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Abstract

We establish polynomial-time convergence of infeasible-interior-point methods for conic programs over sym-
metric cones using a wide neighborhood of the central path. The convergence is shown for a commutative
family of search directions used in Schmieta and Alizadeh [9]. These conic programs include linear and
semidefinite programs. This extends the work of Rangarajan and Todd [8], which established convergence
of infeasible-interior-point methods for self-scaled conic programs using the NT direction.

1 Introduction

There is an extensive literature on the analysis of interior-point methods (IPMs) for conic programming. In

conic programs, a linear function is minimised over the intersection of an affine space and a closed conve»
cone. The foundation for solving these problems using IPMs was laid by Nesterov and Nemirovskii [6]. These
methods were primarily either primal or dual based. Later, Nesterov and Todd [7] introduced symmetric primal-
dual interior-point algorithms on a special class of cones called self-scaled cones, which allowed a symmetric
treatment of the primal and the dual. Self-scaled cones are precisely the same as symmetric cones, which ha
been characterised using Jordan algebras (see Guler [3] and also Faraut and Koranyi [1]). Faybusovich [2
analysed an interior-point algorithm over the symmetric cones using this characterisation of symmetric cones.

Nonnegative orthants, second-order cones, and positive semidefinite cones are important special cases
symmetric cones. Monteiro and Zhang [5] gave a unified analysis of feasible-IPMs for semidefinite programs
that used the so-called commutative class of search directions. These search directions include the popul:
directions such as the NT (Nesterov-Todd), 1§ and theS X directions. As we shall see, symmetric cones,
when described using Jordan algebras, bear a striking resemblance to the cone of real symmetric positiv
semidefinite matrices. This resemblance was exploited by Schmieta and Alizadeh [9], who extended Monteiro-
Zhang's analysis to feasible-IPMs over symmetric cones.

Infeasible-IPMs, unlike feasible-IPMs, do not require that the iterates be feasible to the relevant linear sys-
tems, but only be in the interior of the cone constraints. As such infeasible points are easy to obtain, infeasible
IPM are an attractive choice for practical implementations. At the same time, the analysis of infeasible-IPMs
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presents significant difficulties due to the non-orthogonality of search directions. Zhang [10] analysed the con-
vergence of an infeasible-interior-point algorithm for semidefinite programming using thand S X search
directions. Rangarajan and Todd [8] established convergence of an infeasible-IPM for self-scaled cones usin
the Nesterov-Todd direction for a wide neighborhood of the central path.

In this paper, we show the convergence of an infeasible-IPM on symmetric cones for the commutative
class of search directions. In the process a Lyapunov lemma in this setting is established. To our knowledge
this is the first time an infeasible-interior-point method has been analysed for the NT-method usWig,the
neighborhood for both semidefinite programming and conic programs over symmetric cones. The complexity
result obtained here for symmetric cones using the NT direction compares with the best bound obtained fol
linear programs. Besides the work of Schmieta and Alizadeh, our main tool is the analysis of an NT-based
infeasible-IPM for self-scaled conic programming in Rangarajan and Todd [8].

This paper is organized as follows: We start with an introduction to the theory of Jordan algebras. Next we
outline the basics of interior-point theory that leads to the algorithm and present its analysis. We present som
conclusions in the final section.

2 Euclidean Jordan Algebras

Characterization of symmetric cones using Jordan algebras (see Theorem 2.3) forms the fundamental bas
for our analysis. This section covers the basic results in Jordan algebras, closely following Schmieta anc
Alizadeh [9] in presentation. For a comprehensive treatment of Jordan algebras, the reader is referred to Fara
and Koranyi [1]. For the purposes of illustration, we use the space of real symmetric matrices, which yields
the cone of positive semidefinite matrices. In this case, the analysis in Section 3 specialises to the case ¢
semidefinite programming.

Definition 2.1 Let J be ann-dimensional vector space over the field of real numbers along with the bilinear
mape : (z,y) — x ey c J.Then(J, o) is a Euclidean Jordan algebra with identity if for atl y € 7

1. x e y = y e x (Commutativity)
2. zo(yex?) = (zey)ex?wherex? = x o 2 (Jordan Identity)
3. There exists a symmetric positive definite quadratic f@ron 7 such thatQ(z e y, z) = Q(x,y e 2).

4. There exists an identity element 7, i.e.,e suchthat e x = zecforall z € J.

Definition 2.2 If 7 is a Euclidean Jordan algebra, then its cone of squares is the set
K(J) = {x2 e J}

Symmetric coneare cones that are self-dual and homogeneous: their automorphism groups act transitively
on their interiors. Symmetric cones are also precisely the class of self-scaled cones introduced by Nestero
and Todd in [7] (see also Faybusovich [2] and Guler [3]). The following theorem relates symmetric cones and
Euclidean Jordan algebras.

Theorem 2.3 (Jordan algebraic characterization of symmetric cones).
A cone is symmetric iff it is the cone of squares of some Euclidean Jordan algebra.



Example Let 7 = S", the space of real symmetric matrices with the operafiom ¥ := XXX for

X,Y € 8". We can choos®(X,Y) := Trace (XY) ande to be the identity matrix. Thef\7, o) is a
Euclidean Jordan algebra with identity. We obtain the cone of symmetric positive semidefinite matrices as the
squares of real symmetric matrices.

Since e is a bilinear map, for every € 7 a linear operatof.(z) can be defined such tha{z)y =z ey
forally € J. Forz,y € J, let
Qm,y = L(x)L(y) + L(y)L(x) - L(x hd y) ande = Qx,z = 2L2($) - L(m2),
whereQ), is called the quadratic representationcofClearly @, ,z andQ,z are in7 forall z,y,z € J.

