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Abstract. In this paper, a relationship between linear discriminant analysis (LDA) and the
generalized minimum squared error (MSE) solution is presented. The generalized MSE solution is
shown to be equivalent to applying a certain classification rule in the space defined by LDA. The
relationship between the MSE solution and Fisher discriminant analysis is extended to multiclass
problems and also to undersampled problems for which the classical LDA is not applicable due to
singularity of the scatter matrices. In addition, an efficient algorithm for LDA is proposed exploiting
its relationship with the MSE procedure. Extensive experiments verify the theoretical results.
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1. Introduction. The extensive utilization of linear discriminant functions for
pattern recognition is attributed to their simple concept and ease of computation.
In linear discriminant function–based methods, the existence of a hyperplane which
can optimally separate two classes is assumed. The optimality of the separating
hyperplanes can be measured by various criteria, and numerous methods have been
proposed originating from the work by Fisher [1]. In the Perceptron method, a linear
discriminant function is obtained by iterative procedures to reduce the amount of
misclassified training data [2]. Support vector machines (SVM) search for a linear
function which maximizes the margin between classes either in the original data space
or nonlinearly transformed feature spaces [3]. The minimum squared error (MSE)
solution seeks a linear discriminant function that minimizes the squared error [4, 5].
Baysian classifiers are based on estimation of distribution functions by which data is
generated. From the estimated class density function, the class posterior probability
is computed using Bayes theorem and a new data item is assigned to the class having
the maximum posterior probability. In particular, assuming normal density functions
for each class, where different means but a common covariance are to be estimated,
Baysian classification rules turn into a set of linear discriminant functions [6, 7].

While being similar in that linear functions are utilized, linear discriminant anal-
ysis (LDA) is different from the above-mentioned methods since LDA is a dimension
reduction method rather than a discriminant classifier. LDA finds a linear transforma-
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tion that can maximize the class separability in the reduced dimensional space. The
criterion used in LDA is to find a dimension reducing transformation that maximizes
the between-class scatter and minimizes the within-class scatter [7]. When the data
set has two classes, the relationship between the MSE solution and Fisher discrimi-
nant analysis (FDA) has been studied [8, 4], where FDA is a special case of LDA for
two-class cases. Since both FDA and the MSE solution in two-class cases deal with
one linear function, the relationship between them follows naturally. The MSE proce-
dure is generalized for multiclass problems by setting up multiple two-class problems
each of which is constructed by one class and the remaining data points forming the
other class [4, 6]. In this paper, we develop the relationship between LDA and the
generalized MSE procedure for multiclass problems and also for undersampled prob-
lems. Utilizing the developed relationships, it is shown that the MSE solution can
be obtained by applying a certain classification rule in the reduced dimensional space
obtained by LDA, and conversely LDA can be performed through the MSE procedure
without solving the eigenvalue problem explicitly.

The term LDA has also been used to denote Baysian linear classifiers resulting
from the assumption of normal density functions with a common covariance. We
note that in the rest of the paper LDA refers to a dimension reduction method. Many
problems including generalization of Baysian linear classifiers have been studied [9, 10],
and under certain restrictions the relationships between Baysian linear classifiers and
LDA were investigated [11, 10]. While the relationships developed in this paper are
applicable for both oversampled and undersampled problems, the results in [11, 10]
are restricted to oversampled problems. For the singular or ill-conditioned covariance
which occurs in undersampled problems, regularization methods can be applied for
computation of the eigenvalue decomposition [12, 13]. However, the estimation of the
regularization parameters can be expensive, and generalization errors by overfitting,
especially in undersampled problems, should be taken care of.

The rest of the paper is organized as follows. In sections 2 and 3, LDA and the
MSE procedures are reviewed. In section 4, we generalize the relation between the
MSE solution and FDA for undersampled problems for which the classical FDA fails
due to the singularity of the scatter matrices. We also derive the relationship between
LDA and the generalized MSE solution for multiclass problems. In section 5, we
propose an efficient algorithm for LDA which utilizes the relationship with the MSE
solution and does not require the solution of eigenvalue problems. The experimental
results in section 6 verify the theoretical results.

2. Linear discriminant analysis. LDA is a linear dimension reduction method
which can be used as a preprocessing step for data analysis. Based on the information
from the given data, LDA finds a linear transformation that maximizes the between-
class distances and minimizes the within-class scatter so that the class separability
can be optimized in the transformed space. Throughout the paper, we assume the
vector space representation of a data set A,

A = [a1, . . . , an] = [A1, A2, . . . , Ar] ∈ R
m×n,(2.1)

where each data item in the m-dimensional space is represented as a column vector
ai and a collection of data items in the ith class as a block matrix Ai ∈ R

m×ni . Each
class i (1 ≤ i ≤ r) has ni elements and the total number of data items is n =

∑r
i=1 ni.

Let Ni (1 ≤ i ≤ r) be the index set of data items in the class i. The data set A
can be considered a training set on which the modeling of data analysis algorithms is
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based—for example, searching for a linear transformation for LDA and discriminant
functions for the MSE procedure.

