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1. Introduction. In this paper we study the effects of linear perturbations on
the spectra of structured matrix pencils arising in control theory. The results that
we present complement and generalize general perturbation results for Hamiltonian
matrices as they were recently studied in [14] and we also extend results in [21, 22, 23].

Our main motivation arises from the following classical problems in optimal and
robust control. Consider a linear constant coefficient dynamical system of the form

Eẋ = Ax + Bu, x(τ0) = x0,(1.1)

where x(τ) ∈ Cn is the state, x0 is an initial vector, u(τ) ∈ Cm is the control input
of the system and the matrices E, A ∈ Cn,n, B ∈ Cn,m are constant. Here we discuss
only the case that the matrix E is nonsingular, thus we allow implicit systems but we
do not discuss descriptor systems.

The objective in linear quadratic optimal control, see e.g. [12, 17] is to find a
control law u(τ) such that the closed loop system is asymptotically stable and such
that the performance criterion

S(x, u) =

∫ ∞

τ0

[

x(τ)
u(τ)

]T [
Q S
SH R

] [

x(τ)
u(τ)

]

dτ(1.2)

is minimized, where Q = QH ∈ Cn,n, R = RH ∈ Cm,m is positive definite and
[

Q S
SH R

]

is positive semidefinite. Here AH denotes the transpose of the complex

conjugate of A ∈ Cn,n.
Application of the maximum principle [17, 20] leads to the problem of finding a

stable solution to the two-point boundary value problem of Euler-Lagrange equations

Nc





µ̇
ẋ
u̇



 = Hc





µ
x
u



 , x(τ0) = x0, lim
τ→∞

µ(τ) = 0,(1.3)
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with the matrix pencil

Hc − λNc :=





0 A B
AH Q S
BH SH R



− λ





0 E 0
−EH 0 0

0 0 0



 .(1.4)

It is well known that the finite eigenvalues of Hc−λNc are symmetric with respect to
the imaginary axis (and if the problem is real then also with respect to the real axis).
If E is invertible, then under the usual control theoretic assumptions [17, 26, 27], this
pencil has exactly n eigenvalues in the left half plane and n eigenvalues in the right
half plane plus m infinite eigenvalues. Clearly then the pencil has a unique deflating
subspace associated with the eigenvalues in the open left half complex plane. If E or
R are not invertible, then the situation is more complex and different approaches can
be taken, [4, 6, 7, 17]. In this paper we discuss mainly the case that E and R are
invertible.

The solution of the boundary value problem (1.3) can be obtained in many dif-
ferent ways. The approach in most computer aided control design packages is to
decouple the boundary value problem via the computation of the solution of an as-
sociated algebraic Riccati equation. But one may also directly solve the boundary
value problem (1.3) by computing the generalized Schur-form of the pencil Hc −λNc,
[2, 17, 27, 26], i.e., one determines unitary matrices P, Q ∈ C2n+m,2n+m, such that

PNcQ =





N11 N12 N13

0 N22 N23

0 0 N33



 , PHcQ =





H11 H12 H13

0 H22 H23

0 0 H33



 ,

where the subpencil H11−λN11 has all its eigenvalues in the left half plane, to decouple
the forward and backward integration in the boundary value problem.

In this paper we study the perturbation theory for the eigenvalue problem (1.4).
For this several different types of perturbations should be considered as separate
cases. If one uses classical methods that do not preserve the structure, like the QZ-
algorithm [9], to compute the generalized Schur form in finite precision arithmetic,
then the special structure of the pencil is ignored and hence the whole matrices Hc, Nc

are subject to perturbations. We do not discuss this case here, since it is well analyzed
in the monograph [24].

If one studies perturbation theory in order to deal with uncertainties in the data
of the system, then the blocks E, A, B, Q, S, R are subject to perturbations of only
the blocks E, A, B, since typically the matrices of the cost function are free to be

chosen under the constraints that

[

Q S
SH R

]

is positive semidefinite and R positive

definite. Also one may study the particular case that E = I is not perturbed.
In all cases it is essential to analyze whether the perturbations can lead to eigenval-

ues on the imaginary axis, in which case the spectral symmetry and the uniqueness
of the deflating subspace associated with the open left half plane may be lost, see
[8, 17, 21, 22, 23].

It is well-known, see [17, 18], that the discrete-time analogue to the linear qua-
dratic control problem leads to slightly different matrix pencils of the form

Hd − λNd =





0 A B
−EH Q S

0 SH R



− λ





0 E 0
−AH 0 0
−BH 0 0



 .(1.5)
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Here the spectral symmetry is with respect to the unit circle, i.e. the finite
eigenvalues come in pairs λ, 1

λ
or quadruples λ, λ̄, 1

λ
, 1

λ̄
in the case of real matrices.

The perturbation problems can be discussed analogously and here the important
question that arises is the study of perturbations which lead to eigenvalues on the
unit circle, where again the spectral symmetry and the uniqueness of the deflating
subspace associated with the eigenvalues in the open unit disk may be disturbed.

The second motivation comes from the optimal H∞-control problem which arises
in the context of robust control in frequency domain, see, e.g., the recent monographs
[10, 28]. In the context of the so called γ-iteration, in the newly developed approach
suggested in [5], generalized Schur forms have to be computed for matrix pencils of
the form

Ĥc(t) − λN̂c :=





0 A B
AH 0 S
BH SH R(t)



− λ





0 E 0
−EH 0 0

0 0 0



(1.6)

with an indefinite Hermitian matrix

R(t) =

[

R11 − tI R12

RH
12 R22

]

which varies with the positive parameter t (playing the role of the parameter γ in the
γ-iteration), while the other coefficients are constant in t. Here besides the classical
questions of perturbation theory as above, we are interested in the eigenvalues and
deflating subspaces as functions of t and we want to study the size of perturbations
that is needed to bring any of the finite eigenvalues to the imaginary axis.

Again there is a discrete-time H∞ analogue to this case [10] which leads to matrix
pencils

Ĥd(t) − λN̂d =





0 A B
−EH 0 S

0 SH R(t)



− λ





0 E 0
−AH 0 0
−BH 0 0



 .(1.7)

Here again we are interested in the eigenvalues and deflating subspaces as func-
tions of t and we want to study the size of perturbations that is needed to bring any
of the finite eigenvalues to the unit circle.

The paper is organized as follows. First we introduce the notation and give some
preliminary results in Section 2. In Section 3 we formulate a framework for analyzing
the effect of linear perturbations on general matrix pencils. We then study the special
cases of perturbations for general skew-symmetric/symmetric pencils arising from
continuous-time problems in Section 4 and the corresponding discrete-time problems
in Section 5.

2. Notation and preliminaries. We denote the set of all complex (real) ma-
trices of size n by Cn,n (Rn,n). Given a matrix A, we denote its complex conjugate
by A, its transpose by AT and the transpose of its complex conjugate by AH . We
denote the identity matrix of size n by In. Also we consider the ‘flip’ permutation
matrix

Fn :=















0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0















∈ C
n,n.
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We denote the spectrum of a square matrix A and a pencil (A, B) by σ(A) and
σ(A, B), respectively. Given a set S we denote its boundary by ∂S. For A ∈ Cn,n,
we define the spectral radius of A as r(A) := max{|λ| : λ ∈ σ(A)}.

Also, given z ∈ C, we define

sepR(z, ∆H, ∆N) := min{|t| : z ∈ σ(H + t∆H, N + t∆N), t ∈ R}.

