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A PROLONGATION/RESTRICTION OPERATOR FOR WHITNEY
ELEMENTS ON SIMPLICIAL MESHES∗

ALAIN BOSSAVIT† AND FRANCESCA RAPETTI‡

Abstract. The paper is mainly focused on the construction of two transfer operators be-
tween nested grids in the case of Whitney finite elements (node-, edge-, face-, or volume-based).
These transfer operators, instances of what is called “chain map” in homology, have duals acting on
cochains, that is to say, arrays of degrees of freedom in the context of the finite-element discretiza-
tion of variational problems. We show how these duals can act as restriction/prolongation operators
in a multigrid approach to such problems, especially those involving vector fields (e.g., electromag-
netism). The duality between the operation of mesh refinement of a simplicial complex and that
of restriction/prolongation of degrees of freedom from one mesh to a nested one is thus analyzed
and explained. We use the language of p-forms, with frequent explanatory references to the more
traditional vector-fields formalism.
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1. Introduction. In the approximation of a given differential problem by a finite
element method, solving the final algebraic linear system is a delicate step. It is well-
known that the associated matrix is sparse and can be of large size so that iterative
solvers are preferable to direct ones. However, the convergence of iterative solvers
strongly depends on the matrix condition number and slows down when the latter is
large. Moreover, classical iterative methods fail to be effective whenever the spectral
radius of the iteration matrix is close to one. A Fourier analysis shows that the
reduction in the error depends on the spatial frequency. Errors with high frequency
are rapidly damped whereas low frequency errors are slowly reduced and hold back
convergence.

The multigrid algorithm [16] is an iterative technique well-adapted to solving
linear systems arising from a finite element discretization of differential equations
over a given grid. The basic idea of the method is to change the grid in such a way
that low frequency (smooth) errors on a grid with elements of maximal diameter h can
be singled out and cut down on a coarser grid, while high frequency errors that are not
visible on the coarse grid with elements of maximal diameter H > h, for example, can
be resolved on the fine grid. The exchange of information between the two meshes is
done by means of two linear operators, one behaving as a prolongation and the other
as a restriction. These operators are well known for nodal finite elements on nested
or nonnested grids [19] but have still to be fully understood for edge or face finite
elements.

It must be remarked that recovering the coarse grid from the fine one can be a very
demanding operation. Therefore, in this paper we will address this problem the other
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way around; i.e., we suppose that we have a coarse grid and we refine it repeatedly
by means of a fixed procedure. This way, by using a suitable system of labels for the
mesh nodes, we can know at which refinement level we are. Any other situation is
not considered here since we wish to focus on the transfer of degrees of freedom from
one mesh to the other, rather than on the coarsening process itself. However, the
proposed analysis does not depend on the refinement or coarsening process. In short,
we focus on a specific criterion to present the theory, but the theory is independent
from the chosen criterion.

The paper is organized as follows. In section 2, suitable algebraic tools are intro-
duced to lead the reader into the “world” of Whitney elements on simplicial meshes,
including an appropriate formulation of the Stokes theorem. In section 3, we consider
the problem of subdividing a simplicial mesh. The core of the paper is section 4,
where we construct the information exchange operators between two “nested” meshes
(by which we mean, two meshes m and m̃, the latter a conforming refinement of
the former). Notions thus developed are applied in section 5, where we define the
two transfer operators for Whitney elements on two nested simplicial meshes. The
multigrid algorithm then comes as a straightforward application of these notions. An-
alyzing its performances is a difficult and technical issue, which we do not address.
(Relevant references are given in section 5.)

2. Algebraic tools. In this section, we recall some basic notions in algebraic
topology (see, e.g., [1, 17]) and explain our notation. We restrict ourselves to a three-
dimensional domain Ω (but the same notions can be defined in any dimension). For all
integrals, we omit specifying the integration variable when this can be done without
ambiguity. We shall denote by

∫
γ
u · tγ and

∫
σ
u ·nσ, respectively, the circulation and

the flux of a vector field u, where tγ is the unit tangent to the smooth curve γ and
nσ the outward unit normal to the surface σ. Moreover, we shall emphasize the maps
γ →

∫
γ
u · tγ and σ →

∫
σ
u ·nσ, that is to say, the differential forms of degree 1 and 2,

respectively, which one can associate with a given vector field u, and we occasionally
use notations specific to exterior calculus, such as the exterior derivative d, as used
in the Stokes theorem.

2.1. Triangulations and Whitney finite elements. Given a domain Ω ⊂ R
3

with boundary Γ, a simplicial mesh m in Ω is a tessellation of Ω by tetrahedra, under
the condition that any two of them may intersect along a common face, edge, or
node, but in no other way. We denote by Nm, Em, Fm, Tm (nodes, edges, faces, and
tetrahedra, respectively) the sets of simplices of dimension 0 to 3 thus obtained (see
Figure 1 for an example), each with its own orientation (more on this will follow),
and by Nm, Em, Fm, Tm their cardinalities. Alternatively, we may use Sp

m to denote
the set of p-dimensional simplices in m and #Sp

m for its cardinality. The importance
of simplicial meshes lies in the fact that any triangulated domain is homeomorphic to
one in which the triangles are flat and the edges straight. Note that the triangulation
for Ω is not unique, but topological properties of a triangulated domain do not depend
on the triangulation used to investigate them. (For such “homological” computations,
using a definite triangulation but yielding mesh-independent results, which we believe
are relevant to engineering practice, see [12, 15].)

For what follows, we need to underline some combinatorial properties of the sim-
plicial mesh. Besides the list of nodes and their positions, the mesh data structure
also contains incidence matrices, saying which node lies at an end of which edge,
which edge bounds which face, etc. [4]. This encodes the orientation of each simplex,
as we now explain. In short, an oriented edge is not only a two-node subset of Nm,
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Fig. 1. Examples of oriented p-simplex, p = 0, . . . , 3.

but an ordered such set, where the order implies an orientation. Let e = {�, n} be
an edge of the mesh oriented from the node � to n. We can define the incidence
numbers Ge,n = 1, Ge,� = −1, and Ge,k = 0 for all nodes k other than � and n.
These numbers form a (Em × Nm)-matrix G, which describes how edges connect to
nodes. A face f = {�, n, k} has three vertices which are the nodes �, n, k. Note that
{n, k, l} and {k, l, n} denote the same face f , whereas {n, l, k} denotes an oppositely
oriented face, which is not supposed to belong to Fm if f does. An orientation of
f induces an orientation of its boundary. So, with respect to the orientation of the
face f , the one of the edge {l, n} is positive and that of {k, n} is negative. So we
can define the incidence number Rf,e = 1 (resp., −1) if the orientation of e matches
(resp., does not match) the one on the boundary of f and Rf,e = 0 if e is not an
edge of f . These numbers form a (Fm × Em)-matrix R. Finally, let us consider the
tetrahedron t = {k, l,m, n}, positively oriented if the three vectors {k, l}, {k,m}, and
{k, n} define a positive frame (t′ = {l,m, n, k} has a negative orientation and does not
belong to Tm if t does). A (Vm×Fm)-matrix D can be defined by setting Dt,f = ±1 if
face f bounds the tetrahedron t, with the sign depending on whether the orientation
of f and of the boundary of t match or not, and Dt,f = 0 in case f does not bound
t. (For consistency, we may attribute an orientation to nodes as well—a sign, ±1.
Implicitly, we have been orienting all nodes the same way (+1) up to now. Note that
a sign (−1) to node n changes the sign of all entries of column n in the above G.) It
can easily be proved that RG = 0 and DR = 0 [4].