Given a data set A, the between-class scatter matrix Sb, within-class scatter
matrix Sw, and total scatter matrix St are defined as

Sb =

r∑
i=1

ni(ci − c)(ci − c)T , Sw =

r∑
i=1

∑
j∈Ni

(aj − ci)(aj − ci)
T ,(2.2)

St = Sb + Sw =

n∑
j=1

(aj − c)(aj − c)T ,

where ci = 1
ni

∑
j∈Ni

aj and c = 1
n

∑n
j=1 aj are class centroids and the global centroid,

respectively. The traces of the scatter matrices can be used to measure the quality of
the cluster structure in the data set as

trace(Sb) =

r∑
i=1

ni‖ci − c‖2
2, trace(Sw) =

r∑
i=1

∑
j∈Ni

‖aj − ci‖2
2.

The distance between classes is quantified by trace(Sb), and trace(Sw) measures the
scatter within classes. The optimal dimension reducing transformation GT ∈ R

l×m

for LDA is the one that maximizes

J(G) = trace
(
(GTSwG)−1(GTSbG)

)
,(2.3)

where GTSbG and GTSwG are scatter matrices in the transformed space. It is well
known [7] that the criterion in (2.3) is maximized when the columns of G ∈ R

m×(r−1)

are the eigenvectors x corresponding to the r − 1 largest eigenvalue λ of

Sbx = λSwx.(2.4)

When Sw is nonsingular, one can solve the eigenvalue problem

S−1
w Sbx = λx,(2.5)

referred to as the classical LDA.
In order to overcome some limitations in the classical LDA, several generalization

methods have been proposed. The problems caused by the singularity of the scatter
matrices on undersampled problems are circumvented by two-stage decompositions of
the scatter matrices [14, 15, 16], and the criterion itself of LDA is criticized in [17].
Howland et al. [18, 19] applied the generalized singular value decomposition (GSVD)
due to Paige and Saunders [20] which is applicable for undersampled problems. We
briefly review the method used in [18] and give a new approach to it, which will be
used in deriving the relationship between LDA and the generalized MSE solution.

When the GSVD [20] is applied to two matrices Zb and Zw with the same number
of columns, p , we have

UT
b ZbX = [ Γb︸︷︷︸

s

0︸︷︷︸
p−s

] and UT
wZwX = [ Γw︸︷︷︸

s

0︸︷︷︸
p−s

] for s = rank

([
Zb

Zw

])
,(2.6)

where Ub and Uw are orthogonal and X is nonsingular,

ΓT
b Γb + ΓT

wΓw = Is,
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and ΓT
b Γb and ΓT

wΓw are diagonal matrices with nonincreasing and nondecreasing
diagonal components, respectively. The method due to Howland et al. [18] utilizes
the fact that the scatter matrices can be expressed as

Sb = HbH
T
b , Hb = [

√
n1(c1 − c), . . . ,

√
nr(cr − c)] ∈ R

m×r,

Sw = HwH
T
w , Hw =

[
A1 − c1e

T
1 , . . . , Ar − cre

T
r

]
∈ R

m×n,

St = HtH
T
t , Ht = [a1 − c, . . . , an − c] ∈ R

m×n,

where ei = [1, . . . , 1]T ∈ R
ni×1. Suppose the GSVD is applied to the matrix pair

(HT
b , HT

w ), and we obtain

UT
b HT

b X = [Γb 0] and UT
wHT

wX = [Γw 0].(2.7)

From (2.7) and ΓT
b Γb + ΓT

wΓw = Is,

XTSbX =

[
ΓT
b Γb

0m−s

]
≡

⎡
⎢⎢⎣
Iμ

Dτ

0s−μ−τ

0m−s

⎤
⎥⎥⎦(2.8)

and

XTSwX =

[
ΓT
wΓw

0m−s

]
≡

⎡
⎢⎢⎣

0μ
Eτ

Is−μ−τ

0m−s

⎤
⎥⎥⎦ ,(2.9)

where the subscripts on I and 0 denote the order of square identity and zero matrices.
Denoting the diagonal elements in (2.8) as ηi and the diagonal elements in (2.9) as
ζi, we have

ζiSbxi = ηiSwxi, i = 1, . . . ,m,(2.10)

where xi are the column vectors of X. Note that xi, i = s + 1, . . . ,m, belong to
null(Sb) ∩ null(Sw) and therefore do not convey any discriminant information. Since

η1 ≥ · · · ≥ ηs and ζ1 ≤ · · · ≤ ζs,

the r−1 leftmost columns of X give an optimal transformation for LDA. This method
is called LDA/GSVD [18, 19].

The algorithm to compute the GSVD for the pair (HT
b , H

T
w ) was presented in [18]

as follows:
1. Compute the SVD of Z = [H

T
b

HT
w
] ∈ R

(r+n)×m: Z = P [Σ 0
0 0]U

T , where s =

rank(Z) and P ∈ R
(r+n)×(r+n) and U ∈ R

m×m are orthogonal and the diag-
onal components of Σ ∈ R

s×s are nonincreasing.
2. Compute V from the SVD of P (1 : r, 1 : s), which is P (1 : r, 1 : s) = WΓbV

T .