It is well known (see e.g.[25]) that for every matrix A ∈ Cn,n(Rn,n) there exist
symmetric matrices T = T T and S = ST , where S is also nonsingular, such that
A = TS−1. Note that if A is not real then these factors in general are complex
symmetric but not Hermitian. Furthermore, if A ∈ Rn,n, then T and S can be chosen
to be real matrices. Since this result is due to Frobenius, we refer to T and S as
Frobenius factors of A. In our work, we will need similar factorizations, however with
Frobenius factors that are Hermitian. It is easy to see that if A ∈ Rn,n, then A always
has Hermitian Frobenius factors. However, if A ∈ Cn,n, then Hermitian factors need
not exist. This follows by observing the fact that if A = TS−1 with T H = T and
SH = S, then we must have AS = SAH , that is A = SAHS−1. This, implies that the
matrices A and AH must be similar and hence they must have the same eigenvalues.
Thus, a necessary condition for the existence of Hermitian Frobenius factors T and S
is that σ(A) = σ(AH ).

We show that σ(A) = σ(AH ) is also a sufficient condition for A to have Hermitian
Frobenius factors. For this, we first observe that σ(A) = σ(AH) implies that for every
non-real eigenvalue of A its complex conjugate is also an eigenvalue with the same
multiplicity.

Proposition 2.1. Let A ∈ Cn,n be such that σ(A) = σ(AH ). Let η1, η2, . . . , ηr be
the pairwise distinct real eigenvalues of A and let λ1, λ2, . . . , λp, λ1, λ2, . . . , λp, be the
pairwise distinct non-real eigenvalues of A. Furthermore, let m1, m2, . . . , mp be the
multiplicities of the eigenvalues λ1, λ2, . . . , λp, respectively such that

∑p
i=1

mi = m,
and let k1, k2, . . . , kr be the multiplicities of η1, η2, . . . , ηr, such that

∑r
j=1

kj = k, and
n = 2m + k. Then, with the permutation matrix

U = diag
(

F2m1
, F2m2

, . . . , F2mp
, Fn1

, Fn2
, . . . , Fns

)

,

we have that A and AH have the Jordan decompositions

A = PJP−1, AH = (P−HU)J(P−HU)−1,

where the blocks are ordered as in

J := diag
(

Jm1
(λ1), Jm1

(λ1), . . . , Jmp
(λp), Jmp

(λp),

Jn1
(η1), Jn2

(η2), . . . , Jnr
(ηr)) ,(2.1)

such that for i = 1, 2, . . . , p, j = 1, 2, . . . , r,

Jmi
(λi) :=















λi ϕ 0 · · · 0 0
0 λi ϕ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λi ϕ
0 0 0 · · · 0 λi














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and

Jnj
(ηj) :=















ηj ϕ 0 · · · 0 0
0 ηj ϕ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ηj ϕ
0 0 0 · · · 0 ηj















with ϕ = 0 or ϕ = 1 and U satisfies JU − UJH = 0.

Proof. Let A = PJP−1 with J as in (2.1) be a Jordan decomposition of A. Then,
AH = P−HJHP H with

JH = (J)T = diag
(

Jm1
(λ1), Jm1

(λ1), . . . , Jmp
(λp), Jmp

(λp),

Jn1
(η1), Jn2

(η2), . . . , Jnr
(ηr))

T
,

and for i = 1, 2, . . . , p,

[

Jmi
(λi) 0
0 Jmi

(λi)

]

F2mi
=















λi ϕ

λi ϕ
. . .

. . .

λi ϕ
λi





























0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0















=















0 0 · · · 0 ϕ λi

0 0 · · · ϕ λi 0
...

...
. . .

...
...

...
ϕ λi · · · 0 0 0

λi 0 · · · 0 0 0















=















0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0





























λi

ϕ λi

. . .
. . .

ϕ λi

ϕ λi















= F2mi

[

Jmi
(λi) 0
0 Jmi

(λi)

]T

Similarly for j = 1, 2, . . . , s, we have Jnj
Fnj

= Fnj
JT

nj
and thus it follows that JU −

UJH = 0.

Using Proposition 2.1 together with Theorem 12.5.1 of [16] we then construct a
nonsingular Hermitian solution S of the equation AS − SAH = 0.

Theorem 2.2. Let A ∈ Cn,n be such that σ(A) = σ(AH ). Then there exists a
nonsingular Hermitian matrix S such that AS = SAH .

Proof. Using the notation of Proposition 2.1, it follows by Theorem 12.5.1
in [16] that all solutions of the equation AS − SAH = 0 are of the form S =
PY (P−HU)−1 = PY UP H . Here Y satisfies JY − Y J = 0 and has the block-form

Y = diag (Y1, Y2, . . . , Yp, Ik), where Yi =

[

0 Yi,i

Yi,i 0

]

∈ C2mi,2mi , each Yi,i being an
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arbitrary upper triangular Toeplitz matrix for i = 1, 2, . . . , p. Since we want Y U to
be Hermitian, a possible choice is Yi,i = Imi

. Then for i = 1, 2, . . . , p, we have

YiF2mi
= diag (Fmi

, Fmi
) = F2mi

Yi,

which implies that (Y U)H = UHY H = UY = Y U . Thus, S := PY UP H is nonsingu-
lar and Hermitian.

Theorem 2.2 immediately provides a necessary and sufficient condition for A ∈
Cn,n to have Hermitian Frobenius factors.

Corollary 2.3. Given A ∈ Cn,n, there exist Hermitian matrices, T and S
where S is also nonsingular such that A = TS−1 if and only if σ(A) = σ(AH).

Proof. Suppose that there exist Hermitian matrices T and S, where S is also
nonsingular such that A = TS−1. Then T = AS and T = T H and hence AS = SAH

or A = SAHS−1, i.e., σ(A) = σ(AH ). For the converse, suppose that σ(A) = σ(AH ).
Then by Theorem 2.2, there exists a nonsingular Hermitian matrix S such that AS =
SAH . This implies that A = (SAH)S−1 and the proof follows by setting T = SAH .

Since the factorization A = TS−1 with SH = S and T H = T , if it exists, depends
on the choice of S as a solution of AX − XAH = 0, it is evident from Theorem 2.2
that this factorization is, in general, not unique.

In the following we will need Frobenius factorizations for matrices that depend on
a complex parameter. Suppose that A depends smoothly upon a complex parameter
z and σ(A(z)) = σ(A(z)H ), and let A(z) = T (z)S(z)−1 be a Frobenius factorization
of A(z) with T (z) = T (z)H and S(z) = S(z)H . Using the spectral factorization of
T (z), there exists a unitary matrix U(z) such that

T (z) = U(z)





D+(z)
D−(z)

0



U(z)H ,

where D+(z) ∈ C
π,π,−D−(z) ∈ C

ν,ν are diagonal matrices with positive diagonal
elements and π(z) ≥ ν(z) where (π(z), ν(z), ω(z)) with π(z) + ν(z) + ω(z) = n is the
inertia-index of T (z), see [16].
Setting

Q(z) := U(z)





(D+(z))
1

2

(−D−(z))
1

2

Iω(z)



 , ĨT (z) :=





Iπ(z)
−Iν(z)

0



 ,

we have for given z a factorization

A(z) = Q(z)ĨT (z)QH(z)S(z)−1.(2.2)

Note that the choice π ≥ ν makes the matrix ĨT (z) unique, while there is still much
freedom in the choice of the transformation matrix Q(z). In an analogous way we can
construct a factorization

A(z) = T (z)(V (z)(ĨS(z))V (z)H)−1 = T (z)V (z)−H(ĨS(z))V (z)−1(2.3)

by using the spectral factorization and the inertia index of S(z).
An interesting open question that one may discuss in this context is how to obtain

a smooth Frobenius factorization, when the matrix depends smoothly on a parameter
as in our case.

