cGv
)

w dx = 0 ∀w ∈ Pq−2([a, b]),
(5.1)

where V denotes the set of functions that are piecewise Cq+1 and bounded on [a, b].
In other words, π

[q]
cGv is the polynomial of degree q that interpolates v at the end-

points of the interval [a, b] and additionally satisfies q− 1 projection conditions. This
is illustrated in Figure 2. We also define the dual interpolant π

[q]
cG∗ as the standard

L2-projection onto Pq−1([a, b]).
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Fig. 2. The interpolant π
[q]
cGv (dashed) of the function v(x) = x sin(7x) (solid) on [0, 1] for

q = 1 (left) and q = 3 (right).

The interpolant π
[q]
dG : V → Pq([a, b]) is defined by the following conditions:

π
[q]
dGv(b) = v(b),
∫ b

a

(

v − π
[q]
dGv

)

w dx = 0 ∀w ∈ Pq−1([a, b]),
(5.2)

that is, π
[q]
dGv is the polynomial of degree q that interpolates v at the right end-point of

the interval [a, b] and additionally satisfies q projection conditions. This is illustrated
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q = 0 (left) and q = 3 (right).
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Fig. 4. A piecewise smooth function v and its interpolant πv.

in Figure 3. The dual interpolant π
[q]
dG∗ is defined similarly, with the difference being

that the left end-point x = a is used for interpolation.

5.2. Basic interpolation estimates. To estimate the size of the interpolation
error πv − v for a given function v, we express the interpolation error in terms of the
regularity of v and the length of the interpolation interval, k = b − a. Specifically,
when v ∈ Cq+1([a, b]) ⊂ V for some q ≥ 0, we obtain estimates of the form

(5.3)
∥

∥(πv)(p) − v(p)
∥

∥ ≤ Ckq+1−p
∥

∥v(q+1)
∥

∥, p = 0, . . . , q + 1,

where ‖ · ‖ = ‖ · ‖L∞([a,b]) denotes the maximum norm on [a, b]. This estimate is
a simple consequence of the Peano kernel theorem [40] if one can show that the
interpolant π : V → Pq([a, b]) ⊂ V is linear and bounded on V and that π is exact on
Pq([a, b]) ⊂ V , that is, πv = v for all v ∈ Pq([a, b]).

In the general case, where the interpolated function v is only piecewise smooth
(see Figure 4), we also need to include the size of the jump [v(p)]x in function value
and derivatives at each point x of discontinuity within (a, b) to measure the regularity
of the interpolated function v. In [34], we prove the following extensions of the basic
estimate (5.3).

Lemma 5.1. If π is linear and bounded on V and is exact on Pq([a, b]) ⊂ V ,
then there is a constant C = C(q) > 0 such that for all v piecewise Cq+1 on [a, b] with
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PSfrag replacements
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Φl(t)

Fig. 5. If some other component l 6= i has a node within Iij, then Φl may be discontinuous
within Iij, causing ϕi to be discontinuous within Iij.

discontinuities at a < x1 < · · · < xn < b,

(5.4)
∥

∥(πv)(p) − v(p)
∥

∥ ≤ Ckr+1−p
∥

∥v(r+1)
∥

∥+ C

n
∑

j=1

r
∑

m=0

km−p
∣

∣

[

v(m)
]

xj

∣

∣

for p = 0, . . . , r + 1, r = 0, . . . , q.
Lemma 5.2. If π is linear and bounded on V and is exact on Pq([a, b]) ⊂ V ,

then there is a constant C = C(q) > 0 such that for all v piecewise Cq+1 on [a, b] with
discontinuities at a < x1 < · · · < xn < b,

(5.5)
∥

∥(πv)(p)
∥

∥ ≤ C
∥

∥v(p)
∥

∥+ C

n
∑

j=1

p−1
∑

m=0

km−p
∣

∣

[

v(m)
]

xj

∣

∣

for p = 0, . . . , q.

Lemmas 5.1 and 5.2 apply to both the π
[q]
cG interpolant (for q ≥ 1) and the π

[q]
dG

interpolant (for q ≥ 0) defined in section 5.1. The linearity of both interpolants follows
directly from the definition of the interpolants. The proofs that both interpolants are
bounded and exact on Pq([a, b]) are given in detail in [34] and [35].

5.3. A special interpolation estimate. To prove a priori error estimates for
mcG(q) and mdG(q) in section 6, we need to estimate the interpolation error πϕ− ϕ
for the function ϕ defined by

(5.6) ϕi = (J⊤(πu, u, ·)Φ)i =
N
∑

l=1

Jli(πu, u, ·)Φl, i = 1, . . . , N.

We note that ϕi may be discontinuous within Iij if Iij contains a node for some other
component, which is generally the case. This is illustrated in Figure 5. Note that on
the right-hand side f is linearized around a mean value of πu and u.

An interpolation estimate for πϕ−ϕ follows directly from Lemma 5.1. To use this
estimate, we need to estimate the size of the jump in function value and derivatives at
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each internal node tij of the partition T . To obtain this estimate, we need to make a
number of additional assumptions on the right-hand side f of (1.1) and the partition
T . These assumptions are discussed in section 5.3.2. Based on the assumptions and
the representation formula presented in section 5.3.1, we obtain the jump estimates
in section 5.3.3 and, finally, in section 5.3.4, the interpolation estimate for ϕ.

