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Abstract

The spectral problem associated with the linearization about solitary waves of spinor systems
or optical coupled mode equations supporting gap solitons is formulated in terms of the Evans
function, a complex analytic function whose zeros correspond to eigenvalues. These problems
may exhibit oscillatory instabilities where eigenvalues detach from the edges of the continuous
spectrum, so called edge bifurcations. A numerical framework, based on a fast robust shooting
algorithm using exterior algebra is described. The complete algorithm is robust in the sense
that it does not produce spurious unstable eigenvalues. The algorithm allows to locate exactly
where the unstable discrete eigenvalues detach from the continuous spectrum. Moreover, the
algorithm allows for stable shooting along multi-dimensional stable and unstable manifolds.
The method is illustrated by computing the stability and instability of gap solitary waves of
a coupled mode model.

Key words: gap solitary wave, numerical Evans function, edge bifurcation, exterior algebra,
oscillatory instability, massive Thirring model

AMS subject classifications: 65P30, 65P40, 37TM20, 74J35


http://arxiv.org/abs/nlin/0408025v1

1 Introduction

Transmitting information efficiently across long optical waveguides is a big challenge in telecom-
munications. Gap solitons are potential candidates to achieve this goal. A gap in the linear
spectrum allows solitons in spinor-like systems to propagate without losing energy due to a res-
onant interaction with linear waves [I1l [I§]. For example, an optical fiber with a periodically
varying refractive index supports gap solitons. The gap here is created by Bragg reflection and
resonance of waves along the grating.

Before its application to optical waveguides and transmission of optical pulses, gap solitons
have been studied in the context of spinor field equations in elementary particle physics [T9, 20]
and in condensed matter physics [9]. There is an extensive literature on the existence of gap
solitons, but the issue of their stability, which is of paramount practical importance, is still an
open question for many systems.

Gap solitons were long believed to be stable. This was conjectured on the grounds of computer
simulations [I] in (restricted) parameter regimes. Only recently BARASHENKOV, PELINOVSKY
& ZEMLYANAYA [4] showed analytically by using a perturbation theory, and BARASHENKOV &
ZEMLYANAYA [B] verified numerically that, in a particular optical system, gap solitons can un-
dergo oscillatory instabilities where eigenvalues detach from the edges of the continuous spectrum
(edge bifurcations). In KAPITULA & SANDSTEDE [I5], Evans functions are used to detect analyt-
ically the onset of an oscillatory instability (edge bifurcation) in near integrable systems. From an
analytical point of view a difficulty in proving stability /instability is that the energy in these sys-
tems is neither bounded from above nor from below. Usual techniques such as energy-momentum
methods or methods involving Lyapunov functionals are therefore bound to fail.

An often used numerical approach to eigenvalue problems is to discretize the spectral problem
on the truncated domain x € [—Lso, Loo| (With Lo > 1) using finite differences, collocation or
spectral methods, reducing it to a very large matrix eigenvalue problem. There are two central
difficulties with this approach. Firstly, in general the exact asymptotic boundary conditions
at * = +L,, depend on the eigenvalue A\ in a nonlinear way, and so application of the exact
asymptotic boundary conditions changes the problem to a matrix eigenvalue problem, which is
nonlinear in the parameter. So matrix eigenvalue solvers can no longer be used. In the above
papers [, B, artificial boundary conditions such as Dirichlet or periodic boundary conditions, were
applied, in order to retain linearity in the spectral parameter. For a detailed discussion on artificial
boundary conditions, see SANDSTEDE & SCHEEL [23], 24]. Secondly, the approximate boundary
conditions lead often to spurious discrete eigenvalues generated from the fractured continuous
spectrum. If the continuous spectrum is strongly stable (that is, the continuous spectrum is
stable and there is a gap between the continuous spectrum and the imaginary axis) this does
not normally generate spurious unstable eigenvalues. However, if the continuous spectrum lies
on the imaginary axis (as often happens with gap solitons due to the Hamiltonian character
of the underlying system), spurious eigenvalues may be emitted into the unstable half plane.
Indeed, BARASHENKOV & ZEMLYANAYA [5] give an extreme example, where a large number of
spurious unstable eigenvalues are generated by the matrix discretization (see Figure 1 in [5]).
These problems prohibit their method to be used as a robust scheme to check stability when no
theoretical results are given to guide the experiments.

A robust and stable numerical scheme is still an open problem. In this paper we present a nu-
merical method based on the Evans function and exterior algebra which does not exhibit spurious
unstable eigenvalues. The Evans function is a complex analytic function whose zeros correspond
to eigenvalues of the spectral problem associated with the linearization about a solitary wave so-
lution. The Evans function was first introduced by EVANS [I2] and generalized by ALEXANDER,
GARDNER & JONES [2]. To define the Evans function, one writes the wave equations as a system
of first order real equations with respect to the spatial variable x, such that one gets a system



of the form Z, = F(Z,Z,Zy, . .). The study of linear stability of a solitary wave solution 2(:17)

involves a linearisation about Z by writing the basic solutions as Z(x) = Z(x) + u(x) eM. This
will lead to a linearized problem of the form

u, =A(z,\)u, ueC" (1.1)

where A € C is the spectral parameter and A(x, \) is a matrix in C"*", whose limit for x — 400
exists. The solitary wave solution Z of a partial differential equation is linearly unstable if for
a spectral parameter A with R(A) > 0 there exists an associated perturbation u(z), which is
bounded for all 2. An oscillatory instability (edge bifurcation) does happen when the continuous
spectrum is on the imaginary axis and one of the bounded eigenfunctions of the continuous
spectrum develops into an exponentially decaying eigenfunction with R(\) > 0.