6



3. Linear perturbation of general matrix pencils. In this section we con-
sider the effect of perturbing a regular square matrix pencil (H, N) where H, N ∈
Cn,n (Rn,n) by linear perturbations (H+t∆H, N+t∆N). Here ∆H, ∆N ∈ Cn,n(Rn,n)
are fixed perturbation matrices and the parameter t varies over the real numbers.

Lemma 3.1. For every z ∈ C we have sepR(z, ∆H, ∆N) < ∞ if and only if (∆H−
z∆N)(H−zN)−1 has a non-zero real eigenvalue. Moreover, if sepR(z, ∆H, ∆N) < ∞,
then

sepR(z, ∆H, ∆N) =

[

max
λ∈R

{λ ∈ σ((∆H − z∆N)(H − zN)−1)}
]−1

.

Proof. The proof follows immediately from the fact that for λ 6∈ σ(H, N), we have

H + t∆H − λ(N + t∆N) =
[

I + t(∆H − λ∆N)(H − λN)−1
]

(H − λN).

Hence λ ∈ σ(H + t∆H, N + t∆N) if and only if −1/t ∈ σ((∆H −λ∆N)(H −λN)−1).

As discussed in the introduction, we are interested in conditions which guarantee
that all the eigenvalues of the perturbed pencils (H + t∆H, N + t∆N), t ∈ R, remain
within a particular open subset, say Cg, of the complex plane. Since the eigenvalues
of (H + t∆H, N + t∆N) move continuously as t varies in R, the smallest value of |t|
for which these eigenvalues move out of Cg is evidently equal to

r(Cg , ∆H, ∆N) := inf
z∈δCg

sep(z, ∆H, ∆N).

Note that similar distances are very important in other contexts of control theory,
where the smallest perturbation that makes a system unstable is called the stability
radius [11] and the smallest perturbation that makes a system non-passive is called
the passivity radius [19].

Since a complex number z becomes an eigenvalue of the perturbed pencil (H +
t∆H, N + t∆N) for some t ∈ R if and only if the matrix (∆H − z∆N)(H − zN)−1

has a non-zero real eigenvalue, it is possible that there exist pencils (H, N) with
corresponding perturbations (∆H, ∆N) and sets Cg such that r(Cg , ∆H, ∆N) = ∞,
that is, the eigenvalues of the perturbed pencils (H + t∆H, N + t∆N) always remain
inside Cg as t varies over the real numbers. In such cases, sep(z, ∆H, ∆N) = ∞ for
all z ∈ ∂Cg. This is illustrated by the following example.

Example 3.2. Consider the pencil (H, N) where

H :=

[

1 2
2 1

]

, and N :=

[

0 1
−1 0

]

.

Its eigenvalues are
√

3 and −
√

3. Let

∆H :=

[

1 0
0 −1

]

, ∆N := 0

be the perturbations to H and N , respectively.
Let Cg := C\{z ∈ C : Re(z) = 0}. Then the boundary ∂Cg of Cg is evidently the

imaginary axis. Therefore, by Lemma 3.1 for all t ∈ R, the eigenvalues of the pencils
(H + t∆H, N + t∆N) are always in Cg, if and only if the matrix

(∆H − z∆N)(H − zN)−1 =
1

3 − z2

[

−1 2− z
−(2 + z) 1

]

7



has no non-zero real eigenvalue for every z ∈ C lying on the imaginary axis. The
eigenvalues of (∆H − z∆N)(H − zN)−1 are i/

√

(3 − z2) and −i/
√

(3 − z2). Now for
every z lying on the imaginary axis, there exists a real number γ, such that z = iγ.
Therefore, for z ∈ ∂Cg, the eigenvalues of (∆H − z∆N)(H − zN)−1 are i/

√

(3 + γ2)

and −i/
√

(3 + γ2). This shows that (∆H−z∆N)(H−zN)−1 has no real eigenvalues
for all z ∈ ∂Cg. Hence, σ(H + t∆H, N + t∆N) ⊂ Cg , for all t ∈ R. �

Since z ∈ σ(H + t∆H, N + t∆N) for some t ∈ R, if and only if the matrix F (z) :=
(∆H−z∆N)(H−zN)−1 has a real eigenvalue, we identify conditions under which the
latter matrix has a real eigenvalue. Under the assumption that σ(F (z)) = σ(F (z)H ),
let F (z) = T (z){S(z)}−1 be a Frobenius factorization of F (z) where T (z)H = T (z)
and S(z)H = S(z). The following result gives a necessary and sufficient condition for
this matrix to have a real eigenvalue.

Lemma 3.3. For a fixed z ∈ C, let T (z) and S(z) be Frobenius factors of
F (z) := (∆H − z∆N)(H − zN)−1, where T (z)H = T (z), S(z)H = S(z) and S(z)
is nonsingular. Let (πT (z), νT (z), ωT (z)) with πT (z) ≥ νT (z) be the inertia index of
T (z). Furthermore, let ĨT (z), Q(z) be as in a factorization of the form (2.2) of F (z).

Then (∆H − z∆N)(H − zN)−1 has a non-zero real eigenvalue if and only if the
matrix ĨT (z)Q(z){S(z)}−1Q(z)H has a non-zero real eigenvalue.

Proof. The proof follows, since F (z) and ĨT (z)Q(z){S(z)}−1Q(z)H are similar.

It is evident that the roles of the matrices T (z) and S(z) in Lemma 3.3 can be
interchanged.

Lemma 3.4. For a fixed z ∈ C, let the matrix T (z) and S(z) be Frobenius factors
of F (z) := (∆H − z∆N)(H − zN)−1 such that T (z)H = T (z), S(z)H = S(z) and
S(z) is invertible. Let (πS(z), νS(z), ωS(z)) with πS(z) ≥ νS(z) be the inertia index
of S(z). Let, furthermore, ĨS(z), V (z) be the factors in a factorization of the form
(2.3) of F (z). Then (∆H − z∆N)(H − zN)−1 has a non-zero real eigenvalue if and
only if the matrix V (z)−1T (z)V (z)−H ĨS(z) has a non-zero real eigenvalue.

In general, the function sepR(z, ∆H, ∆N) is discontinuous as a function of z, since
it depends on the matrix (∆H−z∆N)(H−zN)−1 having a real eigenvalue. However,
it is possible that given a set Cg ⊂ C, the structure of the matrices H, N, ∆H , and
∆N are such that the matrix (∆H − z∆N)(H − zN)−1 always has one or more real
eigenvalues for z ∈ ∂Cg. Let these eigenvalues be h1(z), . . . , hp(z). Then (∆H −
z∆N)(H − zN)−1 is an analytic function of z ∈ C \σ(H, N), and hence in particular
of z ∈ ∂Cg (Theorem 1.5, pp. 66, [13]) and the eigenvalues h1(z), . . . , hp(z) are
continuous (Corollary 3, pp. 105, [3]). Therefore, for such cases we have for z ∈ ∂Cg,

sepR(z, ∆H, ∆N) = {max{|hk(z)| : k = 1, . . . , p}}−1,

which implies that sepR(z, ∆H, ∆N) is a continuous function of z. In the special
situation that all the eigenvalues of (∆H − z∆N)(H − zN)−1 are real, we have
sepR(z, ∆H, ∆N) = {r((∆H − z∆N)(H − zN)−1)}−1 for all z ∈ ∂Cg. In such cases,
the distribution of the eigenvalues of (H+t∆H, N +t∆N) on ∂Cg may be analyzed by
plotting the level curves of the spectral radius function r((∆H − z∆N)(H − zN)−1)
in neighbourhoods of ∂Cg . Then the smallest value of |t| for which some z ∈ ∂Cg is
an eigenvalue of (H + t∆H, N + t∆N) is evidently given by the smallest value of ε
for which the level set

L(ε, ∆H, ∆N) := {z ∈ C \ σ(H, N) : r((∆H − z∆N)(H − zN)−1) = ε−1}
8



intersects ∂Cg . In other words, for such problems, the distance to the boundary of
Cg is given by

r(Cg , ∆H, ∆N) := min{ε ∈ R : L(ε, ∆H, ∆N) ∩ ∂Cg 6= 0}.(3.1)

By Proposition 2.1 of [1] the spectral radius function r((∆H − z∆N)(H − zN)−1) is
non-constant on open subsets of C \ σ(H, N). This together with the fact that it is
also continuous on C \ σ(H, N) implies that the level sets L(ε, ∆H, ∆N) are closed
sets which have no interior points. In other words, they are curves on the complex
plane. Furthermore, the curve L(ε, ∆H, ∆N) intersects ∂Cg at only a finite number
of points, since at each such point we must either have z ∈ σ(H + ε∆H, N + ε∆N) or
z ∈ σ(H − ε∆H, N − ε∆N). This justifies the use of ’minimum’ instead of ’infimum’
in (3.1).