Example For X € §™ L(X) is the operator fron$™ to itself such that(X)[Y] = X% A further com-
putation shows thaf) x v [Z] = 222X andQx[Z] = X ZX. Qx plays an important role in the analysis
of interior-point methods for semidefinite programming. The oper@pin Jordan algebras plays a similar
role in our analysis.

An elementz € 7 is calledinvertible if there exists ay = Zf:o v;x* for some finitek < oo and real
numbersy; such thaty e = e, and is writtenz~!. The following are some of the basic propertiegQf (see
Propositions 11.3.1 and 11.3.3 in [1]).

Lemma 2.4 Letx,y € J. Then
1. Quz~t =z (orequivalentyQ,L(z~ ') = L(z)), Q; ' = Q,—1 andQ e = z.
2. QQyz = QszQy-

Using the Jordan identity, the notions of rank, the minimum and the characteristic polynomial, the trace and
the determinant can be defined in the following way.

Definition 2.5  a. Forz € J, letr be the smallest integer such that the $etr, 22, ..., 2"} is linearly
dependent. Thenis called the degree af and is denoted byteg ().

b. The rank of7, denoted byank (7), is defined as the maximumddg (x) over allz € 7. An element
is called regular if its degree equals the rank of the Jordan algebra.

For an element: of degreel, there exist real numbets (), . .., aqs(x) such that
% — ay(z)z 4 .. 4 (=1)%aq(z)e = 0, where0 is the zero vector

Then the polynomial? — a1 (z)A4"! + ... + (=1)%ay(z) = 0 is called theminimum polynomiabf z. The
characteristic polynomiais defined to be the minimum polynomial for a regular element. Using the fact that
the regular elements are dense’iin the characteristic polynomial can be continuously extended to afl of
(see [1]). Therefore the characteristic polynomial is a degqgalynomial in A, wherer is the rank of7.

The roots\Ay, ..., A\ of the characteristic polynomial of are called theeigenvalue®f z. The roots of
the minimum and the characteristic polynomial are the same except for their multiplicity and the minimum
polynomial always divides the characteristic polynomial.

Definition 2.6 Letxz € J and )\, ..., A, be its eigenvalues. Then,
1. Trace (x) := A\ + ...+ A, is called the trace of;

2. Det (z) := A1 - - - A\, is called the determinant af.



Trace can be shown to be a linear functioncofor the identity elementrace (e) = r andDet (e) = 1 as all
its eigenvalues are unity.

Example The above definitions correspond to the usual notions of characteristic polynomials, eigenvalues,
trace and determinant of matrices. For matricks, (X ) corresponds to the degree of the minimum polyno-
mial of X, which is the same as the number of distinct eigenvaluées.of

Next, the concept of Jordan frames is introduced and a spectral decomposition result is presented. Ar
idempotent: is a nonzero element gf such that?> = c. A complete system of orthogonal idempotents is a set
{c1,..., ¢} of idempotents, where e ¢; = 0 for all i # j, andc; + ... + ¢, = e. Anidempotent igrimitive
if it is not the sum of two other idempotents. A complete system of orthogonal primitive idempotents is called a
Jordan frame Note that in Jordan framés= r, that is Jordan frames always contaiprimitive idempotents.

Theorem 2.7 (Spectral decomposition, Theorem I11.1.2, [1]) Let J be a Euclidean Jordan algebra. For
r € J there exist a Jordan frame, ..., ¢, and real numbers\{, ..., A\, such thate = Aici + -+ + ¢y
where the);’s are called the eigenvalues of

Using this we can define the following: (analogous to functions on the real line)

1. The square root:!/? := )\}/gcl + ...+ A\2¢ whenever all\; > 0, and undefined otherwise.
2. The inversex™! := Aflcl + -+ + A le, whenever all\; # 0, and undefined otherwise. (This is
consistent with our earlier definition by Proposition 11.2.4 in [1].)

3. The squarezr? := \2c; + -+ + A2c,.

These definitions can be shown to be well-defined. Notextha&n be viewed as eithefs = or as the extension
of the “square” function on the reals. Also note tiat/?)?> = z. It can be shown that an element is in (the
interior of) the cone of squares iff all its eigenvalues are non-negative (positive).

Next, norms and inner products are defined6n SinceTrace (z @ y) is a bilinear function, the inner
product can be defined &s, y) := Trace (x e y). Forz € 7, with eigenvalues\;, 1 < i < r, the Frobenius
norm and the spectral norm (or the 2-norm) can be defined as (see Proposition 111.1.5 in [1])

T
x| F = ZA?: Trace (z2) and ||z|2 := max |\
1
i=1

Then the Cauchy-Schwarz inequality holds;

(@, 9) | < llzllrllylle-

As all the eigenvalues aefare unity,||e||r = /r and|le[|2 = 1.

Example For a matrixX € S"™, we have the spectral decomposition that there exists a set of orthonormal
vectors{g;, 1 < i < n} C R" and real numbers,, ..., \, such thatX = >, \;giq! . It can be checked that

the matriceg; ¢! form a primitive system of orthogonal idempotents. The inner product is the usual trace inner
product of matrices and the spectral and Frobenius norms have their usual definitions.

SinceTrace (-, ) is associative (see Proposition 11.4.1in [1]), iBrace (x o (y @ 2)) = Trace ((x o y) o 2),
(L(x)p, q) = Trace ((x e p) ® q) = Trace ((p e x) ® q) = Trace (p® (z ® q)) = (p, L(z)q)
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shows thatl.(z) is a self-adjoint operator. As the definition Qf. depends only ori(x) and L(x?), both of
which are self-adjoint),. is also self-adjoint.