To verify if such bounded eigenfunction u(z) exists for a given value of A with R(\) > 0,
it is checked if the unstable manifold at z = —oco and the stable manifolds at z = oo have a
non-trivial intersection. If this is the case, the solitary wave solution Z is unstable with positive
growth rate R(A) > 0. To check the transversality condition the Evans function is used. Hence
the Evans function can be viewed as a Melnikov function or a Wronskian determinant.

Crucial to the initial construction of the Evans function is the distribution of the eigenvalues
of the ‘system at infinity’, that is, the matrix Aj,(\) which is associated with the limit as
x — +00 of A(x,\). It is assumed that no eigenvalues are on the imaginary axis ! and that the
number of negative eigenvalues is constant for A € A, where A is a simply-connected subset of
C. Let k be the number of negative eigenvalues of Aj, () for A € A. Note that in the case of
different asymptotic behaviour at x = oo as for example in the case of fronts, k can be different
at © = +o0o in general.

This suggests a naive approach by which one may follow the stable/unstable manifolds at
x = oo with a standard shooting method and check their intersection using the Evans function.
This may be done indeed if the dimension of these manifolds is 1. Otherwise, any integration
scheme will inevitably just be attracted by the eigendirection corresponding to the most unstable
eigenvalue. However, for most systems, the dimensional of the stable/unstable manifold will be
larger than 1. In this paper, we will consider a model equation with stable/unstable manifolds of
dimension 2. To keep the eigendirections orthogonal in the course of the numerical integration,
one may employ a Gram-Schmidt orthogonalization method. However, this is a non-analytic
procedure, which will eventually backfire in the case of oscillatory instabilities where we expect
zero’s of the Evans function in the complex plane. Indeed, to locate those complex eigenvalues,
Cauchy’s Theorem (argument principle) will be employed and thus an analytical method is crucial.
In our numerical method, we will use exterior algebra, which allows for an analytical calculation
of the Evans function.

The numerical method builds on the work in [3| [[0], where a numerical algorithm is given for
the calculation of the Evans function and applications are give to the stability and instability in
a fifth-order KdV equation. In this paper, we will show that a similar algorithm can be used to
determine oscillatory instabilities (edge bifurcations). The algorithm does not exhibit spurious
eigenvalues and the exact asymptotic boundary conditions are built into the definition of the Evans
function in an analytic way. The analyticity can then be utilized to apply Cauchy’s principle value
theorem to study stability /instability. An important feature of the numerical method is that it
involves the use of exterior algebra to describe the system on a higher dimensional space in which
a simple shooting method can be employed. A similar idea is used in BRIN [7] and BRIN &
ZUMBRUN [§] for dealing with instabilities in viscous fluid flows.

'The assumption on the hyperbolicity of A4o.()\) can be weakened (see I3, [[4]).



To illustrate our method we will consider the following coupled mode model

0 = i(us +uz) +v+ (Jv|> + plu*)u (12)

0 = i(vy —vg) +u+ (Jul? + plv*)v

This is a model to describe optical pulses in waveguides which have been grated so the refractive
index is varying periodically. In the case p = 0 this equation is known in field-theory as the
massive Thirring model and was shown to be completely integrable (see for example [I}, [16]). In a
nonlinear optics context, one has p = 1/2 in periodic Kerr media [I1], but in other media p may
range from 0 up to infinity [22]. The equation (LZ) has also been studied by BARASHENKOV,
PELINOVSKY & ZEMLYANAYA [4], BARASHENKOV & ZEMLYANAYA [5] and in a slightly modified
form by KAPITULA & SANDSTEDE [I5]. In [ B a heuristic perturbation analysis is used to
analyse the onset of oscillatory instabilities and numerical study is used to give a more complete
picture. The numerical study encountered serious problems as discussed above. In [I5], a relation
between the Evans function and the inverse scattering formalism is established for integrable
systems. This forms the basis of a rigorous perturbation analysis for perturbations of the massive
Thirring model.

The coupled mode model (C2) is chosen for illustration purposes, since the work in the
previous papers allows us to illustrate the advantages of our method. We stress though that
the method we present is general and can be applied to gap solitons in other systems as well.
Moreover, there is no need for the system to be related to an integrable system.

2 The numerical Evans function for the coupled mode mode

The solutions and dynamics of ([[CZ)) are best described by splitting off the real and imaginary
part of the fields u,v. We shall write for a solution u = Q1 + 7P and v = Qo + i and collect
the information in a single real solution vector Z = (Q1,Q2, P1, P»).

2.1 The model equations and its solutions

We introduce the Lorentz transformation X = (z — Vt)/vV1—-V?2 and T = (t — Va)/V1 - V2.
In these boosted variables the model system ([C2) may be written in a (quasi-)multisymplectic
framework as

E[MZT + KZX] = VS(Z) (2.1)

where Z = (Q17Q27P17P2)7

1
5(2)25[Q1Q2+P1P2+(Q%+P12)(Q2+P2)] g[(Q1+P1) (Q%"’P;)z],
E; O eV 0 0 o3
E= , E, = M = and K= ,
0 El 0 ey —03 0

with V = tanhy and the Pauli matrices ¢ 3 are defined as

10 1 0
o = and o3 =
01 0 -1

Note that if p = 0, the system is invariant under this Lorentz transformation.