In the following theorem, we give sufficient conditions for all the eigenvalues of
the matrix (∆H − z∆N)(H − zN)−1 to be real.

Theorem 3.5. All the eigenvalues of the matrix F (z) = (∆H − z∆N)(H −
zN)−1, z ∈ C, are real if there exists a Frobenius factorization F (z) = T (z)S(z)−1,
with T (z)H = T (z), and S(z)H = S(z) and the Frobenius factors T (z) and S(z)
satisfy any of the following conditions.

(i) T (z) and S(z)−1 commute.
(ii) T (z) is positive semidefinite.
(iii) S(z) is positive definite.
Proof. (i) Since (∆H − z∆N)(H − zN)−1 = T (z)S(z)−1, where T (z) and S(z)

are Hermitian, the matrix (∆H − z∆N)(H − zN)−1 is Hermitian if T (z)S(z)−1 =
S(z)−1T (z) and therefore all its eigenvalues are real. This proves (i).

(ii) If T (z) and S(z) do not commute but T (z) is positive semidefinite with π(z)
non-zero eigenvalues, then we obtain the Frobenius factorization (2.2) as F (z) =

Q(z)ĨT (z)Q(z)
H

S(z)
−1

with ĨT (z) =

[

Iπ 0
0 0

]

. If we partition

Q(z)HS(z)−1Q(z) =

[

S11(z) S12(z)
S21(z) S22(z)

]

conformally with ĨT (z), then S11(z) is Hermitian and

Q(z)HT (z){S(z)}−1Q(z) =

[

S11(z) S12(z)
0 0

]

.

Therefore, σ((∆H − z∆N)(H − zN)−1) = σ(S11(z)) ∪ {0} which is real.
(iii) The proof follows as in (ii) by exchanging the roles of S and T and using the

factorization (2.3).
Note that Theorem 3.5 also holds if the condition of positive semidefiniteness

in (ii) and positive definiteness in (iii) are replaced by negative semidefiniteness and
negative definiteness, respectively.

4. Linear perturbation of structured matrix pencils arising from conti-

nuous-time control problems. In this section we apply the results from Section 3
to the specific pencils from control theory that we introduced in Section 1. The ma-
trices H and N then have special structure and in order not to destroy the properties
of the pencils it should be guaranteed that the perturbations preserve this structure.

This means that we study the effect of perturbations (H +t∆H, N +t∆N), t ∈ R,
where the matrices ∆H and ∆N have the same structure as H and N , respectively.
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Although we consider complex pencils, the results of this section also hold for real
pencils.

4.1. Perturbation of pencils arising in continuous-time control. The first
application that we discuss are matrix pencils of the form (1.4) where we perturb only
the blocks E, A, B, Q, S, R but such that Q and R stay Hermitian, i.e., we consider
the case

H =





0 A B
AH Q S
BH SH R



 , N =





0 E 0
−EH 0 0

0 0 0



 ,(4.1)

with A, Q, E ∈ Cn,n, B, SH ∈ Cn,m, R ∈ Cm,m, Q = QH , R = RH and we assume
that E is invertible. The perturbation matrices are

∆H =





0 ∆A ∆B
(∆A)H ∆Q ∆S
(∆B)H (∆S)H ∆R



 , ∆N :=





0 ∆E 0
−(∆E)H 0 0

0 0 0



 ,(4.2)

where the dimensions are analogous and where we assume that (∆Q)H = ∆Q,
(∆R)H = ∆R and that E + ∆E is still invertible. The pencils (H, N) and (H +
∆H, N +∆N) are then both Hermitian/skew Hermitian pencils and we are interested
in the set Cg := C \ {z ∈ C : Re(z) = 0}. Hence, the quantity of interest is the
smallest value |t|, t ∈ R, such that (H + t∆H, N + t∆N) has a purely imaginary
eigenvalue. In view of Lemma 3.1 (with z = iγ, γ ∈ R) this is equivalent to finding
the smallest |γ| such that the matrix (∆H − iγ∆N)(H − iγN)−1 has a non-zero real
eigenvalue.

Evidently, we have the following expressions for Hermitian Frobenius factors T (iγ)
and S(iγ) of the matrix (∆H − iγ∆N)(H − iγN)−1.

T (iγ) =





0 ∆A − iγ∆E ∆B
(∆A − iγ∆E)H ∆Q ∆S

(∆B)H (∆S)H ∆R



 ,

S(iγ) =





0 A − iγE B
(A − iγE)H Q S

BH SH R



 .

We may directly use Lemma 3.3 and Lemma 3.4 to obtain conditions for (H+t∆H, N+
t∆N) to have a purely imaginary eigenvalue, as t varies in R. But the special structure
of the Frobenius factors provides another condition that is more specific to the problem
at hand. To obtain it, we assume without loss of generality that the matrix [A B] is
not a square matrix, i.e., that the matrix B has at least one column.

Theorem 4.1. Consider a matrix pencil (H, N) and associated perturbations
∆H and ∆N as in (4.1) and (4.2). Let

P (t, γ) := [A − iγE + t(∆A − iγ∆E) B + t∆B],

Z(t) :=

[

Q + t∆Q S + t∆S
(S + t∆S)H R + t∆R

]

.

Let V (t, γ) be the set of right singular vectors of P (t, γ) corresponding to the singular
value 0, and let W (t, γ) be the range of P (t, γ)H .
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Then for given real numbers t 6= 0 and γ, the purely imaginary number iγ is an
eigenvalue of the matrix pencil (H + t∆H, N + t∆N) if and only if

Z(t)(V (t, γ)) ∩ W (t, γ) 6= ∅.

Proof. We make use of the fact (H + t∆H, N + t∆N), t ∈ R has a purely
imaginary eigenvalue iγ, γ ∈ R if and only if −1/t is an eigenvalue of the matrix
(∆H − iγ∆N)(H − iγN)−1. Considering a Frobenius factorization

(∆H − iγ∆N)(H − iγN)−1 = T (iγ)(S(iγ))−1,

it follows that iγ is an eigenvalue of (H + t∆H, N + t∆N) if and only −1/t is an
eigenvalue of T (iγ)S(iγ)−1, i.e., if and only if there exists a vector x 6= 0, such that
T (iγ)S(iγ)−1x = − 1

t
x. Setting y := S(iγ)−1x, this, in turn, implies that iγ, is an

eigenvalue of (H + t∆H, N + t∆N), if and only if there exists a vector y 6= 0, such
that S(iγ)y = −tT (iγ)y. Writing down the expressions for T (iγ), and S(iγ), we have





0 A − iγE + t(∆A − iγ∆E) B + t∆B
(A − iγE + t(∆A − iγ∆E)H Q + t∆Q S + t∆S

(B + t∆B)H (S + t∆S)H R + t∆R



 y = 0.