We recall parts of Lemma 12, 13, and 14 in [9] in the next two lemmas.

Lemma 2.8 Letx = Ajc1 + - - - + Ay, USING the spectral decomposition. Then the following statements hold.
1. The matriced.(z) and @, commute and thus share a common system of eigenvectors.

2. The eigenvalues df(x) have the formwgﬂ, 1 <i<j <r. Inparticular, z € K (int ) iff L(x) is

positive semidefinite (definite). However, not e\@%ﬁ is an eigenvalue of (z).

3. The eigenvalues @}, have the form\;\;, 1 < i < j <r. However, not every;); is an eigenvalue of

Qa-

Henceforth the minimum (maximum) eigenvaluerolill be denoted byAmin(z) (Amax(x)).
Lemma 2.9 Letx € J, then we have

Amin(z) = muin W

Forz,y € J, we have
Amin(z + ) > Amin(z) — |lyllF
lzeylr < |zlrllylle-

Proof : For proofs of all but the last part, see Lemma 13 and Lemma 14 in [9]. The last part follows from

[z e yllr = IL(2)yllr < ILE)llylr = llzl2llyllr < lzlrlylr-

The first equality follows from the definition af(x), and || L(z)|| refers to the operator norm induced by
|I|lz- For the second equality note that the spectral norm of a self-adjoint linear operatb(aiyl| =
max; [A;(L(x))|. By Lemma 2.8nax; |\;(L(z))| = max; |\;(x)| = ||z]|2. Lastly, note that 2-norm is bounded
by the Frobenius norm. O

We state two useful propositions about the operétor
Proposition 2.10 (Proposition 111.2.2, Faraut and Koranyi [1]f) z, y € int K, then@,y € int K.

By noting thatz—! € K and@,-: = Q! (from Lemma 2.4) it follows that), is also onto and hence an
automorphism ofC.

Proposition 2.11 Letz, y € int I, then

1. Q,125 andQ /2 have the same spectrum.

2. Ifp €int K definet := Qpz ands := Q-1 s, then@ 1,25 and Q1,25 have the same spectrum.
Furthermore,Trace (Q,1/25) = (s, x).

Proof : See Proposition 21 in [9] for proofs @fand2. To complete the proof of the proposition, note that if
{\i} are the eigenvalues 6}, /2 s, then using the self-adjointness@f.,» we have

Trace (Q1/28) = Trace (Qp1/25) ® €) = (@728, €) = (5, Qpu/z€) = (s, 7).

Now we are ready to state and prove the Lyapunov Lemma for Euclidean Jordan algebras.
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Lemma 2.12 (Lyapunov Lemma for Euclidean Jordan Algebr8sippose thal/ is a Euclidean Jordan alge-
bra. If z € int I, w € K then there exists € I such thatr e s = w.

Proof : Let us sets = 2 f0°° Qupyw dt, wherex = 377, A\ic;, is the spectral decomposition efandv(t) =
Sy e Nite;. Clearlyu(t) € J asc; € J. By expanding using the spectral decomposition and integrating
we obtains = 2 Zm‘ ﬁxj@cmw and hences is well-defined ands € 7. Observe that(t) € int K as
et > (foralltand hence), ;) is an automorphism of. It follows thatQ,,w € K. Foru € K, we have

(s,u)y =2 </0 Qu(ryw dt,u> =2 /0 <Q@(t)w,u> dt > 0.

Consequently € K. By Proposition 11.3.4 in [1]Q,) = e~2'*(). Therefore,

d i e
@Qv(t)w == AL(@) gy = —2L(x)e L)y = —2L(7)Quyw = —21 ® Qyypyw.

We can substitute fos in the equation and see that

oo o0 d
xos2/0 onv(t)wdt/O 7 (Qv(t)w) dt = w.

U
The operator commutativity for a Jordan algebra is defined and an important related result is stated. The notiol
of operator commutativity is not to be confused with the commutativity of elements of the Jordan algebra.

Definition 2.13 We say two elemenis y of a Jordan algebra7 operator commute if.(x) L(y) = L(y)L(x).
In other words,;z andy operator commute if foralt, z e (yez) =y e (x e 2).

Theorem 2.14 (Theorem 27, [9]Let 2 andy be two elements of Euclidean Jordan algebfa Thenz andy
operator commute if and only if there is a Jordan frame. . ., ¢, such thate = Y, Aic;ands = >0 pic;
for some\;, u;.

A Jordan algebra is callesimpleif it cannot be represented as the sum of two Jordan algebras. Simple Jor-
dan algebras have been classified into the following five cases and consequently we have a classification fc
symmetric cones (see Chapter V in [1]). This classification is due to Jordan, Von Neumann and Wigner [4].

Theorem 2.15 (Chapter V, Faraut and Koranyi [1])et 7 be a simple Euclidean Jordan algebra. Thé&n
is isomorphic to one of the following algebras, where for the matrix algebras, the operation is defined by
XeY =1 (XY +YX):

1. the algebret, 1, the algebra of quadratic forms iR"+! under the operation e yy = (z”'y; 207+ yoT),
wherex = (zo; %),y = (y0;7) € R x R".

the algebra S™, e ) of n x n symmetric matrices.
the algebraH,,, ¢ ) of n x n complex Hermitian matrices.

the algebra Q,,, ¢ ) of n x n quaternion Hermitian matrices.

o 0 w DN

the exceptional Albert algebra, i.e., the algelo€;, o ) of 3 x 3 octonian Hermitian matrices.



3 Algorithm and Analysis

3.1 Problem background

We begin with the problem statement and discuss some of the theory relevant to developing interior-point
algorithms: the perturbed optimality conditions, central path and the Newton systems that give rise to the
commutative class of search directions. In the following subsection, we present the algorithm and analyze its
convergence.

