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COMPUTATIONALLY EFFICIENT APPROXIMATIONS OF THE

JOINT SPECTRAL RADIUS

VINCENT D. BLONDEL AND YURII NESTEROV

Abstract. The joint spectral radius of a set of matrices is a measure of the maximal
asymptotic growth rate that can be obtained by forming long products of matrices taken
from the set. This quantity appears in a number of application contexts but is notoriously
difficult to compute and to approximate. We introduce in this paper a procedure for
approximating the joint spectral radius of a finite set of matrices with arbitrary high
accuracy. Our approximation procedure is polynomial in the size of the matrices once the
number of matrices and the desired accuracy are fixed.

For the special case of matrices with non-negative entries we give elementary proofs of
simple inequalities that we then use to obtain approximations of arbitrary high accuracy.
From these inequalities it follows that the spectral radius of matrices with non-negative
entries is given by the simple expression

ρ(A1, . . . , Am) = lim
k→∞

ρ1/k(A⊗k
1 + · · ·+ A⊗k

m )

where it is somewhat surprising to notice that the right hand side does not directly involve
any mixed product between the matrices (A⊗k denotes the k-th Kronecker power of A).

For matrices with arbitrary entries (not necessarily non-negative) we introduce an ap-
proximation procedure based on semi-definite liftings that can be implemented in a recur-
sive way. For two matrices, even the first step of the procedure gives an approximation
whose relative accuracy is at least 1/

√
2, that is, more than 70%. The subsequent steps

improve the accuracy but also increase the dimension of the auxiliary problems from which
the approximation can be found.

Our approximation procedures provide approximations of relative accuracy 1−ǫ in time
polynomial in n(ln m)/ǫ, where m is the number of matrices and n is their size. These bounds
are close from optimality since we show that, unless P=NP, no approximation algorithm
is possible that provides a relative accuracy of 1− ǫ and runs in time polynomial in n and
1/ǫ.

As a by-product of our results we prove that a widely used approximation of the joint
spectral radius based on common quadratic Lyapunov functions (or on ellipsoid norms)
has relative accuracy 1/

√
m, where m is the number of matrices.1
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1. Introduction

Let ‖ · ‖ be a matrix norm. The spectral radius of the real matrix A is defined by

(1.1) ρ(A) = lim
k→+∞

‖Ak‖1/k.

The spectral radius of a matrix does not depend on the chosen matrix norm and it is
also equal to ρ(A) = max{|λ| : λ is an eigenvalue of A} (see for example [22, Corollary
5.6.14]). The definition of spectral radius can be extended to sets of matrices in a natural
way. The joint spectral radius of a set of matrices is a quantity introduced by Rota and
Strang in the early 60’s that measures the maximal asymptotic growth rate that can be
obtained by forming long products of matrices; see [29]. The general definition is for
arbitrary sets of matrices but we shall consider here only finite sets. Let {A1, . . . , Am} be
some set of real matrices. To the finite sequence σ = (σ1, σ2, . . . , σk) ∈ {1, . . . , m}k we
associate the corresponding matrix product

Aσ = Aσk
· · ·Aσ2Aσ1 .

With this notation, the joint spectral radius is defined by

(1.2) ρ(A1, . . . , Am) = lim sup
k→+∞

max
σ∈{1,...,m}k

‖Aσ‖1/k .

As for the single-matrix case, the joint spectral radius does not depend on the matrix
norm used. To see this, remember that any two matrix norms ‖.‖1 and ‖.‖2 are related
by α‖A‖1 ≤ ‖A‖2 ≤ β‖A‖1 for some 0 < α < β. For any product σ ∈ {1, . . . , m}k one

has α1/k‖Aσ‖1/k
1 ≤ ‖Aσ‖1/k

2 ≤ β1/k‖Aσ‖1/k
1 and by letting k tend to infinity we conclude

that the joint spectral radius is well defined independently of the matrix norm used.
A definition analogous to (1.2) is possible by replacing the norm appearing in the def-

inition by a spectral radius. The quantity defined in this way is the generalized spectral
radius introduced in [14]. In [3], the joint and generalized spectral radii of finite (or
bounded) sets of matrices are proved to be equal (see also [16, Theorem 1] for an ele-
mentary proof); thus reinforcing the status of the joint spectral radius as a legitimate
generalization of the spectral radius of a single matrix. In the sequel we shall deal only
with the spectral radius defined with a norm, as in (1.2).

Since its introduction in the 60’s the joint spectral radius has appeared in a number
of different contexts; see, e.g., [31] or [15] for recent short surveys2. Let us illustrate
one application in a dynamical system context. Consider the simple discrete-time linear
inclusion

xk+1 ∈ {A1, . . . , Am} xk, x0 ∈ R n

in which at each step a particular linear transformation is chosen from of a finite number
of possible choices. The maximal asymptotic rate of growth of the trajectories associated
to such a system is given by the joint spectral radius ρ(A1, . . . , Am). (In the discrete
linear inclusion literature, the logarithm of the joint spectral radius is sometimes called

2Google returns 625 entries upon entry of the query “joint spectral radius”.



COMPUTATIONALLY EFFICIENT APPROXIMATIONS OF THE JOINT SPECTRAL RADIUS 3

Lyapunov indicator, see for example [2].) In particular, all possible trajectories will con-
verge to the origin if and only if ρ(A1, . . . , Am) < 1. The joint spectral radius can thus be
associated with the stability properties of time-varying linear systems in the worst case
over all possible time variations. It also occur in the context of “asynchronous” [33] or
“desynchronised” [24] systems. Besides systems-theoretic interpretations, the concept is
pervasive in many areas of applied mathematics such as in wavelets [14], iterated function
systems, random walks, fractals, numerical solutions to ordinary differential equations
[18], discrete-event systems [10], interpolation [38], and coding theory [28].