This in turn can be written as
[

0 P (t, γ)
P (t, γ)H Z(t)

] [

y1

y2

]

= 0.

Hence, we have the following system of equations.

P (t, γ)y2 = 0

P (t, γ)Hy1 + Z(t)y2 = 0

From the first equation we have that either y2 = 0 or 0 is a singular value of
P (t, γ) and y2 a corresponding singular vector. But as [A B] is not a square matrix,
neither is P (t, γ) = [A − iγE + t(∆A − iγ∆E) B + t∆B]. As a consequence a non-
zero vector y2 satisfying the first equation always exists. Therefore, a necessary and
sufficient condition for iγ to be an eigenvalue of (H + t∆H, N + t∆N), is that for
every right singular vector y2 of P (t, γ) corresponding to the singular value 0, there
exists some vector y1, such that −P (t, γ)Hy1 = Z(t)y2. This implies that the matrix
Z(t) maps at least one right singular vector of P (t, γ) corresponding to the singular
value 0, to the range of P (t, γ)H . Since V (t, γ) is the set of all these right singular
vectors of P (t, γ), it follows that iγ is an eigenvalue of (H + t∆H, N + t∆N), if and
only if Z(t)(V (t, γ)) ∩ W (t, γ) 6= ∅.

In the applications from control theory, the matrices Q, R and S are associated
with the cost function and often these cost functions can be chosen. If this is case,
then we may assume that the corresponding perturbations ∆Q, ∆R and ∆S are all
equal to zero. Under this assumption, we have the following immediate corollary of
Theorem 4.1.

Corollary 4.2. Suppose that W (t, γ) and V (t, γ) are as in Theorem 4.1 and that

Z0 :=

[

Q S
SH R

]

. Then the matrix pencil (H + t∆H, N + t∆N) has an eigenvalue

iγ if and only if Z0(V (t, γ)) ∩ W (t, γ) 6= ∅.
11



Proof. The proof follows immediately from Theorem 4.1 by noticing the fact that
Z(0) = Z0.

Corollary 4.2 implies that for a given fixed real number t, the matrices Q, S and R
of the cost functional can be chosen in such a way that the pencil (H+t∆H, N +t∆N)
does not have any purely imaginary eigenvalues, cp. [15].

Corollary 4.3. If P (t, γ) and V (t, γ) are as in Theorem 4.1 and Z0 :=
[

Q S
SH R

]

, then for a fixed t ∈ R, the matrix pencil (H + t∆H, N + t∆N) has

no purely imaginary eigenvalues if and only if

Z0(∪γ∈RV (t, γ)) ∩ (∪γ∈RW (t, γ)) = ∅.
The condition of Corollary 4.3 is necessary and sufficient for a pencil (H̃, Ñ) := (H +
t∆H, N + t∆N) to have no imaginary eigenvalues. Thus, this condition generalizes
well-known classical conditions that guarantee that the considered pencil has no purely
imaginary eigenvalue, see e.g. [15, 17].

For instance, it is well known that a matrix pencil (H, N), with H and N as in
(4.1) has no purely imaginary eigenvalues if its blocks satisfy the following conditions:

(i) The matrix R is positive definite and the matrix Q − SR−1SH is positive
semidefinite.

(ii) The triple (E, A, B) where A has size n, is stabilizable, i.e., for all complex
numbers λ in the closed right half plane the rank of [A − λE, B] is n.

(iii) If Q − SR−1SH = CHC is a full rank factorization of Q − SR−1SH , then
(E, A, C) is detectable, i.e., (EH , AH , CH) is stabilizable.

The following example shows that there exist pencils (H, N) which arise from sys-
tems that are not stabilizable and detectable and yet they do not have any purely
imaginary eigenvalues. This is due to the fact that they satisfy the condition given in
Corollary 4.3.

Example 4.4. Let

H :=













0 0 2 3 2
0 0 0 5 2
2 0 1 −1 1
3 5 −1 1 −1
2 2 1 −1 5













, N :=













0 0 1 0 0
0 0 0 1 0
−1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0













.

The eigenvalues of the pencil (H, N) are 2,−2, 5,−3 and ∞. For this pencil we have,

A :=

[

2 3
0 5

]

, E :=

[

1 0
0 1

]

, B :=

[

2
2

]

,

Q :=

[

1 −1
−1 1

]

, R := [5], S :=

[

1
−1

]

.

It is easy to see that (E, A, B) is not stabilizable as the matrix [A − 2I, B] =
[

0 3 2
0 3 2

]

, evidently has rank 1. We also note that

[

− 2√
5

2√
5

]H [

− 2√
5

− 2√
5

]

=

[

4

5
− 4

5

− 4

5

4

5

]

= Q − SR−1SH .

Setting C :=
[

− 2√
5

2√
5

]

we observe that (E, A, C) is not detectable, since [AH −

5I, CH ] =

[

−3 0 − 2√
5

3 0 2√
5

]

has rank 1. Hence the triples (E, A, B) and (E, A, C)
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are also not completely controllable and completely observable, respectively, see [15].
In this case, 0 is a simple singular value of

[A − iγE B] :=

[

2 − iγ 3 2
0 5 − iγ 2

]

with corresponding singular vector v := [−2, −2, 5+iγ]T . The range of [A−iγE B]H

is spanned by the vectors u1 := [2 + iγ, 3, 2]T , and u2 := [0, 5 + iγ, 2]T . Therefore,
(H, N) has a purely imaginary eigenvalue if and only if some linear combination of u1

and u2 is equal to

[

Q S
SH R

]

v. This gives rise to the following equations.

(2 + iγ)x1 = 5 + iγ,

3x1 + (5 + iγ)x2 = −(5 + iγ),

2x1 + 2x2 = 5(5 + iγ).

Eliminating x1 and x2 from these equations, we get the relation γ = 5i /∈ R. �

We note that Theorem 4.1 may be generalized to the case when the zero blocks of
the perturbation matrix ∆N are filled in such a way that the resulting matrix remains
skew-Hermitian, that is, ∆N is replaced by ∆N̂ where

∆N̂ :=





0 ∆E ∆F
−(∆E)H 0 ∆G
−(∆F )H −(∆G)H 0



 .(4.3)

In this case, the matrix (∆H − iγ∆N̂)(H − iγN)−1 has a Frobenius factorization

(∆H − iγ∆N̂)(H − iγN)−1 = T̂ (iγ){S(iγ)}−1

where

T̂ (iγ) =





0 ∆A − iγ∆E ∆B − iγ∆F
(∆A − iγ∆E)H 0 ∆S − iγ∆G
(∆B − iγ∆F )H (∆S − iγ∆G)H 0



 .

Theorem 4.5. Consider a matrix pencil (H, N) and associated perturbations
∆H and ∆N̂ as given in (4.1), (4.2) and (4.3). Let

P̂ (t, γ) := [A − iγE + t(∆A − iγ∆E) B + t(∆B − iγ∆F )],

and Ẑ(t, γ) :=

[

Q + t∆Q S + t(∆S − iγ∆G)
(S + t(∆S − iγ∆G))H R + t∆R

]

.

Denote by V̂ (t, γ) the set of right singular vectors of P̂ (t, γ) corresponding to the
singular value 0 and the range of P̂ (t, γ)H by Ŵ (t, γ).

Then, for given real numbers t 6= 0 and γ, the purely imaginary number iγ is an
eigenvalue of the matrix pencil (H + t∆H, N + t∆N̂) if and only if Ẑ(t, γ)(V̂ (t, γ)) ∩
Ŵ (t, γ) 6= ∅.