We now define the Whitney finite elements we use [4, 9, 10, 13]: They are scalar
functions or vector fields associated to all the simplices of the mesh m. Given the node
n, the edge e = {�,m}, the face f = {�,m, k}, and the tetrahedron t = {i, j, k, �},
we define the following scalar or vector functions (λn is the barycentric coordinate
associated to node n):

wn = λn,

we = λ� gradλm − λmgradλ�,

wf = 2 (λ� gradλm × gradλk + λm gradλk × gradλ� + λk gradλ� × gradλm),

wt = 6 (λi gradλj × gradλk · gradλ� + λj gradλk × gradλ� · gradλi

+λk gradλ� × gradλi · gradλj + λ� gradλi × gradλj · gradλk)

(wt is just the constant 1/vol(t)). We define W p
m = span {ws : s ∈ Sp

m}, p = 0, 1, 2, 3
(the simplicial dimension, e.g., p = 0 for nodes). It can be verified that the value
(resp., circulation, flux, integral) of wn (resp., we, wf , wt) on its supporting simplex
is 1, and 0 on other simplices of matching dimension, a fact we shall be able to state
more compactly in a moment.

Given two adjacent tetrahedra t and t′ sharing a face f , the function wn and both
the tangential component of we and the normal component of wf are continuous
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across f , whereas the function wt is not. Thanks to these continuity properties,
W 0

m ⊂ H1(Ω), W 1
m ⊂ H(curl,Ω), W 2

m ⊂ H(div,Ω), W 3
m ⊂ L2(Ω). The spaces

W p
m, p = 0, 1, 2, 3, have finite dimension given by Nm, Em, Fm, Tm, respectively, and

they play the role of Galerkin approximation spaces for the functional spaces just
mentioned. Therefore, a scalar field k ∈ H1(Ω) can be represented in W 0

m by the
approximation

∑
n∈Nm

kn w
n where {kn : n ∈ Nm} are the values of k at the mesh

nodes (i.e., the degrees of freedom of k on the mesh m). Similarly, a vector field
v ∈ H(curl,Ω) can be represented in W 1

m by
∑

e∈Em
ve w

e, where {ve : e ∈ Em}
are the circulations of v along the mesh edges. A vector field v ∈ H(div,Ω) can
be represented in W 2

m by
∑

f∈Fm
vf w

f , where {vf : f ∈ Fm} are the fluxes of v

across the mesh faces. Finally, a scalar field k ∈ L2(Ω) can be represented in W 3
m by∑

t∈Tm
kt w

t, where {kt : t ∈ Tm} are the integrals of k on the mesh tetrahedra.
Properties discussed so far concern the spaces W p

m taken one by one. Properties of
the structure made of the spaces W p

m when taken together should also be mentioned.
We know that the following inclusions hold:

gradW 0
m ⊂ W 1

m, curlW 1
m ⊂ W 2

m, divW 2
m ⊂ W 3

m.

It is natural to ask whether the sequence

{0} −→ W 0
m

grad−→ W 1
m

curl−→ W 2
m

div−→ W 3
m −→ {0}

is exact at levels 1 and 2, i.e., when it happens that

ker(curl;W 1
m) = gradW 0

m, ker(div;W 2
m) = curlW 1

m,

where ker(curl;W 1
m) := W 1

m ∩ ker(curl) and ker(div;W 2
m) := W 2

m ∩ ker(div). (At
level 0, the gradient operator is not injective. At level 3, the divergence operator
is surjective.) The Poincaré lemma states that, when the domain Ω is contractible,
the image fills the kernel in both cases. This may fail to happen: With Ω a solid
torus, for example, grad (W 0

m) is a proper subset of ker(curl;W 1
m). If so, it tells

us something on the topology of Ω, namely the presence of b1 “loops,” where b1 =
dim [ker(curl;W 1

m)/grad (W 0
m)] is the Betti number of dimension 1 of the domain.

Solenoidal fields that are not curls indicate the presence of b2 “holes,” where b2 =
dim [ker(div;W 2

m)/curl (W 1
m)] is the Betti number of dimension 2 of the domain. (One

may add that b0 = dim [ker(grad;W 0
m)] is the number of connected components, here

assumed to be 1, of Ω.) These are global topological properties of the meshed domain:
They depend on Ω, but not on which mesh is used to compute them. The sequences
are thus an algebraic tool by which the topology of Ω can be explored (which was the
point of inventing Whitney forms [18]).

2.2. Chains and homology groups. We now introduce chains over the mesh
m. A p-chain c is an assignment to each p-simplex s of a rational integer αs. This
can be denoted by c =

∑
s∈Sp

m
αs s. Let Cp(m) be the set of all p-chains. This set has

a structure of Abelian group with respect to the addition of p-chains: Two p-chains
are added by adding the corresponding coefficients.

If s is an oriented simplex, the elementary chain corresponding to s is the as-
signment αs = 1 and α′

s = 0 for all s′ �= s. In what follows, we will use the same
symbol s (or n, e, etc., depending) to denote the oriented simplex and the associated
elementary chain. Note how this is consistent with the above expansion of c as a
formal weighted sum of simplices. Which meaning is implied will hopefully be clear
from the context.
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The boundary of an oriented p-simplex of m is a (p− 1)-chain determined by the
sum of its (p − 1)-dimensional faces, each taken with the orientation induced from
that of the whole simplex. So, the boundary ∂s of a single simplex s is

∂e =
∑

n∈Nm

Ge,n n, ∂f =
∑
e∈Em

Rf,e e, ∂t =
∑

f∈Fm

Dt,f f.

By linearity, the boundary operator ∂ defines a group homomorphism Cp(m) →
Cp−1(m) as follows:

∂c = ∂

( ∑
s∈Sp

m

αs s

)
=

∑
s∈Sp

m

αs ∂s.

Note that ∂ is represented by a matrix, which is Gt, Rt, or Dt, depending on the
dimension p > 0. We remark that ∂ ◦ ∂ = 0, i.e., the boundary of a boundary is the
null chain. When p = 0, we define the boundary of a single vertex to be zero and
C−1(m) = {0}.