The reason for introducing this formalism is that a multisymplectic formulation allows for a
systematic linearization and also sheds light on conservation properties within the system. We
note that (ZI]) is equivariant under action of the continuous symmetry group SO(2) acting on
R* represented by

Gy = cos(¢)og  —sin(y)oo | (2.2)

sin(¢) oo cos(¥) oo

since [Gy,M]| = [Gy,K] = [Gy,E] =0 and S(GyZ) = S(Z) for any 1. According to Noether’s
Theorem, there is a conservation law associated with this continuous symmetry, namely Pr +
Qx =0 with P and ) determined by

d

d
VP(Z) =M @'wzo Gy(Z) and VQ(Z)=K ., Gy(Z), (2.3)
hence
2 2
P(Z)=> Q7+ P! and Q(Z)=) (-1)"™(Q}+PP).
i=1 i=1

Note that in the original system (C2), this symmetry shows up as an equivariance of the system
under simultaneous phaseshifts of v and v, i.e., u— ue¥ and v ve?.

Going to a frame moving with the symmetry group and writing the solutions as Z(X,T) =
Go(x)—arZ(X,T), the equations (Z1]) become

EMZy + KZy — QVP(Z) + oxVQ(Z)] = VS(Z), (2.4)

where we dropped the tildes. Time independent solutions in the moving frame were found by
AceVEs & WaBNITZ [I] to be

W (X)
200 —art [ O} O (2.5)
0 o) | Wix)
Wi(X)
where

Q=cosf (0<0<m), ¢(X)=2a%psinh(2y)arctan {tanh|(sin(f))X]tan g} ,

1 ) sin (@)
= ATpeny Mnd W) =WX)+IWX) = o x —6/2)

Note that there cannot be any gap solitons for |Q2] > 1 as then there is no gap in the linear

spectrum. At the upper edge of the gap, at 6 — 0 (2 — 1), the solutions approaches the small-

amplitude nonlinear Schrodinger soliton W (X) = fsech(6(X —i/2)). At the lower edge, at § — 7

(Q — —1), the gap soliton has a finite amplitude and decays algebraically, W (X) =i/(X +1/2).

These two limits are referred to as “low intensity” and “high intensity” limits, respectively [IT].




2.2 The linearized problem

To study the stability of the solution (ZH), we linearize around this solution in the moving frame
and use a spectral Ansatz

Z(X,T) = (i(X) + u(X)e’\T> .
We obtain the dynamical system

uy = A(X,\)u, ueC*, (2.6)
with

A(X,\) =K YEID2S(Z) + QD*P(Z) — ox D*Q(Z) — \M]] (2.7)
where D? denotes the Hessian.

2.3 Asymptotic properties of the linearised system

As described in the Introduction, the eigenvalues and eigenfunctions of the asymptotic matrix
AN = Erirl A(z,\) are crucial for the numerical Evans function approach. The matrix
€T o

A(z, ) has the asymptotic property that

-A 0 —-Q —e¥

The characteristic polynomial of Ay (A) is

A, A) = det[ul — Aug(N)] = (12 — X2 — 14+ Q%)% + 40222 (2.9)
Thus the eigenvalues p of the asymptotic matrix satisfy

p? =A% =14 0% =420\ or =1+ (\%iQ)%. (2.10)

The continuous spectrum is found by setting R(u) = 0 or u = ik. A short calculation gives
that there are four branches of continuous spectrum on the imaginary \-axis:

Ae(k) =i(V1+k2£1Q) and —Ai(k), keR.

The end points of the continuous spectrum are at +i(1 — |2|) and +i(1 + |2]). For all values
of A not in the continuous spectrum, there are 2 eigenvalues p with positive real part and 2
eigenvalues p with negative real part. Thus outside the continuous spectrum, there is a 2 : 2
splitting, that is the dimension of the stable/unstable manifolds is 2 at both limits of z = +00.

With (ZI0), it is easy to determine explicit expressions for the eigenvalues and eigenvectors.
The eigenvalues are

pEN) = /NN 1= /X (9] + 1) /A —1(0 1),
pEQ) = £/ IRNZ F 1= /AT (90 1) /A 9]~ D).




where the square roots are defined as follows:
Vz=/]z|e®8&/2 where — 71 <arg(z) <7 and z=A=+i(]Q|£1).

Hence the cuts in the complex plane, associated with this definition of the square roots, start at
the end points of the continuous spectrum and continue in the left half of the complex A-plane.
Note that this definition implies that all square roots have positive real parts.
In this model system it is easy to find explicit expressions for the eigenvectors. The eigenvector
with the eigenvalue uii for the matrix A, (A) is given by
vect (\) = (F1,sgn(Q)ie ™V, —sgn(Q)iF, e7¥)T, where FIf=X\-put —i|Q],

m

vecr (\) = (FF, —sgn(Q)ie ™, sgn(Q)iFF, e ¥)T,  where FF =\ — puF +iQ).

The eigenvector with the eigenvalue E for the adjoint matrix (A ()T is given by

advec? (\) = (F—%, sgn(Q)ie?, —sgn(Q)iF—%, e")T,  where Ff=\—put —i|Q|,

m

advec;,t()\) = (F—,fc, —sgn(Q)iey,sgn(Q)iF—ﬁc, e, where F3F = \—pF+ilQ].

One might also use a numerical routine to solve the eigenvalue problem of A, (\). However,
one has to be very careful near the end points of the continuous spectrum. At these points two
eigenvalues collide, hence it will be tricky to find numerically the ’correct’ eigenvalue. If we fail
to do so, this will result in a change of orientation in the Evans function (ZId]). This causes
unwanted zero’s of the Evans function and is reminiscent of the unstable spurious eigenvalues
observed when the system (E20) is solved by some form of discretization as done by BARASHENKOV
& ZEMLYANAYA [5]. One can construct a numerical routine to follow the correct eigenfunction,
but if the analytical expressions are readily available (as they are here) it is much easier.