Despite its natural interpretation, the joint spectral radius is difficult to compute.
Questions related to its computability and to the existence of efficient approximation
algorithms have been posed more than a decade ago (see [34] and [25]). In principle, the
spectral radius can be approximated to any desired accuracy by computing converging
sequences of upper and lower bounds. The following bounds, proved in [25],

(1.3) max
σ∈{1,...,m}k

ρ(Aσ)1/k ≤ ρ(A1, . . . , Am) ≤ max
σ∈{1,...,m}k

‖Aσ‖1/k

can be evaluated for increasing values of k and lead to arbitrary accurate approximations
of ρ (see, e.g., [15] or [17]). Such approximation algorithms can in turn be used in proce-
dures that decide, after finitely many steps, whether ρ > 1 or ρ < 1 (such procedures are
given, e.g., by Brayton and Tong [13] in a system theory context and by Barabanov [2] in
the context of discrete linear inclusions). These procedures may however not terminate
when ρ happens to be equal to 1 and the existence of algorithms for computing arbitrarily
precise approximations of ρ does therefore not rule out the possibility that the decision
problem “ρ < 1?” is undecidable. It is so far unknown whether this is the case or not (see
[25] for a discussion of this issue and for a description of its connection with the finiteness
conjecture that has since then been proved to be false; see [11] and [4]). A negative result
in this direction is given in [8] where it is proved that the related problem “ρ ≤ 1?” is
algorithmically undecidable.

Approximations of the joint spectral radius that are directly based on the inequalities
(1.3) are expensive to compute. In [27], the exponential number of products that appear
in the direct and naive computation of the bounds in (1.3) is reduced by avoiding dupli-
cate computation of cyclic permutations; the total number of product to consider remains
however exponential. In addition to this, there are to this date no known theoretical
guarantees for the rate of convergence of the bounds appearing in (1.3). Approximations
of arbitrary degree of accuracy can be computed, but at a price that may happen to be
prohibitive.

There are in fact intrinsic limitations for the rate at which the joint spectral radius
can be approximated. Let us say that the value ξ approximates the value ρ with relative
accuracy µ ∈ [0, 1] (or 100 µ %), if µ ξ ≤ ρ ≤ ξ. By using a small adaptation of a proof
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appearing in [32] we show that, unless P=NP, there is no algorithm that can compute
the joint spectral radius of two matrices with relative accuracy 1 − ǫ in time polynomial
in the size of the matrices and in 1/ǫ (see later for more precise definitions). Despite this
negative result it is still conceivable, as pointed in [9], that for any fixed desired accuracy,
there exists a polynomial time algorithm that computes the joint spectral radius of the
matrices with that accuracy. We prove in this paper that this is indeed the case. In Theo-
rem 5, we prove that the joint spectral radius of m matrices of size n can be approximated
with relative accuracy 1/

√
m by computing the spectral radius of a single matrix whose

size is less than n2. This procedure can be applied in a recursive way and in general we
show how a relative accuracy of (1/

√
m)1/k can be obtained by computing the spectral

radius of a single matrix of size less than n2k. As an illustration, the spectral radius of
two matrices of size n can be computed with an accuracy of 70% by computing the spec-
tral radius of a single matrix of size n2, and an accuracy of 95% can be obtained for the
joint spectral radius of three matrices by computing the spectral radius of a single matrix
of size n11. More generally, for any number of matrices in the set and desired relative
accuracy we construct in Section 4 a single matrix whose spectral radius approximates
the joint spectral radius with the desired accuracy. The approximation procedure runs
in polynomial time once the desired accuracy and the number of matrices in the set are
fixed. More precisely, our approximation procedures provide approximations of relative
accuracy 1 − ǫ in time polynomial in n(ln m)/ǫ, where m is the number of matrices and n
is their size. Notice that n(ln m)/ǫ = e(ln n ln m)/ǫ = m(ln n)/ǫ and so our approximation pro-
cedure also runs in time polynomial in the number of matrices once the desired accuracy
and the size of the matrices are fixed. These bounds are close from optimality since we
prove that, unless P=NP, no approximation polynomial time algorithm in n and 1/ǫ is
possible.

We now briefly describe how our results are obtained and how the paper is organized.
We first notice in Section 2 that for matrices with non-negative entries the joint spectral
radius satisfies

(1.4) 1
m ρ(A1 + · · ·+ Am) ≤ ρ(A1, . . . , Am) ≤ ρ(A1 + · · · + Am).