3. Compute the first r − 1 columns of X = U [Σ
−1V 0

0 I], and assign them to the

transformation matrix G.
Since ΓT

b Γb + ΓT
wΓw = Is, from (2.8) and (2.9), we have

XTStX = XTSbX + XTSwX =

[
Is 0
0 0

]
,(2.11)
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where s = rank(Z). Equation (2.11) implies s = rank(St) and from step 3 in the
LDA/GSVD algorithm

St = X−T

[
Is 0
0 0

]
X−1 = U

[
Σ2 0
0 0

]
UT ,(2.12)

which results in the eigenvalue decomposition (EVD) of St. Partitioning U as

U = [ U1︸︷︷︸
s

U2︸︷︷︸
m−s

],

we have

X = U

[
Σ−1V 0
0 I

]
=
[
U1Σ

−1V U2

]
.(2.13)

By substituting X in (2.8) with (2.13),

Σ−1UT
1 SbU1Σ

−1 = V ΓT
b ΓbV

T .(2.14)

Note that the optimal transformation matrix G by LDA/GSVD is obtained by the
leftmost r− 1 columns of X, which are the leftmost r− 1 columns of U1Σ

−1V . Hence
(2.12) and (2.14) show that the solution to LDA/GSVD can be obtained as follows:

1. Compute the EVD of St:

St =
[
U1 U2

] [Σ2 0
0 0

] [
UT

1

UT
2

]
.(2.15)

2. Compute V from the EVD of S̃b ≡ Σ−1UT
1 SbU1Σ

−1 : S̃b = V ΓT
b ΓbV

T .
3. Assign the first r − 1 columns of U1Σ

−1V to G.
In step 2 of the new approach, denoting

F = U1Σ
−1 ∈ R

m×s,(2.16)

the EVD of S̃b can be computed from the SVD of FTHb as

FTHb = V ΓT
b S

T = [ V1︸︷︷︸
r−1

V2︸︷︷︸
s−r+1

]

[
Γb1 0
0 0

] [
ST

1

ST
2

]
,(2.17)

where V ∈ R
s×s, S ∈ R

r×r are orthogonal and Γb1 ∈ R
(r−1)×(r−1) is a diagonal

matrix with nonincreasing diagonal elements. Hence

X = [U1Σ
−1V U2] = [FV1 FV2 U2](2.18)

and the transformation matrix G is given as

G = FV1 = U1Σ
−1V1.(2.19)

For any x ∈ null(Sb) ∩ null(Sw),

0 = xTSbx = (xTHb)(H
T
b x) = ‖xTHb‖2 =

r∑
i=1

ni

∣∣xT ci − xT c
∣∣2



LDA AND GENERALIZED MSE SOLUTION 479

and

0 = xTSwx =

n∑
j=1

∣∣xTaj − xT ci
∣∣2, where aj belongs to the ith class.

Hence {
xT ci = xT c for i = 1, . . . , r,
xTaj = xT ci for all j in Ni and i = 1, . . . , r,

therefore,

UT
2 z = UT

2 c(2.20)

for any given data item z. This implies that the vectors xi, i = s+1, . . . ,m, belonging
to null(Sb) ∩ null(Sw) do not convey discriminative information among the classes,
even though the corresponding eigenvalues are not necessarily zero. Since rank(Sb) ≤
r − 1, from (2.8) and (2.9)

xT
i Sbxi = 0 and xT

i Swxi = 1 for r ≤ i ≤ s,

and the between-class scatter becomes zero by the projection onto the vector xi.
Hence it is justifiable that the linear transformation GT for LDA can be formed by
taking the first r − 1 columns from [FV U2] = [FV1 FV2 U2].

3. Minimum squared error solution. The MSE solution in a two-class prob-
lem (i.e., r = 2) seeks a linear discriminant function

g(z) = w0 + wT z

for which

g(z) = w0 + wT z =

{
β1 if z ∈ class 1,
β2 if z ∈ class 2,

(3.1)

where βi is the prespecified number for each class. For the data set A given in (2.1),
the problem (3.1) can be reformulated to minimize the squared error∥∥∥∥∥∥∥

⎡
⎢⎣1 aT1

...
...

1 aTn

⎤
⎥⎦[w0

w

]
−

⎡
⎢⎣y1

...
yn

⎤
⎥⎦
∥∥∥∥∥∥∥

2

2

,(3.2)

where yi = β1 if ai is in class 1 and yi = β2 if ai is in class 2. Denoting

P =

⎡
⎢⎣1 aT1

...
...

1 aTn

⎤
⎥⎦ ,(3.3)

a solution which minimizes the squared error (3.2) can be computed using the pseudo-
inverse P+ of P as

[
w0

w

]
= P+

⎡
⎢⎣y1

...
yn

⎤
⎥⎦ .(3.4)
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When the number of columns of P is greater than the number of rows, i.e., m+1 > n,
the least squares problem of (3.2) is underdetermined and there may exist infinitely
many solutions. The one given in (3.4) is one of many possible solutions.

Different choices of β = [β1, β2]
T would give different discriminant functions. In

particular, when β1 = n/n1 and β2 = −n/n2, the MSE solution is related to the FDA
[4]. The vector w in (3.4) is the same as the solution x of FDA except for some scaling
factor α as

w = αS−1
w (c1 − c2) ≡ αx and w0 = −wT c,(3.5)

where c and ci are the global and class centroids, respectively. A new data item is
assigned to class 1 if

wT z + w0 = wT (z − c) = αxT (z − c) > 0;(3.6)

otherwise it is assigned to class 2.
The MSE procedure is generalized to multiclass cases as a set of multiple two-class

problems [4]. For each class i (1 ≤ i ≤ r), the MSE solution to the problem

gi(z) = w0i + wT
i z =

{
βi if z ∈ class i,
0 otherwise

(3.7)

is to be found. The solution of the multiclass problem (3.7) in contrast to the problem
(3.1) will be referred to as the generalized MSE solution whenever the distinction is
needed. As in [4], one choice for βi would be assigning βi = 1 for i = 1, . . . , r. The
squared error function in the multiclass problem is expressed using the Frobenius
norm as ∥∥∥∥∥∥∥

⎡
⎢⎣1 aT1

...
...