Proof. The proof follows by replacing the set T (iγ) by T̂ (iγ) in the proof of
Theorem 4.1.

It follows trivially, that all the results of this section also hold for those special
cases when one or more of the blocks ∆A, ∆B, ∆Q, ∆R and ∆S in the perturbation
matrix ∆H or the block ∆E in the perturbation matrix ∆N are equal to 0.
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4.2. The continuous-time H∞ problem. As mentioned in the introduction,
in the case of the continuous-time, optimal H∞ control problem, from (1.6) we have
∆N = 0. Furthermore, the perturbation ∆H of H has a very special structure. All
its entries are zero, except for the entries of the block ∆R which is itself a special
diagonal matrix, the first few entries on the main diagonal being each equal to −1 and
the remaining being all equal to zero. Due to this special structure, all the eigenvalues
of (∆H − z∆N)(H − zN)−1 are real and its non-zero eigenvalues are precisely the
non-zero eigenvalues of a leading principal submatrix of a Hermitian matrix whose
size is the same as that of the block R of H.

Theorem 4.6. Let the matrices H and N be as in (4.1) with R :=

[

R11 R12

R21 R22

]

.

Let ∆H and ∆N be as in (4.2) with ∆A = ∆B = ∆Q = ∆S = ∆E = 0 and ∆R :=
[

−Ij 0
0 0

]

, where Ij is an identity matrix of size j, the partition being conformal with

that of R. Then for γ ∈ R, all the eigenvalues of the matrix (∆H−iγ∆N)(H−iγN)−1

are real. In particular, the non-zero eigenvalues are the same as those of the leading
principal submatrix of size j of the Hermitian matrix

W (γ) := R−1

(

[

B
S

]H [ −BR−1BH A − iγE − BR−1SH

(

A − iγE − BR−1SH
)H

Q − SR−1SH

]−1

×
[

B
S

]

+ R

)

R−1.

Proof. For γ ∈ R,

H − iγN =





0 A − iγE B
AH + iγEH Q S

BH SH R





=





I 0 BR−1

0 I SR−1

0 0 I



×





−BR−1BH A − iγE − BR−1SH 0
AH + iγEH − SR−1BH Q − SR−1SH 0

BH SH R



 .

Therefore,

(H − iγN)−1 =





−BR−1BH A − iγE − BR−1SH 0
AH + iγEH − SR−1BH Q − SR−1SH 0

BH SH R





−1

×





I 0 −BR−1

0 I −SR−1

0 0 I



 .

Let H̃ :=

[

−BR−1BH A − iγE − BR−1SH

AH + iγEH − SR−1BH Q − SR−1SH

]

, M :=

[

−BR−1

−SR−1

]

,

and Z :=
[

BH SH
]

. Then

(H − iγN)−1 =

[

H̃ 0
Z R

]−1 [

I M
0 I

]

=

[

H̃−1 0

−R−1ZH̃−1 R−1

][

I M
0 I

]
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=

[

H̃−1 H̃−1M

−R−1ZH̃−1 −R−1ZH̃−1M + R−1

]

=

[

H̃−1 H̃−1M

MHH̃−1 −MHH̃−1M + R−1

]

,

which is Hermitian, since H̃ is Hermitian. Then, we obtain

(∆H − iγ∆N)(H − iγN)−1 =

[

0 0
0 ∆R

] [

H̃−1 H̃−1M

MH(H̃)−1 MHH̃−1M + R−1

]

=

[

0 0

(∆R)MHH̃−1 (∆R)(MHH̃−1M + R−1)

]

.

Therefore, the matrix (∆H−iγ∆N)(H−iγN)−1 has a non-zero real eigenvalue if and
only if the matrix (∆R)(MHH̃−1M +R−1) has a non-zero real eigenvalue. Replacing

M by

[

−BR−1

−SR−1

]

we have

(∆R)(MHH̃−1M + R−1) = (∆R)R−1

(

[

B
S

]H

H̃−1

[

B
S

]

+ R

)

R−1

= (∆R)W (γ).

Note that since the matrices R and Q are Hermitian, W (γ) is also Hermitian and
hence all its eigenvalues are real. Let

W (γ) :=

[

W11(γ) W12(γ)
W21(γ) W22(γ)

]

(4.4)

be a partition of W (γ), conformal with that of ∆R. In view of the structure of ∆R,
it follows that

(∆R)W (γ) =

[

−W11(γ) −W12(γ)
0 0

]

.

Hence (∆H − iγ∆N)(H − iγN)−1 has a non-zero real eigenvalue if and only if the
block W11(γ) has a non-zero real eigenvalue. The proof follows from the fact that
W11(γ) is Hermitian.

From Theorem 4.6 it follows that for the continuous time H∞ control problem we
have sepR(z, ∆H, ∆N) = {r((∆H − z∆N)(H − zN)−1)}−1 for all purely imaginary
complex numbers z. However, for these problems we are interested only in positive
values of the parameter t for which (H + t∆H, N + t∆N) has a purely imaginary
eigenvalue. The following immediate corollary of Theorem 4.6 suggests a procedure
for obtaining the exact value of the smallest positive parameter t for which the pencil
(H + t∆H, N + t∆N) has a purely imaginary eigenvalue or an upper or lower bound
of this value.

Corollary 4.7. Let H, N, ∆H and ∆N be as in Theorem 4.6. The smallest
positive parameter t for which (H+t∆H, N +t∆N) has a purely imaginary eigenvalue
is, say t = t0, if and only if
(i) 1/t0 is the smallest value of ε for which the set

L(ε, ∆H, ∆N) := {z ∈ C \ σ(H, N) : r((∆H − z∆N)(H − zN)−1) = ε−1}
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touches the imaginary axis and
(ii) 1/t0 is an eigenvalue of largest magnitude of the matrix W11(γ0), given by (4.4),
iγ0 being the point at which L(1/t0, ∆H, ∆N) touches the imaginary axis.

If all the eigenvalues of W11(γ0) are negative real numbers, then the smallest
positive parameter t for which (H+t∆H, N +t∆N) has a purely imaginary eigenvalue
is larger than {r(W11(γ0))}−1.

If W11(γ0) has positive eigenvalues but none of them is equal to r(W11(γ0)), and
α is the largest among these eigenvalues, then the smallest positive parameter t for
which (H + t∆H, N + t∆N) has a purely imaginary eigenvalue is less than or equal
to 1/α.

Proof. The proof follows immediately from Theorem 4.6 in view of the fact that
given a positive real number t0, iγ0 is a purely imaginary eigenvalue of (H+t0∆H, N+
t0∆N) if and only if 1/t0 is an eigenvalue of W11(γ0).

In this section we have discussed linear perturbation theory for structured pencils
arising in continuous-time control theory. In the next section we discuss analogous
results for discrete-time control problems.

5. Perturbation of structured pencils arising from discrete-time con-

trol. There is a well-known analogy between continuous and discrete-time linear
quadratic optimal control problems, given by the Cayley transformation, see [17, 18].
Thus, we expect similar results for the discrete time case. For these problems the
pencils have the following structures.

H :=





0 A B
−EH Q S

0 SH R



 , N :=





0 E 0
−AH 0 0
−BH 0 0



 ,(5.1)

∆H:=





0 ∆A ∆B
−(∆E)H ∆Q ∆S

0 (∆S)H ∆R



 , ∆N:=





0 ∆E 0
−(∆A)H 0 0
−(∆B)H 0 0



(5.2)

where again QH = Q, RH = R, (∆Q)H = ∆Q, and (∆R)H = ∆R have the same
dimensions as in (4.1). Although we consider complex matrices, the results of this
section are true for real matrices as well.