(The left-hand side inequality is valid for arbitrary matrices; there is no need to assume
that the matrices have non-negative entries.) Matrices with non-negative entries are
exactly those matrices A that are such that A R n

+ ⊆ R n
+ and we prove in Theorem 1

that the inequalities (1.4) are satisfied not only for sets of matrices with non-negative
entries but also for sets of matrices that leave a proper cone invariant, i.e., matrices Ai

that are such that Ai K ⊆ K for some proper cone K and all i. Thus for these matrices
the inequalities (1.4) provide a relative accuracy 1/m. This accuracy can be improved by
considering Kronecker powers of matrices. In Section 3 we give an elementary proof that
the joint spectral radius of the k-th Kronecker powers of the matrices in a set is equal to
the k-th power of the joint spectral radius of the set (Theorem 3). Combining this with
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the relation (1.4) we prove that the approximation

ρ1/k(A⊗k
1 + · · · + A⊗k

m )

has relative accuracy 1/m1/k. Some of the arguments used to derive this result are valid
only for matrices that have a common proper invariant cone. In Section 4 we show how
similar arguments can be used for arbitrary matrices. We introduce a semi-definite lifting
procedure that transforms a linear operator acting R n into a linear operator acting on
the space of symmetric n × n matrices. It appears that under this transformation the
joint spectral radius is simply squared. Moreover, the lifting has the interesting feature
that the operator defined in this way leaves the cone of semi-definite matrices invariant.
This observation leads to a simple approximation procedure (Theorem 5) for arbitrary
matrices. Implementation issues and numerical examples are provided in Section 5. Our
approximation procedure provides a relative accuracy 1−ǫ in time polynomial in n(ln m)/ǫ.
We prove in Section 6 (Theorem 6) that the same accuracy cannot be obtained in time
polynomial in n and 1/ǫ unless P=NP. The semi-definite lifting introduced in Section 4
is a fundamental and powerful tool for stability analysis. As an illustration of this, we
prove in Section 7 how to apply our results to analyze the quality of the so-called ellipsoid
approximation of the joint spectral radius. We prove that the ellipsoid approximation (a
notion that is formally defined in [4] but that is implicitly present in a number of earlier
contributions on hybrid and time-varying systems, see, e.g., [21] and [1] as well as some of
the references in [26]) is an approximation of guaranteed accuracy 1/

√
m; a proof of this

corollary can also be extracted from Section 3 of [21]. For matrices of high dimension this
result significantly improves the earlier bound of 1/

√
n proved in [4] and in [1]. Finally,

in a last section, we discuss some of our results.

2. Approximation for matrices leaving a cone invariant

In this section, we consider sets of matrices that leave a proper cone invariant and we
show with elementary arguments how joint spectral radius approximations of guaranteed
accuracy can easily be computed for this case. We start with a proof that the spectral
radius of a convex combination of matrices is always less or equal to the joint spectral
radius of the matrices. This result is valid for all sets of matrices (there is no need to
assume that the matrices have non-negative entries) and is proved in [6] using the main
result of [24]. Here we present a direct and elementary justification.

Lemma 1. For any set of matrices {Ai : i = 1, . . . , m} and any αi ≥ 0 satisfying
∑n

i=1 αi = 1 we have:

(2.1) ρ(
m∑

i=1

αiAi) ≤ ρ(A1, . . . , Am).
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Proof. Let us fix some αi ≥ 0 with
∑

i αi = 1 and an integer k ≥ 1. Then

‖(
m∑

i=1

αiAi)
k‖ = ‖

∑

σ∈{1,...,m}k

ασAσ‖ ≤
∑

σ∈{1,...,m}k

ασ‖Aσ‖ ≤ max
σ∈{1,...,m}k

‖Aσ‖

but then also

lim
k→∞

‖(
m∑

i=1

αiAi)
k‖1/k = lim sup

k→∞
‖(

m∑

i=1

αiAi)
k‖1/k ≤ lim sup

k→∞
max

σ∈{1,...,m}k
‖Aσ‖1/k

and the result then follows from the definitions of the spectral radius (1.1) and of the
joint spectral radius (1.2).

�

An immediate corollary is given by:

Corollary 1.

1
m ρ(

m∑

i=1

Ai) ≤ ρ(A1, . . . , Am).

�

The example A1 = A, A2 = −A clearly shows that we cannot hope in general to have

ρ(A1, . . . , Am) ≤ ρ(
m∑

i=1

Ai). This inequality is nevertheless satisfied when the matrices Ai

leave a proper cone invariant. A cone in R n is a subset K ⊆ R n such that λv ∈ K for all
λ ≥ 0 and v ∈ K. We say that a cone K is proper if it is closed, convex, has nonempty
interior, and contains no straight line. For example, the set of vectors with non-negative
entries R n

+ is a proper cone but R n itself is not (see [30] for more background on cones
and proper cones). We shall say that the matrices Ai leave a proper cone invariant if
there exists a proper cone K ⊆ R n such that Ai K ⊆ K for all i. For example, matrices
with non-negative entries leave the proper cone R n

+ invariant.

Lemma 2. Associated to any proper cone K there is a matrix norm ‖ · ‖K that satisfies
‖A‖K ≤ ‖A + B‖K for all matrices A and B that leave the cone K invariant.

Proof. Most usual matrix norms satisfy this property when K = R n
+; we provide a

construction for arbitrary proper cones K.
Let ‖ · ‖ be some arbitrary vector norm. The dual vector norm ‖ · ‖∗ is defined by

‖w‖∗ = max‖v‖=1 wTv. Assume that K is a proper cone such that Ai K ⊆ K. Define the
dual of K by

K∗ = {w ∈ R n : wTv ≥ 0 for all v ∈ K}.
The dual of a proper cone is again a proper cone, see [30]. Let us now consider the
quantity

‖A‖K = max
v∈K,w∈K∗

‖v‖=‖w‖∗=1

wTAv.
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It is easy to verify that because K and its dual are proper cones, the quantity ‖ · ‖K is
indeed a matrix norm. Moreover, by the definition of the norm, matrices A and B that
satisfy AK ⊆ K and BK ⊆ K, are such that ‖A‖K ≤ ‖A + B‖K . �

We may now state the result of this section.