1 aTn

⎤
⎥⎦[w01 · · · w0r

w1 · · · wr

]
−

⎡
⎢⎣y11 · · · y1r

...
...

yn1 · · · ynr

⎤
⎥⎦
∥∥∥∥∥∥∥

2

F

,(3.8)

where yji = βi if aj belongs to the class i, and 0 otherwise. Denoting

W =

[
w01 · · · w0r

w1 · · · wr

]
and Y =

⎡
⎢⎣y11 · · · y1r

...
...

yn1 · · · ynr

⎤
⎥⎦(3.9)

and with P defined as in (3.3), the MSE solution of the problem (3.8) can be obtained
by

W = P+Y,(3.10)

and a new data item z is assigned to the class i if, for all j 	= i,

gi(z) > gj(z).(3.11)

Let us consider the mapping defined by the discriminant functions of the MSE
solution (3.10) as

x −→
[
g1(x), . . . , gr(x)

]T ∈ R
r×1.(3.12)
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Fig. 1. The spaces transformed by the mapping (3.12) induced by the generalized MSE solution
(first row) and LDA (second row).

Then (3.8) can be represented as

‖PW − Y‖2
F =

∑
1≤i≤r

∑
j∈Ni

∥∥∥∥∥∥∥
⎡
⎢⎣g1(aj)

...
gr(aj)

⎤
⎥⎦− βibi

∥∥∥∥∥∥∥
2

2

,

where bi ∈ R
r×1 (1 ≤ i ≤ r) is the column vector with 1 in the ith position and

0 elsewhere. Hence in the space transformed by the mapping (3.12), the ith class
centroid will be mapped close to the point βibi. Figure 1 illustrates the transformed
spaces by LDA and the mapping (3.12), where βi was set to 1, 1 ≤ i ≤ 3, for a
problem with three classes. The figures in the first row were obtained by the mapping
(3.12) resulting in the dimension which is the same as the number of classes, while
the figures in the second row show the reduced dimensional space by LDA for which
the dimension is one less than the number of classes. The first two figures on the
top were obtained by randomly taking three subclasses in the Isolet data set from
the UCI Machine Learning Repository.1 The Isolet data set has 26 classes, and a
detailed explanation of the data set will be given in section 6. The third figure on the
top, which was obtained by the Iris data set, illustrates that two classes among three
classes are not well separable. The figures in the second row show the transformed
space by LDA which corresponds to the figures on the top. The corresponding figures
look quite similar.

What is the mathematical relationship between the two methods? If there is
any relationship, is it possible to take advantage of the merits from each method
and combine them? In the next section, we answer these questions by studying the
relationship between LDA and the generalized MSE solution for multiclass problems.

1http://www.ics.uci.edu/∼mlearn/MLRepository.html
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4. Relationships between LDA and the generalized MSE solution. The
relationship of the MSE solution and FDA given in (3.5) holds when the within-
class scatter matrix Sw is nonsingular. Now we show that the relationship (3.5)
can be generalized for multiclass and undersampled problems by using the algorithm
discussed in section 2.

4.1. FDA and the MSE solution on undersampled problems. Let

g(z) = w0 + wT z

be the MSE solution to the problem

g(z) = w0 + wT z =

{
n/n1 if z ∈ class 1,
−n/n2 if z ∈ class 2.

(4.1)

The normal equations for the problem in (3.2) are

[
1 · · · 1
a1 · · · an

]⎡⎢⎣1 aT1
...

1 aTn

⎤
⎥⎦[w0

w

]
=

[
1 · · · 1
a1 · · · an

] [ n
n1

en1

− n
n2

en2

]
,(4.2)

where eni
is the ni × 1 column vector with elements 1. From (4.2), we obtain⎧⎪⎨

⎪⎩
nw0 + ncTw = 0,

ncw0 +

( ∑
1≤j≤n

aja
T
j

)
w =

n

n1

∑
j∈N1

aj −
n

n2

∑
j∈N2

aj .
(4.3)

From the first equation in (4.3) we have

w0 = −cTw.(4.4)

By substituting (4.4) in the second equation of (4.3) and using the expressions of Sb

and Sw for two-class problems

Sb =
∑

1≤i≤2

nicic
T
i − nccT and Sw =

∑
1≤j≤n

aja
T
j −

∑
1≤i≤2

nicic
T
i ,

we obtain

(Sb + Sw)w = n(c1 − c2).(4.5)

Let x1 be the first column vector of [FV1 FV2 U2] in (2.18). From the discussion
given in section 2 and the fact that rank(Sb) = 1, we have

ζiSbxi = ηiSwxi for η1 > η2 = · · · = ηm = 0.

