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Abstract

The long-term dynamics of many dynamical systems evolve on an attracting, in-
variant “slow manifold” that can be parameterized by a few observable variables. Yet
a simulation using the full model of the problem requires initial values for all variables.
Given a set of values for the observables parameterizing the slow manifold, one needs
a procedure for finding the additional values such that the state is close to the slow
manifold to some desired accuracy. We consider problems whose solution has a singu-
lar perturbation expansion, although we do not know what it is nor have any way to
compute it. We show in this paper that, under some conditions, computing the values
of the remaining variables so that their (m + 1)st time derivatives are zero provides
an estimate of the unknown variables that is an mth-order approximation to a point
on the slow manifold in sense to be defined. We then show how this criterion can be
applied approximately when the system is defined by a legacy code rather than directly
through closed form equations.

Keywords: Initialization, DAEs, Singular Perturbations, Legacy Codes, Inertial
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1 Introduction

The derivation of reduced dynamic models for many chemical and physical pro-
cesses hinges on the existence of a low-dimensional, attracting, invariant “slow mani-
fold” characterizing the long-term process dynamics. This manifold is parameterized
by a small number of system variables (or “observables”, functions of the system vari-
ables): when the dynamics have approached this manifold, knowing these observables
suffices to approximate the full system state. A reduced dynamic model for the evo-
lution of the observables can then in principle be deduced; the resulting simplification
in complexity and in size can be vital in understanding and modeling the full system
behavior. This reduction has been the subject of intense study from the theoretical,
practical and computational points of view. Low-dimensional center-unstable mani-
folds are crucial in the study of normal forms and bifurcations in dynamical systems
(e.g. [13]); the theory of Inertial Manifolds and Approximate Inertial Manifolds [6, 31]
has guided model reduction in dissipative Partial Differential Equations; the study
of fast/slow dynamics in systems of Ordinary Differential Equations is the subject of
geometric singular perturbation theory (e.g. [7]). On the modeling side, the Boden-
stein “quasi-steady state” approximation has long been the basis for the reduction of
complex chemical mechanisms, described by large sets of ODEs ( [2], see also the discus-
sion by Turanyi [33]). More recently, an array of computational approaches have been
proposed that bridge singular perturbation theory with large scale scientific computa-
tion for such problems; they include the Computational Singular Perturbation (CSP)
approach of Lam and Goussis [21–23], and the Intrinsic Low-Dimensional Manifold
approach of Maas and Pope [24]. The mathematical underpinnings of these methods
have also been studied ( [15, 34]). Lower-dimensional manifolds arise naturally also
in the context of differential-algebraic equations, where the initialization problem has
attracted considerable attention (e.g. [3]).

Remarkably, the same concept of separation of time scales and low-dimensional
long-term dynamics underpins the derivation of “effectively simple” descriptions of
complex systems. In this context, the detailed model is a collection of agents (molecules,
cells, individuals) interacting with each other and their environment; the entire distri-
bution of these agents that evolves through atomistic or stochastic dynamic rules. In
many problems of practical interest it is possible to write macroscopic equations for
the large-scale, coarse-grained dynamics of the evolving distribution in terms of only
a few quantities, typically lower moments of the evolving distribution. In the case of
isothermal Newtonian flow, for example, we can write closed evolution equations for the
density and the momentum fields, the zeroth and first moments of the particle distribu-
tion over velocities. This is again a singularly perturbed problem; only in this case the
higher moments of the evolving distribution have become quickly slaved to the lower
ones (in this case stresses, after a few collisions, have become functionals of velocity
gradients). Newton’s law of viscosity therefore represents a similar type of “slow mani-
fold” as in the ODE case discussed above - fast variables (stresses) become functionals
of velocity gradients, and the slow manifold is embodied in the closure: Newton’s law
of viscosity. The use of slow manifolds in non-equilibrium thermodynamics, and more
generally in the study of complex systems, is also a subject of intense current research
(see the work of Gorban, Karlin, Oettinger and coworkers [11, 12], as well as [18, 19])
for some recent computational studies. In this context, one has an “inner simulator” at
the microscopic or stochastic level for evolving the detailed distributions; a separation
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of time scales does not arise at this level, but rather at the level of the evolution of the
statistics or moments of these distributions. Typically the lower moments of the evolv-
ing distributions parameterize the slow manifold, while the higher moments quickly
evolve to functionals of the lower ones. Since we do not have explicit formulas for
the equations at the coarse-grained, macroscopic level, the following interesting ques-
tion arises: can we benefit from singular perturbation, when no closed form evolution
equations are available, and the only tool at our disposal is a “black box” dynamic
simulator of the detailed problem ? This is the problem we will address in this paper.