5.3.1. A representation formula. The proof of jump estimates for the multi-
adaptive Galerkin methods mcG(q) and mdG(q) is based on expressing the solutions
as certain interpolants. These representations are obtained as follows. Let U be the
mcG(q) or mdG(q) solution of (1.1) and define, for i = 1, . . . , N ,

(5.7) Ũi(t) = ui(0) +

∫ t

0

fi(U(s), s) ds.

Similarly, for Φ the mcG(q)∗ or mdG(q)∗ solution of (2.9), we define, for i = 1, . . . , N ,

(5.8) Φ̃i(t) = ψi +

∫ T

t

f∗
i (Φ(s), s) ds,

where f∗(Φ, ·) = J⊤(πu, U, ·)Φ + g. We note that ˙̃U = f(U, ·) and − ˙̃Φ = f∗(Φ, ·).
It now turns out that U can be expressed as an interpolant of Ũ . Similarly, Φ

can be expressed as an interpolant of Φ̃. We present these representations in Lemmas

5.3 and 5.4. We remind the reader about the interpolants π
[q]
cG, π

[q]
cG∗ , π

[q]
dG, and π

[q]
dG∗ ,

defined in section 5.1.
Lemma 5.3. The mcG(q) solution U of (1.1) can expressed in the form U = π

[q]
cGŨ .

Similarly, the mcG(q)∗ solution Φ of (2.9) can be expressed in the form Φ = π
[q]
cG∗Φ̃,

that is, Ui = π
[qij ]
cG Ũi and Φi = π

[qij ]
cG∗ Φ̃i on each local interval Iij .

Proof. The representation formulas follow by the definitions of the mcG(q) and

mcG(q)∗ methods and the interpolants π
[q]
cG and π

[q]
cG∗ . See [34] for details.

Lemma 5.4. The mdG(q) solution U of (1.1) can expressed in the form U = π
[q]
dGŨ .

Similarly, the mdG(q)∗ solution Φ of (2.9) can be expressed in the form Φ = π
[q]
dG∗ Φ̃,

that is, Ui = π
[qij ]
dG Ũi and Φi = π

[qij ]
dG∗ Φ̃i on each local interval Iij .

Proof. The representation formulas follow by the definitions of the mdG(q) and

mdG(q)∗ methods and the interpolants π
[q]
dG and π

[q]
dG∗ . See [34] for details.

5.3.2. Assumptions. To estimate the size of the jump in function value and
derivatives for the function ϕ defined in (5.6), we make the following assumptions.
Given a time slab T , assume that for each pair of local intervals Iij and Imn within
the time slab, we have

(A1) qij = qmn = q̄

and

(A2) kij > α kmn

for some q̄ ≥ 0 and some α ∈ (0, 1). The dependence on α in the error estimates is
weak (see Remark 5.1), so assumption (A2) does not prevent multiadaptivity.

We also assume that the problem (1.1) is autonomous,

(A3) ∂fi/∂t = 0, i = 1, . . . , N,
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noting that the dual problem nevertheless will be nonautonomous in general. Fur-
thermore, we assume that

(A4) ‖fi‖Dq̄+1(T ) <∞, i = 1, . . . , N,

where ‖ · ‖Dp(T ) is defined for v : RN → R and p ≥ 0 by ‖v‖Dp(T ) = maxn=0,...,p

‖Dnv‖L∞(T ,l∞), with the norm ‖Dnv‖L∞(T ,l∞) defined by ‖Dnv w1 · · ·wn‖L∞(T ) ≤
‖Dnv‖L∞(T ,l∞)‖w1‖l∞ · · · ‖wn‖l∞ for all w1, . . . , wn ∈ R

N , and Dnv the nth-order
tensor given by

Dnv w1 · · ·wn =

N
∑

i1=1

· · ·
N
∑

in=1

∂nv

∂xi1 · · · ∂xin
w1
i1
· · ·wnin .

Furthermore, we choose Cf ≥ maxi=1,...,N ‖fi‖Dq̄+1(T ) such that

(5.9) ‖dp/dtp(∂f/∂u)⊤(x(t))‖l∞ ≤ CfC
p
x

for p = 0, . . . , q̄, and

(5.10)
∥

∥[dp/dtp(∂f/∂u)⊤(x(t))]t
∥

∥

l∞
≤ Cf

p
∑

n=0

Cp−nx

∥

∥

[

x(n)
]

t

∥

∥

l∞

for p = 0, . . . , q̄− 1 and any given x : R → R
N , where Cx > 0 denotes a constant such

that ‖x(n)‖L∞(T ,l∞) ≤ Cnx for n = 1, . . . , p. Note that Cf = Cf (t) defines a piecewise
constant function on the partition 0 = T0 < T1 < · · · < TM = T . Note also that
assumption (A4) implies that each fi is bounded by Cf .