Let 7 be a Euclidean Jordan algebra of dimensiand rankr, andk be its cone of squares. Consider the
following primal and the associated dual problem.

Primal and Dual
(P) min{{c,z) : Az =b, v € K} (3.1)

and
(D) max{(b,y)y : A"y+s=¢, seK, yeY}, (3.2)

wherec € J andb € Y, a finite dimensional real vector space with an inner producf,.. HereA is
a linear operator that mapg into Y. A* is defined to be the linear operator that mapgo 7 such that
(A*y,z) = (Az,y)y forallz € J,y €Y.

We callz € K primal feasible ifAz = b. Similarly (s,y) € K x Y is called dual feasible ifl*y + s = c.
Let

FOP) = {weJ: Az =1, z €intk}and
FUD) = {(s,y) eI xY: A'y+s=c¢, s€intK}

represent the interior feasible solutions of the primal and the dual. For the rest of the paper, we will assume tha
A is surjective,FO(P) # (), andF°(D) # (. For a given primal feasible and dual feasiblés, y), (s, x) is
called the duality gap due to the well-known relation

{b:y)y — (e, ) = (Az,y)y —(A"y +5,2) = (s,2) > 0.

Since the iterates in our algorithm may not satisfy the linear constraints} will be referred to as theom-
plementarity Let us note thats, x) = 0 for feasible(z, s, y) is sufficient for optimality. By Lemma 2.2 in [2],
forz,s € K (s,x) = 0is equivalent tas e x = 0. Using our assumptions above, the optimality conditions for
the primal and dual problems can be written as

Ax = b
A*y+s = ¢
sex = 0 (33)
r,s e K,y €Y,

wheres e x = 0 is usually referred to as the complementary slackness condition.

The perturbed optimality conditiori$’C),) are obtained by replacing = = 0 in (3.3) with the “perturbed”
complementary slackness conditicne x = pe for o > 0. Interior-point algorithms follow the solutions to
(PC,) asp goes to zero. The perturbed optimality conditions have unique solutions for all pgsitaved
these solutions form the so-called central trajectory (see [2]). Note that the duality gap of the solutions is pro-
portional toy, i.e., (s,z) = Trace (s @ x) = uTrace (¢) = ur. IPMs employ Newton’s method to target the
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solution of(PCy,,,), whereo € (0,1), (z, s, y) is the current iterate and = ﬁ—w) Such algorithms are called
primal-dual path-following algorithms; primal-dual, because the primal and the dual are treated symmetrically
in the optimality conditions.

The following lemma motivates different, but equivalent, ways of forming the perturbed optimality condi-
tions, thus leading to different Newton systems.

Lemma 3.1 (Lemma 28 in [9]) Let x, s and p be in some Euclidean Jordan algehrg x,s € int X andp
invertible. Thers e 2 = peiff Q,-1(s) @ Qp(z) = pe.

Therefore for a scaling < int IC, (PC),) can be equivalently written as

Az =1
Ayt+s=2¢
Sex = e
z,5§eK,yey,

wherezr = Q,z, 5 = Q,-15, A= AQ,-1, andé = Q,-1c. We restrict our attention to the following set of
scalings
C(x,s) :={p: p €int K such tha),(z) andQ,-:(s) operator commute

Note thatp = e need not be i€(z, s). Forp = z~/2 we get thers-method, fop = s'/2 we get thesz-method

and for the choice op = [Qxl/Q(Qxl/QS)_l/2:|il/2 = [Qs_l/z(Qsl/z:z:)l/z}71/2 , we get the Nesterov-Todd
(NT) method. The Newton equations corresponding to a scalidgiins) are

Scaled Newton Equations

~ ANy + A5 = e-Ay-5,
AANE = b— Az, (3.4)
X WAV + ASer = ogue—35sex.

ThoughC(z, s) seems to be a restrictive class, it does include some of the most interesting choices of scalings.
Our algorithm will restrict the iterates to the following neighborhood, called the minus-infinity neighbor-
hood, of the central path. For a given constart [0, 1]
Noo(y) i={(z,8,9) e LXK XY : d_oo(x,8) < yu}, (3.5)

where

d—oo(,8) := pt — Ammin(2), p = (s, 2) andz = Q,1/25.
r

A few observations about are in order. Ast!/? € K and Q.12 1s an automorphism ok, = € K and
hence\;(z) are nonnegative. By Proposition 2.14, z) = Trace () = ), Ai(2). The neighborhood con-
tains the central path andrepresents the size of the neighborhood as it can be shown that the g€6) N
[FO(P) x FO(D)] is exactly the central path add_..(1) N [FO(P) x FO(D)] = FO(P) x FO(D).

Now we discuss the symmetry and scale-invariance of the neighborhoods. By part (i) of Proposition 2.11,
Q125 and Q122 have the same spectrum. Hence the centrality measugx, s) and the neighborhood
N_ are symmetric with respect toands.

Proposition 3.2 The neighborhood is scaling invariant, that(is, s) is in the neighborhood iffz, ) is.
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Proof : Let Z := Q;125. By part (ii) of Proposition 2.11\(2) is the same as\(z). Since(5,z) =
(Qp-15,Qpx) = (s, x), the result follows by substituting the expressions in the definitiok’of, (). O

Hence the scaling transformations are not just automorphisms of the cone but they also map the neighborhoo
to itself. As the definition ofV_ . is independent of;, sometimeg in (z, s, y) is suppressed for convenience
and we write(z, s) instead, buy should be clear from the context.