The kernel of ∂ : Cp(m) → Cp−1(m) is denoted by Zp(m) and is called the group
of p-cycles of m. The image of ∂ : Cp+1(m) → Cq(m) is denoted by Bq(m) and is
called the group of p-boundaries of m. The property ∂ ◦ ∂ = 0 implies that Bp(m) is
a subgroup of Zp(m). The quotient Hp(m) = Zp(m)/Bp(m) is the homology group of
order p of the mesh m and the Betti number bp is equal to the rank of Hp(m). Not all
cycles bound, as a rule (think again of the solid torus, for p = 1), so bp need not be zero.

By linearity, integration over simplices extends to chains as follows (let’s deal with
2-chains for definiteness). If c = Σf∈Fmcff , the integral of a vector field w over c is,
by definition (and with some notational abuse for which we shall be rewarded later),∫

c

w =
∑

f∈Fm

cf

∫
f

w · nf .(1)

Substituting the Whitney form wf for w there, one sees that
∫
c
wf is just cf . A

similar definition can be stated for node-based, edge-based, or volume-based chains.
So we now have

∫
s′ w

s = 1 if s′ = s and 0 if s′ �= s for all p-simplices s′ and Whitney
elements ws—the promised compact expression of their main property.

Remark 2.1. We note that (1) amounts to considering the vector field w as a
differential form, as defined at the beginning of section 1. The functions and vector
fields wn, we, wf , wt of section 2.1 are thus differential forms, known as Whitney
forms in the mathematical literature [18].

2.3. Cochains and cohomology groups. In this section, we introduce the
dual concept of p-cochain. A p-cochain is a linear functional on the vector space of
p-chains. For instance, given an array b = {bs : s ∈ Sp

m} of real numbers, we can
define the p-cochain c →

∑
s∈Sp

m
bs cs acting on p-chains c with coefficients cs. Also,

as in (1), given a differential form w, the mapping c →
∫
c
w defines a p-cochain. More

generally, the p-cochain coefficients are obtained by integrating the differential form
w on the elements of the p-chain c; i.e., the map c →

∑
s∈Sp

m
cs

∫
s
w is a cochain. We

shall denote the latter value as 〈w ; c〉.
Once a metric is introduced on the ambient affine space, differential forms are in

correspondence with scalar and vector fields (called “proxy fields”—metric dependent,
of course). The coefficients of p-cochains become the degrees of freedom of scalar
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and vector fields (and this is exactly what occurs with Whitney finite elements in
section 2.1). Let W p(m) denote the set of p-cochains (or p-forms) defined on Ω when
triangulated by m. Then, Cp(m) and W p(m) are in duality via the bilinear continuous
map 〈· ; ·〉 : W p(m) × Cp(m) → R defined as 〈w ; c〉 =

∫
c
w where the integral must

be interpreted as in (1) in the example case p = 2. A duality product should be
nondegenerate, i.e., 〈w ; c〉 = 0 for all c implies w = 0, and 〈w ; c〉 = 0 for all w
implies c = 0. The former property holds true by definition, and the latter is satisfied
because, if c �= 0, one can construct an ad-hoc smooth vector field or function with
nonzero integral and hence a nonzero form w such that 〈w ; c〉 �= 0.

For p > 0, the exterior derivative of the (p − 1)-form w is the p-form dw. The
integral

∫
c
w is treated in two ways: If c = ∂τ and w is smooth, one may go forward

and integrate dw over τ . Alternatively, if the form w = dv, one may go backward and
integrate v over ∂c. In particular, we have

∫
∂c

w =
∫
c
dw, which is the common form

of Stokes’ theorem [7], or equivalently,

〈w ; ∂c〉 = 〈dw ; c〉 ∀c ∈ Cp and ∀w ∈ W p−1.(2)

Equation (2) reveals that d is the dual of ∂ (in the sense of Yosida [20, p. 194]).
As a corollary of the boundary operator property ∂ ◦ ∂ = 0, we have that d ◦ d = 0.
A form w is closed if dw = 0, exact if w = d v for some v (in the first case we
have a cocycle and in the second case a coboundary). Denoting by Zp(m) the vector
space of all closed p-forms and by Bp(m) the subspace made of all exact p-forms, the
property d ◦ d = 0 implies that Bp(m) ⊂ Zp(m); i.e., the integral of a cocycle over
a boundary vanishes. In domains Ω that are topologically trivial, all closed p-forms
are exact (this is the Poincaré lemma). But closed forms need not be exact in general
manifolds: This is the dual aspect of the above “not all cycles bound” (section 2.2).
The quotient space Hp(m) = Zp(m)/Bp(m) is (considered as an additive group) the
De Rham’s pth cohomology group of Ω or equivalently of m.

3. Refinement of a triangulation and simplicial maps. A mesh refinement
is a procedure to subdivide each simplex of a given mesh (referred to as the “coarse”
one) m into a finite number of smaller ones, whose assembly is still a proper mesh (the
“fine” one). We consider here conforming refinements, i.e., such that the set m̃ of all
simplices of the fine mesh, is itself a cellular complex (no hanging nodes). Moreover,
we are interested in subdividing a simplicial mesh in a way that will not deteriorate
the aspect ratio of the new smaller and smaller tetrahedra that appear during the
division process. In this framework, we speak of uniform refinement procedure if
there is a finite catalog of “model cells” such that any cell in any m̃ is similar to one
of them, for all meshes m̃ in the family M of meshes potentially created in the process
of iterated refinement.

The barycentric (or regular) refinement is an example of conforming refinement
procedure where the small cells are more and more stretched (see Figure 2 for a
face) and hence not uniform in that sense. In three dimensions, each tetrahedron
T is divided into 24 tetrahedra, and we can understand that after the first step of
refinement, the new tetrahedra are more stretched toward the barycenter o: When
their aspect ratio becomes too small, the classical a priori error estimates for finite
elements do not apply and convergence is not warranted.
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Fig. 2. Two-level refinement of normal (left) and barycentric (right) type. A face is divided,
respectively, into four faces (left) and six faces (right) at each refinement level.

The normal refinement1 presented in Figure 2 for a face, and in Figure 5 for a
tetrahedron, is an example of conforming refinement procedure that enjoys uniformity.
In three dimensions, let us consider a tetrahedron T built on four nodes k, l,m, n. Call
o the center, lm, ln, etc., the midpoints. The big tetrahedron T = {k, l,m, n} subdi-
vides into four midsize ones, such as {kn, ln,mn, n}, and a midsize core octahedron
(Figure 3), itself a half-size reduction of a big one O circumscribed to T . In turn, the
core divides into six small octahedra and eight small tetrahedra, all similar to O and
T , respectively, with a reduction factor of 4 (Figure 4). Hence there are two basic
shapes, that of T and that of O, which are found again and again.