Theorem 1. Let {Ai : i = 1, . . . , m} be a set of matrices that leave a proper cone
invariant. Then

(2.2) 1
m

ρ(
m∑

i=1

Ai) ≤ ρ(A1, . . . , Am) ≤ ρ(
m∑

i=1

Ai).

Proof. The lower bound in (2.2) is already established in Corollary 1. Assume that the
matrices in {Ai : i = 1, . . . , m} leave the proper cone K invariant and define the matrix
norm ‖·‖K as in Lemma 2. Since AiK ⊆ K, we also have AσK ⊆ K for all σ ∈ {1, . . . , m}k

but then also

max
σ∈{1,...,m}k

‖Aσ‖K ≤ ‖
∑

σ∈{1,...,m}k

Aσ‖K = ‖(
m∑

i=1

Ai)
k‖K

and therefore

ρ(A1, . . . , Am) = lim sup
k→∞

max
σ∈{1,...,m}k

‖Aσ‖1/k
K ≤ lim sup

k→∞
‖(

m∑

i=1

Ai)
k‖1/k

K = ρ(
m∑

i=1

Ai).

�

It is interesting to notice that the conclusion of Theorem 1 does not directly involve
the cone K. The existence of a proper cone satisfying the hypotheses suffices to conclude
and the exact nature of the cone is irrelevant.

A matrix with non-negative entries leaves the cone R n
+ invariant and so we have the

following corollary.

Corollary 2. Let the matrices Ai, i = 1, . . . , m, have non-negative entries. Then

1
m ρ(

m∑

i=1

Ai) ≤ ρ(A1, . . . , Am) ≤ ρ(
m∑

i=1

Ai).

�

3. Kronecker lifting

We now describe a way to exploit Theorem 1 for obtaining approximations of arbitrary
high accuracy. Our approximations involve Kronecker powers of matrices. The Kronecker
product of two matrices A ∈ Rp1×q1 and B ∈ Rp2×q2 is the p1p2 × q1q2 matrix defined by

A ⊗ B =





A1,1B . . . A1,q1B
. . .

Ap1,1B . . . Ap1,q1B



 .
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We also define the Kroneker power of a matrix:

A⊗k = A ⊗ A . . . A ⊗ A
︸ ︷︷ ︸

k times

.

There is no need for parenthesis in this expression since the Kronecker product of two
matrices is an associative operation. Let us prove some elementary properties.

Lemma 3. For matrices of appropriate sizes we have:

(1) (A ⊗ B)T = AT ⊗ BT ;
(2) (A1 ⊗ B1)(A2 ⊗ B2) = (A1A2) ⊗ (B1B2);
(3) (A⊗k)T = (AT )⊗k;
(4) A⊗k B⊗k = (AB)⊗k;
(5) Let ‖ · ‖ denote the spectral matrix norm induced by the standard Euclidean vector

norm. Then ‖A⊗k‖ = ‖A‖k.

Proof. The first statement directly follows from the definition of the Kronecker product.
The second statement is quite standard; see, e.g., Section 4.2 in [22]. The third and
fourth statement follow, respectively, from repeated application of the first and second
statement. Finally, for proving the last statement, note that by using (3) and (4) we
obtain

‖A⊗k‖2 = max
‖x‖=1

xT (A⊗k)T A⊗kx = max
‖x‖=1

xT (AT )⊗kA⊗kx = max
‖x‖=1

xT (AT A)⊗kx.

The matrix (AT A)⊗k is symmetric and so the last expression is also equal to the largest
magnitude of the eigenvalues of (AT A)⊗k. For a matrix B the eigenvalues of the matrix
B⊗k are given by all possible products of k eigenvalues of B (see Theorem 4.2.12 in [22])
and we therefore conclude max

‖x‖=1
xT (AT A)⊗kx = ‖A‖k. �

We can now prove a useful identity for the spectral radius of Kronecker powers of
matrices.

Theorem 2. Let {Ai : i = 1, . . . , m} be a set of matrices and l ≥ 1. Then

ρ(A⊗l
1 , . . . , A⊗l

m ) = ρl(A1, . . . , Am).

Proof. Let σ ∈ {1, . . . , m}l. By using the equalities (3) and (5) of Lemma 3 we obtain

‖A⊗l
σl
· · ·A⊗l

σ1
‖ = ‖A⊗l

σ ‖ = ‖Aσ‖l.

The result then follows from the definition of the joint spectral radius (1.2). �

We now would like to combine Theorem 2 with Theorem 1 in order to obtain approxi-
mations of arbitrary high accuracy for matrices leaving a cone invariant. In order to do
this we need to consider Kronecker products of cones. For two sets Q1 ⊆ Rn and Q2 ⊆ Rm

let us denote

Q1 ⊗ Q2 = {z = u ⊗ v : u ∈ Q1, v ∈ Q2}.
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(In this definition, the vectors u and v are treated as column matrices.) If K1 and K2

are proper cones then K1 ⊗ K2 does not need to be a proper cone. Indeed, consider for
example the proper cones K1 = K2 = R 2

+ for which it is easy to see that K1 ⊗ K2 has
empty interior in R 4. We do however have the following result.

Lemma 4. Let K1 and K2 be proper cones, then the cone K = Conv (K1 ⊗ K2) is a
proper cone also.

Proof. The cone K is closed and convex by definition. Assume that int K = ∅. Then
there exists A ∈ Rnm \ {0} such that

〈A, z〉 = 0 ∀z ∈ K ⊃ K1 ⊗ K2.