3.2 Algorithm and Analysis of Convergence

Having discussed the key elements needed for the algorithm, we describe the infeasible-interior-point-methoc
in detail.

Algorithm IIPM :

1Lletl >3 >0>0,€¢ >0,v¢€(0,1),z €iNtk,yp € Y andsy € int £ be given such that
(20, S0, Y0) € N_oo(7). Setk =0, qﬁg =1landg) = 1.

2 Choose @ € C(zy, si) and form the corresponding scaled iterate. Solve fat;, A3y, Ayy) from the
scaled Newton equations in (3.4)@%, 3k, yr). Let (Axy, Asy, Ayr) = (Qp-1 ATk, QpA3k, Ayy).

3 Let (z(a),s(a),y(a)) = (xk, sk, yr) + oDz, Ask, Ayx). Compute the largest step length
ay € (0,1] such that for alkv € [0, @], (z(), s(a), y(a)) € N_oo(7),
(s(a), 2(a)) > max(¢h, ¢5)(1 — @) (s0, 7o), and(s(a), z(a)) < (1 (1~ B)a) (s, 7).

4 Choose a primal step Iengmti > 0 and a dual step Iengtln(’j > 0 such that

(Tht1s ka1, Yht1) (w + ah Awy, s+ ol Asi, g + ol Ayr) € Nooo(7),
(sk1,ze1) = max(dp(1 - ap), (1 — o)) (s, z0) and
(k1 Th01) < (1= (1= B)ag) (sk, k) -
Setght! = ¢k(1 — ak) andgf™ = ¢k (1 — af).
5 Increase: by 1. If (s, z1) < €* (s9, x0), then STOP. Otherwise, repeat step 2.

On the choice of step lengths: if we choosja: a§ = a4, all the conditions in Step 4 are satisfied. How-
ever, we are free to choose different step lengths as long we can make a comparable progress in the feasibili
and complementarity while remaining inside the neighborhood.

Using the Newton equations we can show tagnd¢” satisfy the relations
Azy, — b= ¢fi(Azg —b)and Ay + s, — ¢ = ¢fj(A*yo + so — ¢), (3.6)

and hence they represent the relative infeasibilitigs:atsy, yx). At every iterate we maintain the feasibility
condition,
<s/€7 $k> > max(dﬂﬁ, ¢§) <507 $0> ) (37)

which ensures that the infeasibilities approach zero as the complemen(tarity, approaches zero. The fol-
lowing theorem forms the skeleton of the convergence argument and sets the agenda for the rest of the paper

Theorem 3.3 If a, > «o* for all k£ for somea™® > 0, then thellPM will terminate with(zy, si, yx) such that
| Azy, — b]| < €*||Azg — b]|, [|[A*yx + s — c|| < €*[|A*yo + so — c|| and(sy, zx) < €* (s0,20) INO(L In (L))
iterations.




Proof : All the conditions in Step 3 ofiPM are satisfied for*. Since for eactk, a, > «o*, if we choose
k= {(1*%3)&4 In (1), then we have

In((sg, zx)) < In((sp—1,2%-1) (1 — " (1 = 5)))
< In ((so,ajo (1—-a*(1— B))k)
< In((s0,20)) — ko™ (1 =)
< In({sg, o)) + In(e*) = In(€" (so, xo)).

The first inequality follows from the decrease in complementarity condition, the second from the same applied
inductively, and the third inequality from the identityt+ ¢ < e¢ for all ¢ > —1. The fourth inequality follows
from our assumption oh.

From condition (3.7), it follows thahax(gﬁ’;,gb’;) < $omTr) < o+ Then (3.6) implies that

— <307$0> —

[Azy, — bl| < € [[Azo — b, and|| Ay + sk — c|| < € [|A%yo + s0 — |-

g

In the rest of the paper, we prove that such a lower boundaxists and establish an estimate of the lower
bound that leads to the polynomial convergence result foEd . For simplicity, we will often writez, y, s
and¢ for zx, yi, s andmax(qb’;, #%) respectively. The indices should be clear from the context.

Let(z, s,y) € N_(7) and satisfy the feasibility condition (3.7). For a fixed C(z, s), let(Az, A3, Ay)
be the direction computed in Step 2 of the algorithm. We will use the following notation:

T(a) =2+ alZ, 3§(a)=35+ als,
z(a) =z +alz, s(a)=s+als,
, andz(a) = Qz(ay1/25(a).

As aword of caution, sinceneed not lie irC(z(«), s(«)), Z(a) ands(«) do not necessarily operator commute.
We collect some basic properties of the scaled directions and the Newton system.

Lemma 3.4 Given the Newton equations, the following identities hold:

s(a)ei(a) = (1—a)iei+aoue+a’seAZ,
(s,z) = (s,z), and
ala) = u(17a+aa)+a2w.

r

Proof : The first equality follows by direct expanding the third equation of the scaled Newton system. The
second follows because

(s,z) = <Qp_1s,pr> = (s,x).
For the last equation, we use the third Newton equation in (3.4) to get

JANIAN:
(o) = = +a« +a :u(l—a+aa)+a27< % $>
T T T T T

g
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The following result is very essential in obtaining the bounds on the step lengths.

Lemma 3.5 Let (z,s) € int £ x int K. Then\min(s ® ) < Anin(z) and equality holds if: and s operator
commute.

Proof : The proof outline follows Lemma 30 in [9]. First observe tiati/> ,-1/2Q,1/2 = L(x), because

Qui20-12Quiz = Qupp(2L(x™'?)L(z'/?) — 1)
= 2(Qu2 Lz V) L(z'?) — Q1)
2L (2V?) — Qu1/2 = L(z).
Here, we used part (a) of Lemma 2.4. As aresult we lyie: ,—1/22 = Q172 ,-1/2Q 125 = T @ 5.