In this case Cg := {z ∈ C : |z| 6= 1}, and the smallest |t|, t ∈ R such that the
perturbed pencil (H+t∆H, N+t∆N) has an eigenvalue z ∈ C, |z| = 1, is the quantity
of interest for these problems. This is equivalent to the matrix (∆H − z∆N)(H −
zN)−1 having a real eigenvalue for some z ∈ C such that |z| = 1. We show first that
for any z ∈ C on the unit circle, Hermitian Frobenius factors T (z) and S(z) of the
matrix (∆H − z∆N)(H− zN)−1 may be obtained from the matrices ∆H − z∆N and
H − zN by a simple scaling.

Theorem 5.1. Let the matrices H, N, ∆H and ∆N be as given in (5.1) and
(5.2). Then for z ∈ C, |z| = 1,

(∆H − z∆N)(H − zN)−1

=





0 ∆A − z∆E ∆B
(∆A − z∆E)H ∆Q ∆S

(∆B)H (∆S)H ∆R









0 A − zE B
(A − zE)H Q S

BH SH R





−1

.
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Proof. For |z| = 1, we have,

H − zN =





0 A − zE B
z(A − zE)H Q S

zBH SH R





=





0 A − zE B
(A − zE)H Q S

BH SH R









zI 0
0 I 0
0 0 I



 .

Similarly,

∆H − z∆N =





0 ∆A − z∆E ∆B
(∆A − z∆E)H ∆Q ∆S

(∆B)H (∆S)H ∆R









zI 0 0
0 I 0
0 0 I



 .

The proof follows from the fact that the matrix





zI 0 0
0 I 0
0 0 I



 is unitary, since |z| = 1.

Hence, for all z ∈ C such that |z| = 1, we get Hermitian Frobenius factors T (z)
and S(z) of (∆H − z∆N)(H − zN)−1 as

T (z) :=





0 ∆A − z∆E ∆B
(∆A − z∆E)H ∆Q ∆S

(∆B)H (∆S)H ∆R



 ,

S(z) :=





0 A − zE B
(A − zE)H Q S

BH SH R



 .

Thus, given a complex number z lying on the unit circle, the results of Section 3 may
be applied to these Frobenius factors to obtain necessary and sufficient conditions for
the matrix (∆H − z∆N)(H − zN)−1 to have a real eigenvalue. This in turn gives us
necessary and sufficient conditions for the matrix pencil (H + t∆H, N + t∆N) to have
an eigenvalue on the unit circle. However, as in the continuous time case, the special
structure of the Frobenius factors lead to another necessary and sufficient condition
for the pencil (H + t∆H, N + t∆N) to have an eigenvalue on the unit circle on the
lines of Theorem 4.1.

Theorem 5.2. Consider a matrix pencil (H, N) and associated perturbations
∆H and ∆N as in (5.1) and (5.2). Let z ∈ C such that |z| = 1, and

P (t, z) := [A − zE + t(∆A − z∆E) B + t∆B],

Z(t) :=

[

Q + t∆Q S + t∆S
(S + t∆S)H R + t∆R

]

.

Let V (t, z) be the set of right singular vectors of P (t, z) corresponding to the singular
value 0 and let W (t, z) be the range of P (t, z)H .

Then, for given a real number t 6= 0 and a complex number z ∈ C, |z| = 1 is an
eigenvalue of the matrix pencil (H + t∆H, N + t∆N) if and only if Z(t)(V (t, z)) ∩
W (t, z) 6= ∅.

Proof. The proof follows by replacing iγ by z ∈ C, |z| = 1, in the proof of
Theorem 4.1.
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As in the continuous time case, if we assume that the matrices Q, S, and R which
are associated with the cost function are unperturbed, that is, if ∆Q = ∆S = ∆R = 0,
then we have the following corollary to Theorem 5.2. It characterizes the choice of a
cost function such that given t ∈ R, and z ∈ C such that |z| = 1, z is not an eigenvalue
of (H + t∆H, N + t∆N).

Corollary 5.3. Let W (t, z), and V (t, z) be as in Theorem 5.2 and let Z0 :=
[

Q S
SH R

]

. The matrix pencil (H +t∆H, N +t∆N) has an eigenvalue z with |z| = 1

if and only if Z0(V (t, z)) ∩ W (t, z) 6= ∅.
Proof. The proof follows immediately from Theorem 5.2 by the fact that Z(0) =

Z0.
The next corollary provides a characterization of all cost functions such that for

a fixed t ∈ R, the pencil (H + t∆H, N + t∆N) does not have any eigenvalues on the
unit circle.

Corollary 5.4. Suppose that P (t, z) and V (t, z) are as in Theorem 5.2 and that

Z0 :=

[

Q S
SH R

]

. Then, for a fixed t ∈ R, the matrix pencil (H + t∆H, N + t∆N)

has no eigenvalues on the unit circle if and only if

Z0(∪|z|=1V (t, z)) ∩ (∪|z|=1W (t, z)) = ∅.

The results of this section also hold if the perturbation matrices ∆H and ∆N are
replaced by the matrices ∆Ĥ and ∆N̂ , respectively, which are given by

∆Ĥ:=





0 ∆A ∆B
−(∆E)H ∆Q ∆S
−(∆F )H (∆S)H ∆R



 , ∆N̂:=





0 ∆E ∆F
−(∆A)H 0 0
−(∆B)H 0 0



 .(5.3)

Then for z ∈ C such that |z| = 1, (∆Ĥ − z∆N̂)(H − zN)−1 = T̂ (z)S(z)−1, is a
Frobenius factorization of (∆Ĥ − z∆N̂)(H − zN)−1, where

T̂ (z) :=





0 ∆A − z∆E ∆B − z∆F
(∆A − z∆E)H ∆Q ∆S
(∆B − z∆F )H (∆S)H ∆R



 .

With these new perturbation matrices, Theorem 5.2 takes the following form.
Theorem 5.5. Consider a matrix pencil (H, N) and associated perturbations

∆Ĥ and ∆N̂ as given in (5.1) and (5.3). Let

P̂ (t, z) := [A − zE + t(∆A − z∆E) B + t(∆B − z∆F )],

Z(t) :=

[

Q + t∆Q S + t∆S
(S + t(∆S))H R + t∆R

]

.

Let V̂ (t, z) be the set of right singular vectors of P̂ (t, z) corresponding to the
singular value 0, and let Ŵ (t, z) be the range of P̂ (t, z)H .

Then, for a given real number t 6= 0, a complex number z ∈ C with |z| = 1 is an
eigenvalue of the matrix pencil (H + t∆Ĥ, N + t∆N̂) if and only if Z(t)(V̂ (t, z)) ∩
Ŵ (t, z) 6= ∅.

Proof. The proof follows by using arguments similar to those of Theorem 4.1 with
the matrix P (t, iγ) being replaced by P̂ (t, z).
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Given t ∈ R and z ∈ C, |z| = 1, the following corollary provides a characterization
of the cost function such that z /∈ σ(H + t∆Ĥ, N + t∆N̂).

Corollary 5.6. Let P̂ (t, z), V̂ (t, z) and Ŵ (t, z) be as in Theorem 5.5 and let

Z0 :=

[

Q S
SH R

]

. Then, for a fixed real number t and z ∈ C, such that |z| = 1, we

have z /∈ σ(H + t∆Ĥ, N + t∆N̂) if and only if Z0(V̂ (t, z)) ∩ Ŵ (t, z) 6= ∅.
Finally we have a characterization of the cost function such that for a given t ∈ R,

the pencil (H + t∆Ĥ, N + t∆N̂) has no eigenvalues on the unit circle.
Corollary 5.7. Let P̂ (t, z), V̂ (t, z) and Ŵ (t, z) be as in Theorem 5.5 and let

Z0 :=

[

Q S
SH R

]

. Then for a fixed real number t, the pencil (H + t∆Ĥ, N + t∆N̂)

has no eigenvalues on the unit circle if and only if

Z0(∪|z|=1V̂ (t, z)) ∩ (∪|z|=1Ŵ (t, z)) 6= ∅.