We will assume that we are given an evolutionary system which can be described
by

u′ = p(u, v) (1)

v′ = q(u, v) (2)

where prime designates differentiation w.r.t. t, the dimensions of u and v areNu andNv

respectively, and values, u(0), are specified only for u. In the case of a legacy dynamic
code, we may not even be given the formulas for these equations explicitly; instead,
we may be given a time-stepper of the above system as a black-box subroutine: a code
that, provided an initial condition for u and v, will return an accurate approximation of
u and v after a time interval (a reporting horizon) ∆T . We wish to find v(0) so that the
solution is “close to a slow manifold.” This statement is deliberately vague because in
practice we are proceeding on the belief that there exists a slow, attracting, invariant
manifold that can be parameterized by u and that the variables v, in some sense,
“contain” the fast variables so that their values on the slow manifold can be computed
from the values of u at any time. (Note that we do not need to know which are the slow
variables, only to be able to identify a set of variables sufficient to parameterize the slow
manifold.) This implies that the manifold is the graph of a function v = v(u) over the
observables u. As we proceed, we will make these statements more precise. However,
we will not cast them into the form of theorems because, even though this is possible,
the conditions for the application of the theorems would be essentially impossible to
verify in all but trivial problems. As with many numerical methods, the primary test
of applicability is in the actual application.

We assume that the system can be expressed in terms of other variables, x and y,
of the same dimension as u and v respectively, and that in terms of x and y the system
can be written in the usual singular perturbation form:

x′ = f(x, y) (3)

ǫy′ = g(x, y) (4)

where x and y are also of dimension Nu and Nv, respectively. We will assume that their
initial values are specified as x(0) and y(0), independent of ǫ. The singular perturbation
parameter, ǫ, is associated with the gap, or ratio, between the “active” (slow) eigenval-
ues and the rightmost of the negative, inactive eigenvalues of the linearized problem,
locally. We stress that we do not assume that we know how to express the equations
in the form of eqs (3) and (4) nor do we have any knowledge of the transformation

u = u(x, y), x(0, ǫ) = x(0) (5)

v = v(x, y), y(0, ǫ) = y(0) (6)
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other than that we assume that it is well-conditioned and does not have large deriva-
tives. We will consider singular perturbation expansions in ǫ, even though the param-
eter is not identified (and cannot be varied). The functions f and g could also involve
the parameter ǫ, but that serves little in this presentation other than to complicate the
algebra.

The standard singular perturbation expansion for the solution of eqs (3) and (4)
takes the form:

x(t, ǫ) =
∞
∑

n=0

ǫnXn(t) + ǫ
∞
∑

n=0

ǫnξn(τ) (7)

y(t, ǫ) =
∞
∑

n=0

ǫnYn(t) +
∞
∑

n=0

ǫnηn(τ) (8)

This involves an outer solution (X(t), Y (t)), that is smooth in the sense that its time
derivatives are modest, and an inner solution, (ξ(τ), η(τ)), that captures the fast bound-
ary layer where the solution typically changes like e−t/ǫ = e−τ . Both outer and inner
solutions are expressed as power series in ǫ, the latter as a function of the stretched

time τ . The inner solution is fast in the sense that each differentiation by t introduces
a multiplier of 1/ǫ.

We define the slow manifold as the manifold that contains all solutions of eqs (3)
and (4) of the form eqs (7) and (8) with the inner solution identically zero. This is an
invariant manifold. We say that a solution is an mth-order approximation to a slow
manifold solution if it has the form in eqs (7) and (8) with the first m+1 terms of the
inner solution expansion identically zero. A point (u, v) is an m-th order approximation
to the slow manifold, or m-th order close to the slow manifold, if it lies on an m-th
order approximate solution.

We want to stress that we are not proposing a technique for finding the singular
perturbation expansion. Rather, we are using the ideas as a scaffold for the theoretical
justification of the proposed computational method. It is possible that the method
will provide answers even when the singular perturbation expansions do not converge
(although in that case we have no justification other than an intuitive one). The
procedure we propose for finding the v values that are close to the slow manifold
given the u values is to find values of v that approximately solves the Nv dimensional
non-linear equation

dm+1v

dtm+1
= 0 (9)

which we call “the [(m+1)-st] derivative condition.” (Compare this with the “bounded
derivative principle” [20] which requires the first m time derivatives to be of order 1.
That condition can be applied to problems with fast oscillating solutions. Ours can
not, but it is simpler to apply to the types of problems we consider.)

Note that eq. (9) is a local condition - that is, it is applied at a single time - which we
will take to be t = t0 = 0 - to determine a value of v corresponding to a given value of
u. A solution of eqs (1) and (2) starting from these values of u and v will not satisfy eq.
(9) for t > 0 - but we do expect the solution to be close to the slow manifold. Intuitively
the condition in eq. (9) finds a point close to the slow manifold because differentiation
“amplifies” rapidly varying components more than slowly varying components, so eq.
(9) seeks a region where the fast components are small. We will suggest ways in which

4



eq. (9) can be solved approximately in practical codes, even those based on a legacy
code for the integration of eqs (1) and (2).

While the approach will be presented and implemented for singularly perturbed sets
of ODEs, the “legacy code” formulation is appropriate also in cases where the inner
simulator is not a differential equation solver, but rather a microscopic / stochastic sim-
ulator. In the equation free approach we have been developing for the computer-assisted
study of certain classes of complex systems, the variables u correspond to macroscopic
observables of a microscopic simulation (typically, moments of a stochastically or de-
terministically evolving distribution). In this case v corresponds to statistics of the
evolving distribution (e.g. higher moments) that become quickly slaved to (become
functionals of) the observables u; thus the analogy of a slow manifold persists in mo-
ments space for the evolving distribution.