In Lemma 30 in [9], it is shown thafrace (Q,1/2 ,—1/2u) = Trace (u). Note that by Lemma 2.12 we know
thatiC C L(2)(K) = Q172 4-1/2Q1/2(K) = Q172 ,-1/2(K), @SQ,1/2 is an automorphism of. The result
follows from the following two chains of relations.

o (u,(sex)eu . )
)\min(s ° 1:) = min M = min <’LL2, Se :L‘> = min <U2, Qx1/2 x71/22>
u <u, U> Trace (u?)=1 Trace (u2)=1 ’
min <u2, Q12 x71/22> = min <z, Q12 x71/2u2>
Trace (u?)=1 ’ Trace (u?)=1 7
< min {<z, Q172 x_1/2u2> t Q12 $_1/2u2 € /C}
Trace (Qz1/2yz71/2u2):1 ’ ’

= min {(z,t} : Trace (t) = 1,t € Qx1/27f1/2(/C)}
min {(z,t) : Trace (t) = 1,t € £}

a8 (2,0%) = Anin(2)

IN

The equality whert ands operator commute is established in Lemma 30 in [9]. Hence the proof of the lemma
is complete. d

As a consequence, using Proposition 2.11 and the definitidn. gf (), let us note that

Amin(5 ® ) = Amin(2) = Amin(2) > (1 —7)p.
We find an interval for whicliz(«), s(«)) lies in the neighborhood.

Lemma 3.6 Letd, = ||AZ||r andds = [|AS]|p. If (x,5) € N_o(7), then(z(a), s(a)) € N_oo(v) for all
0 < a < &, where (s.2)

YO (S, T
2(r+1—7)0,0s (3:8)

Proof : We first bound the left and right hand side of the inequality defining the neighborkogd ). To
begin with a bound on the eigenvaluexgty), we have

a1 =

Amin(2(@)) = Amin(2(a)) > Amin(3(a) ® Z(a))
= Amin((1 — )5 0 & + aope + a?As o AZ)
> (1 —a)Amin(3 ® %) + aop — 6,0,
> (1—a)(1—7)pu+ aop — a?6,0,.



The first equality follows from part (ii) of Proposition 2.11, the first inequality follows from Lemma 3.5, the
second inequality follows from Lemma 2.9 and the last inequality follows bedaus¢ € N_..(v). Using
Lemma 3.4 and Cauchy-Schwarz we can see that

(As, Ax)

r

< (1-7) {M(l—a+o—a)+a25ﬁf58].

(I—ypule) = A=) (u(l—a+oa)+a’ )

Using (s, z) = pr, we can see that

(1 =)A= +aop - a?3,05 > (1=7) [:“(1 —a+oa)+ 0425:858]

r

holds for alla € [0,24,]. Since the right hand side of the inequality is positive fonadt [0, &1 ], Amin(z(a)) >
0 for all « € [0, &1]. Letag be the leasty < &; such thatr(a), s(a) € K for all @ < ap andz (o) € OK
(or s(ap) € OK). Thenmin(z(c)) = 0, which is a contradiction. Hence(«), s(a) € int K. Hence
(z(), s(@),y(a)) € Nooo(7y) forall a € [0, &1]. O
Note that the length of the interval obtained depends on the size of the scaled Newton directions.

For the feasibility condition in Step 3 we want &n such that (3.7) holds for allz(«), s(«)), « € [0, Ga).
Using Lemma 3.4, the feasibility condition @n, s) and Cauchy-Schwarz, we get

(s(a), z(a)) (s,z)

< —¢(l—a) = ( +a(c—1)) +a — (1 —a)
50, 20) (s o,wo (s0,70)
B )t as (s,x) 5 (As, Ax)
B 80,960 ) =)+ (s0, z0) (s0,z0)
> (0 (s,x) — dy0s) .

<80, o)
Therefore the conditions(a), z(a)) — ¢(1 — a) {so, o) > 0 holds for alla € [0, 4], where

o (s,x)
0205
For the last condition in Step 3, Cauchy-Schwarz yields

Qg = (3.9)
(s(a),z(a)) = (s,z)(1—a(l—0))+ o? (As, Ax)

§<&@<1—M1—®+a%§§>.

It suffices to have

3205
(s, )

Solving fora from the above inequality, we can see that the last condition holds farall0, &3], where

Gy 1= W (3.10)

1—a(l—o0)+a?

5] -0 -at-g=a(a

S, )

—(ﬁ—a)) <0.
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So far, we have obtained a lower bound on the step sizes in terfps@fand(s, x). Now, we will obtain
a bound on%, which appears in (3.8), (3.9, and (3.10). Let us introduce the opefates, L(3)'L(Z),
which is usefufin bounding.d,. Recall the third scaled Newton equation:

L(5)A%z + L(Z)As = ope — L(8)L(%)e.

Sincei ands operator commute, ar@ is a symmetric matrix, by multiplying this equation b§(#)L(5)) /2,
we get
GV2Az + GV2AG = op(L(2)L(3)) " V%e — GY25 =: h.
The analysis oflPM is intricate becauséG'/2As, G=Y/2Az) = (As, Az) # 0. Now let us define
2= |GV 053 + |G A7) 3.
The following proposition will lead to a bound on the size?se%.

Proposition 3.7 2 < w (s, zy), Wherew is a constant independent bf

Before we prove the proposition, let us pause here to see its relevance in bodyiding/e state the following
technical, but useful result (Lemma 33 in [9]).