2.4 The Evans function and the formulation in the exterior algebra

For ®(A\) > 0, the system (Z6]) and the properties of the system at infinity, A, (\), are in stan-
dard form for the dynamical systems formulation of the spectral problem proposed by EvANs [12]
and generalized by ALEXANDER, GARDNER & JONES [2]. A value of A\ € A is an eigenvalue if
the 2-dimensional space of solutions which decays as © — —oo and the the (4 — 2)-dimensional
space of solutions which do not grow exponentially as © — 400 have a nontrivial intersection.
The Fwvans function is an analytic function which gives a zero if such a nontrivial intersection
exists. To obtain an analytic description of the 2-dimensional space of solutions of (@) which
do not grow exponentially as © — 400, we will use that the system (0l induces a dynamical
system on the wedge-space A2(C4) . This is a space of dimension (;1) = 6. To define the Evans
function, the induced dynamics on this wedge-space A2(C4) will be used.
The induced system can be written as

U, = A@D@z)U, Ue \(CH. (2.11)

Here the linear operator (matrix) A®@ is defined on a decomposable 2-form u; Aus, u; € C*,
as

AP (u; Aug) := (Aup) Aug +u; A (Auy) (2.12)

and it extends by linearity to the non-decomposable elements in A*(C*). This construction can
be carried out in a coordinate free way and can be generalised to (k):(n — k) splittings in n-
dimensional dynamical systems. General aspects of the numerical implementation of this theory
can be found in ALLEN & BRIDGES [3].



Since the induced matrix A(®(z, \) inherits the differentiability and analyticity of A(z,\),
the limiting matrices will exist,

AP\ = lim A®@(z,)).

> r—Fo00
The set of eigenvalues of the matrix AP (M) consists of all possible sums of 2 eigenvalues of A, ()
(this is an exercise in multi-linear algebra, see MARCUS [21]). Therefore, for $(A) > 0, there is an
eigenvalue of Ag;)()\), denoted by o4 (), which is the sum of the 2 eigenvalues of A, (\) with
negative real part, i.e., oy (A) = —(u,h(A) 4+ 5 (A)) (note that the subscript “+” in oy ()) refers
to exponentially decaying behaviour at +o00). Moreover this eigenvalue is simple, an analytic
function of A and has real part strictly less than any other eigenvalue of Ag’é)()\) . Similarly, there
is an eigenvalue o_(\), which is the sum of the 2 eigenvalues of A, (\) with non-negative real
part, i.e., 0_(A) = i, (A) + p, (A), and o_()) is simple, an analytic function of A, and has real
part strictly greater than any other eigenvalue of Ag%)()\). Note that o_(\) = —o4(A) in this
example.
Let ¢F(\) be the eigenvectors associated with o (\), defined by

AP NN =0 (W) and AD N (A) = o (N (N). (2.13)

These vectors can always be constructed in an analytic way (see [I0]). From section Z3 it follows
that

CE(N) = vect (A A vec;—L()\).

This implies

¢t = (FF + Ff, —2eY FXFS sen(Qi(FE — FF),sen(Q)i(Fs — FF),—2¢7Y, FF + F5) T
The solution U¥(x,\) is the solution of the linearised system (ZIII) with the property that
limy 100 e 7+ N*UE (2, \) = ¢F()\). In this example, dimension of the unstable manifolds at
x =00 and x = —oo are the same. For the construction of the general case see [3, [I0].
Note that the solutions U* (z,\) are analytic expressions which represent the space of solu-
tions which decay as z — oo in the original system (Z6]). With this the Evans function can be
defined as

E(\) =e o T6NB U= (2, ) AU (2, \), A€A, (2.14)
where A is the wedge product and
T(z,\) = Tr(A(z, N)). (2.15)

For the case of the coupled mode equation ([CZ) this expression simplifies, since Tr(A(z,\)) =
0, see (Z1). The Evans function, as defined above, can be extended across the continuous
spectrum with some cuts in the complex plane, see GARDNER & ZUMBRUN [I3] and KAPITULA
& SANDSTEDE [I4].

Next we will give an equivalent description of the Evans function, using the adjoint system.
The adjoint system of (ZIT)) is

V, = —[A® ()] V. (2.16)

The dimension of the unstable manifold of this adjoint system is equal to the dimension of the
stable manifold of the linearised system (ZI1]) and its most unstable eigenvalue is —ot. Using



the Hodge-star operator, we can relate the most unstable solution V™~ at z = —oo of the adjoint
system with the most unstable solution U~ of the linearised system at x = —oo. Details can
be found in [B, |6, 10]. To formulate the alternative description of the Evans function, we have to
construct an inner product on A?(C*). Let

U=u;Auy and V =v];Avy, ui,vje(C4, Vi,j=1,2,

be any decomposable 2-forms. The inner product of U and V is defined by

(U V] e det |0 (00v2)

(ug,vi) (ug,va)

where (-,-)4 is the complex inner product in C*. Since every element in A%(C?) is a sum
of decomposable elements, this definition extends by linearity to any 2-form in A*(C*). An
equivalent definition of the Evans function (ZI4]) is given by the following readily computable
expression

E) =[V7(0,1),U"(0,M)]2, (2.17)

where V™ (z,\) is the most unstable solution at = —oo of the adjoint system (EI6). From
T

Section 23 it follows that the eigenvector of the adjoint matrix —(A(z)) for the eigenvalue
—07 = pp + fan i

_ - \7T
N = (Fp+ ¥ E, —2eVEy B sgn(Qi(EE — ), sen(Q)i(F — Fy ), —2¢7Y, By + Fnt> .

Hence the solution V7 (z,A) is the solution of the adjoint linearised system (ZI6) with the

asymptotic behaviour Em e?+MN?V=(z,\) = n~(\). The generalisation of this definition for
€T —0o0

general splittings and more details can be found in [6, [10].