The paper is organized as follows: In the next Section we will outline the theoretical
basis for the derivative condition. In Section 3 we discuss ways in which the derivative
condition can be approximately applied as a difference condition and used with legacy
codes. Section 4 presents some simple examples of its application. We conclude with
a brief summary and outline of the scope of the method and some of the challenges we
expect to arise in its wider application.

2 Theoretical Basis

In this section we will show that the application of the condition in eq. (9) will
lead to a mth-order approximation to the slow manifold under suitable smoothness
and smallness conditions. We will start by sketching the parts of singular perturbation
expansion theory that we need by paraphrasing the presentation in O’Malley’s mono-
graph [26], particularly pp 46-52. We will use the same notation to make it easier for
the reader who wishes to get more detail from that book.

In the following we will write Xn, Yn, ξn, and ηn to mean Xn(t), Yn(t), ξn(τ),
and ηn(τ). We recall from [26] that the t and τ dependencies are treated separately,
and that the terms in the outer expansion, {Xn, Yn}, are obtained term by term by
substituting eqs (7) and (8) into eqs (3) and (4), and equating each outer term in ǫn

to zero, starting with n = 0. For n = 0 we obtain the DAE:

X ′

0 = f(X0, Y0), X0(0) = x(0) (10)

0 = g(X0, Y0) (11)

The existence of a smooth solution of this equation for any x(0) requires the assumption
that gy is non-singular. (The existence of asymptotic expansions for the inner and outer
components requires the stronger assumption that gy is a stable matrix.) Then, Y0 is
specified uniquely in terms of X0 by eq. (11), say as

Y0 = φ(X0).

The nth term in the power series yields the DAE

X ′

n = fx(X0, Y0)Xn + fy(X0, Y0)Yn + f̃n (12)

0 = gx(X0, Y0)Xn + gy(X0, Y0)Yn + g̃n (13)
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where the f̃n and g̃n are defined in terms of earlier terms in the outer expansion,
{Xj , Yj}, j = 0, · · · , n − 1. The initial condition, Xj(0), has to be specified. Since we
have set X(0) = x(0), Xj(0) is obtained from eq. (7) by requiring that the ǫj term
vanishes at t = 0, which gives

Xj(0) = −ξj−1(0). (14)

We are most interested in the way in which the inner terms are defined, since we
wish to annihilate the first m+ 1 of these to get an mth-order approximation. These
are obtained by considering the change in the inner terms as τ varies for arbitrarily
small ǫ, in other words, with t = 0 and the outer solutions fixed at their initial values.
Following [26] we consider terms in successive powers of ǫ and find that the ǫ0 terms
satisfy:

ξ̇0 = f(x(0), Y0(0) + η0)− f(x(0), Y0(0)) (15)

η̇0 = g(x(0), Y0(0) + η0)− g(x(0), Y0(0)) (16)

where a dot represents differentiation w.r.t. τ = t/ǫ. If we have an initial value for
η0(0) we can solve eq. (16) for η0. Eq. e̊q-in01 gives ξ0 as an indefinite integral so it
is determined by specifying ξ0 at any point. This is normally done at τ = ∞, in other
words, at the end of the boundary layer. However, in our development here we will
be showing that ηj and ξj are identically zero for j ≤ m, so we will actually choose
ξj(0) = 0 (so that we also have Xj+1(0) = 0 from eq. (14)). Subsequent inner terms
satisfy

ξ̇n = fy(x(0), Y0(0) + η0)ηn + f̂n (17)

η̇n = gy(x(0), Y0(0) + η0)ηn + ĝn (18)

where f̂n and ĝn are functions of the earlier terms, {ξj , ηj}, j = 0, · · · , n − 1. In

particular, if all of these terms are zero, then f̂n and ĝn are zero. Eq. e̊q-inn2 can
be solved if an initial value is known for ηn(0). Once again, eq. (17) gives ξn as an
indefinite integral.

In the following we are going to show, one by one, that ηj(0) = 0 for j = 0, 1, · · · ,m,
and that we can then choose ξj(0) = 0. Note that once we have shown that η0(0) = 0
then eqs (15) and (16) indicate that η0(τ) = 0 and that ξ0(τ) is constant, which we can
make zero by choosing ξ0(0) = 0. Then it follows that f̂1 and ĝ1 are identically zero.
Repeating this argument, we see that if ηj(0) = 0, ξj(0) = 0, j = 0, · · · ,m then ξj(τ)
and ηj(τ) are identically zero for j ≤ m. This provides a solution that is an mth-order
approximation.

Now we return to the original problem phrased in terms of u and v. If we knew
the transformation to x and y we would do better to work in that space, but our
assumption is that, although a transformation exists, it is unknown and we have to
work with u and v. We want to show that if the (m+1)st derivative of v is zero, then
the point is mth-order close to the slow manifold. All terms below are evaluated at
t = 0 or τ = 0 - the time at which we are attempting to solve eq. (9). We will simplify
the notation and write ηj for ηj(0) and similarly for other terms in the following. We
have from eq. (6)

dm+1v

dtm+1
= vy

dm+1y

dtm+1
+ other terms (19)
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where the other terms involve either partial derivatives of v w.r.t. x and/or multiple
derivatives of v w.r.t. y and products of derivatives of y.