Since η1 + ζ1 = 1,

η1(Sb + Sw)x1 = (η1 + ζ1)Sbx1 = Sbx1 =
n1n2

n
(c1 − c2)(c1 − c2)

Tx1.(4.6)

Denoting

μ = η1
n2

n1n2(c1 − c2)Tx1
,
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(4.6) becomes

(Sb + Sw)μx1 = n(c1 − c2).(4.7)

Then by (4.5) and (4.7), we have

Stw = (Sb + Sw)w = (Sb + Sw)μx1 = Stμx1.(4.8)

From (4.8) and the EVD of St in (2.15),

U1Σ
2UT

1 w = U1Σ
2UT

1 μx1 and UT
1 w = UT

1 μx1,

and from (2.20) and (4.4) we obtain

wT z + w0 = wT (z − c) = wT
(
U1U

T
1 + U2U

T
2

)
(z − c)(4.9)

= wTU1U
T
1 (z − c) = μxT

1 U1U
T
1 (z − c)

= μxT
1

(
U1U

T
1 + U2U

T
2

)
(z − c) = μxT

1 (z − c).

Equation (4.9) gives the relation between the MSE solution and the generalized solu-
tion of FDA, which holds regardless of the singularity of the scatter matrices.

While FDA gives a one-dimensional reduced representation and the MSE solution
produces one discriminant function, the generalized MSE solution works with r linear
discriminant functions and LDA gives an (r − 1)-dimensional representation of the
original data space. Now we show the relationship between LDA and the generalized
MSE solution.

4.2. LDA and the generalized MSE solution. The generalized MSE solution
to the problem

gi(z) = w0i + wT
i z =

{
βi if z ∈ class i
0 otherwise

for i = 1, . . . , r

can be solved by the normal equation

PTPW = PTY,(4.10)

where P, Y, and W are defined in (3.3) and (3.9). From (4.10), we obtain[
n

∑n
j=1 a

T
j∑n

j=1 aj
∑n

j=1 aja
T
j

] [
w01 · · · w0r

w1 · · · wr

]

=

[
n1β1 · · · nrβr

(
∑

j∈N1
aj)β1 · · · (

∑
j∈Nr

aj)βr

]
,

resulting in a linear system⎧⎪⎨
⎪⎩
nw0i + n cTwi = niβi

n cw0i +

(
n∑

j=1

aja
T
j

)
wi = ni βici

for i = 1, . . . , r.(4.11)

By substituting w0i of the second equation with w0i of the first equation in (4.11),
(4.11) becomes

(
niβi − ncTwi

)
c +

(
n∑

j=1

aja
T
j

)
wi = niβici, i = 1, . . . , r.(4.12)
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From (4.12) and

Sb =
∑

1≤i≤r

nicic
T
i − n c cT and Sw =

∑
1≤j≤n

aja
T
j −

∑
1≤i≤r

nicic
T
i ,

we have

Stwi = (Sb + Sw)wi = niβi(ci − c), i = 1, . . . , r.(4.13)

Recall that according to (2.16), (2.17), and (2.19), the transformation matrix G
for LDA was obtained by

G = FV1 = U1Σ
−1V1,(4.14)

where

St = U1Σ
2UT

1 and FTHb = Σ−1UT
1 Hb = V1Γb1S

T
1 .(4.15)

The following theorem gives the relation between the MSE solution and the matrix
G for LDA.

Theorem 4.1. Let G be the dimension reducing transformation matrix from
LDA given in (4.14) and let {

gi(z) = w0i + wT
i z
}

1≤i≤r

be the discriminant functions for the MSE problem (3.7). Then⎡
⎢⎣w

T
1
...

wT
r

⎤
⎥⎦U1U

T
1 =

⎡
⎢⎣n1β1(c1 − c)T

...
nrβr(cr − c)T

⎤
⎥⎦GGT .(4.16)

Proof. From (4.13), we have

Stwi = niβi(ci − c)→ U1Σ
2UT

1 wi = niβi(ci − c)

→ wT
i U1 = niβi(ci − c)TU1Σ

−2.(4.17)

Then by (4.17),⎡
⎢⎣w

T
1
...

wT
r

⎤
⎥⎦U1U

T
1 =

⎡
⎢⎣n1β1(c1 − c)T

...
nrβr(cr − c)T

⎤
⎥⎦U1Σ

−2UT
1(4.18)

= diag(
√
n1β1, . . . ,

√
nrβr)H

T
b U1Σ

−1
(
V1V

T
1 + V2V

T
2

)
Σ−1UT

1

= diag(
√
n1β1, . . . ,

√
nrβr)H

T
b FV1V

T
1 FT

=

⎡
⎢⎣n1β1(c1 − c)T

...
nrβr(cr − c)T

⎤
⎥⎦GGT .

The third equality in (4.18) holds, since

span(V2) ⊂ null
(
FTSbF

)
= null

(
HT

b F
)
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from (2.14) and (2.17).
Let us denote the reduced dimensional representation obtained by the linear trans-

formation GT from LDA as

z̃ = GT z for any data item z.

First we consider the case that Sw is nonsingular and therefore St is nonsingular.
In this case, U = U1 is orthogonal and U2 does not appear in the EVD of St in (2.15).
Then by Theorem 4.1 and in (4.11) for any data item z,⎡

⎢⎣g1(z)
...

gr(z)

⎤
⎥⎦ =

⎡
⎢⎣w01

...
w0r

⎤
⎥⎦+

⎡
⎢⎣w

T
1
...

wT
r

⎤
⎥⎦ z =

⎡
⎢⎣n1β1/n

...
nrβr/n

⎤
⎥⎦+

⎡
⎢⎣ wT

1
...

wT
r

⎤
⎥⎦ (z − c)(4.19)

=

⎡
⎢⎣n1β1/n

...
nrβr/n

⎤
⎥⎦+

⎡
⎢⎣ wT

1
...

wT
r

⎤
⎥⎦U1U

T
1 (z − c)

=

⎡
⎢⎣ n1β1/n

...
nrβr/n

⎤
⎥⎦+

⎡
⎢⎣ n1β1(c̃1 − c̃)T

...
nrβr(c̃r − c̃)T

⎤
⎥⎦ (z̃ − c̃).