We further assume that there is a constant ck > 0 such that

(A5) kijCf ≤ ck

for each local interval Iij . We summarize the list of assumptions as follows:
(A1) the local orders qij are equal within each time slab;
(A2) the local time steps kij are semiuniform within each time slab;
(A3) f is autonomous;
(A4) f and its derivatives are bounded;
(A5) the local time steps kij are small.

5.3.3. Estimates of derivatives and jumps. To estimate higher-order deriva-
tives, we face the problem of taking higher-order derivatives of f(U(t), t) with respect
to t. In Lemmas 5.5 and 5.6, we present basic estimates for composite functions v ◦ x
with v : R

N → R and x : R → R
N . The proofs are based on a straightforward

application of the chain rule and Leibniz rule and are given in full detail in [34].
Lemma 5.5. Let v : RN → R be p ≥ 0 times differentiable in all its variables,

let x : R → R
N be p times differentiable, and let Cx > 0 be a constant such that

‖x(n)‖L∞(R,l∞) ≤ Cnx for n = 1, . . . , p. Then there is a constant C = C(p) > 0 such
that

(5.11)

∥

∥

∥

∥

dp(v ◦ x)
dtp

∥

∥

∥

∥

L∞(R)

≤ C‖v‖Dp(R)C
p
x .

Lemma 5.6. Let v : RN → R be p+1 ≥ 1 times differentiable in all its variables,
let x : R → R

N be p times differentiable, except possibly at some t ∈ R, and let
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Cx > 0 be a constant such that ‖x(n)‖L∞(R,l∞) ≤ Cnx for n = 1, . . . , p. Then there is
a constant C = C(p) > 0 such that

(5.12)

∣

∣

∣

∣

[

dp(v ◦ x)
dtp

]

t

∣

∣

∣

∣

≤ C‖v‖Dp+1(R)

p
∑

n=0

Cp−nx

∥

∥

[

x(n)
]

t

∥

∥

l∞
.

We now prove estimates for derivatives and jumps of the mcG(q) or mdG(q)
solution U of the general nonlinear problem (1.1), under the assumptions listed in
section 5.3.2. Similarly, one can obtain estimates for the discrete dual solution Φ and
the function ϕ defined in (5.6), from which the desired interpolation estimates follow.

To obtain estimates for the multiadaptive solution U , we first prove estimates for
the function Ũ defined in section 5.3.1. The estimates for U then follow by induction.

To simplify the estimates, we introduce the following notation. For given p > 0,
let CU,p ≥ Cf be a constant such that

(5.13)
∥

∥U (n)
∥

∥

L∞(T ,l∞)
≤ CnU,p, n = 1, . . . , p.

For p = 0, we define CU,0 = Cf . Temporarily, we assume that there is a constant
c′k > 0 such that for each p,

(A5′) kijCU,p ≤ c′k.

This assumption will be removed in Lemma 5.9. In the following lemma, we use
assumptions (A1), (A3), and (A4) to derive estimates for Ũ in terms of CU,p and Cf .

Lemma 5.7 (derivative and jump estimates for Ũ). Let U be the mcG(q) or
mdG(q) solution of (1.1) and define Ũ as in (5.7). If assumptions (A1), (A3), and
(A4) hold, then there is a constant C = C(q̄) > 0 such that

(5.14)
∥

∥Ũ (p)
∥

∥

L∞(T ,l∞)
≤ CCpU,p−1, p = 1, . . . , q̄ + 1,

and

(5.15)
∥

∥

[

Ũ (p)
]

ti,j−1

∥

∥

l∞
≤ C

p−1
∑

n=0

Cp−nU,p−1

∥

∥

[

U (n)
]

ti,j−1

∥

∥

l∞
, p = 1, . . . , q̄ + 1,

for each local interval Iij , where ti,j−1 is an internal node of the time slab T .

Proof. By definition, Ũ
(p)
i = dp−1

dtp−1 fi(U), and so the results follow directly by
Lemmas 5.5 and 5.6, noting that Cf ≤ CU,p−1.

By Lemma 5.7, we now obtain the following estimate for the size of the jump in
function value and derivatives for U .

Lemma 5.8 (jump estimates for U). Let U be the mcG(q) or mdG(q) solution
of (1.1). If assumptions (A1)–(A5) and (A5′) hold, then there is a constant C =
C(q̄, ck, c

′
k, α) > 0 such that

(5.16)
∥

∥

[

U (p)
]

ti,j−1

∥

∥

l∞
≤ Ckr+1−p

ij Cr+1
U,r , p = 0, . . . , r + 1, r = 0, . . . , q̄,

for each local interval Iij , where ti,j−1 is an internal node of the time slab T .
Proof. The proof is by induction. We first note that at t = ti,j−1, we have

[

U
(p)
i

]

t
= U

(p)
i (t+)− Ũ

(p)
i (t+) + Ũ

(p)
i (t+)− Ũ

(p)
i (t−) + Ũ

(p)
i (t−)− U

(p)
i (t−)

≡ e+ + e0 + e−.
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By Lemma 5.3 (or Lemma 5.4), U is an interpolant of Ũ and so, by Lemma 5.1, we
have

|e+| ≤ Ckr+1−p
ij

∥

∥Ũ
(r+1)
i

∥

∥

L∞(Iij)
+ C

∑

x∈Nij

r
∑

m=1

km−p
ij

∣

∣

[

Ũ
(m)
i

]

x

∣

∣

for p = 0, . . . , r+1 and r = 0, . . . , q̄. Note that the second sum starts at m = 1 rather
than at m = 0, since Ũ is continuous. Similarly, we have

|e−| ≤ Ckr+1−p
i,j−1

∥

∥Ũ
(r+1)
i

∥

∥

L∞(Ii,j−1)
+ C

∑

x∈Ni,j−1

r
∑

m=1

km−p
i,j−1

∣

∣

[

Ũ
(m)
i

]

x

∣

∣.