Note that the function f(u, v) = 〈A, u ⊗ v〉 is a bilinear form defined on K1 × K2. Since
int (K1 × K2) 6= ∅, f can vanish on this set only if A = 0. That is a contradiction.

Let us prove now that K contains no straight line. Assume that this is not the case.
Then int K∗ = ∅, which implies existence of B ∈ Rnm \ {0} such that

(3.3) 〈B, w〉 = 0 ∀w ∈ K∗.

Since 〈u ⊗ v, x ⊗ y〉 = 〈u, x〉 · 〈v, y〉, we have K∗
1 ⊗ K∗

2 ⊆ K∗. Since K∗
1 and K∗

2 have
nonempty interior, relation (3.3) is impossible by the first part of the proof. �

We are ready to state the main result of this section.

Theorem 3. Let {Ai : i = 1, . . . , m} be a set of matrices leaving a proper cone invariant.
Then

1
m1/k ρ1/k(A⊗k

1 + · · ·+ A⊗k
m ) ≤ ρ(A1, . . . , Am) ≤ ρ1/k(A⊗k

1 + · · ·+ A⊗k
m ).

In particular, the joint spectral radius is given by

(3.4) ρ(A1, . . . , Am) = lim
k→∞

ρ1/k(A⊗k
1 + · · ·+ A⊗k

m ).

Proof. Assume that the matrices leave the proper cone K invariant. If AK ⊆ K, then
(AK)⊗k ⊆ K⊗k and by Lemma 3, A⊗kK⊗k ⊆ K⊗k. But then also A⊗k Conv K⊗k ⊆
Conv K⊗k. By Lemma 4 the cone Conv K⊗k is a proper cone. Thus the matrices A⊗k

i

leave a proper cone invariant and by Theorem 1 we have
1
m ρ(A⊗k

1 + · · ·+ A⊗k
m ) ≤ ρ(A⊗k

1 , . . . , A⊗k
m ) ≤ ρ(A⊗k

1 + · · ·+ A⊗k
m ).

In order to conclude it suffices to use the fact, proved in Theorem 2, that

ρ(A⊗k
1 , . . . , A⊗k

m ) = ρk(A1, . . . , Am).

�

It is somewhat surprising to notice that the right hand side in (3.4) does not directly
involve any mixed product between the matrices.

An approximation of relative accuracy (1/m)1/k can thus be obtained by computing
the spectral radius of a single matrix of dimension nk. For pairs of matrices some of the
relative accuracies and the corresponding matrix sizes are as follows:
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Relative accuracy 0.707 0.840 0.917 0.957
Matrix size n2 n4 n8 n16

4. Semi-definite lifting

The result in Theorem 3 provides an easy way to evaluate with arbitrary accuracy
the joint spectral radius of matrices that leave a proper cone invariant. Unfortunately,
matrices do not always leave a proper cone invariant. We show in this section how an
invariant cone can always be created by semi-definite lifting.

Let A ∈ R n×n and consider the following linear operator:

(4.1) X → AXAT : R n×n → R n×n.

A matrix representation for this linear operator can be obtained by using the matrix-to-
vector operator that develops a matrix into a vector by taking its columns one by one. This
operator, denoted vec, satisfies the elementary property vec(CXD) = (DT ⊗ C) vec(X)
(see Lemma 4.3.1 in [23]). We therefore have vec(AXAT ) = (A ⊗ A) vecX and a matrix
representation of the linear operator (4.1) is thus simply given by A ⊗ A.

Consider now the space of symmetric matrices S. This space is a subspace of R n×n of
dimension n(n + 1)/2 and the operator

(4.2) X → AXAT : S → S.

is again a linear operator. Matrix representations of this operator are of course different
from those of the operator (4.1) since, in particular, the spaces on which these operators
operate have different dimensions (we describe in the next section how to construct a
matrix representations for the operator on symmetric matrices). In the next theorem we
prove that even though the operators X → AXAT on S and on R n×n are different, their
joint spectral radius are equal.

Theorem 4. Let {Ai ∈ R n×n : i = 1, . . . , m} and denote by MA a matrix representation
of the linear operator X → AXAT : S → S. Then we have

ρ(MA1 , . . . , MAm) = ρ(A1 ⊗ A1, . . . , Am ⊗ Am) = ρ2(A1, . . . , Am).

Proof. The second equality is already proved in Theorem 2; we only need to prove the
first equality. Let ‖ · ‖F denote the Frobenius matrix norm (i.e., the sum of squares of all
entries) and consider the resulting induced operator norms for X → AXAT on R n×n and
S:

sup
X∈R

n×n,‖X‖F =1

‖AXAT‖F and sup
X∈S,‖X‖F =1

‖AXAT‖F .

We claim that these two operator norms are equal and that the supremum is achieved
for some symmetric matrix of rank one. Indeed, using the matrix-to-vector operator vec
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and denoting by ‖ · ‖ the usual vector Euclidean norm we get

sup
X∈R

n×n, ‖X‖F =1

‖AXAT‖2
F = sup

x∈R
n2

,‖x‖=1

‖(A ⊗ A)x‖2

= sup
x∈R

n2
,xT x=1

xT (A ⊗ A)T (A ⊗ A)x

= sup
x∈R

n2
,xT x=1

xT (AT A ⊗ AT A)x

For deriving the last equality, we have used (2) in Lemma 3. The supremum in the
last expression is achieved by any eigenvector x associated to an eigenvalue of largest
magnitude of AT A⊗AT A. Let (λi, vi) i = 1, . . . , n be the set of eigenvalues/eigenvectors
pairs associated to the symmetric matrix AT A and let λ1 be such that |λ1| ≥ λi for
all i. The eigenvalues/eigenvectors pairs of the matrix AT A ⊗ AT A are then given by
(λiλj, vi ⊗ vj) for i, j = 1, . . . , n. The vector v1 ⊗ v1 is thus an eigenvector of AT A⊗AT A
of largest eigenvalue magnitude. Since vec(vk vT

k ) = vk ⊗ vk we see that the supremum of
‖AXAT‖F is achieved for the symmetric rank one matrix v1 vT

1 . From this we conclude
that

sup
X∈R

n×n,‖X‖F =1

‖AXAT‖F = sup
X∈S,‖X‖F =1

‖AXAT‖F

and thus also

sup
‖x‖=1

‖(A ⊗ A)x‖ = sup
‖x‖=1

‖(MA)x‖.