O

T

k

l

m

n

T

k
l

m

n

kl

lm

kn

mn

ln

km
o

Fig. 3. Cutting T into four midsize tetrahedra plus a core octahedron, similar to the circum-
scribed one, O. Note that the common center o of T and O is four times closer to face {k, l,m}
than node n was. Faces of O are similar to those of T , twice as big.

All that is left to do, in order to get a series of nested simplicial meshes, is to cut
the octahedra into tetrahedra, either eight (Figure 5) or just four. The latter solution
simply consists of adding an edge joining two opposite nodes of the octahedron. As
there are three nonequivalent ways to do that, one must be careful to draw all these

1Whitney defines in [18, pp. 358–360] a standard subdivision that guarantees uniformity but does
not treat nodes symmetrically, the way ours does, hence the introduction of the adjective normal for
definiteness. Normal subdivision can be done in dimensions d > 3, where it also involves, as can be
inferred from Figure 3, convex hulls of barycenters of p-faces of the reference d-simplex. Denoting
such convex polytopes by Tp (the reference simplex thus being T0, and the O of Figure 5 a T1), it
can be shown that each Tp can be dissected into a finite number (bounded by a function of d only)
of polytopes similar to one of the Tq , 1 ≤ q ≤ d; hence there is uniformity.
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kl
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kn o

ln

km

o

kl

lm

kn

mn

Fig. 4. Cutting the octahedral core O into six small octahedra (one per node of the core, or
edge of T ) plus eight small tetrahedra (one per face of the core), all similar to T and O, respectively,
and four times smaller.

diagonals parallel to a same direction if one wants to minimize the number of different
shapes of tetrahedra. Cutting in eight is a more symmetrical procedure. With both
methods, the number of shapes is kept down to five. (That is the generic number, of
course lower if T had some symmetry to start with.)

In any event, it is only at the latest stage of the subdivision that the final cut
of octahedra should be involved. Conceptually, we have two cell shapes, T and O.
Each T -cell breaks into four smaller T -cells and one O-cell. Each O-cell splits into six
O-cells and eight T -cells. At the generic step κ ≥ 1, we get

T → α
T

2κ
+ β

O

2κ−1
,(3)

where α, β are two positive integers. As a last step, O-cells are chopped.
If a tetrahedron t born from this last subdivision is earmarked for refinement by

the error-estimator, one must look upward to its ancestry before dividing it. If t is a
T -cell, apply normal subdivision. Otherwise, backtrack to its mother O-cell and sub-
divide the latter. Apart from those that are T -cells, tetrahedra of the subdivision are
mules, not able to reproduce by division. The same strategy applies to the transition
layer of tetrahedra that touch divided ones, and need division for conformity. They
should be cut in two or more tetrahedra, depending on how many of their edges belong
to divided tetrahedra. Here, for simplicity, we consider only two cases: a T -cell with a
divided face results in four tetrahedra and the one with a divided edge results in two.
Products of this subdivision can be mules as well as tetrahedra with divided edges
or faces and the procedure goes on. All other T -cells presenting two or more divided
faces are cut according to the normal subdivision (at worst, the normal subdivision
applies to the whole set of tetrahedra). If one of the two or four tetrahedra t that
compose a T -cell in the transition layer is pointed at for subdivision, one backtracks
to its (mother) T -cell and applies normal subdivision. (Refining tetrahedra t the same
way, by the normal subdivision that served for the T -cell, would make a mess.) The
number of different tetrahedral shapes is thus kept small, whatever the depth of the
subdivision procedure.
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o

k

l

m

n

kl

lm

km

kn

Fig. 5. Normal refinement for the tetrahedron T = {k, l,m, n}. Mid-edges are denoted kl, lm,
etc., and o is the barycenter. A first halving of edges generates four small tetrahedra and a core
octahedron, which itself can be divided into eight “octants” such as O = {o, kl, lm,mk}, of at most
four different shapes. At this point, we have twelve small tetrahedra, only eight in the octahedron.
Now, octants like O should be subdivided as follows: Divide the face in front of o into four triangles
and join to o; hence we have a tetrahedron similar to T , and three peripheral tetrahedra. These,
in turn, are halved as shown for the one hanging from edge {o, lm}. Its two parts are similar to O
and to the neighbor octant {o, kn, kl,mk}, respectively. At the end of the second step, we have 56
tetrahedra for the core octahedron.

Note that, starting from a given mesh, the barycentric subdivision as well as the
normal one do not change the homology group of a complex, since the triangulated
domain is always the same. This is the very point of homology (see, for example, [1]).

4. Construction of a restriction/prolongation operator between two
nested meshes. Recall that the collection of groups and homomorphisms

{0} −→ . . .
∂−→ Cp(m)

∂−→ Cp−1(m)
∂−→ . . . −→ {0}

is usually referred to as the chain complex of the mesh m and denoted by C(m). Here,
we shall consider two meshes, the coarse one m and the fine one m̃, as obtained from
m by a given refinement technique; hence we have two complexes C(m) and C(m̃).
We use capital letters to denote nodes, edges, faces, and volumes in m and lowercase
letters to denote analogous cells in m̃. Incidence matrices for m̃ are denoted g, r, d.
Recall that the elementary chain associated with a simplex of m (or m̃) and the sim-
plex itself are denoted by the same symbol. Last, we shall use the shorthand “s ⊂ S”
when simplex s is, as a subset of the three-dimensional space, a part of S. (Thus,
N ⊂ E means N is an endpoint of E. In the case of nodes, n ⊂ N just means that n
and N sit at the same point.)

In what follows, we first introduce two maps, χ : C(m) → C(m̃) and π : C(m̃) →
C(m); we next prove that χ and π are “chain maps,” as defined below, and that
π χ = 1.
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Definition 4.1. Given a p-simplex S of the coarse complex m, set

χ(S) =
∑
s∈Sp

m̃

χs
S
s with χs

S
=

⎧⎪⎨
⎪⎩

0 if s �⊂ S,

+1 if s ⊂ S and same orientation,

−1 if s ⊂ S and opposite orientation.

(4)

Of course, the map χ is the natural way to embed m into m̃: Chop the large
simplex into small ones, and build a chain from these, with weights ±1 according to
respective orientations. For nodes, we assumed positive orientation for all of them, so
χn

N
is 1 if n coincides with N , 0 otherwise.