Substituting from eq. (8) into eq. (19) and extracting the lowest order term in ǫ
(ǫ−m−1) we find that at t = 0

dm+1v

dtm+1
= ǫ−m−1vy

dm+1η0
dτm+1

+ other terms + O(ǫ−m) (20)

where now the other terms include products of a higher-order partial derivative of
v w.r.t. y with more than one τ -derivative of η0 such that the sum of the levels of
differentiation is m+ 1, that is, terms like

vyy
dkη0
dτk

dm+1−kη0
dτm+1−k

and terms with higher partial derivatives and more derivatives of η0 in the product.
Note that whenever η0 appears, it is always differentiated w.r.t. τ at least once. Also
note that we do not get any terms involving ξ0 because of the additional ǫ appearing
in front of the inner solution expansion for x in eq. (7).

Now we use eq. (16) to find the higher-order derivatives of η0 w.r.t. τ . We get for
p > 1

dpη0
dτp

= gp−1
y η̇0 + other terms (21)

where the other terms involve η̇j0 with j > 1. Substituting eq. (21) in eq. (20) we
arrive at

dm+1v

dtm+1
= ǫ−m−1



vyg
m
y η̇0 +

m+1
∑

j=2

vzgz η̇
j
0



+O(ǫ−m) (22)

where the notation vzgz stands for sums of products of various partial derivatives of v
and g. Equating the leading term of the right-hand side of eq. (22) to zero, we now
have a polynomial equation for η̇0 as

vyg
m
y η̇0 +

m+1
∑

j=2

vzgz η̇
j
0 = 0 (23)

One solution of this is
η̇0 = 0

and it is an isolated root as long as vygy is non-singular. Since we have assumed that
gy is a stable matrix for the existence of a singularly perturbed solution (and hence a
slow manifold) and that v in some sense spans the fast variables (meaning that vy is
non singular), this is no problem. If all other partial derivatives involved in eq. (23)
are “of order one” then other solutions are also of order one - i.e., well separated from
the zero solution. We will delay discussion of how to avoid the “wrong” solutions for
the moment, and assume that we find the zero solution. (If the problem is linear,
these other terms are null, so there are no other solutions, and it is only in the case of
high non-linearity when the partial derivatives are large that these other solutions can
become small and cause problems.)

If η̇0 = 0 then eq. (16) tells us that η0 = 0 because we have assumed that gy is a
stable matrix (in the domain of interest). This immediately implies that ξ0 = 0 (or is
a constant that can be absorbed into the outer solution, thus making ξ0 = 0).
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As discussed following eq. (18), the vanishing of η0 and ξ0 means that the last
terms of eqs (17) and (18) are zero for n = 1, making them look similar to eqs (15)
and (16). Therefore the above argument can now be applied to show that η1 and ξ1
are zero. This argument can be repeated for higher-order terms as long as the power
of ǫ in eq. (22) remains negative, in other words, until we have shown that

ηj = ξj = 0, j = 0, · · · ,m

Note that when we have made the (m+1)st derivative zero, the lower order deriva-
tives will not be zero, or even small. This is because a small movement away from the
slow manifold can make large changes in the derivatives of the inner solution. However,
the difference between successive v values as we make m successively larger is small -
of order ǫm+1 as we go from the m-th to the m + 1-st derivative condition as the v
values are converging to the slow manifold. Hence one way to solve for zeros of high-
order derivatives would be to start by finding the zeros of the first order derivative,
then repeating for successively higher-order derivatives, each step requiring smaller
and smaller changes to v, until we have found the zeros of the (m + 1)st derivatives
using whatever computational process is appropriate. (The computational process is
addressed in the next section.) This procedure helps address the issue of finding the
smallest of multiple roots of eq. (23) since, for m = 0, there is only one root so that
the iteration for m = 1 and larger m starts with a good approximation. If the zero
root is well separated from the others, we will converge to it.

3 Practical Implementation

It is often not practical to work with higher-order derivatives of a differential equa-
tion, either because they are algebraically complicated or because the equations are
defined by a “legacy code” - that is, as an implementation of a step-by-step integrator
that effectively cannot be change or analyzed. (The same would be true if part of the
derivative calculations involved table look-up functions that could be difficult to differ-
entiate.) Therefore, we are interested in methods that do not require direct access to
the mathematical functions constituting the differential equation. The same rationale
applies when the “inner simulator” simulates the system at a different level (i.e. in the
form of an evolving microscopic or stochastic distribution). In this case we only have a
time-T map for the macroscopic observables, that results from running the microscopic
simulator and monitoring the evolution of the observables (e.g. particle densities) in
time [10,32].

The obvious alternative is to use a forward difference approximation to the deriva-
tive, noting that if

∆m+1v(t) ≡ ∆mv(t+H)−∆mv(t) (24)

with ∆0v(t) = v(t), then

∆m+1v(t) = Hm+1d
m+1v

dtm+1
+O(Hm+2)

It turns out that there is a straightforward way to implement a functional iteration
to find a zero of the (m+1)-st forward difference, even if we only have a “ black box”
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code that integrates eqs (1) and (2). Suppose we have operators, φ and θ, that, given
values of u(t) and v(t), yield approximations to u(t+H) and v(t+H), namely

u(t+H) ≈ φ(u(t), v(t)) (25)

v(t+H) ≈ θ(u(t), v(t)) (26)

Letting tn = t0 + nH and applying eqs (25) and (26) m+ 1 times starting from t = t0
we can compute approximations

uj+1 = φ(uj , vj) ≈ u(tj+1) (27)

vj+1 = θ(uj, vj) ≈ v(tj+1) (28)

for j = 0, · · · ,m. The functional iteration to find a v0 for a given u0 such that the
(m+ 1)-st difference is zero consists of the following steps:

1. Start with a given u0 and a guess of v0.

2. Set the iteration number p = 1.

3. Set the current iterate v
(1)
0 = v0

4. Apply eqs (27) and (28)m+1 times starting from u0, v
(p)
0 to generate v

(p)
1 , v

(p)
2 , · · · , v

(p)
m+1.