Equation (4.19) shows that the decision rule in the generalized MSE solution

arg max
1≤i≤r

{gi(z)}(4.20)

is equivalent to

arg max
1≤i≤r

{
niβi/n + niβi(c̃i − c̃)T (z̃ − c̃)

}
(4.21)

in the reduced dimensional space obtained by LDA. This implies that the MSE pro-
cedure is equivalent to applying centroid-based classification with an inner product
similarity measure in the reduced dimensional space obtained by LDA. If βi = 1
(1 ≤ i ≤ r), then (4.21) becomes

arg max
1≤i≤r

{
ni/n + ni(c̃i − c̃)T (z̃ − c̃)

}
.(4.22)

On the other hand, with βi = n/ni, i.e.,

gi(z) = w0i + wT
i z =

{
n/ni if z ∈ class i,
0 otherwise,

(4.23)

(4.21) becomes

arg max
1≤i≤r

{
(c̃i − c̃)T (z̃ − c̃)

}
.(4.24)

The difference between (4.22) and (4.24) is whether weighting by the number of ele-
ments in each class is considered or not.

The problem formulation (4.23) also gives a natural generalization of the rela-
tionship between the generalized MSE solution for the two-class case and FDA. Let
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z̃ be the one-dimensional representation obtained by FDA. Then the equivalence of
(4.20) and (4.24) gives

g1(z) > g2(z)↔ (c̃1 − c̃)(z̃ − c̃) > (c̃2 − c̃)(z̃ − c̃)

↔ (c̃1 − c̃2)(z̃ − c̃) > 0,

indicating the decision rule (3.6) in FDA.
Let us consider undersampled problems where all the scatter matrices are singular,

and therefore we have the term U2 in the EVD of St. For a given data item z = ai,
by (2.20)

UT
2 z = UT

2 c

and by Theorem 4.1, we have⎡
⎢⎣g1(z)

...
gr(z)

⎤
⎥⎦ =

⎡
⎢⎣n1β1/n

...
nrβr/n

⎤
⎥⎦+

⎡
⎢⎣w

T
1
...

wT
r

⎤
⎥⎦ (z − c)(4.25)

=

⎡
⎢⎣n1β1/n

...
nrβr/n

⎤
⎥⎦+

⎡
⎢⎣w

T
1
...

wT
r

⎤
⎥⎦(U1U

T
1 + U2U

T
2

)
(z − c)

=

⎡
⎢⎣n1β1/n

...
nrβr/n

⎤
⎥⎦+

⎡
⎢⎣n1β1(c̃1 − c̃)T

...
nrβr(c̃r − c̃)T

⎤
⎥⎦ (z̃ − c̃).

Equation (4.25) is exactly the same as (4.19), which was obtained for the case when
Sw is nonsingular, implying that the above discussion regarding the nonsingular case
still holds for undersampled problems. However, when a new unseen data item z is
presented, the third equality in (4.25) becomes an approximation since (2.20) is based
on the given training data set. If new data items come from the same distribution as
the training data, (4.25) should hold almost exactly as the experiments in section 6
show.

5. Performing LDA through the generalized MSE procedure. Now we
show how to obtain the reduced dimensional space of LDA through the MSE procedure
without computing the transformation matrix G of the LDA procedure. From the
relation (4.19) (and also (4.25)) of LDA and MSE, we have⎡

⎢⎣w
T
1
...

wT
r

⎤
⎥⎦ [c1 − c, . . . , cr − c

]
=

⎡
⎢⎣n1β1(c̃1 − c̃)T

...
nrβr(c̃r − c̃)T

⎤
⎥⎦ [c̃1 − c̃, . . . , c̃r − c̃

]
,(5.1)

where c̃i, i = 1, . . . , r, are the class centroids in the reduced dimensional space obtained
by LDA, i.e.,

c̃i = GT ci.

Denoting

L ≡

⎡
⎢⎣
√
n1(c̃1 − c̃)T

...√
nr(c̃r − c̃)T

⎤
⎥⎦ = HT

b G,(5.2)
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(5.1) becomes⎡
⎢⎣

1√
n1β1

. . .
1√
nrβr

⎤
⎥⎦
⎡
⎢⎣w

T
1
...

wT
r

⎤
⎥⎦ [c1 − c, . . . , cr − c

] ⎡⎢⎣
√
n1

. . . √
nr

⎤
⎥⎦ = LLT .(5.3)

Let the EVD of the left side in (5.3) be QΛQT , where Q is orthogonal and Λ has
nonincreasing diagonal components. Then

LLT = QΛQT ≡ [ Q1︸︷︷︸
r−1

Q2︸︷︷︸
1

]

[
Λ1 0
0 0

] [
QT

1

QT
2

]
= Q1Λ1Q

T
1 .(5.4)

On the other hand, from (5.2), (4.14), and (4.15)

LTL = GTHbH
T
b G =

(
V T

1 FTHb

)(
HT

b FV1

)
=
(
Γb1S

T
1

)(
S1Γ

T
b1

)
= Γb1Γ

T
b1.(5.5)

Hence from (5.4) and (5.5),

Λ1 = Γb1Γ
T
b1

and we can obtain the SVD of L as

L = Q1Λ
1/2
1 , i.e., L+ =

(
Λ

1/2
1

)+

QT
1 .