For the numerical implementation, we will need a basis for /\2 (C*), and the above construc-
tion assures that any basis will do. Therefore there is no loss of generality in assuming that the
bases chosen are the standard ones. Starting with the standard basis for C*, and volume form
V=ei A---Ney,let aj,...,ag be the induced orthonormal basis on /\2(((34) . Using a standard
lexical ordering, this basis can be taken to be

a; =e;jANey, ag=e;/Ne3, az=e;ANey, (2 18)
as=eyANe3, as=ex/\Neq, ag=e3ANey.

Any U e A*(C?*) can be expressed as U = 2]6-:1 Uja;. Since the basis elements a; are orthogo-

nal and the inner product [-,-J» on A*(C?*) is equivalent to the inner product (-,-)¢ on C°, the
expression (ZI7) for the Evans function can be expressed in the equivalent form

E\) = (V(0,)),U"(0,\))s . (2.19)

It is this form of the Evans function we implement in our numerical algorithm.
The matrix A® : A%(CY) — A*(C*) can be associated with a complex 6 x 6 matrix with
entries

(A} =[ai,APa;]y, ij=1,...,6, (2.20)



where, for any decomposable U = u; A uy € A2(C4) , AU := Au; Aug +u; A Aus. Let A
be an arbitrary 4 x 4 matrix with complex entries a;;,7,j = 1,--- ,4, then, with respect to the
basis [ZI8), A® takes the explicit form

_a11 +az2 as23 asy —a13 —a14 0 ]
as2 a11+a33 asq a12 0 —ai4
A@ _ a42 a43 a11+aaq 0 a2 ai3
—as1 as1 0 a22+a33 a34 —a24
—a41 0 as1 a43 a22+a44 as3
| 0 —a41 as1 —a42 asz2 33+ 44 |

Details for these constructions in more general systems can be found in [3].

2.5 Integration scheme

The subtle nature of the oscillatory instability requires a high order integration scheme for the
numerical integration of the linearised and the adjoint system. Instead of using the second order
Gauss-Legendre Runge-Kutta method, i.e. the implicit midpoint rule, as in BRIDGES, DERKS &
GoTTWALD|[I0], we employ here a fourth order Gauss-Legendre scheme. We solve in C°

1
Uttt = U+ 5 A7 (Kq +Ka), (2.21)

where Ax is the spatial step size, sub- and superscripts n denote the spatial discretization and
K 2 are implicitly defined by

1 1 1
Ki = APz, +(z+ ﬁ)m) X (U™ + JA2Ky + (5 + é)A:UKZ)

2 6 4 6
1 3 1 1 3

In practice we solve ([Z22) for K1 2 and then subsequently we can solve ZZI)) for U1, Since
all equations are linear, the implicit form of ([Z222) can be cast in an explicit form.

The procedure for the numerical calculations is as follows. As explained in Section 24, it is
sufficient to restrict the shooting algorithm to /\2((C4). As a starting vector for the shooting
algorithm we use the eigenvectors of Ag)(/\) in the far-field (see Sections and Z4)). For the
integration of the linearised system starting at @ = +Lo (with Lo > 1) the starting vectors
for each A\ are the eigenvectors (T (\) related to the eigenvalues with the largest negative real
part; for the integration of the adjoint system starting at x = —L., the starting vectors are
the eigenvectors 1~ (A) related to the eigenvalues with the largest positive real part. We have
build in an analytical normalisation process such that the eigenvectors are normalized so that
(n~(A\), (T (\))e =1, for large values of A. (Note that this normalisation is not used for values of
A<2)

To calculate the Evans function, the linearised equation on /\2 (CY)

d

dzx

Ut = [A@(2,)) — 0 (VIJUT, Ut (z,N)] =¢t(N), (2.23)

=L
is integrated from x = Lo, to x = 0, where the scaling

Ut (z,)) = e 7+ N2 Ut (2, ) (2.24)



ensures that any numerical errors due to the exponential growth are removed and I~J+(:17, )\)|
ur (l‘, )\) ‘x:(] ~
vectors during or at the end of the integration, with for example |[U*(0,\)] = 1, but such a
scaling does not preserve analyticity.

For z < 0, the adjoint equation

=0
is bounded. An alternative to this scaling is to impose a renormalization of the

d ~ —_—T -~ ~

SV = [FADGE N IV, V@), = (), (2.25)
is integrated from x = —Ly, to x = 0, also using the implicit midpoint rule, where again we
introduce a rescaling

V= (z,\) = T+ NPV~ (2, ) (2.26)

to remove the exponential growth.
At 2 =0, the computed Evans function is

E\) = (V=(0,),UH(0,A)) = (V(0,), UT(0, 1)) (2.27)

3 Numerical results and discussion

In this Section we show results of our algorithm for the detection of oscillatory instabilities in the
perturbed massive Thirring model ([C2). We do not attempt here to present a thorough numerical
analysis of the bifurcation scenarios of ([LZ). The reader is referred to [5]. Instead our objective
here is the presentation of a numerical algorithm which uses the Evans function as a numerical
diagnostic tool for analysing edge bifurcations. Therefore we limit ourselves to illustrating several
features of our numerical method. In Figure[ll, we have sketched a cartoon which indicates where
in parameter space, i.e., in the #-p-plane, the numerical analysis takes place. This cartoon is a
guidance to help to locate the upcoming plethora of figures and how these figures are related to
bifurcations and instabilities.

p 1
secondary bifurcation .- _
Fig. 3 Fig. 4 / ' Fig. 7
0.1__ ® ,' o
A _ _

Fig. 2 pnmary’;blfurcatmns
‘ Fig.6] _...---
| 1

0.4 05T 0.6 Tt 0.8 Tt 0

Figure 1: Cartoon to illustrate where in parameter space the numerical analysis takes place.