5. Compute δ = (−1)m∆m+1v
(p)
0

6. If δ is small, the iteration has converged.

7. If δ is not small,

v
(p+1)
0 = v

(p)
0 + δ (29)

8. Increment p and return to step 4.

If the black box integrator provides a good integration (that is, it does not introduce
spurious oscillations due to near instability) and H is small enough, this process will
converge on a zero of the difference.

As an illustration we consider the case m = 0 and assume that the integrator is
simply forward Euler with a step size such that its product with the magnitude of the
largest eigenvalue is less than one. We see that the process for v consists of computing

δ = v1 − v0 ≈ H
dv

dt
(t0).

If this is insufficiently small, we replace v0 with v0+ δ = v1. This is just the stationary
projection process used in [8] and is related to the “reverse time” projective integration
method in [9]. In the case of m = 1 we compute δ as

δ = −v2 + 2v1 − v0

If this is insufficiently small, we add it to v0 to get a new v0 given by

v0 = 2v1 − v2

This is precisely the linear interpolant through v1 and v2 back to the starting point.
It is illustrated in Figure 1. (This Figure may be a little confusing because it is
drawn in the u − v plane to emphasize that u is being held constant from iteration
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to iteration. The backwards interpolant, however, is really taking place in the t − v
plane.) The general iteration is equivalent to the obvious extension of that: an mth
degree interpolant is passed through v1, v2, · · · , vm+1 to compute a new approximation
to v0. This is conveniently done using differences as described above.

Why does this iteration eq. (29) converge for small H under reasonable circum-
stances? Intuitively, the forward integration exponentially damps the fast components
more than they are amplified by the polynomial extrapolation backwards. In more
mathematical terms, the iteration takes the form

vnew0 = v0 + δ (30)

If ∂δ/∂v0 is negative definite and small, this will converge. We have

∂δ/∂v0 = −(−H)m+1 ∂(
dm+1v
dtm+1 )

∂v
+O(Hm+2)

The term
∂(d

m+1v
dtm+1 )

∂v
is dominated by

ǫm+1gm+1
y

in powers of ǫ. Since we have assumed that gy is a negative definite matrix for the
existence of a singular perturbation expansion, convergence follows for small enough
H.

In the above discussion we have used the attractivity of the manifold and, in effect,
successive substitution in order to converge to a fixed point of our mapping. One can
accelerate this computation by using fixed point algorithms, like Newton’s method;
clearly, since no equations and Jacobians are available, the problem lends itself to
matrix-free fixed point implementations like the Recursive Projection Method by Shroff
and Keller [28] or Newton-Krylov implementations (see [16] and, for a GMRES-based
implementation for timesteppers [17]).

4 Examples

We will consider three examples to illustrate the method. The Michaelis-Menten
enzyme kinetics model is a classic example for singular perturbation (see [1] for a brief
discussion on the history of the model and its analysis). Since it is a simple system
we can make a direct comparison with an easily computable singular perturbation
expansion. The second example is a realistic five-dimensional chemical reaction system
with a one dimensional slow manifold. As in many real examples, we do not know the
slow manifold, and can only show “plausibility” of our solution. The final example
is a contrived five-dimensional non-linear system with a known two-dimensional slow
manifold so that we can compute the “errors” as the distance from the slow manifold.

4.1 Michaelis-Menten equation

This is given in a singular perturbation form in [26] as

x′ = −x+ (x+ κ− λ)y (31)

ǫy′ = x− (x+ κ)y (32)
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Table 1: Michaelis-Menten example with ǫ = 0.1, h = ǫ/100 and n = 1.

m Computed y Asymptotic y
0 0.500000000 0.500000000

1 0.503049486 0.503125000

2 0.503031986 0.503027344

3 0.503031924 -

4 0.503031924 -

with x(0) = 1. For some simple tests we will take κ = 1, λ = 0.5, and ǫ = 0.1 and
0.01. (These are larger figures than typical for reactions, but we wish to show that the
method works even for problems with a relative small gap, and also to have problems
where the higher-order initializations are visibly different from the lowest order ones.)