To estimate e0, we note that e0 = 0 for p = 0, since Ũ is continuous. For p = 1, . . . , q̄+

1, Lemma 5.7 gives |e0| = |[Ũ (p)
i ]t| ≤ C

∑p−1
n=0 C

p−n
U,p−1‖[U (n)]t‖l∞ . By assumption (A2),

it then follows that (5.16) holds for r = 0.
Assume now that (5.16) holds for r = r̄ − 1 ≥ 0. Then, by Lemma 5.7 and

assumption (A5′), it follows that

|e+| ≤ Ckr̄+1−p
ij C r̄+1

U,r̄ + C
∑

x∈Nij

r̄
∑

m=1

km−p
ij

m−1
∑

n=0

Cm−n
U,m−1

∥

∥[Un]x
∥

∥

l∞

≤ Ckr̄+1−p
ij C r̄+1

U,r̄ + C
∑

km−p
ij Cm−n

U,m−1k
(r̄−1)+1−n
ij C

(r̄−1)+1
U,r̄−1

≤ Ckr̄+1−p
ij C r̄+1

U,r̄

(

1 +
∑

(kijCU,r̄−1)
m−1−n

)

≤ Ckr̄+1−p
ij C r̄+1

U,r̄ .

Similarly, we obtain the estimate |e−| ≤ Ckr̄+1−p
ij C r̄+1

U,r̄ . Finally, we use Lemma 5.7
and assumption (A5′) to obtain the estimate

|e0| ≤ C

p−1
∑

n=0

Cp−nU,p−1

∥

∥[Un]t
∥

∥

l∞
≤ C

p−1
∑

n=0

Cp−nU,p−1k
(r̄−1)+1−n
ij C

(r̄−1)+1
U,r̄−1

= Ckr̄+1−p
ij C r̄+1

U,r̄

p−1
∑

n=0

(kijCU,r̄)
p−1−n ≤ Ckr̄+1−p

ij C r̄+1
U,r̄ .

Summing up, we thus obtain |[U (p)
i ]t| ≤ |e+| + |e0| + |e−| ≤ Ckr̄+1−p

ij C r̄+1
U,r̄ , and so

(5.16) follows by induction.
By Lemmas 5.7 and 5.8, we now obtain the following estimate for derivatives of

the solution U .
Lemma 5.9 (derivative estimates for U). Let U be the mcG(q) or mdG(q) solution

of (1.1). If assumptions (A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0
such that

(5.17)
∥

∥U (p)
∥

∥

L∞(T ,l∞)
≤ CCpf , p = 1, . . . , q̄.

Proof. By Lemma 5.3 (or Lemma 5.4), U is an interpolant of Ũ and so, by Lemma
5.1, we have

∥

∥U
(p)
i

∥

∥

L∞(Iij)
=
∥

∥(πŨi)
(p)
∥

∥

L∞(Iij)
≤ C′

∥

∥Ũ
(p)
i

∥

∥

L∞(Iij)
+ C′

∑

x∈Nij

p−1
∑

m=1

km−p
ij

∣

∣

[

Ũ
(m)
i

]

x

∣

∣
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for some constant C′ = C′(q̄). For p = 1, we thus obtain the estimate

‖U̇i‖L∞(Iij) ≤ C′‖ ˙̃Ui‖L∞(Iij) = C′‖fi(U)‖L∞(Iij) ≤ C′Cf

by assumption (A4), and so (5.17) holds for p = 1.
For p = 2, . . . , q̄, assuming that (A5′) holds for CU,p−1, we use Lemmas 5.7 and

5.8 (with r = p− 1) and assumption (A2) to obtain

∥

∥U
(p)
i

∥

∥

L∞(Iij)
≤ CCpU,p−1 + C

∑

x∈Nij

p−1
∑

m=1

km−p
ij

m−1
∑

n=0

Cm−n
U,m−1

∥

∥

[

U (n)
]

x

∥

∥

l∞

≤ CCpU,p−1 + C
∑

km−p
ij Cm−n

U,m−1k
(p−1)+1−n
ij C

(p−1)+1
U,p−1

≤ CCpU,p−1

(

1 +
∑

(kijCU,m−1)
m−n

)