We study instability by computing the Evans function E()\) as defined in (ZI9). The analyt-
icity of the Evans function for R(\) > 0 allows one to detect oscillatory instabilities, i.e. complex
roots of the Evans function, by means of Cauchy’s theorem. The winding number of a closed
curve in the A-plane tells us about the number of unstable eigenvalues. In all our calculations,
we compute the complex Evans function E()), while varying the spectral parameter \ = i\ on
the imaginary axis or varying the spectral parameter parallel to the imaginary axis with a (small)
offset, explicitly A = off +i\, where “off” is the offset. The normalisation of the Evans function is



chosen such that the Evans function converges to 1 for A\ large. Hence the closed curve is formed
by connecting the endpoints of the imaginary axis via the half-circle with infinite radius. On this
half-circle, the Evans function will always have the value 1.

Since the system ([CZ) has translational and rotational symmetry, the Evans function will
have a fourth order zero at A = 0. This means that in the vicinity of A = 0, the Evans function
scales as F(\) ~ A1, Hence even an offset of only 107 yields that E()\) is of the order of
10716 making the calculations meaningless. In order to avoid this problem, we use an offset
of at least 5-1073 to analyse the Evans function near A = 0. Since we are interested here in
oscillatory instabilities which occur at the edges of or within the continuous spectrum, and not in
translational instabilities where eigenvalues emanate from A = 0, the offset near the A = 0 does
not affect the detection of instabilities.
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Figure 2: Real (continuous red line) and imaginary (dashed blue line) part of the Evans function
E()X) as function of the spectral parameter A with off =0, for V.=10.9 and 0 = 0.47

(a) The integrable case p =0, The inset is a blow-up of the Evans function near the edge of the
lower branch (\_) of the continuous spectrum.

(b): p=0.1. The inset is a blow-up of the Fvans function and shows the discrete eigenvalue
where E(X) = 0. The endpoints of the continuous spectrum occur at the cusps of the Evans
function.

In the integrable case (p = 0), the linearised massive Thirring model (C2) has only neutral
and continuous eigenvalues [16, [I7] and the solitary wave is stable for any 0 < § < w. The
Evans function has zeros at the end points of the branches of continuous spectrum if p = 0. In
Figure Bh, we used our algorithm to calculate the Evans function for p = 0, while the spectral
parameter A is on the imaginary axis (off=0). This illustrates the zeros of the Evans function at
the end points of the branches of continuous spectrum. As follows from Section [Z3], the edges of
the continuous spectrum are located at Ay = i(|Q2| + 1) (upper branch) and at A_ = i(1 — |Q|)
(lower branch). At these endpoints, the real or the imaginary part of the Evans function exibits a
cusp, as can be seen in FigureZh. These cusps illustrate the non-analyticity of the Evans function
at those points. Note that the cusps and the associated non-analyticity of the Evans function at
the endpoints of the continuous spectrum occur for all p > 0 and all 0 < 6 < 7, as can be seen
from the following figures.

For 0 < 6 < w/2 and p > 0, the linearised perturbed massive Thirring model (C2) has a
discrete eigenvalue, which is located on the imaginary axis in the gap between the branches of
continuous spectrum, see results in [, [T5]. This eigenvalue has bifurcated at p = 0 from the lower
end point (A_) of the continuous spectrum. Our algorithm can follow this discrete eigenvalue
on the imaginary axis, as illustrated in Figure Bb. The edges of the two continuous branches
corresponding to positive and negative energy states in the massive Thirring model (CZ) are



located on the imaginary axis at Ay = ¢(|Q?| +1) (upper branch) and at A_ = i(1 — |§2|) (lower
branch) (see Section EZ3). Here the discrete eigenvalue which lies on the imaginary axis is clearly
below the edge of the lower branch (A_) of the continuous spectrum. In the gap between the
branches of continuous spectrum, the Evans function is still analytic, since there is still a 2:2 split
of the dimensions of the stable and unstable manifolds.
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Figure 3: The real versus imaginary parts of the Evans function E(N) for the non-integrable case
p=0.1, V=09 and 0 = 0.4n. The spectral parameter X\ wvaries parallel to the imaginary axis
with a small offset off = 10711 . Going round clockwise from the upper left corner:

(a): Overview of the Evans function.

(b): First zoom into the area near E = 0. The colours are used to help identifying the lines in
the next picture.

(c): Next zoom into this area. This picture shows that the two little loops cross right of the zero
point. For visualisation purposes, we used off = 5-107°. At off = 0 the crossing of the loops is
located exactly at the origin, indicating the discrete eigenvalue on the imaginary axis. The slight
offset off = 5- 1072 mowves the crossing of the loops to the right of the origin.

(d): Final zoom into the area near E = 0 (note how small the scale is). We have increased the
offset to off =5-1073 to avoid problems with the smallness of the Evans function near A = 0.
(e): A topologically equivalent sketch of the Evans function.

For 0 < 6 < m/2, the solitary waves are known to be stable even for non-zero p [, [I5]. In
Figure B we show the Evans function for such a stable case. To determine the winding number,
we need to zoom into the neighbourhood of E = 0. The behaviour near £ = 0 (Figure Bb—
d) and the global behaviour of the Evans function (Figure Ba) convey that the Evans function
is topologically equivalent to a loop which does not contain the origin (Figure Be). Hence the
winding number is zero, confirming stability,

For 7/2 < 6 < 7, instabilities may arise for non-zero p. These instabilities are of an oscillatory
nature in the sense that discrete eigenvalues leave the imaginary axis into the complex plane [4 [T5].
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Figure 4: The onset of the primary instability for p = 0.1 and V = 0.9 (the offset off = 0).
Plotted are the real part (continuous red line) and imaginary part (dashed blue line) of E(X)
versus A. The vertical dotted line indicates the edge of the lower branch (A_ ) of the continuous
spectrum. In the left picture with 6 = 0.502687, the eigenvalue is still located on the imaginary
axis. In the middle picture with 6 = 0.502707, the eigenvalue has just merged with the end point
of the lower branch (\_ ) of the continuous spectrum, giving a zero of the Evans function on the
imaginary axis at the end of the continuous spectrum. In the right picture with 8 = 0.50272m,
there is no eigenvalue on the imaginary axis anymore.