Next, let w
S

denote the Whitney form associated with a p-simplex S of the coarse

mesh so that 〈wS

; S′〉 = δ
S,S′ for all p-simplices S′ ∈ m. Then we have the following

definition.
Definition 4.2. Given a p-simplex s of the fine complex m̃, set

π(s) =
∑

S∈Sp
m

〈wS

; s〉S ≡
∑

S∈Sp
m

πS
s S.(5)

A small simplex is thus represented by a chain of big ones. (The use of Whitney
forms for this is natural: As argued elsewhere [5], Whitney forms are best viewed as
a device to represent manifolds by simplicial chains. Here, the manifold is the small
simplex s.) We now prove three propositions.

Proposition 4.3. One has π χ = 1.
Proof. We must show that π(χ(S)) = S for any coarse p-simplex S. Indeed,

π(χ(S)) = π

( ∑
s∈Sp

m̃

χs
S
s

)

=
∑
s∈Sp

m̃

χs
S

∑
S′∈Sp

m

〈wS′

; s〉S′

=
∑

S′∈Sp
m

〈
w

S′

;
∑
s∈Sp

m̃

χs
S
s

〉
S′(6)

=
∑

S′∈Sp
m

〈wS′

; S〉S′(7)

= S,

thanks to the fundamental property of Whitney forms, 〈wS′
; S〉 = δS,S′ . To pass

from (6) to (7), use the equality 〈w ; S〉 = 〈w ; χ(S)〉, for any given p-form w, which
stems from additivity of the integral.

It is important to remark that Proposition 4.3 and its proof do not depend on the
refinement technique, but just on the fact that coarse cells are tessellations of small
ones.

Proposition 4.4. The map χ defined in (4) is a chain map, i.e., ∂ χ = χ∂.
Proof. Although both statement and proof are independent of the refinement

procedure, we suppose here that the normal subdivision is considered at the first step
(where each tetrahedron gives 12 small tetrahedra) to build up the fine complex m̃
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from the coarse one m. We also treat separately the cases p = 1, 2, 3, where p is the
dimension of the chain on which ∂ χ and χ∂ act, though as will be apparent a generic
proof (much shorter, but perhaps less informative) could be given. Our purpose is to
help understand, on concrete examples, what is going on.

For p = 1, we have

χ∂ E = χ (
∑

N∈Nm
G

E,N
N)

=
∑

N∈Nm
G

E,N

∑
n∈Nm̃

χn
N
n

=
∑

n∈Nm̃
[
∑

N∈Nm
G

E,N
χn

N
]n =

∑
n∈Nm̃

[
∑

N⊂E G
E,N

χn
N

]n,

since only those nodes N that are, as sets, part of E, make G
E,N

�= 0, and thus
contribute to the sum. On the other hand, we obtain:

∂ χE = ∂ (
∑

e∈Em̃
χe

E
e)

=
∑

e∈Em̃
χe

E

∑
n∈Nm̃

ge,n n

=
∑

n∈Nm̃
[
∑

e∈Em̃
χe

E
ge,n ]n =

∑
n∈Nm̃

[
∑

e⊂E χe
E
ge,n ]n,

since only those e that are, as sets, part of E, make χe
E
�= 0, and thus contribute to

the sum. The conclusion comes from the equality between bracketed terms above,
which stems from the interplay between incidence numbers on both meshes, as we
now show in detail.

If n �⊂ E, there is no N such that n ⊂ N ⊂ E, so the first bracket vanishes. There
is no e either such that n ⊂ e ⊂ E, so the second bracket vanishes too. Assuming
therefore n ⊂ E, we have two cases to examine, illustrated by the center part and the
right-hand part of Figure 6, where E is supposed to be E2: either n ⊂ N for N one
of the endpoints of E2 (say N1 or N2), or not (see Figure 6, center and right-hand
part, respectively).

E1 E3

E2E2
E2

E1 E3
E1 E3

F

en e n
N2N1 N N NN21 21

1 1 2e2 e

Fig. 6. For node n ∈ Nm̃ belonging to edge E2, either there exists N ⊂ E2 such that n ⊂ N
(center) or not (right).

According to the situation at the center of Figure 6 (n ⊂ N1), we have∑
N⊂E2

G
E2,N

χn
N

= G
E2,N1

χn
N1

+ G
E2,N2

χn
N2

= (−1)(1) + (1)(0) = −1.

For the situation at the right-hand side of Figure 6, since n �⊂ Ni, for i = 1 or 2, we
have

χn
Ni

= 0 ∀ i so that
∑
N⊂E

G
E,N

χn
N

= 0.

Let us do the same reasoning for the other quantity, looking at Figure 6. For the
situation at the center of Figure 6, we have (recalling that g is the “fine” incidence
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matrix)

∑
e⊂E2

g
e,n

χe
E2

= g
e1,n

χe1
E2

+ g
e2,n

χe2
E2

= (−1)(1) + (0)(1) = −1.

For the situation at the right-hand side of Figure 6, we have∑
e⊂E2

g
e,n

χe
E2

= g
e1,n

χe1
E2

+ g
e2,n

χe2
E2

= (1)(1) + (−1)(1) = 0.

Summing up, for a given n ∈ Nm̃, the two quantities in brackets take the same
value (−1, 1 or 0), due to the definition of the incidence matrices G and g and
coefficients χn

N
and χe

E
.

For p = 2, we can write that

χ∂ F = χ (
∑

E∈Em
R

F,E
E)

=
∑

E∈Em
R

F,E

∑
e∈Em̃

χe
E
e

=
∑

e∈Em̃
[
∑

E∈Em
R

F,E
χe

E
] e =

∑
e∈Em̃

[
∑

E⊂F R
F,E

χe
E

] e.

On the other hand, we have

∂ χF = ∂ (
∑

f∈Fm̃
χf

F
f)

=
∑

f∈Fm̃
χf

F

∑
e∈Em̃

r
f,e

e

=
∑

e∈Em̃
[
∑

f∈Fm̃
χf

F
r
f,e

] e =
∑

e∈Em̃
[
∑

f⊂F χf
F
r
f,e

] e.

We compare again the two quantities in brackets, noting again that both brackets
vanish for each e ∈ Em̃ such that e �⊂ F . Assuming therefore e ⊂ F (Figure 7), we
have two cases: Either there exists E ∈ Em such that e ⊂ E and E ⊂ F , or not (see
Figures 7 and 8, center and right-hand part, respectively).

E1
E1E3

E3

E2E2
E2

E1 E3

F

e

e

Fig. 7. For edge e ∈ Em̃ belonging to face F , either there exists E ⊂ F such that e ⊂ E (center)
or not (right).

According to the situation at the center of Figure 7, we have∑
E⊂F R

F,E
χe

E
= R

F,E1
χe

E1
+ R

F,E2
χe

E2
+ R

F,E3
χe

E3

= (−1)(0) + (1)(1) + (1)(0) = 1.

For the situation at the right-hand side of Figure 7, since e �⊂ Ei, i = 1, 2, 3, we have

χe
Ei

= 0 ∀ i so that
∑
E⊂F

R
F,E

χe
E

= 0.