≤ CCpU,p−1,

where C = C(q̄, ck, c
′
k, α). This holds for all components i and all local intervals Iij

within the time slab T , and so
∥

∥U (p)
∥

∥

L∞(T ,l∞)
≤ CCpU,p−1, p = 1, . . . , q̄,

where by definition CU,p−1 is a constant such that ‖U (n)‖L∞(T ,l∞) ≤ CnU,p−1 for n =
1, . . . , p− 1. Starting at p = 1, we now define CU,1 = C1Cf with C1 = C′ = C′(q̄). It
then follows that (A5′) holds for CU,1 with c′k = C′ck, and thus

∥

∥U (2)
∥

∥

L∞(T ,l∞)
≤ CC2

U,2−1 = CC2
U,1 ≡ C2C

2
f ,

where C2 = C2(q̄, ck, α). We may thus define CU,2 = max(C1Cf ,
√
C2Cf ). Continu-

ing, we note that (A5′) holds for CU,2, and thus
∥

∥U (3)
∥

∥

L∞(T ,l∞)
≤ CC3

U,3−1 = CC3
U,2 ≡ C3C

3
f ,

where C3 = C3(q̄, ck, α). In this way, we obtain a sequence of constants C1, . . . , Cq̄,
depending only on q̄, ck, and α, such that ‖U (p)‖L∞(T ,l∞) ≤ CpC

p
f for p = 1, . . . , q̄,

and so (5.17) follows if we take C = maxi=1,...,q̄ Ci.
Having now removed the additional assumption (A5′), we obtain the following

version of Lemma 5.8.
Lemma 5.10 (jump estimates for U). Let U be the mcG(q) or mdG(q) solution

of (1.1). If assumptions (A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0
such that

(5.18)
∥

∥

[

U (p)
]

ti,j−1

∥

∥

l∞
≤ Ckq̄+1−p

ij C q̄+1
f , p = 0, . . . , q̄,

for each local interval Iij , where ti,j−1 is an internal node of the time slab T .
Similarly, we obtain estimates for the discrete dual solution Φ and the function

ϕ. In Lemma 5.11, we present the estimates for the function ϕ.
Lemma 5.11 (estimates for ϕ). Let ϕ be defined as in (5.6). If assumptions

(A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0 such that

(5.19)
∥

∥ϕ
(p)
i

∥

∥

L∞(Iij)
≤ CCp+1

f ‖Φ‖L∞(T ,l∞), p = 0, . . . , qij ,

and

(5.20)
∣

∣

[

ϕ
(p)
i

]

x

∣

∣ ≤ Ck
rij−p
ij C

rij+1
f ‖Φ‖L∞(T ,l∞) ∀x ∈ Nij , p = 0, . . . , qij − 1,

with rij = qij for the mcG(q) method and rij = qij + 1 for the mdG(q) method. This
holds for each local interval Iij within the time slab T .
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5.3.4. Interpolation estimates. Using the basic interpolation estimate of sec-
tion 5.2, we now obtain the following important interpolation estimates for the func-
tion ϕ.

Lemma 5.12 (interpolation estimates for ϕ). Let ϕ be defined as in (5.6). If
assumptions (A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0 such that

(5.21)
∥

∥π
[qij−2]
cG ϕi − ϕi

∥

∥

L∞(Iij)
≤ Ck

qij−1
ij C

qij
f ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 2,

and

(5.22)
∥

∥π
[qij−1]
dG ϕi − ϕi

∥

∥

L∞(Iij)
≤ Ck

qij
ij C

qij+1
f ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 1,

for each local interval Iij within the time slab T .
Proof. To prove (5.21), we use Lemma 5.1, with r = qij − 2 and p = 0, together

with Lemma 5.11, to obtain

∥

∥π
[qij−2]
cG ϕi − ϕi

∥

∥

L∞(Iij)
≤ Ck

qij−1
ij

∥

∥ϕ
(qij−1)
i

∥

∥

L∞(Iij)
+ C

∑

x∈Nij

qij−2
∑

m=0

kmij
∣

∣

[

ϕ
(m)
i

]

x

∣

∣

≤ Ck
qij−1
ij C

qij
f ‖Φ‖L∞(T ,l∞) + C

∑

x∈Nij

qij−2
∑

m=0

kmij k
qij−m
ij C

qij+1
f ‖Φ‖L∞(T ,l∞)

= Ck
qij−1
ij C

qij
f ‖Φ‖L∞(T ,l∞) + Ck

qij
ij C

qij+1
f ‖Φ‖L∞(T ,l∞),

from which the estimate follows. The estimate for π
[qij−1]
dG ϕi − ϕi is obtained simi-

larly.
Remark 5.1. Note that there is only a weak dependence on ck and α, since the

jump term contains an extra factor kij . If higher-order terms can be ignored, then the
dependence on ck and α can be removed.

6. A priori error estimates. To prove a priori error estimates for the mcG(q)
and mdG(q) methods, we derive error representations in section 6.1 and then obtain
the a priori error estimates in section 6.2 for the general nonlinear case. We refer to
[34] for a sharp a priori error estimate in the case of a parabolic model problem.

6.1. Error representation. For each of the two methods, mcG(q) and mdG(q),
we represent the error in terms of the discrete dual solution Φ and an interpolant πu of
the exact solution u of (1.1), using the special interpolants πu = π

[q]
cGu or πu = π

[q]
dGu

defined in section 5.
We write the error e = U − u in the form

(6.1) e = ē+ (πu − u),

where ē ≡ U−πu is represented in terms of the discrete dual solution and the residual
of the interpolant. An estimate for the second part of the error, πu−u, follows directly
from an interpolation estimate.