Lemma 3.8 Letu,v € J andG be a positive definite self-adjoint operator. Then

1 -
lullellolle < 5v/ra (IGY2ulf + 167 /20)%)

_ Ama{(G)

= Smcy 1S the condition number df'.

wherexq

Note that in our applications may depend on the iteration numberbut the following lemma provides a
bound on the condition number 6f for the methods we are interested in (see Lemma 36 in [9]).

Lemma 3.9 For the NT method = 1 =: k. For thezs and thesz methods,
if (z,5) € N_so(7), thenkg < ﬁ = K.
Using the above lemmas, we have the following bound,@n:
t2 w
Now we prove the proposition.
Proof of Proposition 3.7: We first note the following identity:
IGV205+ G VPAZ|F = |GYPA8% + G2 05|17 + 2 <G1/2A§, G*1/2A§:>
= ||GY205)% + ||GTV2 053 4+ 2 (A5, AF).

Using what we just derived and Lemmas 34 and 35 of [9], we can see thatfaru(L(£)L(5)) " /2e—G'/?5,

B (s M) o2
A% =12 + 2 (A5, AZ) = ZT < <1 — 20+ 1 ’y> (s,x) . (3.12)

i
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We take a small detour to introduce some convenient notation which helps us in stating a key claim in the
proof of this proposition, and is also used in the arguments for polynomiality of convergence. Let us assume
a reference pointug, vg, 79) feasible to the equality constraints (and not necessarily in the cone) such that
xo — up, So — vy € int K, where(zo, so, yo) is the initial iterate inlPM . This condition is easily satisfied by
scaling the initial point for any givetug, vo, o). For a given sequence of iteratgs, sk, yx) } we define:

Uk+1 = (1 — ak)(uk — l’k) + Th+1s
i1 = (1— ad)(rk — Yk) + Ykt
v = (1— a’j)(vk — Sk) + Sk+1-

From the above definitions, we can observe the following properties:

Thi1 — Uks1 = G5 T (zo — uo) € INtK;
Skl — Vb1 = B (80 — vo) € INtK;
Auy, = bandA*ry, + vy, = cfor all k; (3.13)
Azg + Az —ug) = A(z + Azg) — Aug, = b — b= 0;
A*(yk + Dy — 1) + sk + Asp —vg = 0.

(The third line holds fok = 0 by assumption, and then holds for alby induction using the last two lines.)
The following result is the key to proving the proposition:

Claim 3.10

(s, ) {50 = vo, 20 = to) + (As, Ax) + &t/ (s, ) > 0,

(80, 20)

The claim is proved in the appendix. For now, we substitdte, Az) from the inequality in (3.12), to get

2 < (s,z) X +2V/(s,7) &,

where

where

2 _ _
x:=1—20+ 7 +2 { (50 = vo, %0 = to) } is independent of. (3.15)
1-— v <807 .’E0>

2
3 < (s, x1) (fk + 1/} +x> :

From Lemma 4.1 in [8], we have the following useful bound: Lets,y) be any iterate generated BPM
and(z*, s*, y*) be an optimal solution toP) and(D). Then

Therefore,

(s, —u)+ (s —v,x) <14 (s*, o — up) + (s — vo, z*) + (0 — vo, To — Ug)
(s, x) B (s0, o)

Thereforeg;, is uniformly bounded by where

i \/T{l + (s, @0 — o) + (so — vo, x*) + (s0 — vo, To — uo) } : (3.16)
T (50, 0)
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Hence we can chooseto be

w= <g‘+ \/@TX>2 (3.17)

g

Recall that the conclusion of Proposition 3.7 led to a bound,@n in (3.11). Hence we can bound from
below thea’s in (3.8), (3.9), and (3.10) in the following way:

e E = (i o 2w il e e R S
Go = Uéjé? > jjg — ag, and  (3.19)
by = O _622553’@ > 2(5\;;) = as. (3.20)
Taking into account the above bounds, we define

For this choice ofv*, for a € [0, «*] all the conditions in Step 3 (and hence Step 4 by the remarks following the
algorithm) oflIPM are satisfied. This bound implies the global convergend&®d by Theorem 3.3. Also,
note that since As, Az) = 0 for feasible-IPMs(3.12) implies that

t2<<1 20 + o ><sx>
= 1 "Y 9 .

Hencew in the case of feasible-IPMs is replaced by a constant independent of the data and wé&obgainin(1/¢))
iteration complexity for feasible-IPMs by Theorem 3.3. This is the bound obtained by Schmieta and Alizadeh
in [9].

With some restrictions on the size of initial points, we can show ¢had polynomially bounded and
consequently obtain the polynomial convergencBRIf . Let (ug, 79, vo) be the solution to

min{||ul|r : Au = b} and min{||v||r : A*r+v =c}, and
o = 89 = poe € INtKC,
wheree is the identity element of the Euclidean Jordan algebragng max(||ugl2, [|voll2). This implies
thatzg — ug € int K andsg — vy € int K. Let us assume that for some constént- 0,
1 1
po > Ep* =3 min{max (||z*||2, [|s*||2) : (z*, s*) solves(P) and(D)}. (3.22)

(Note that we can always increagg) Now we can obtain a bound far. First let us note two useful facts:
I'le < V/rll-|l2 and{sg, zo) = p_gr. Therefore, using Cauchy-Schwarz, we can see(fhab < ||p||r|lqllr <
r|lpll2|lq|l2- Now we can bound in (3.16) as follows:

F - r {1+(S*,ﬂco—u0>—i—<50—vo,m*>—i—(so—vo,xo—uo}}
1—7v (50, x0)
< P 2p"por + 2p* por + 4/)%7"}

2
poT

B 7 p* T .
= 1_7{5+4p0} < 1/ﬁ(5+4\11) (using (3.22))
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For a bound ory in (3.15), we have

2 2
- _ 1 4 1
v=1-20+-2 +2{<80 10, %0 u°>}§1++2- @0T:9+i-
1—v (s0,20) 1—7~ pgT 1—v

Therefore, 2
w= (£+ \/ €2+ x> = O(r). (3.23)

Having obtained bounds on the key quantities definifign (3.21), we state our main theorem.