PROLONGATION/RESTRICTION OPERATOR AND WHITNEY FORMS 2089

f1 f2
f4 f1 f2

f4
F

f3f3

e

e

Fig. 8. For edge e ∈ Em̃ belonging to face F , either there exists only one face f ∈ Em̃ such that
e ⊂ f (center) or two (right).

Let us do the same reasoning for the other quantity, looking at Figure 8. For the
situation at the center of Figure 8, we have∑

f⊂F χf
F
r
f,e

= χf1
F
r
f1,e

+ χf2
F
r
f2,e

+ χf3
F
r
f3,e

+ χf4
F
r
f4,e

= (1)(1) + (0)(1) + (0)(1) + (0)(1) = 1.

For the situation at the right-hand side of Figure 8, we have∑
f⊂F r

f,e
χf

F
= χf1

F
r
f1,e

+ χf2
F
r
f2,e

+ χf3
F
r
f3,e

+ χf4
F
r
f4,e

= (0)(1) + (0)(1) + (1)(1) + (−1)(1) = 0.

Summing up, for a given e ∈ Em̃, the two quantities in brackets take the same value
(1 or 0), due to the definition of the incidence matrices R and r and coefficients χe

E

and χf
F
.

Finally, for p = 3, we have

χ∂ T = χ (
∑

F∈Fm
D

T,F
F )

=
∑

F∈Fm
D

T,F

∑
f∈Fm̃

χf
F
f

=
∑

f∈Fm̃
(
∑

F∈Fm
D

T,F
χf

F
) f =

∑
f∈Fm̃

[
∑

F⊂T D
T,F

χf
F

] f.

On the other hand,

∂ χT = ∂ (
∑

t∈Tm̃
χt

T
t)

=
∑

t∈Tm̃
χt

T

∑
f∈Fm̃

d
t,f

f

=
∑

f∈Fm̃
(
∑

t∈Tm̃
χt

T
d

t,f
) f =

∑
f∈Fm̃

[
∑

t⊂T χt
T
d

t,f
] f.

We compare again the two quantities in brackets, assuming f ⊂ T . We have two
cases: either there exists F ∈ Fm such that f ⊂ F or not (see Figure 9’s left-hand
and right-hand part, respectively). If f is part of, say, F1, then∑

F⊂T D
T,F

χf
F

= D
T,F1

χf
F1

+ D
T,F2

χf
F2

+ D
T,F3

χf
F3

+ D
T,F4

χf
F4

= (1)(1) + (1)(0) + (1)(0) + (1)(0) = 1.

If f �⊂ Fi, whatever Fi ⊂ T , then

χf
Fi

= 0 ∀ i; hence
∑
F⊂T

D
T,F

χf
F

= 0.

For the other bracketed term, either f is part of some F1, and there exists only one
t ∈ Tm̃ containing f , namely t∗, so that∑

t⊂T

d
t,f

χt
T

= d
t∗,f

χt∗

T
= (1)(1) = 1,
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F1

t* t1

t2

F1

f f

f
o

f

Fig. 9. For face f ∈ Fm̃ belonging to tetrahedron T ∈ Tm, either there exists F ⊂ T such that
f ⊂ F (left) or not (right). In the first case, there exists a unique tetrahedron t∗ ∈ Tm̃ containing f ,
and in the second case, two tetrahedra t1, t2 ∈ Tm̃. The normal subdivision of T is not completely
shown to make the figure clearer (o is the barycenter of T ).

or f �⊂ Fi whatever Fi ⊂ T . Then, f is inside T and is thus shared by two tetrahedra
of m̃, say t1 and t2. So,

∑
t⊂T

d
t,f

χt
T

= d
t1,f

χt1
T

+ d
t2,f

χt2
T

= (1)(1) + (−1)(1) = 0.

Summing up, for a given f ∈ Fm̃, the two quantities in brackets take the same
value (1 or 0), owing to the definition of the incidence matrices D and d and coefficients
χf

F
and χt

T
.

This completes the proof, which has been detailed for all cases, much beyond
logical necessity, to show how the incidence matrices and the two maps interact.
Later on, we will consider only one case, the others being on the same pattern.

Proposition 4.5. The map π defined in (5) is a chain map, i.e., ∂ π = π ∂.

Proof. We consider the case p = 2 to detail the proof. Then

π ∂ f = π (
∑

e∈Em̃
rf,e e)

=
∑

e∈Em̃
rf,e

∑
E∈Em

〈wE

; e〉E
=

∑
E∈Em

[
∑

e∈Em̃
rf,e 〈w

E

; e〉 ]E.

On the other hand, we can write

∂ π f = ∂ (
∑

F∈Fm
〈wF

; f〉F )

=
∑

F∈Fm
〈wF

; f〉
∑

E∈Em
R

F,E
E

=
∑

E∈Em
[
∑

F∈Fm
R

F,E
〈wF

; f〉 ]E.

We now recall that, when p = 2,

dw
E

=
∑

F∈Fm

R
F,E

w
F

(8)
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so that

∂ π f =
∑

E∈Em
[
∑

F∈Fm
R

F,E
〈wF

; f〉 ]E

=
∑

E∈Em
[ 〈dw

E

; f〉 ]E

=
∑

E∈Em
[ 〈wE

; ∂f〉 ]E

=
∑

E∈Em
[
∑

e∈Em̃
rf,e 〈w

E

; e〉 ]E

= π ∂ f.

Note the two ingredients of the proof: the Stokes theorem and the structural property,
(8), of the Whitney complex. For other dimensions, the proof is similar: Just change
R and r into G and g if p = 1, into D and d if p = 3.

Remark 4.6. The chain map χ : C(m) → C(m̃) can be defined, similarly to π, as
follows: Given a p-simplex S of the coarse complex m, set

χ(S) =
∑
s∈Sp

m̃

〈ws ; S〉 s =
∑
s∈Sp

m̃

χs
S
s.(9)

In the nested case, definitions (9) and (4) coincide. In the nonnested case, (9) is a
generalization of (4); the property π χ = 1 is lost, and the coefficients πS

s and χs
S

cannot be computed “by hands” as we shall see in the next section for nested grids.

5. Application. We explain how the map π can be used to design a multigrid
algorithm for the solution of linear systems arising from the use of Whitney elements
on tetrahedra to discretize a given differential (e.g., electromagnetic) problem. The
detailed analysis of the mesh-independent convergence and performances of the multi-
grid algorithm based on π is not considered here. We refer to [3, 8, 14] for rigorous
theoretical and numerical results in the edge element framework, and to [6] for a
formulation and application of the multigrid algorithm on hexahedral meshes.