The first few terms of the outer solution are

y =
x

x+ κ
+

κλx

(x+ κ)4
ǫ+

κλx(2κλ − 3xλ− xκ− κ2)

(x+ κ)7
ǫ2 +O(ǫ3). (33)

In the following tests, we implemented the operators φ and θ in eqs (25) and (26)
using n steps of forward Euler with step size h. In all cases eq. (30) was iterated until
δ was less than 10−14 (which is rather excessive, but we didn’t want any errors from
premature termination to color the results). We ran with m = 0, · · · , 4 and compared
them with the first m+1 terms of eq. (33) through m = 2. For ǫ = 0.1, the results are
shown in Table 1 with h = ǫ/100 and n = 1, and in Table 2 with h = ǫ/10 and n = 4.
The tables show the computed approximation to the slow manifold, y(0), for x(0) = 1.
The tables also show the first m terms of the asymptotic expansion for m ≤ 2. As can
be seen, the discrepancies are larger when H = nh is larger.

A larger “integration time horizon” H gives more rapid convergence. However, this
means than the difference estimate is a less accurate approximation to the (m + 1)-
st derivative. Our theory shows that making the (m + 1)-st derivative zero puts the
solution on an m-th order approximation to the slow manifold. Any error in the
derivative estimate creates an error of the same order in the solution, so we should
choose the time horizon so that the errors in the derivative estimate are of the same
order as those we are willing to tolerate in the approximation to the slow manifold.
This suggests that an initial approximation could be calculated with a larger H (and
small m) to get faster convergence, and then H could be reduced as m is increased to
increase the accuracy.

The next case, shown in Table 3, uses an ǫ smaller by a factor of 10. Because
the higher-order terms in ǫ are now smaller, the agreement with the terms in the
asymptotic expansion is better. (However, we are really interested in the agreement
of the computed v0 with the v on the slow manifold, rather than with the ability to
match the first few terms in the asymptotic expansion.)

The cases above “constrained” the derivative of the singularly perturbed “fast”
variable, y. Usually we cannot isolate this variable. To see the effect of having a
different variable set, we transform x and y into

u = x+ y (34)

11



u

v

u0

v0
(1)

v0
(2)

v0
(3)

v1
(1)

v2
(1)

Slow manifold

v1
(2)

v2
(2)

Figure 1: Iterative process for m = 1.

Table 2: Michaelis-Menten example with ǫ = 0.1, h = ǫ/10 and n = 4.

m Computed y Asymptotic y
0 0.498886090 0.500000000

1 0.503067929 0.503125000

2 0.503035446 0.503027344

3 0.503035098 -

4 0.503035128 -

Table 3: Michaelis-Menten example with ǫ = 0.01, h = ǫ/100 and n = 1.

m Computed y Asymptotic y
0 0.500000000 0.500000000

1 0.500311725 0.500312500

2 0.500311533 0.500311523
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Table 4: Michaelis-Menten example with ǫ = 0.1, h = ǫ/10 and n = 4.

m x y ytrue
0 0.98825957 0.51174043 0.50011008

1 0.99743598 0.50256402 0.50239316

2 0.99756721 0.50243279 0.50242566

Table 5: Michaelis-Menten example with ǫ = 0.01, h = ǫ/10 and n = 4.

m x y ytrue
0 0.99874363 0.50125637 0.49999762

1 0.99974927 0.50025073 0.50024891

2 0.99975069 0.50024931 0.50024927

v = y − x, (35)

and work with u and v assuming that we do not know this transformation. (We chose
this transformation because in some sense it puts equal parts of the slow and fast
variables, x and y, in u and v, illustrating the fact that we need only know variables
that parameterize the slow manifold (u in this case), not ones that are in some sense
dominated by the slow manifold.) We assumed that we were given a value of u,
u(0) = 1.5, and computed the approximation to v(0) using our method. This was run
with h = ǫ/10 and n = 4 for ǫ = 0.1 in Table 4 and for ǫ = 0.01 in Table 5. The
tables show the corresponding x and y values derived from u = 1.5 and the computed
v(0). The column labeled ytrue gives the first three terms of the asymptotic expansion
of y given the x shown in the first column. Now we can see the significant error that
the m = 1 case gives rise to when we “come at the slow manifold from a different
angle.” However, the higher-order approximations yield a good approximation to the
slow manifold.

4.2 A Simplified Hydrogen-Oxygen Reaction System

We will use an example from Lam and Goussis [23]. It contains seven radicals, O2,
H, OH, O, H2, H2O, and HO2 which we will group in that order as the vector y. The
differential equations are:

dy1
dt

= −k1fy1y2 + k1by3y4 + k4fy3y7 − µk5fy1y2

dy2
dt

= −k1fy1y2 + k1by3y4 + k2fy4y5 − k2by2y3 + k3fy3y5 − k3by2y6 − µk5fy1y2

dy3
dt

= k1fy1y2 − k1by3y4 + k2fy4y5 + k2by2y3

−k3fy3y5 + k3by2y6 − k4fy3y7 − 2k8fy
2
3 + 2k8by4y6

dy4
dt

= k1fy1y2 − k1by3y4 − k2fy4y5 + k2by2y3 + k8fy
2
3 − k8by4y6

dy5
dt

= −k2fy4y5 + k2by2y3 − k3fy3y5 + k3by2y6

13



Table 6: Reaction Rates for Hydrogen Oxygen System

i kif kib
1 1.0136× 1012 1.1007× 1013

2 3.5699× 1012 3.2105× 1012

3 4.7430× 1012 1.8240× 1011

4 6.0000× 1013

5 6.2868× 1015

8 6.5325× 1012 3.1906× 1011

Table 7: Eigenvalues

−2.5 × 106

−1.4 × 106

−4.0 × 104

−8.3 × 103

−4.0× 10−3

dy6
dt

= k3fy3y5 − k3by2y6 + k4fy3y7 + k8fy
2
3 − k8by4y6

dy7
dt

= −k4fy3y7 + µk5fy1y2

The values of the coefficients are taken from the cited paper and shown in Table 6.
The parameter µ represents pressure and is 4.5×10−4. The differential system has two
constants of integration representing mass balance for oxygen and hydrogen atoms, so
it is really a five-dimensional system. The eigenvalues of a local linearization in the
region of operation for this example are approximately as shown in Table 7. From
these we see that after an interval of order one millisecond, the system is effectively
one dimensional.