The onset of the first instability is when the discrete eigenvalue in the gap of the continuous
spectrum merges with the edge of the lower branch (A_) of the continuous spectrum. In the
0-p bifurcation plane, the instability curve starts at p = 0 and 6 = 0.5 initially proportional to
vP B, M5]. In FigureH the onset of the instability is illustrated at p = 0.1 and V' = 0.9. At
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Figure 5: (a): The real versus imaginary parts of the Evans function E(X) for p=0.1, V. =0.9
and 6 = 0.6m. The spectral parameter X varies parallel to the imaginary axis with off = 5-10714.
(b): The Evans function in Figure [Ba is topologically equivalent to this sketch of E(N). The
winding number is clearly 2, confirming that there is one pair of unstable eigenvalues for these
parameter values.

the bifurcation point the eigenvalue detaches from the imaginary axis at the edge of the lower
branch (A_) of the continuous spectrum and leaves into the complex plane. This can be explored
by looking at the winding number of the Evans function. Figure B shows the real and imaginary
parts of the Evans function when the instability has well occurred (at p = 0.1, V = 0.9 and
6 = 0.67). The winding number is 2, confirming that a pair of unstable eigenvalues is present.
If we now decrease p (with 6 fixed) from the above described primary bifurcation of oscillatory
instability, the primary unstable eigenvalue will merge with the edge of the upper branch (A ) of
the continuous spectrum. This is illustrated in Figure @l If p is decreased below this bifurcation,
the solitary wave is stable again. We see clearly the collision of the eigenvalue with the edge



of the upper branch (A4 ) of the continuous spectrum. In [I5], a slightly different perturbation
is studied and it is proved analytically that in this case two bifurcation curves originate from
(0,p) = (0.57,0). However, it is not clear what the relation with the branches of continuous
spectrum is away from the bifurcation point. Our calculations suggest that for our perturbation
there are again two bifurcation curves, one curve is related to a bifurcation from the edge of
the lower branch (A_) and the other curve to a bifurcation from the edge of the upper branch
(A4+) and the primary unstable eigenvalue goes between these two branches. This seems a new
observation, which has not been recognised earlier.
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Figure 6: Real (continuous red line) and imaginary part (dashed blue line) of the Evans function
E(N) as a function of the spectral parameter A for V.= 0.9 and 6 = 0.6w (the offset off =
5-1071* ). (a): Above the bifurcation point at p = 0.002. (b): At the bifurcation point p = 0.0001.

Figures @l and @ illustrate that our algorithm and the Evans function allow us to exactly follow
the eigenvalues in the course of the bifurcation. By looking at the real and imaginary part of the
Evans function the value of lambda which corresponds to a root of the Evans function can be
located. This allowed us to answer the question from where on the imaginary axis the eigenvalues
detach for the primary instability.

It has been found analytically in [ that secondary bifurcations can occur for suitable values
of p and 6 (we assume V fixed here for simplicity). Here a second pair of eigenvalues detach
from the continuous spectrum into the complex plane. Again, analyticity of the Evans function
allows us to compute the number of unstable eigenvalues by determing the winding number. In
Figure [ we show that the winding number equals 4 when p = 0.1, V = 0.9 and § = 0.97,
indicating that a new pair of eigenvalues have detached. The behaviour near A = 0 close to the
origin of the Evans function behaves is similar to the one depicted in Figure Bd. The onset of
this secondary instability at p = 0.1 and V = 0.9 is shown in Figure B Figure B shows the
behaviour of the Evans function shortly before, at, and shortly after the secondary instability.
In order to see the secondary instability and the emergence of the eigenvalue, one needs to look
at the behaviour near E = 0. Note that the secondary instability is hard to observe in the full
Evans function (left pictures in Figure B). In the middle picture, the Evans function has a zero,
just after the edge of the upper branch (A4 ) of the continuous spectrum, but not at the edge of
this branch. Hence for p > 0, the eigenvalue comes really from within the continuous spectrum,
not out of one the endpoints of the branches of the continuous spectrum. Similar behaviour has
been described by SANDSTEDE & SCHEEL [23].

The results in this section show that our algorithm using the Evans function approach exer-
cised on the wedge space provides a good and reliable diagnostic tool for the accurate detection
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Figure 7: (a): The real versus imaginary parts of the Evans function E(X) for p=0.1, V. =0.9
and 6 = 0.97. The spectral parameter X varies parallel to the imaginary axis with off = 5-10714.
(b): The Evans function in (a) is topologically equivalent to this picture. The winding number is
clearly 4, confirming that there are two pairs of unstable eigenvalues for these parameter values.

of oscillatory instabilities. The analyticity of the Evans function allows for detection of complex
eigenvalues by assuring the necessary conditions for the application of Cauchy’s principle. Our
algorithm is able to follow the location of the discrete eigenvalues in the course of their bifur-
cations. The Evans function does not involve a discretization of the spectrum of the eigenvalue
problem and hence does not fracture the continuous spectrum. It is therefore free of spurious
unstable eigenvalues. Moreover, the exterior algebra is a platform for numerically stable shooting.
As already stated, the method is not restricted to the particular coupled mode model (C2) but
can be applied to other problems as well.