Note that all results hold if any one or more of the blocks in the perturbation matrices
∆H and ∆N are equal to 0.

6. The discrete-time H∞ problem. In the discrete-time optimal H∞ control
problem, the matrices H and N of the pencil (H, N) are also given by (5.1). But as
in the case of its continuous time analogue, the perturbations ∆N and ∆H are very
special. From equation (1.7) we have ∆N = 0 and all the blocks of ∆H are zero except
for ∆R which is a special diagonal matrix. Only the first few diagonal entries of ∆R
are non-zero and these are each equal to −1. We show that given |z| = 1, the matrix
all the eigenvalues of (∆H − z∆N)(H − zN)−1 are real and the non-zero eigenvalues
are precisely the same as those of a leading principal submatrix of a Hermitian matrix
which is of the same size as the block R of H.

Theorem 6.1. Let the matrices H and N be as in (5.1) with R :=

[

R11 R12

R21 R22

]

.

Let ∆H and ∆N be as in (5.2) with ∆A = ∆B = ∆Q = ∆S = ∆E = 0 and

∆R :=

[

−Ij 0
0 0

]

, where Ij is an identity matrix of size j, the partition being

conformal with that of R. Then, for z ∈ C such that |z| = 1, all eigenvalues of the
matrix (∆H − z∆N)(H − zN)−1 are real. In particular its non-zero real eigenvalues
are the same as those of the leading principal submatrix of size j of the Hermitian
matrix

W (z) := R−1

(

[

B
S

]H [ −BR−1BH A − zE − BR−1SH

(

A − zE − BR−1SH
)H

Q − SR−1SH

]−1

×
[

B
S

]

+ R

)

R−1.

Proof. Since R and Q are Hermitian, it is clear that W (z) is a Hermitian matrix.
For z ∈ C, |z| = 1, we have,

H − zN =





0 A − zE B
−EH + zAH Q S

zBH SH R





=





I 0 BR−1

0 I SR−1

0 0 I



×





−zBR−1BH A − zE − BR−1SH 0
z(A − zE − BR−1SH)H Q − SR−1SH 0

zBH SH R



 .
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Therefore,

(H − zN)−1 =





−zBR−1BH A − zE − BR−1SH 0
−EH + zAH − zSR−1BH Q − SR−1SH 0

zBH SH R





−1

×





I 0 −BR−1

0 I −SR−1

0 0 I



 .

Let

H̃ =

[

−zBR−1BH A − zE − BR−1SH

z(AH − zEH − SR−1BH) Q − SR−1SH

]

, M =

[

−BR−1

−SR−1

]

and Z =
[

zBH SH
]

. Then,

(H − zN)−1 =

[

H̃ 0
Z R

]−1 [

I M
0 I

]

=

[

H̃−1 0

−R−1ZH̃−1 R−1

][

I M
0 I

]

=

[

H̃−1 H̃−1M

−R−1ZH̃−1 −R−1ZH̃−1M + R−1

]

.

Let J̃ =

[

zI 0
0 I

]

where the partitioning is conformal with that of M . Since |z| =

1, it is clear that J̃ is unitary and R−1Z = −MH J̃−1. This gives R−1ZH̃−1 =
−MH(H̃J̃)−1 and hence,

(H − zN)−1 =

[

H̃−1 H̃−1M

MH(H̃J̃)−1 MH(H̃J̃)−1M + R−1

]

.

Therefore,

(∆H − z∆N)(H − zN)−1 =

[

0 0
0 ∆R

] [

H̃−1 H̃−1M

MH(H̃J̃)−1 MH(H̃J̃)−1M + R−1

]

This shows that the matrix (∆H−z∆N)(H−zN)−1 has non-zero real eigenvalues
if and only if the matrix

(∆R)(MH(H̃J̃)−1M + R−1)

has non-zero real eigenvalues or equivalently

(∆R)R−1

(

[

B
S

]H

(H̃J̃)−1

[

B
S

]

+ R

)

R−1

has non-zero real eigenvalues. Since,

H̃J̃ =

[ −BR−1BH A − zE − BR−1SH

(

A − zE − BR−1SH
)H

Q − SR−1SH

]

,

we have,

(∆R)R−1

(

[

B
S

]H

(H̃J̃)−1

[

B
S

]

+ R

)

R−1 = (∆R)W (z).
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Let

W (z) :=

[

W11(z) W12(z)
W21(z) W22(z)

]

(6.1)

be a partition of W (z) conformal with that of ∆R. In view of the structure of ∆R,
we have,

(∆R)W (z) =

[

−W11(z) W12(z)
0 0

]

.

Hence the non-zero real eigenvalues of (∆H−z∆N)(H−zN)−1 are the same as those
of −W11(z) and the proof follows from the fact that W11(z) is Hermitian.

By Theorem 6.1, it is clear that every point on the unit circle becomes an eigen-
value of (H + t∆H, N + t∆N) for some real number t. However, as in the case of
the continuous time H∞ problem, we are interested only in the positive values of the
parameter t for which the pencil (H + t∆H, N + t∆N) has eigenvalues on the unit
circle. Since, for any z 6∈ σ(H, N), we have, z ∈ σ(H + t∆H, N + t∆N) if and only
if −1/t ∈ σ(∆H − z∆N)(H − zN)−1, it follows from Theorem 6.1 that there exists
t > 0 such that some z ∈ C, with |z| = 1 is an eigenvalue of (H + t∆H, N + t∆N) if
and only if the matrix W11(z) has a positive eigenvalue. This suggests the following
procedure for finding the smallest positive number t for which (H + t∆H, N + t∆N)
has an eigenvalue on the unit circle on the lines of Corollary 4.7.

Corollary 6.2. Let H, N, ∆H and ∆N be as in Theorem 6.1. The smallest
positive parameter t for which (H + t∆H, N + t∆N) has an eigenvalue z with |z| = 1
is say t = t0, if and only if
(i) 1/t0 is the smallest value of ε for which the set

L(ε, ∆H, ∆N) := {z ∈ C \ σ(H, N) : r((∆H − z∆N)(H − zN)−1) = ε−1}
touches the imaginary axis and
(ii) 1/t0 is an eigenvalue with largest magnitude of the matrix W11(z0), given by (6.1),
z0 being the point at which L(1/t0, ∆H, ∆N) touches the unit circle.

If all the eigenvalues of W11(z0) are negative real numbers, then the smallest
positive parameter t, for which (H + t∆H, N + t∆N) has an eigenvalue on the unit
circle, is larger than {r(W11(z0))}−1.

If W11(z0) has positive eigenvalues but none of them is equal to r(W11(z0)), and
α is the largest among these eigenvalues, then the smallest positive parameter t for
which (H + t∆H, N + t∆N) has an eigenvalue on the unit circle is less than or equal
to 1/α.

Proof. The proof is an immediate consequence of Theorem 6.1.

7. Conclusion and future work. We have studied the effect of linear pertur-
bations on several structured matrix pencils arising in control theory. These include
skew-symmetric/symmetric pencils arising in the computation of optimal H∞ control
and linear quadratic control for continuous and discrete time systems. We have given
characterizations when these pencils have eigenvalues on the imaginary axis or the
unit circle, respectively.

But several important questions remain open. Among these are a characterization
of the Kronecker structure associated with eigenvalues on the imaginary axis and to
develop numerical methods for the efficient computation of the smallest perturbations
that move eigenvalues to the imaginary axis or unit circle, respectively. We will
address these issues in our future work.
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