Notice that MAσ = (MAi
)σ and so

‖(MAi
)σ‖ = ‖MAσ‖ = ‖Aσ ⊗ Aσ‖ = ‖(Ai ⊗ Ai)σ‖

and it then suffices to apply the definition of the joint spectral radius to conclude the
proof.

�

A matrix A is positive semi-definite (which we denote by A � 0) if vT Av ≥ 0 for all
v ∈ R n. The set of symmetric positive semi-definite matrices, denoted S+, is a cone. It
is not a proper cone of R n×n because it has empty interior in R n×n; but it is a proper
cone of the set of symmetric matrices S. If X ∈ S+ then we clearly have AXAT ∈ S+

and so the operator X → AXAT leaves the proper cone S+ invariant. Combining this
observation with Theorem 3 and Theorem 4 we deduce:

Theorem 5. Let {Ai ∈ R n×n : i = 1, . . . , m} and denote by MA a matrix representation
of the linear operator X → AXAT : S → S. Then

(4.3) 1√
m

ρ1/2(MA1 + . . . + MAm) ≤ ρ(A1, . . . , Am) ≤ ρ1/2(MA1 + . . . + MAm).

Note that for m = 2 the bounds (4.3) are not so bad. Indeed, 1/
√

2 > 0.7 and so the
relative accuracy of the approximation is at least 70%. The main interest of this result
resides however in the possibility of applying it recursively. Starting from an initial matrix
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A ∈ R n×n we define a sequence of operators acting on spaces of increasing dimensions.
For l = 1 we define

A[1](x) ≡ Ax x ∈ E1 ≡ R n

and for l ≥ 2 we define the operators recursively

A[l](x) ≡ MA[l−1](x) x ∈ El ≡ S(El−1).

Assume for the simplicity of the presentation that m = 2 and let A1, A2 ∈ R n×n. From
Theorem 4 we know that

ρ
(

A
[l]
1 , A

[l]
2

)

= ρ2l

(A1, A2)

On the other hand, for any l ≥ 1 the operators A
[l]
1 and A

[l]
2 leave the cone S+(El−1)

invariant. Therefore, in view of Theorem 1, we have

1
2
ρ

(

A
[l]
1 + A

[l]
2

)

≤ ρ
(

A
[l]
1 , A

[l]
2

)

≤ ρ
(

A
[l]
1 + A

[l]
2

)

.

Combining these last two expressions, we get the following bounds:

(
1
2

)1/2l
[

ρ
(

A
[l]
1 + A

[l]
2

)]1/2l

≤ ρ(A1, A2) ≤
[

ρ
(

A
[l]
1 + A

[l]
2

)]1/2l

.

Note that

1 − ln 2
2l ≤

(
1
2

)1/2l

≤ 1

and thus the improvement in the quality of our approximation is quite fast. Unfortunately,
the dimensions of the spaces El are also growing fast; we have

nl+1 = 1
2
nl(nl + 1)

(where ni = dim Ei) and therefore asymptotically we have nl = O
(

(n/2)2l
)

. Let us

display, for a pair of matrices, the relative accuracy of our approximation as a function of
the resulting dimension.

Steps Accuracy n = 2 n = 10 n = 100
1 0.707 3 55 5050
2 0.840 6 1540 ∗
3 0.917 21 118570 ∗
4 0.957 231 ∗ ∗
5 0.978 26796 ∗ ∗

We use the symbol ∗ to mark the cases for which the dimension of the auxiliary problem
goes beyond the abilities of modern computers.
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5. Numerical implementation and examples

The recursive semi-definite lifting for obtaining approximations of the joint spectral
radius of increasing accuracy may be difficult to implement because the matrix MA is not
easy to express in terms of the matrix A. Consider for example the case of 2×2 matrices.
Let

A =

(
a11 a12

a21 a22

)

,

then one easily compute

MA =





a2
11 2a11a12 a2

12

a11a21 a11a22 + a12a21 a12a22

a2
21 2a21a22 a2

22



 .

In general, the matrix MA can be expressed as follows:

(5.1) MA = (QT Q)−1QT P−1(A ⊗ A)PQ

where P is a particular permutation matrix of size n2 and Q is given by

Q =






In 0
0 In(n−1)

2

0 In(n−1)
2






(the matrix Ik is the identity matrix of size k). One difficulty with the expression (5.1) is
that the permutation matrix P is tedious to construct; it essentially relates the column
decomposition of a matrix with its diagonal decomposition. The permutation matrix
can of course be constructed but the implementation of this construction is somewhat
cumbersome. A way to bypass this difficulty can be achieved by using the semi-definite
lifting only once, and then apply only Kronecker liftings. The semi-definite lifting can be
performed either at the beginning or at the end of the process, leading to the bounds

(5.2) 1
m ρ(M⊗l

A1
+ · · · + M⊗l

Am
) ≤ ρ2l(A1, . . . , Am) ≤ ρ(M⊗l

A1
+ · · ·+ M⊗l

Am
)

and

(5.3) 1
m ρ(MA⊗l

1
+ · · ·+ MA⊗l

m
) ≤ ρ2l(A1, . . . , Am) ≤ ρ(MA⊗l

1
+ · · ·+ MA⊗l

m
).