In the test below we chose y5 (O2) as the observable variable. The system was run
from the starting conditions given in [23] until t = 6.41 × 10−4 (one of the reporting
times in their paper). Then our process was applied, fixing y5 to its current value,
and choosing all other variables so that their (m + 1)-st forward difference is zero.
To emulate a “legacy code” situation, we integrated the equations using a standard
integrator (ode23s in MATLAB) over m + 1 intervals of length H. In this example,
we used H = 1× 10−5. The relative and absolute error tolerances for ode23s were set
to 10−12 and 10−14, respectively. To maintain the mass balance relationship, radical
concentrations of H and OH are computed directly from the mass balance relations.
(These two were chosen because their concentrations remain reasonably non-zero. If a
radical whose concentration gets close to zero is used, there is some danger of roundoff
errors causing the concentration to become negative. This will often make the system
unstable - as well as physically unrealistic.)

The procedure was run with m = 0, 1, · · · , 4. The starting values of the concentra-
tions were as shown in Table 8. (These are given for the sake of completeness should
anyone wish to compare with our results.) The constrained results for each m differ

14



Table 8: Radical Concentrations Prior to Constraining to Slow Manifold

y1 4.2783465727× 10−13

y2 3.9878034748× 10−8

y3 1.3883748623× 10−10

y4 1.1300067412× 10−11

y5 4.4019256520× 10−7

y6 3.9848995981× 10−8

y7 5.3981503775× 10−15

Table 9: Difference between starting y4 and constrained value

m Difference

0 −2.0767748211× 10−17

1 −2.0157837979× 10−17

2 −2.0157711737× 10−17

3 −2.0157697197× 10−17

4 −2.0157429383× 10−17

from the starting value by no more than 10−14 and from each other by less, so are
not particularly revealing to study directly. (Larger changes from the starting value
could be obtained by starting from a different point with the same mass balance val-
ues, but would not give any further insight.) Since it is difficult to compute the slow
manifold (often a problem when real examples are used) we do not have a good way
to characterize errors, but we can examine two features to see if the method appears
to work.

In Table 9 we show the differences between the starting value and the constrained
value of y4 for each order of constraint. We see that these differences show signs of
“converging” - but this is certainly not irrefutable evidence of convergence. As a second
test, we considered the relationship of the local derivative of the solution at the result
of the constraint iteration. If it were very far from the slow manifold, we would expect
it to have relatively large components of the eigenvectors corresponding to the large
eigenvalues. (In general, even on the slow manifold it will not have zero components
in the large eigendirections except for linear problems.) To estimate the amount of
large eigencomponents present we computed v = dy/dt = f(y) and the local Jacobian
J = ∂f/∂y at the solution, y, of the constraint iteration. Then we computed the norm
ratio

R =
||Jv||

||v||

Its upper bound is the magnitude of the largest eigenvalue, and a value significantly
less than this is an indicator that u is deficient in the largest eigendirection. Hence,
the norm ratio gives some indication of the amount of the largest eigencomponents
present. It values are shown in Table 10.

Since the largest eigenvalue is around 2.5 × 106, it is clear that the m = 0 case
contains no more than around 20% of the large eigendirections, but this is drastically
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Table 10: Norm Ratio ||Jv||/||v|| at Constrained Solution

m R
0 4.44973316× 105

1 5.85785391× 101

2 6.18695075× 101

3 2.06227270× 102

4 1.50929245× 102

reduced for m = 1. From this particular starting point and choice of H, larger m gave
no further improvement, but other choices of starting points or H yield norm ratios
that reduce with each m increase, although by relatively small amounts.

4.3 A Five-Dimensional System

Because of the difficulty of determining whether the method is getting better ap-
proximations asm increases, our final example is an artificial non-linear five-dimensional
problem with a two-dimensional attractive invariant manifold. We start with the
loosely coupled differential equations:

dx1
dt

= −x2

dx2
dt

= x1

dw

dt
= L(x21 + x22 − w)

du1
dt

= β1 + u21

du2
dt

= β2 + u22

with L = 1000, β1 = 800, β2 = 1200. The solutions of these are

x1 = A cos(t+ φ)

x2 = A sin(t+ φ)

w = A(1 + be−Lt)

ui = −βi/(1 + cie
−βit)

For any starting conditions, w → x21(0) + x22(0), and, if ui(0) is chosen appropriately,
ui → −βi and the system goes to a closed orbit where the eigenvalues of the system
Jacobian at each point on the closed orbit are ±i , -800, -100, and -1200. Thus w =
x21 + x22 is an attractive two dimensional invariant manifold. The above system is now
subject to the unitary linear transformation given by y = Qv where v = [xT , w, uT ]T

and Q is

Q =
1

5















−3 2 2 2 2
2 −3 2 2 2
2 2 −3 2 2
2 2 2 −3 2
2 2 2 2 −3














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Table 11: Residuals in Constraint Solutions.