When

rank(Hb) = rank([c1 − c, . . . , cr − c]) = r − 1,

L has full column rank and L+L = I. When Sw is nonsingular, from (4.19) we have⎡
⎢⎣g1(z)

...
gr(z)

⎤
⎥⎦ =

⎡
⎢⎣w01

...
w0r

⎤
⎥⎦+

⎡
⎢⎣n1β1(c̃1 − c̃)T

...
nrβr(c̃r − c̃)T

⎤
⎥⎦ z̃(5.6)

=

⎡
⎢⎣w01

...
w0r

⎤
⎥⎦+

⎡
⎢⎣
√
n1β1

. . . √
nrβr

⎤
⎥⎦Lz̃,

and therefore

z̃ = L+

⎡
⎢⎣

1√
n1β1

. . .
1√
nrβr

⎤
⎥⎦
⎛
⎜⎝
⎡
⎢⎣g1(z)

...
gr(z)

⎤
⎥⎦−

⎡
⎢⎣w01

...
w0r

⎤
⎥⎦
⎞
⎟⎠(5.7)

= (Λ
1/2
1 )−1QT

1

⎡
⎢⎣

1√
n1β1

wT
1

...
1√
nrβr

wT
r

⎤
⎥⎦ z.

Equation (5.7) shows that the reduced dimensional representation by LDA can be
obtained from the discriminant functions of the MSE solution{

gi(z) = w0i + wT
i z

}
(1≤i≤r)
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Algorithm 1 . An efficient algorithm for LDA.

Given a data matrix A ∈ R
m×n with r classes, this computes a (r − 1)-dimensional

representation of any data point z ∈ R
m×1.

1. Compute [w01 · · · w0r

w1 · · · wr
] = P+Y, where P and Y are defined in (3.3) and

(3.9), respectively.
2. Compute the EVD of the left-hand side of (5.3):⎡

⎢⎣
1√
n1β1

wT
1

...
1√
nrβr

wT
r

⎤
⎥⎦ [√n1(c1 − c), . . . ,

√
nr(cr − c)

]

= [ Q1︸︷︷︸
r−1

Q2︸︷︷︸
1

]

[
Λ1 0
0 0

] [
QT

1

QT
2

]
.

3. For any data item z, the (r − 1)-dimensional representation is given by

Λ
−1/2
11 QT

1

⎡
⎢⎣

1√
n1β1

wT
1

...
1√
nrβr

wT
r

⎤
⎥⎦ z.

and the EVD of the r×r matrix, instead of solving the generalized eigenvalue problem
for LDA.

For undersampled problems, (5.7) must change accordingly:⎡
⎢⎣g1(z)

...
gr(z)

⎤
⎥⎦ =

⎡
⎢⎣w01

...
w0r

⎤
⎥⎦+

⎡
⎢⎣w

T
1
...

wT
r

⎤
⎥⎦U2U

T
2 z +

⎡
⎢⎣n1β1(c̃1 − c̃)T

...
nrβr(c̃r − c̃)T

⎤
⎥⎦ z̃.(5.8)

The second term of the right-hand side in (5.8) is invariant for any given training data
item since they are transformed to the constant point by UT

2 . Hence we can obtain
the reduced dimensional representation except for a translation factor as

z̃ ≈
(
Λ

1/2
1

)−1

QT
1

⎡
⎢⎣

1√
n1β1

wT
1

...
1√
nrβr

wT
r

⎤
⎥⎦ z.(5.9)

The new algorithm to compute the LDA solution is summarized in Algorithm 1.
This approach to LDA utilizing the relation with the MSE solution has the follow-

ing properties. First, the scatter matrices Sb and Sw need not be computed explicitly.
It reduces computational complexities and saves memory requirements. Second, in
addition to the SVD of the matrix P defined in (3.3), the EVD is needed only for
an r × r matrix, where the number of classes r is usually much smaller than the
data dimension m or the total number of data n. Table 1 compares computational
complexities among the classical LDA, LDA/GSVD [18, 19], and the newly proposed
Algorithm 1. The cost for computing the SVD of an m × n (m ≥ n) matrix is esti-
mated as O(mn2) [21, p. 254]. When P has full rank, QR decomposition can be used
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Table 1

The comparison of computational complexities. m: data dimension; n: number of data items;
r: number of classes; s: rank of Z.

When Sw is nonsingular Undersampled problems

Classical LDA S−1
w : O(m3) Not applicable

S−1
w Sbx = λx EVD of S−1

w Sb: O(m3)

LDA/GSVD in [18] SVD of Z =

[
HT

b

HT
w

]
: O(min{m(n + r)2,m2(n + r)})

SVD of P (1 : r, 1 : s): O(sr2)

Algorithm 1 via Pseudoinverse of P: O(min{mn2,m2n})
relation with MSE Step 2: O(r3)

Table 2

The description of data sets.