Theorem 3.11 Suppose that; < x < oo for all iterations of IPM . ThenlIPM will terminate inO(y/kr? In(1/€*))
iterations. Hence thBIT method take®(r? In(1/¢*)) iterations, and the:s and thesz methods také (72 In(1/¢*))
iterations.

Proof : For anya € [0, o*], o* as defined in (3.21), all the conditions in Step 318 are satisfied. Thus by
Theorem 3.3|IPM will terminate ink = [ ] In (£) = O (y/kr?1In (1/€*)) iterations.

The second part of the theorem follows from the bound:@mLemma 3.11 for the:s, thexs and the NT
method. O

4 Conclusion

We have established polynomial convergence of infeasible-interior-point methods for three important methods:
thexs, sx and the Nesterov-Todd (NT) method. To our knowledge this is the first time an infeasible-interior-
point method has been analysed for the NT-method usingvthg neighborhood for both semidefinite pro-
gramming and conic programs over symmetric cones. The algorithm presented here is closely related to th
algorithms used in practice to solve large-scale linear programs. The complexity obtained for the NT-method
(in this general setting) coincides with the bound obtained for linear programming by Zhang. The work by
Rangarajan and Todd shows convergence of the NT-method using another neighborhood defined globally ove
the cone.
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5 Appendix
Claim 3.10

(5.0} L= 00 4 (s, ) 13/ Torm] 2
where

Proof : By expandingAs + s — v, Az + = — u) and using (3.13), we find that
(As,Ax)y+ (s —v,x —u) + (As,x —u) + (s —v,Az) = 0. (5.1)
We will now bound the last three terms in the expansion. First, using Cauchy-Schwarz, we see that

(s —v,Az) = (3 — 5, AF) = <G1/2(§ — ), G‘1/2A5:> <|IGV2(5 - 0)[p|GTV2AE| P < |GV2(5 - )| pt.
(5.2)
Next, note that

IGY2(5 - 5)))% = <G1/2(§ —5),GY2(5 - 17)> = (G- 5,G(G— D). (5.3)
Sincez ands operator commute, operatagsand@; commute. Hence we have
(5-5.G(—0) = (QF* (G- ).Q7'GQY* G - 1)) < M Q7' DNQY G- D)} (5.4)
We state the following lemma and prove it later (the second part is analogous to Lemma 2.2 in [8]).
Lemma 5.1 If G = L(3) ' L(Z), thenmaxQ; 'G) = 51 If ¢ € K andg = Q,,-1¢, then

HQg"gl/unF S <(j7 ‘:Z.> = <Q7‘r> .
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By substitutingg = s — v in the second part of Lemma 5.1, we ge:;;/?(g —0)||r < (s —wv,x). Using (5.3),
and (5.4), we see that

1

1G5 = )1} < Anad Q5 GV |QF 2= D)1} < —— (5 —v,2)”.
mln(Z)
As (z,8) € N_oo(7)s Amin(z) > (1 — v)p and from (5.2) we have
s—v,Az) <||GY?(5 - G 12AG||p < | ——— (s —v,2) L.
< ) < 1GY2(5 - )l Ir < /=y (e - )
Similarly it can be shown that
1
As,x—u) < | ———(s,0 —u)t.
< ) (1 =7)u < )

Also using the feasibility condition (3.7), (3.13), anc 1, we get

(s = v,x —u) < % (s0 — vo, 70 — ug) < (ij:gﬁ

<30 — Vo, To — U0> .

Substituting the above bounds into (5.1) and using (3.14), we get

(s, 2) _ 5, —u _ s—wv,x
R e R P A e AL (e T
= (B, 00+ (5,0) SOOI ) g iy

(80, 20)

Proof of Lemma 5.1 : Suppos€\; : 1 < i < r} are the eigenvalues afwith eigenvectordc; : 1 < < r}

from the spectral decomposition of type Il. Sincands operator commute, they share the same Jordan frame.
So, let the corresponding eigenvalues e {1; : 1 < i < r}. Then using Lemma 2.4 and Theorem 2.14, we
have the following two results:

Amax (Q3 L(3) ' L(F)) = Amax(Qa—1 L(F)L(3) ™)
= Amax(L(EHL(3)™Y

1 1 1
max —+ — , and
1<i<g<r [\ A Aj ) pi+

)\min(é)Q = Amin (Q51/2§)2 = Amin (Q51/2Q§Q51/2) = Amin (QéQ:ﬁ) = min )\z’)\j#i,uj-

1<i<j<r

It is staighforward to verify that

11\ 1 11
~ ~ < and)\,)\z - > mi )\iiQ, A '2.
[(/\z‘ +/\j> MHM;‘] _max<kmz"/\juj>’ siipy 2 min (i), gis)’)

This proves the first part of the lemma.



For the second part, the equality is easy to see. To show the inequality, note that

Amax(@z1/20) < [|Qz1/24] F-

Forp := Miﬁ% Amax(p) < 1 and hence — p € K. Since
(G, 7) = (@, Qa1/2€) = (Qar2dr€) = (Quupdre — ) + (Qu1/2d,p)
we have
(@.7) = (Qz2q,e —p)+ (Qz12G,p) > (Qz1/2G:p) = [|Qz1/2q| -
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