Acknowledgements

We would like to thank Thomas Bridges and Dmitry Pelinovsky for valuable discussions. Gianne
Derks’ research was partially supported by a European Commission Grant, contract number
HPRN-CT-2000-00113, for the Research Training Network Mechanics and Symmetry in Furope
(MASIE), http://www.ma.umist.ac.uk/jm/MASIE/

References

[1] A. B. ACEVES & S. WABNITZ. Self-induced transparency solitons in nonlinear refractive
periodic media. Phys. Lett. A141, 37-42 (1989).

[2] J. ALEXANDER, R. GARDNER & C.K.R.T. JONES. A topological invariant arising in the
stability analysis of traveling waves, J. Reine Angew. Math. 410, 167-212 (1990).

[3] L. ALLEN & T.J. BRIDGES. Numerical exterior algebra and the compound matriz method,
Numerische Mathematik 92, 197-232 (2002)

[4] I.V. BARASHENKOV, D.E. PELINOVSKY & E.V. ZEMLYANAYA. Vibrations and oscillatory
instabilities of gap solitons, Phys. Rev. Lett. 80, 5117-5120 (1998).

[5] I.V. BARASHENKOV & E.V. ZEMLYANAYA. Oscillatory instabilities of gap solitons: a nu-
merical study, Comp. Phys. Comm. 126, 22-27 (2000).

[6] S. BENZONI-GAVAGE, D. SERRE & K. ZUMBRUN. Alternate Evans functions and viscous
shock waves, STAM J. Math. Anal. 32, 929-962 (2001).


http://www.ma.umist.ac.uk/jm/MASIE/

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

L.Q. BRIN. Numerical testing of the stability of viscous shock waves, Math. Comp. 70, 1071—
1088 (2001).

L.Q. BRIN & K. ZUMBRUN. Analytically varying eigenvectors and the stability of viscous
shock waves, Preprint, Indiana University (2002).

D. K. CamPBELL & A. R. BISHOP. Soliton excitations in polyacetylene and relativistic
field-theory models, Nucl. Phys. B200, 297-328 (1982).

T. BRIDGES, G. DERKS & G. A. GOTTWALD. Stability and instability of solitary waves of
the fifth-order KdV equation: a numerical framework, Physica D172, 190-216 (2003).

C. M. DE STERKE & J. E. SNIPE. In Progress in Optics, Vol. XXXIII, E. Wolf (Ed.),
Elsevier Science, Amsterdam, 1994), p.203.

J.W. EvANS. Nerve azon equations IV. The stable and unstable impulse, Indiana Univ.
Math. J. 24, 1169-1190 (1975).

R. GARDNER AND K. ZUMBRUN The gap lemma and geometric criteria for instability of
viscous shock profiles, Comm. Pure Appl. Math. 51, 797-855 (1998).

T. KAPITULA & B. SANDSTEDE. Stability of bright solitary wave solutions to perturbed
nonlinear Schrédinger equations, Phys. D 124, 58-103 (1998).

T. KAPITULA & B. SANDSTEDE. Edge bifurcations for near integrable systems via Fvans
function techniques, STAM J. Math. Anal. 33, 1117-1143 (2002).

D. J. Kaup & T. I. LAKOBA. The squared eigenfunctions of the massive Thirring model in
laboratory coordinates, J. Math. Phys. 37, 308-323 (1996)

D. J. Kaupr & T. I. LAKOBA. Variational method: How it can generate false instabilities,
J. Math. Phys. 37, 3442-3462 (1996)

Yu. S. KivsHAR, O. A. CHUBYAKALO, O. V. USTATENKO & D. V. GRINYOFF. Bright
and dark gap solitons governed by quadratic nonlinearities, Int. J. Mod. Phys. 9, 2963-2987
(1995).

S.Y. LEg, T. K. Kuo & A. GAVRIELIDES. Fzact localized solutions of two-dimensional field
theories and massive fermions with Fermi interaction, Phys. Rev. D12, 2249-2253 (1975).

R. FRIEDBERG & T. D. LEE. Fermion-field nontopological solitons, Phys. Rev. D15, 1694~
1711 (1977).

M. MARCUS. Finite Dimensional Multilinear Algebra, Part II, Marcel Dekker: New York
(1975).

M. RoMANGOLI, S. TRILLO & S. WABNITZ. Soliton switching in nonlinear couplers, Opt.
Quantum. Electron. 24, S1237-S1267 (1992).

B. SANDSTEDE AND A. SCHEEL. Absolute and convective instabilities of waves on unbounded
and large bounded domains, Physica D 145, 233-277 (2000).

B. SANDSTEDE AND A. SCHEEL. On the stability of travelling waves with large spatial period,
J. Diff. Eq. 172, 134-188 (2001).



Figure 8: The real versus imaginary parts of the Evans function E(X) for p = 0.1, V = 0.9
and 0 wvarying. The spectral parameter \ varies on the imaginary azis (off =0). The green line
helps to locate the emergence of the second eigenvalue.

(a): Just before the onset of the secondary instability at 8 = 0.790. The right picture zooms in
at the meighbourhood of E = 0.

(b): At the onset of instability at 0 = 0.791. The right picture shows the real (continuous red
line) and imaginary (dashed blue line) parts of the Evans function as function of X. This shows
clearly that the zero of the Evans function occurs just after the edge of the upper branch (Ay ) of
continuous spectrum. (i.e., the cusp), hence inside the continuous spectrum and not at the edge.
(c): Just after the onset of the secondary instability at @ = 0.792. The right picture zooms into
the neighbourhood of E = 0. The loops with the green line now include the origin (E = 0),
increasing the winding number by 2 and illustrating that an additional instability has occurred.
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