Data set No. of classes Dimension No. of data

UCI Machine Learning Musk 2 166 6598

Repository Isolet 26 617 7797

M-feature 10 649 2000

B-scale 3 4 625

B-cancer 2 9 699

Wdbc 2 30 569

Car 4 6 1728

Glass 2 9 214

Text documents Cacmcisi 2 14409 4663

Cranmed 2 9038 2431

Hitech 6 13170 2301

La1 6 17273 3204

La2 6 15211 3075

Tr23 6 5832 204

Tr41 10 7454 878

Tr45 10 8261 690

to compute the pseudoinverse of P, which is cheaper than the SVD [21]. This is due
to the fact that when m + 1 ≥ n, the reduced QR decomposition of PT = Q1R gives
the pseudoinverse of PT as R−1QT

1 ; therefore, P+ = Q1(R
T )−1.

6. Experimental results. In order to verify the theoretical results for the rela-
tionship between LDA and the MSE procedure, we conducted extensive experiments.
The experiments use two types of data sets: the first has a nonsingular within-class
scatter matrix Sw, and therefore the classical LDA can be performed for these data
sets; the other is from undersampled problems which have singular scatter matrices.
Data sets were collected from the UCI Machine Learning Repository2 and text doc-
uments.3 A collection of text documents is represented as a term-document matrix,
where each document is expressed as a column vector. The term-document matrix is
obtained after preprocessing with common words and rare term removal, stemming,
and term frequency and inverse term frequency weighting and normalization [22]. The
term-document matrix representation often makes the high dimensionality inevitable.
Each data set is split randomly into training data and test data of equal size, and this
is repeated 10 times in order to prevent any possible bias from random splitting. The
detailed description of the data sets are shown in Table 2.

2http://www.ics.uci.edu/∼mlearn/MLRepository.html
3http://www-users.cs.umn.edu/∼karypis/cluto/ download.html
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Table 3

The comparison of classification performances for the verification of the relation (6.1). The
mean prediction accuracies (%) from 10 times random splittings of training and test sets are shown.

βi = 1 βi = n/ni

MSE LDA MSE LDA

Musk 93.7 93.7 79.7 79.7

M-feature 98.0 98.0 98.0 98.0

B-scale 87.2 87.2 83.1 83.1

B-cancer 95.8 95.8 96.9 96.9

Wdbc 95.1 95.1 96.1 96.1

Car 76.8 76.8 45.9 45.9

Glass 91.5 91.5 91.4 91.4

Isolet 91.3 91.3 91.3 91.3

Undersampled problems

Cacmcisi 95.3 95.3 96.3 96.3

Cranmed 99.8 99.8 99.7 99.7

Hitech 70.5 70.5 62.7 62.7

La1 87.8 87.8 82.2 82.2

La2 89.2 89.2 84.4 84.4

Tr23 89.5 89.5 80.9 80.7

Tr41 95.7 95.7 84.7 84.7

Tr45 92.8 92.8 87.7 87.6

Table 4

Verification of the new efficient algorithm for LDA. The mean prediction accuracies (%) from
10 times random splittings are shown.

LDA Algorithm 1

1-NN 15-NN 29-NN 1-NN 15-NN 29-NN

Musk 91.4 93.8 93.9 91.4 93.8 93.9

M-feature 98.1 98.1 98.1 98.1 98.1 98.1

B-scale 87.3 88.1 88.5 87.2 88.1 88.5

B-cancer 95.5 96.8 96.4 95.5 96.8 96.4

Wdbc 95.2 96.2 95.9 95.2 96.2 95.9

Car 88.0 87.1 86.6 88.0 87.1 86.6

Glass 90.8 91.3 90.9 90.8 91.3 90.9

Isolet 92.0 92.5 92.2 92.0 92.5 92.2

Undersampled problems

Cacmcisi 95.3 95.3 95.3 95.3 95.3 95.3

Cranmed 99.8 99.8 99.8 99.8 99.8 99.8

Hitech 69.9 69.9 69.9 69.9 69.9 69.9

La1 86.4 86.4 86.4 86.4 86.4 86.4

La2 87.7 87.7 87.7 87.7 87.7 87.7

Tr23 84.6 75.9 75.9 84.6 75.9 75.9

Tr41 93.9 93.4 90.0 93.9 93.4 90.0

Tr45 88.6 88.4 86.3 88.6 88.4 86.3

For all data sets in Table 2 the relationship between the MSE procedure and LDA

arg max
1≤i≤r

{
gi(z) = w0i + wT z

}
(6.1)

= arg max
1≤i≤r

{
niβi

n
+ niβi

(
GT ci −GT c

)T (
GT z −GT c

)}

was demonstrated by comparing the prediction accuracies. Table 3 reports the mean
prediction accuracies (%) from 10 random splittings of training and test sets. The
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relation (6.1) was verified for all the data sets, subject to minor differences in Tr23
and Tr45.

Algorithm 1 was tested for all the data sets in order to verify our derivation by
comparing the prediction accuracies by Algorithm 1 with those by LDA using k-NN
classifier. Table 4 shows the mean prediction accuracies (%) from 10 runs. Exactly
the same results were obtained by both algorithms in all the data sets used except in
the B-scale data set with a 1-NN classifier, which resulted in a 0.1% difference.

7. Conclusion. In this paper, we have shown a relationship between LDA and
the generalized MSE solution for multiclass problems. It generalizes the relation be-
tween the MSE solution and FDA to multiclass cases and on undersampled problems.
We also proposed an efficient algorithm for LDA which utilizes the relationship with
the generalized MSE solution. In Algorithm 1, the generalized eigenvalue problem is
solved by the SVDs of the matrix P and the small r × r matrix. In addition, the
proposed algorithm does not need to explicitly compute the scatter matrices, thus
saving computational costs as well as memory requirements.
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