In Lemma 6.1, we present the error representation for the mcG(q) method, and
then present the corresponding representation for the mdG(q) method in Lemma 6.2.
The error representations are obtained directly by choosing ē as a test function for
the discrete dual problems (2.12) and (2.15).

Lemma 6.1 (error representation for mcG(q)). Let U be the mcG(q) solution of
(1.1), let Φ be the corresponding mcG(q)∗ solution of the dual problem (2.9), and let
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πu be any trial space approximation of the exact solution u of (1.1) that interpolates
u at the end-points of every local interval. Then

Lψ,g(ē) ≡ (ē(T ), ψ) +

∫ T

0

(ē, g) dt = −
∫ T

0

(R(πu, ·),Φ) dt,

where ē ≡ U − πu.
Lemma 6.2 (error representation for mdG(q)). Let U be the mdG(q) solution of

(1.1), let Φ be the corresponding mdG(q)∗ solution of the dual problem (2.9), and let
πu be any trial space approximation of the exact solution u of (1.1) that interpolates
u at the right end-point of every local interval. Then

Lψ,g(ē) = −
N
∑

i=1

Mi
∑

j=1

[

[πui]i,j−1Φi
(

t+i,j−1

)

+

∫

Iij

Ri(πu, ·)Φi dt
]

,

where ē ≡ U − πu.
With a special choice of interpolant, πu = π

[q]
cGu and πu = π

[q]
dGu, respectively, we

obtain the following versions of the error representations.
Corollary 6.3 (error representation for mcG(q)). Let U be the mcG(q) solution

of (1.1) and let Φ be the corresponding mcG(q)∗ solution of the dual problem (2.9).
Then

Lψ,g(ē) =

∫ T

0

(

f
(

π
[q]
cGu, ·

)

− f(u, ·),Φ
)

dt.

Proof. Integrate by parts and use the definition of the interpolant π
[q]
cG.

Corollary 6.4 (error representation for mdG(q)). Let U be the mdG(q) solution
of (1.1) and let Φ be the corresponding mdG(q)∗ solution of the dual problem (2.9).
Then

Lψ,g(ē) =

∫ T

0

(

f
(

π
[q]
dGu, ·

)

− f(u, ·),Φ
)

dt.

Proof. Integrate by parts and use the definition of the interpolant π
[q]
dG.

6.2. A priori error estimates for the general nonlinear problem. Using
the error representations of section 6.1, the stability estimates of section 4, and the
interpolation estimates of section 5, we now prove our main results: a priori error
estimates for general order mcG(q) and mdG(q).

Theorem 6.5 (a priori error estimate for mcG(q)). Let U be the mcG(q) solution
of (1.1) and let Φ be the corresponding mcG(q)∗ solution of the dual problem (2.9).
Then there is a constant C = C(q) > 0 such that

(6.2) |Lψ,g(ē)| ≤ CS(T )
∥

∥kq+1ū(q+1)
∥

∥

L∞([0,T ],l2)
,

where (kq+1ū(q+1))i(t) = k
qij+1
ij ‖u(qij+1)

i ‖L∞(Iij) for t ∈ Iij , and where the stability

factor S(T ) is given by S(T ) =
∫ T

0
‖J⊤(π

[q]
cGu, u, ·)Φ‖l2 dt. Furthermore, if assump-

tions (A1)–(A5) hold, then there is a constant C = C(q, ck, α) > 0 such that

(6.3) |Lψ,g(ē)| ≤ CS̄(T )
∥

∥k2q ¯̄u(2q)
∥

∥

L∞([0,T ],l1)
,
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where (k2q ¯̄u(2q))i(t) = k
2qij
ij C

qij−1
f ‖u(qij+1)

i ‖L∞(Iij) for t ∈ Iij , and where the stability

factor S̄(T ) is given by

S̄(T ) =

∫ T

0

Cf‖Φ‖L∞(T ,l∞) dt =

M
∑

n=1

KnCf‖Φ‖L∞(Tn,l∞).

Proof. By Corollary 6.3, we obtain

Lψ,g(ē) =

∫ T

0

(

f
(

π
[q]
cGu, ·

)

− f(u, ·),Φ
)

dt =

∫ T

0

(

π
[q]
cGu− u, J⊤

(

π
[q]
cGu, u, ·

)

Φ
)

dt.