h m Residual

x1 x2 w u1 u2

8.0× 10−4 1 −4.84× 10−4 −4.84× 10−4 3.92× 10−3 −2.50× 10−3 −1.67× 10−3

2 −4.34× 10−6 −4.34× 10−6 2.55× 10−5 −1.91× 10−5 −8.50× 10−6

3 −1.21× 10−6 −1.21× 10−6 −6.08× 10−7 3.91× 10−9 1.16× 10−9

2.0× 10−4 1 −4.84× 10−4 −4.84× 10−4 3.92× 10−3 −2.50× 10−3 −1.67× 10−3

2 −3.43× 10−6 −3.43× 10−6 2.59× 10−5 −1.91× 10−5 −8.50× 10−6

3 −3.01× 10−7 −3.01× 10−7 −1.55× 10−7 3.73× 10−9 1.14× 10−9

5.0× 10−5 1 −4.84× 10−4 −4.84× 10−4 3.91× 10−3 −2.49× 10−3 −1.66× 10−3

2 −3.22× 10−6 −3.22× 10−6 2.64× 10−5 −1.95× 10−5 −8.54× 10−6

3 −7.55× 10−8 −7.55× 10−8 −3.09× 10−8 −7.27× 10−9 4.20× 10−10

As in the first example, this is chosen to “mix up” the slow and fast components. We
applied the constraint method using y1 and y2 as the fixed “observables.” They were
set to the values -791.2 and -792.2 respectively. The subspace y1 = −791.2, y2 = −792.2
intersects with the invariant manifold at four points (the defining system is a pair of
quadratic equations). The intersection in the neighborhood of the solution has the
values

x1 = −3.559434800714, x2 = −2.559434800714

Integration of y was performed using forward Euler with step size h for m + 1 steps,
and iterating until the (m + 1)-st forward difference was zero, with m = 1, 2, and
3. The differences between the constraint calculations and the known solution are
shown for several values of h in Table 11. (They are called “residuals” there, since
they are not exactly “errors.”) We see that the residuals decrease by two to three
orders of magnitude for each increase in m except for larger h. Larger h makes the
iteration converge much more rapidly, but the increased error in the approximation
of the difference to the derivative decreases the degree of approximation to the slow
manifold. In a practical application, it might be wise to use a large h to get an initial
approximation and then refine with a smaller h, although it might still be wise to use
some convergence acceleration technique.

5 Discussion and Conclusion

We presented a “computational wrapper” approach for the approximation of a
low-dimensional slow manifold using a legacy simulator. The approach effectively con-
stitutes a protocol for the design and processing of brief computational experiments
with the legacy simulator, which converge to an approximation of the slow manifold; in
the spirit of CSP, one can think of it as “singular perturbation through computational
experiments”. It is interesting that, if one could initialize a laboratory experiment
at will, our “computer experiment” protocol could become a laboratory experiment
protocol for the approximation of a slow manifold.
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The approach can be enhanced in many ways; we already mentioned the possible
use of matrix-free fixed point algorithms for the acceleration of its convergence. Here
we used the “simplest possible” estimation (through finite difference interpolation) of
the trajectory from the results of the simulation. Better estimation techniques (e.g.
maximum likelihood) can be linked with the data processing part of the approach; this
will be particularly important when the results of the detailed integration are noisy,
as will be the case in the observation of the evolution of statistics of complex evolving
distributions.

It is also important to notice that, upon convergence of the procedure, one can
implement a matrix-free, timestepper based computational approximation of the lead-
ing eigenvalues of the local linearization of the dynamics (e.g. through a timestepper
based Arnoldi procedure, see [5,29]). As the evolution progresses, or as the parameters
change, this test can be used to adaptively adjust the local dimension of the slow man-
ifold - we can detect whether a slow mode is starting to become fast, or when a mode
that used to be fast is now becoming slow. The eigenvectors of these modes constitute
good additional observables for the parameterization of a “fatter” slow manifold. One of
the important features of the approach is that one does not need to a priori know what
the so-called “slow variables” are - any set of observables that can parameterize the
slow manifold (i.e., over which the manifold is the graph of a function) can be used for
our approach. If data analysis ( [14,30]) suggests good observables that are nonlinear
combinations of the “obvious” state variables, the approach can still be implemented;
the knowledge of good “order parameters” can thus be naturally incorporated in this
approach.

Overall, this approach provides us with a good initial condition for the full problem,
consistent with a set of observables - an initial condition that lies close to the slow
manifold, sometimes referred to as a “mature” or “bred” initial condition. Such initial
conditions are essential for the implementation of equation-free algorithms: algorithms
that solve the reduced problem without ever deriving it in closed form [4, 25, 27]).
Indeed, short bursts of appropriately initialized simulations can be used to perform long
term prediction (projective and coarse projective integration) for the reduced problem,
its stability and bifurcation analysis, as well as tasks like control and optimization.
We expect this approach to become a vital component of the “lifting” operator in
equation-free computation.
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