As already pointed out in the introduction, the motivation for this approach comes
from the analysis of the error on the numerical solution in the frequency domain. We
recall the basic multigrid algorithm, assuming a two-grid method for simplicity. Let
h and H denote, respectively, the maximal diameter of tetrahedra in the fine m̃
and coarse m grids. Let Vh and V

H
be the underlying finite dimensional spaces of

cochains, with dim (Vh) > dim (V
H

), consistent with h < H. One wishes to solve
the linear system Ahuh = bh in Vh, assuming that the matrix Ah is symmetric
and positive definite (as is usually the case for matrices resulting from finite element
discretizations of a variational problem). Denoted by (u,v) the scalar product of
u,v ∈ Vh, solving Ahuh = bh in Vh is then equivalent to finding the minimizer
uh ∈ Vh of the quadratic functional Φ(u) = 1

2 (Ahu,u)− (bh,u). In what follows, Mh

represents a suitable preconditioner for Ah. The maps RH

h : Vh → V
H

, usually called
restriction operator, and Ph

H
: V

H
→ Vh, called prolongation operator, are full-rank

linear cochain-to-cochain operators. The so-called two-level V-cycle of the multigrid
procedure reads as follows:
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1. Fine grid presmoothing: from u0
h ∈ Vh and for k = 1, . . . , n1, do

uk
h = uk−1

h + Mh (bh −Ahu
k−1
h ).(10)

2. Coarse grid correction: given rn1

h = bh −Ahu
n1

h in Vh, do

restrict the residual on the coarse grid: r
H
← RH

h rn1

h .

solve the residual problem: A
H
z

H
= r

H
.

correct the solution in Vh: un1

h ← un1

h + Ph
H

z
H
.

3. Fine grid postsmoothing: from un1

h ∈ Vh and for k = 1, . . . n2, do (10).

In the fine grid presmoothing step, one iteratively solves Ahuh = bh in Vh by
a basic iterative method. High frequency errors are thus well eliminated, and once
this is achieved in, e.g., n1 iterations, further fine grid iterations would not improve
significantly the convergence rate. In the coarse grid correction, one tries to correct
un1

h on the coarse space V
H

. The coarse correction z
H

minimizes Φ(un1

h + Ph
H
z

H
)

over VH . This is equivalent to solving (Ph
H

)tAhP
h
H
z

H
= (Ph

H
)trn1

h on V
H

. Thus,
A

H
= (Ph

H
)tAhP

h
H

and the RH

h of step 2 is the transpose (Ph
H

)t [16]. On m, the
low frequency errors of m̃ manifest themselves as relatively high frequency errors and
are thus eliminated efficiently using again simple iterative smoothing methods. If
the coarsest grid has been reached, the coarse system has to be solved exactly, by
a direct solver, which can be done with little computational effort due to the small
number of unknowns. Otherwise, the three-step multigrid procedure can be repeated
recursively to solve the residual problem, as many times as the number of coarsening
levels m one considers, starting from the fine one m̃. Each grid level is responsible
for eliminating a particular frequency bandwidth of the error. Finally, in the fine
grid postsmoothing step, one solves iteratively n2 times in Vh the system Ahuh = bh,
starting from un1

h + Ph
H
z

H
, to eliminate high frequency errors on the term Ph

H
z

H
.

Our proposal is now to define the operator Ph
H

as the dual of the chain map π.
Indeed, recall that Vh and V

H
are spaces of p-cochains, while π is defined on p-chains

(see Definition 4.2). There is therefore a natural prolongation operator Ph
H

, defined as
the dual of π, i.e., by 〈u ; π(s)〉 = 〈Ph

H
u ; s〉 for all p-chains s and p-cochains u ∈ V

H
,

as suggested by the diagram below.

Vh C(m̃)

Ph
H

↑ 〈· ; ·〉 ↓ π

V
H

C(m)

Taking dual bases on both Vh and V
H

as explained in section 2.3, the matrix repre-
sentation of Ph

H
has entries (Ph

H
)sS = πS

s (cf. (5)). Recall that S and s here are two
simplices of same dimension p in m and m̃, respectively, so that there are distinct
prolongation operators for each p, i.e., for degrees of freedom based on nodes, edges,
faces, and volumes.

We now detail the calculation of π in the case where a number of coarse tetrahedra
have undergone one normal subdivision, i.e., by using (3) with κ = 1 (see Figure 5),
thus being divided into twelve small ones, while tetrahedra in the transition layer are
split into four or two small ones; hence we have the three cases considered below.
It is important to remark that the chain-map coefficients πS

s we search, defined as

〈wS

; s〉 in (5), do not depend on the shape of S and s but on their relative position
and orientation. Their computation relies on the following two obvious lemmas.
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Lemma 5.1. Let s be a p-simplex and w a linear p-differential form, linear with
respect to position x. Then

∫
s
w =

∫
s
w(xs), where xs denotes the barycenter of s.

This replaces a linear differential form by a constant one. For these, one has:

Lemma 5.2. Let s be a p-simplex and w a constant p-differential form, L a linear
map which sends simplex s to simplex s′. Then

∫
s′ w = det (L)

∫
s
w.

Case I. Tetrahedron T has been divided into twelve small tetrahedra t.

For p = 3, let w
T

be the scalar function associated to T (section 2.1), that is the

constant such that 〈wT

; T 〉 = 1. Computing 〈wT

; t〉 thus amounts to finding the
relative volume of t (an affine notion, not a metric one) with respect to T . This is
1
8 for the four tetrahedra t sharing a vertex with T (scaling factor 1

2 , to the cube),
which leaves 1

2 to be shared equally between the 8 tetrahedra with a vertex at the
barycenter o of T . So one has

〈wT

; t〉 = ± 1
8

for all t not contained in the core octahedron;

〈wT

; t〉 = ± 1
16

for all t contained in the core octahedron.

The sign ±1 depends on the relative orientation between t and T .

Note that the Lebesgue measure of t or of T played no role here: Considerations
of scaling and symmetry suffice to do the job, as will also be the case for other values of
p. We give only the results without further comments. Only the nonzero coefficients
are displayed.

For p = 2, there are four different situations, depending on where the small face
f is located with respect to the big one F and we refer again to Figure 5, κ = 1. The

coefficients 〈wF

; f〉 are the fluxes of the vector function w
F

across the small faces f .

Let F be {k, l, n} for definiteness. Using 〈wF

; F 〉 = 1, scaling, and symmetry, then

〈wF

; f〉 = ± 1
4

for all f ⊂ F such as f = {k, kl, kn};
〈wF

; f〉 = ± 1
8

for all f �⊂ F and with three vertices at mid-points
not in F , such as f = {mk, lm,mn};

〈wF

; f〉 = ± 1
8

for all f �⊂ F and with three vertices at mid-points
and one edge on F , such as f = {kl, kn, km};

〈wF

; f〉 = ± 1
16

for all f �⊂ F and with two vertices at mid-points
and the third one at o, such as f = {kl, kn, o}.