By Lemma 5.1, it now follows that

|Lψ,g(ē)| ≤ C‖kq+1ūq+1‖L∞([0,T ],l2)

∫ T

0

∥

∥J⊤
(

π
[q]
cGu, u, ·

)

Φ
∥

∥

l2
dt,

which proves (6.2). To prove (6.3), we note that by definition, π
[qij ]
cG ui−ui is orthogonal

to Pqij−2(Iij) for each local interval Iij , and so, recalling that ϕ = J⊤(π
[q]
cGu, u, ·)Φ,

Lψ,g(ē) =
∑

i,j

∫

Iij

(

π
[qij ]
cG ui − ui

)

ϕi dt =
∑

i,j

∫

Iij

(

π
[qij ]
cG ui − ui

)(

ϕi − π
[qij−2]
cG ϕi

)

dt,

where we take π
[qij−2]
cG ϕi ≡ 0 for qij = 1. By Lemmas 5.1 and 5.12, it now follows

that

|Lψ,g(ē)| ≤
∫ T

0

∣

∣

(

π
[q]
cGu− u, ϕ− π

[q−2]
cG ϕ

)∣

∣ dt

=

∫ T

0

∣

∣

(

kq−1Cq−1
f

(

π
[q]
cGu− u

)

, k−(q−1)C
−(q−1)
f

(

ϕ− π
[q−2]
cG ϕ

))∣

∣ dt

≤ C
∥

∥k2q ¯̄u(2q)
∥

∥

L∞([0,T ],l1)

∫ T

0

Cf‖Φ‖L∞(T ,l∞) dt

= CS̄(T )
∥

∥k2q ¯̄u(2q)
∥

∥

L∞([0,T ],l1)
,

where S̄(T ) =
∫ T

0 Cf‖Φ‖L∞(T ,l∞) dt =
∑M

n=1KnCf‖Φ‖L∞(Tn,l∞).
Similarly, we obtain the following a priori error estimate for the mdG(q) method.
Theorem 6.6 (a priori error estimate for mdG(q)). Let U be the mdG(q) solution

of (1.1) and let Φ be the corresponding mdG(q)∗ solution of the dual problem (2.9).
Then there is a constant C = C(q) > 0 such that

(6.4) |Lψ,g(ē)| ≤ CS(T )
∥

∥kq+1ū(q+1)
∥

∥

L∞([0,T ],l2)
,

where (kq+1ū(q+1))i(t) = k
qij+1
ij ‖u(qij+1)

i ‖L∞(Iij) for t ∈ Iij , and where the stability

factor S(T ) is given by S(T ) =
∫ T

0 ‖J⊤(π
[q]
dGu, u, ·)Φ‖l2 dt. Furthermore, if assump-

tions (A1)–(A5) hold, then there is a constant C = C(q, ck, α) > 0 such that

(6.5) |Lψ,g(ē)| ≤ CS̄(T )
∥

∥k2q+1 ¯̄u(2q+1)
∥

∥

L∞([0,T ],l1)
,

where (k2q+1 ¯̄u(2q+1))i(t) = k
2qij+1
ij C

qij
f ‖u(qij+1)

i ‖L∞(Iij) for t ∈ Iij , and where the

stability factor S̄(T ) is given by

S̄(T ) =

∫ T

0

Cf‖Φ‖L∞(T ,l∞) dt =

M
∑

n=1

KnCf‖Φ‖L∞(Tn,l∞).



2642 ANDERS LOGG

Using the stability estimate proved in section 4, we obtain the following bound
for the stability factor S̄(T ).

Lemma 6.7. Assume that KnCqCf ≤ 1 for all time slabs Tn, with Cq > 0 the
constant in Theorem 4.2, and take g = 0 in (2.9). Then

(6.6) S̄(T ) ≤ ‖ψ‖l∞eCqC̄fT ,

where C̄f = max[0,T ] Cf .
Proof. By Theorem 4.2, we obtain

‖Φ‖L∞(Tn,l∞) ≤ Cq‖ψ‖l∞ exp

(

M
∑

m=n+1

KmCqCf

)

≤ Cq‖ψ‖l∞eCqC̄f (T−Tn),

and so

S̄(T ) =

M
∑

n=1

KnCf‖Φ‖L∞(Tn,l∞) dt ≤ ‖ψ‖l∞
M
∑

n=1

KnCqC̄fe
CqC̄f (T−Tn)

≤ ‖ψ‖l∞
∫ T

0

CqC̄f e
CqC̄f t dt ≤ ‖ψ‖l∞eCqC̄fT .

Finally, we rewrite the estimates of Theorems 6.5 and 6.6 for special choices of
data ψ and g. We first take ψ = 0. With gn = 0 for n 6= i, gi(t) = 0 for t 6∈ Iij , and

gi(t) = sgn(ēi(t))/kij , t ∈ Iij ,

we obtain Lψ,g(ē) =
1
kij

∫

Iij
|ēi(t)| dt and so ‖ēi‖L∞(Iij) ≤ CLψ,g(ē) by an inverse esti-

mate. By definition, it follows that ‖ei‖L∞(Iij) ≤ CLψ,g(ē) +Ck
qij+1
ij ‖uqij+1

i ‖L∞(Iij).
Note that for this choice of g, we have ‖g‖L1([0,T ],l2) = ‖g‖L1([0,T ],l∞) = 1.