The validity of these inequalities results from the combination of Theorem 1, Theorem
2, Lemma 4 and Theorem 4. The expressions (5.2) and (5.3) both provide a relative
accuracy of (1/m)1/(2l) but involve matrices of different size. The matrices M⊗l

Ai
have

size (n(n + 1)/2)l whereas the matrices MA⊗l
i

have size nl(nl + 1)/2 > (n(n + 1)/2)l. In

addition to this, the matrices M⊗l
Ai

are easier to compute than MA⊗l
i

since they necessitate

the evaluation of semi-definite liftings of smaller matrices.
Of course, other combinations of Kronecker and semi-definite liftings are also possible.

Whenever a k-th Kronecker power is used, the current relative accuracy is k-th rooted, and
whenever a semi-definite lifting is used, the relative accuracy is square rooted. Moreover,
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at least one semi-definite lifting is needed if the original matrices do not leave a proper
cone invariant.

For the numerical implementation of these approximations notice also that the spectral
radius of MA1 + · · · + MAm is the spectral radius of the linear operator

B : X → A1XAT
1 + · · ·+ AmXAT

m : S → S

and it can therefore be found by standard linear algebra techniques, or by solving the
following linear inequality optimization problem

(5.4) inf
X,τ

{
τ : τX � A1XAT

1 + · · ·+ AmXAT
2 , X ≻ 0

}

for which efficient convex optimization algorithms are available (see, e.g., [12]) that are
implemented in standard commercial softwares such as the Matlab “LMI Control Tool-
box”.

6. Computational complexity analysis

The joint spectral radius can be approximated to arbitrary accuracy. It is proved in
[32] that, unless P=NP, approximating algorithms of relative accuracy 1 − ǫ for pairs of
matrices cannot run in time polynomial in the size of the matrices and in ln(1/ǫ). It was
later noticed (see the note 9 on page 1260 of [9]) that a careful examination of the proof in
[32] shows that, unless P=NP, there are no approximation algorithm of relative accuracy
1 − ǫ that run in time polynomial in the size of the matrices and in 1/ǫ. This is however
not proved in [9]. In this section we prove this result by extracting the essential part of
the proof in [32].

We proceed by reduction from the classical NP-complete satisfiability problem 3-SAT.
This problem is defined as follows. Consider a set {x1, . . . xn} of Boolean variables. A
literal is either a Boolean variable xi, or its negation x̄i. A three-literal clause is a disjunc-
tion of three literals (e.g., x3∨x̄5∨x̄6). The 3-SAT problem is the problem of determining,
for a given collection of three-literal clauses, if there exists a truth assignment for the vari-
ables that simultaneously satisfies all clauses. This problem is known to be NP-complete;
finding a polynomial time algorithm for the problem is exactly equivalent to proving that
P=NP.

The complexity result proved in [32] is based on the construction of a pair of matrices
which we briefly outline (the complete construction can easily be extracted from [32]).
From a given instance of 3-SAT with n variables and p clauses two square matrices A1, A2

are constructed in polynomial time. The matrices have their entries in {0, 1}, are of size
(n + 1)(p + 1), and have a joint spectral radius that satisfies:

ρ(A1, A2) ≥ p1/(n+2) if the instance is satisfiable
ρ(A1, A2) ≤ (p − 1)1/(n+2) if the instance is not satisfiable.
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Any algorithm of relative accuracy (1−1/p)1/(n+2) allows to make the distinction between
these two cases. Moreover, since

(

1 − 1

p

)1/(n+2)

≤ 1 − 1

p(n + 2)
≤ 1

it is clear that an approximation algorithm of relative accuracy 1−1/p(n + 2) also allows to
decide 3-SAT. Since the size of the matrices in the construction are given by (n+1)(p+1),
we deduce:

Theorem 6. Unless P=NP, the problem of approximating the joint spectral radius of two
square matrices with {0, 1} entries and with relative accuracy 1− ǫ cannot be obtained in
time polynomial in the size of the matrices and in 1/ǫ.

From Theorem 3 we know that the spectral radius of two matrices with nonnegative en-
tries is given by ρ(A1, A2) = limk→∞ ρ1/k(A⊗k

1 +A⊗k
2 ) and so the quantity limk→∞ ρ1/k(A⊗k

1 +
A⊗k

2 ) is NP-hard to approximate in the sense given in Theorem 6. Theorem 3 provides
also a rate of convergence for the approximations ρ1/k(A⊗k

1 + A⊗k
2 ). From this we may

prove the following complexity result.

Theorem 7. The problem of determining, for a given integer k ≥ 0 and for a given pair
of matrices A1, A2 with nonnegative entries, if

ρ(A⊗k
1 + A⊗k

2 ) < 1

is a problem that is NP-hard.

Proof. We proceed by reduction from 3-SAT. From a given instance of 3-SAT with n
variables and p clauses we use the construction given in [32] to construct two square
matrices B1, B2 that have their entries in {0, 1}, are of size (n + 1)(p + 1), and have a
joint spectral radius that satisfies:

ρ(B1, B2) ≥ p1/(n+2) if the instance is satisfiable
ρ(B1, B2) ≤ (p − 1)1/(n+2) if the instance is not satisfiable.