For p = 1, the coefficients 〈wE

; e〉 are the circulations of the vector function w
E

along the small edges e. Consider E = {k, n}. Again, 〈wE

; E〉 = 1, scaling and
symmetry yield

〈wE

; e〉 = ± 1
2

for all e ⊂ E, such as e = {k, kn};
〈wE

; e〉 = ± 1
4

for all e �⊂ E with vertices at mid-points,
one of which belongs to E, such as e = {kn, kl};

〈wE

; e〉 = ± 1
4

for all e �⊂ E with vertices at mid-points and
parallel to E, such as e = {kl, ln};

〈wE

; e〉 = ± 1
8

for all e �⊂ E with one vertex at o and one at a mid-point
not in E, such as e = {ln, o} or e = {mn, o}.

For p = 0, the coefficient 〈wN

; n〉 is the value of the scalar function w
N

at node
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n. Take for example N = k. Using 〈wN

; N〉 = 1 and linearity, one gets

〈wN

; n〉 = 1 for n ⊂ N ;

〈wN

; n〉 = 1
2

for n at the middle of an edge
incident on N , such as kn or km;

〈wN

; n〉 = 1
4

for n at o.

Case II. Here, T is a tetrahedron of the transition layer, divided into four small
tetrahedra t, as shown in Figure 10 (left and right).

k kl l

m

kn ln

n

k kl l

m

n

km lm

k kl l

m

n

Fig. 10. Tetrahedron T in the transition layer and division in four and two tetrahedra t.

For p = 3, by symmetry, 〈wT

; t〉 = ± 1
4

for all t contained in T .

For p = 2, two cases. If F (taken here as {k, l, n} for the sake of the example) is
divided in four as in Figure 10 (left), then

〈wF

; f〉 = ± 1
4

for all f ⊂ F , such as f = {k, kl, kn},

while F is divided in two, as in Figure 10 (right), then

〈wF

; f〉 = ± 1
2

for all f ⊂ F, such as f = {k, kl, n};
〈wF

; f〉 = ± 1
4

for all f neither in F nor in F ′ �= F , such as f = {kl, km, n}.

For p = 1, two cases again. If E ⊂ F and F is divided in four, then (with
E = {k, n} for illustration)

〈wE

; e〉 = ± 1
2

for all e ⊂ E, such as e = {k, kn};
〈wE

; e〉 = ± 1
4

for all e �⊂ E with vertices at mid-points,
one of which belongs to E, such as e = {kn, kl};

〈wE

; e〉 = ± 1
4

for all e �⊂ E parallel to E with
vertices at mid-points, such as e = {kl, ln},

while if F is divided in two, then
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〈wE

; e〉 = 1 for e = E;

〈wE

; e〉 = ± 1
2

for e = {kl, n} and {km, n}.

For p = 0, by linearity,

〈wN

; n〉 = 1 for n at N ;

〈wN

; n〉 = 1
2

for all n mid-points of edges with one
extremity at N , such as kn or kl.

Case III. Now T , is halved, as shown in Figure 10 (bottom).

For p = 3, 〈wT

; t〉 = ± 1
2

for all t contained in T .

For p= 2 and F halved (as in Figure 10, bottom, take F = {k, l, n} for illustration),

〈wF

; f〉 = ± 1
2

for all f ⊂ F , such as f = {k, kl, n}.

If F ′ �= F is halved, then

〈wF

; f〉 = 1 for f ≡ F ;

〈wF

; f〉 = ± 1
2

for f = {k, lm, n}.

For p = 1, if E ⊂ F and F is divided in two but not E, then (consider E = {k, n})

〈wE

; e〉 = 1 for e = E;

〈wE

; e〉 = ± 1
2

for e = {kl, n}.

If E ⊂ F and F is not divided in two, then

〈wE

; e〉 = 1 for e = E

and last, if E ⊂ F and F is divided in two along E, then

〈wE

; e〉 = ± 1
2

for e ⊂ E, such as e = {k, kn}.

For p = 0, finally

〈wN

; n〉 = 1 for n at N ;

〈wN

; n〉 = 1
2

for all n mid-points of edges with one
extremity at N , such as kn, kl or km.

Remark 5.3. The strategy adopted to compute the coefficients πS
s , S ∈ Sp

m and
s ∈ Sp

m̃, can be used when dealing with quadratic, cubic, etc., differential forms, pro-
vided that the integration rule is modified accordingly. Therefore, the main problem
with Whitney elements of order r > 1 (see, e.g., [9]) is the definition on a p-simplex,
p = 2, 3, of an integration rule which is exact for all polynomials of degree r (on
1-simplices we can use Gaussian quadratures). This problem is far from being trivial
and is linked to another one, namely, the location in a p-simplex of the degrees of
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freedom associated with Whitney elements of order r > 1. Both problems will be
addressed in future work.

As we have stressed, computing the coefficients of the chain-map π is a metric-
independent process. Implementation, however, may have to be done in a code con-
ceived in terms of proxy vector fields, with an underlying metric, instead of differential
forms. Hence we have the following description of the procedure, where |t| denotes the
volume of tetrahedron t, |f | the area of face f , and |e| the length of edge e. We use
xe,xf ,xt to denote the barycenters of edge e, face f , and tetrahedron t, respectively.
Points xk,x�,xm,xn are the vertices of t or T . Moreover, te denotes the unit vector
along the mesh side e, and nf stands for the unit vector normal to the mesh face f .
For completeness, we throw in the computation of the other chain map, χ. Thanks
to Lemmas 5.1 and 5.2, the following algorithm, though relying on metric elements
such as dot product, etc., does implement in the nested case (up to floating-point
errors, and barring clerical mistakes of ours . . . ) the metric-free computation of the
prolongation/restriction operator we have detailed.

Loop over S, the p-simplices of m
Loop over s ⊂ S, with s the p-simplices of m̃

Computation of πS
s

p = 0, πN
n = wN (xn), S = N, s = n;

p = 1, πE
e = |e|(wE (xe) · te), S = E, s = e;

p = 2, πF
f = |f |(wF (xf ) · nf ), S = F, s = f ;

p = 3, πT
t = |t|, S = T, s = t.

Computation of χs
S

p = 0, χn
N

= 1 S = N, s = n, n ≡ N ;

p = 1, χe
E

= 1 (−1) S = E, s = e, te · tE > 0 (< 0),

p = 2, χf
F

= 1 (−1) S = F, s = f , nf · nF > 0 (< 0),

p = 3, χt
T

= 1 (−1) S = T, s = t and

(x� − xk) · [(xm − xk) × (xn − xk)] > 0 (< 0) for both tetrahedra.

end loop over s
end loop over S.
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