We also make the choice g = 0. Noting that ē(T ) = e(T ), since πu(T ) = u(T ),
we obtain

Lψ,g(ē) = (e(T ), ψ) = |ei(T )|

for ψi = sgn(ei(T )) and ψn = 0 for n 6= i, and

Lψ,g(ē) = (e(T ), ψ) = ‖e(T )‖l2

for ψ = e(T )/‖e(T )‖l2. Note that for both choices of ψ, we have ‖ψ‖l∞ ≤ 1.
With these choices of data, we obtain the following versions of the a priori error

estimates.
Corollary 6.8 (a priori error estimate for mcG(q)). Let U be the mcG(q)

solution of (1.1). Then there is a constant C = C(q) > 0 such that

(6.7) ‖e‖L∞([0,T ],l∞) ≤ CS(T )
∥

∥kq+1ū(q+1)
∥

∥

L∞([0,T ],l2)
,

where the stability factor S(T ) =
∫ T

0 ‖J⊤(π
[q]
cGu, u, ·)Φ‖l2 dt is taken as the maximum

over ψ = 0 and ‖g‖L1([0,T ],l∞) = 1. Furthermore, if assumptions (A1)–(A5) and the
assumptions of Lemma 6.7 hold, then there is a constant C = C(q, ck, α) such that

(6.8) ‖e(T )‖lp ≤ CS̄(T )
∥

∥k2q ¯̄u(2q)
∥

∥

L∞([0,T ],l1)
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for p = 2,∞, where the stability factor S̄(T ) is given by S̄(T ) = eCqC̄fT .
Corollary 6.9 (a priori error estimate for mdG(q)). Let U be the mdG(q)

solution of (1.1). Then there is a constant C = C(q) > 0 such that

(6.9) ‖e‖L∞([0,T ],l∞) ≤ CS(T )
∥

∥kq+1ū(q+1)
∥

∥

L∞([0,T ],l2)
,

where the stability factor S(T ) =
∫ T

0 ‖J⊤(π
[q]
dGu, u, ·)Φ‖l2 dt is taken as the maximum

over ψ = 0 and ‖g‖L1([0,T ],l∞) = 1. Furthermore, if assumptions (A1)–(A5) and the
assumptions of Lemma 6.7 hold, then there is a constant C = C(q, ck, α) such that

(6.10) ‖e(T )‖lp ≤ CS̄(T )
∥

∥k2q+1 ¯̄u(2q+1)
∥

∥

L∞([0,T ],l1)

for p = 2,∞, where the stability factor S̄(T ) is given by S̄(T ) = eCqC̄fT .
The stability factor S(T ) that appears in the a priori error estimates is obtained

from the discrete solution Φ of the dual problem (4.1), and can thus be computed
by solving the discrete dual problem. Numerical computation of the stability factor
reveals the exact nature of the problem, in particular, whether or not the problem is
parabolic; if the stability factor is of unit size and does not grow, then the problem is
parabolic by definition; see [36].

6.3. A note on quadrature errors. The error representations presented in
section 6.1 are based on the Galerkin orthogonalities of the mcG(q) and mdG(q)
methods. In particular, for the mcG(q) method, we assume that

∫ T

0

(R(U, ·),Φ) dt = 0.

In the presence of quadrature errors, this term is nonzero. As a result, we obtain an
additional term of the form

∫ T

0

(f̃(U, ·)− f(U, ·),Φ) dt,

where f̃ is the interpolant of f corresponding the quadrature rule that is used. A
convenient choice of quadrature for the mcG(q) method is Lobatto quadrature with
q+1 nodal points [32], which means that the quadrature error is of order 2(q+1)−2 =
2q and so (super)convergence of order 2q is obtained also in the presence of quadrature
errors. Similarly for the mdG(q) method, we use Radau quadrature with q + 1 nodal
points, which means that the quadrature error is of order 2(q + 1)− 1 = 2q + 1, and
so the 2q + 1 convergence order of mdG(q) is also maintained under quadrature.

7. A numerical example. We conclude by demonstrating the convergence of
the multiadaptive methods in the case of a simple test problem.

Consider the problem

u̇1 = u2,

u̇2 = −u1,
u̇3 = −u2 + 2u4,

u̇4 = u1 − 2u3,

u̇5 = −u2 − 2u4 + 4u6,

u̇6 = u1 + 2u3 − 4u5

(7.1)
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Fig. 6. Convergence of the error at final time for the solution of the test problem (7.1) with
mcG(q) and mdG(q), q ≤ 5.

Table 1
Order of convergence p for mcG(q).

mcG(q) 1 2 3 4 5
p 1.99 3.96 5.92 7.82 9.67
2q 2 4 6 8 10

Table 2
Order of convergence p for mdG(q).

mdG(q) 0 1 2 3 4 5
p 0.92 2.96 4.94 6.87 9.10 –

2q + 1 1 3 5 7 9 11

on [0, 1] with initial condition u(0) = (0, 1, 0, 2, 0, 3). The solution is given by u(t) =
(sin t, cos t, sin t+ sin 2t, cos t+ cos 2t, sin t+ sin 2t+ sin 4t, cos t+ cos 2t+ cos 4t). For
given k0 > 0, we take ki(t) = k0 for i = 1, 2, ki(t) = k0/2 for i = 3, 4, and ki(t) = k0/4
for i = 5, 6, and study the convergence of the error ‖e(T )‖l2 with decreasing k0. From
the results presented in Figure 6 and Tables 1 and 2, it is clear that the predicted
order of convergence is obtained.
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