We then choose α ∈ R with 0 < α < 1, r ∈ Q and k ≥ 0 such that α < (1/2)1/k and

(6.1) (p − 1)
1

n+2 <
1

α
(p − 1)

1
n+2 < r < αq

1
n+2 < p

1
n+2 .

Consider now the matrices A1 = (1/r)B1 and A2 = (1/r)B2. We claim that ρ(A⊗k
1 +

A⊗k
2 ) < 1 iff the instance of 3-SAT is not satisfiable. Indeed, assume first that the

instance of 3-SAT is not satisfiable. Then

ρ(B1, B2) ≤ (p − 1)1/(n+2).

Since ρ(A⊗k
1 + A⊗k

2 ) is an approximation of relative accuracy 1/22k of ρ(A1, A2), we have

ρ(A⊗k
1 + A⊗k

2 ) ≤ 22kρ(A1, A2) ≤
22k

r
ρ(B1, B2) ≤

22k

r
(p − 1)1/(n+2)
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and by using the inequalities (6.1) we conclude ρ(A⊗k
1 + A⊗k

2 ) < 1. In an analogous way
one see that, if the instance of 3-SAT is satisfiable, then ρ(A⊗k

1 + A⊗k
2 ) > 1 and the proof

is therefore complete.
�

7. Ellipsoid approximation

Let us now compare our approximation of the joint spectral radius with another ap-
proximation appearing in the literature. The following approximation, called ellipsoid
approximation, is introduced in [6]:

(7.1) ρ̂(A1, . . . , Am) =

[

inf
X,τ

{τ : τX � AiXAT
i , i = 1, . . . , m, X ≻ 0}

]1/2

.

This expression corresponds to the best ellipsoid norm for the set of matrices. In [6] the
following inequalities are proved

1√
n ρ̂(A1, . . . , Am) ≤ ρ(A1, . . . , Am) ≤ ρ̂(A1, . . . , Am).

Thus, the ellipsoid approximation has a relative accuracy of 1/
√

n. This accuracy de-
creases with the size of the matrices but does not depend on the number of matrices
in the set. Using our results we can prove that the relative accuracy of the ellipsoid
approximation is in fact bounded by 1/

√
m where m is the number of matrices.

Theorem 8. Let {Ai : i = 1, . . . , m} be a set of matrices and define the ellipsoid approx-
imation ρ̂ by (7.1). Then

1√
m ρ̂(A1, . . . , Am) ≤ ρ(A1, . . . , Am) ≤ ρ̂(A1, . . . , Am).

Proof. It is easy to see that ρ(A1, . . . , Am) ≤ ρ̂(A1, . . . , Am). For proving the first inequal-
ity, note that the spectral radius of the linear operator

B : X →
m∑

i=1

AiXAT
i : S → S

can be represented as follows:

(7.2) ρ(B) = inf
X,τ

{τ : τX �
m∑

i=1

AiXAT
i , X ≻ 0}.

If a pair (X, τ) is feasible for the optimization problem in (7.2), then it is also feasible for
the optimization problem in (7.1). Therefore

ρ̂(A1, . . . , Am) ≤ ρ1/2(B).

Finally, by Theorem 5 we have

1√
m ρ1/2(B) ≤ ρ(A1, . . . , Am)
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and so we get the following bounds

(7.3) 1√
m

ρ̂(A1, . . . , Am) ≤ 1√
m

ρ1/2(B) ≤ ρ(A1, . . . , Am) ≤ ρ̂(A1, . . . , Am) ≤ ρ1/2(B).

Thus we see that the ellipsoid estimate ρ̂(A1, . . . , Am) has relative quality 1/
√

m. �

By using Theorem 2 one can obtain a statement analogous to that of Theorem 3.

Corollary 3. Let {Ai : i = 1, . . . , m} be a set of matrices and define the ellipsoid approx-
imation ρ̂ by (7.1). Then

(7.4) 1
m1/(2k) ρ̂1/k(Ak

1, . . . , A
k
m) ≤ ρ(A1, . . . , Am) ≤ ρ̂1/k(Ak

1, . . . , A
k
m).

For k − 1, this result is also proved in [1]. For arbitrary k a proof can be reconstructed
from the result proved in [21]. Notice however that approximation algorithms that are
directly based on (7.4) are not efficient because they require to solve linear matrix in-
equalities of very large dimension. Approximations based on (5.2) are easier to obtain
because there exists many efficient numerical algorithms for approximating the spectral
radius of a matrix.

8. Discussion

The results presented in this paper introduce the possibility to compute approximations
for the joint spectral radius with worst-case theoretical guarantees. Of course, the com-
putational complexity of these estimates needs further examination. Indeed, the spectral
structure of the matrix A⊗k is very simple and this simplicity must be inherited somehow
by the matrix A⊗k

1 +A⊗k
2 . It therefore appears to be an interesting problem to investigate

the possibility of constructing efficient procedures for finding the spectral radius of this
sum; of course there are theoretical limitations on what can be achieved since we have
shown that the problem of deciding ρ(A⊗k

1 + A⊗k
2 ) ≤ 1 is NP-hard.

Another interesting issue is that of determining if worst-case theoretical guarantees can
be provided for the approximation

max
σ∈{1,...,m}k

ρ(Aσ)1/k ≤ ρ(A1, . . . , Am).

In many numerical examples, this approximation does in fact perform at least as well.
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