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THE SNAP-BACK PIVOTING METHOD FOR SYMMETRIC
BANDED INDEFINITE MATRICES∗

DROR IRONY† AND SIVAN TOLEDO†

Abstract. The four existing stable factorization methods for symmetric indefinite matrices
suffer serious defects when applied to banded matrices. Partial pivoting (row or column exchanges)
maintains a band structure in the reduced matrix and the factors, but destroys symmetry completely
once an off-diagonal pivot is used. Two-by-two block pivoting and Gaussian reduction to tridiagonal
(Aasen’s algorithm) maintain symmetry at all times, but quickly destroy the band structure in
the reduced matrices. Orthogonal reductions to tridiagonal maintain both symmetry and the band
structure, but are too expensive for linear-equation solvers.

We propose a new pivoting method, which we call snap-back pivoting. When applied to banded
symmetric matrices, it maintains the band structure (like partial pivoting does), it keeps the reduced
matrix symmetric (like 2-by-2 pivoting and reductions to tridiagonal), and it is fast.

Snap-back pivoting reduces the matrix to a diagonal form using a sequence of elementary elim-
ination steps, most of which are applied symmetrically from the left and from the right (but some
are applied unsymmetrically).

In snap-back pivoting, if the next diagonal element is too small, the next pivoting step might
be unsymmetric, leading to asymmetry in the next row and column of the factors. But the reduced
matrix snaps back to symmetry once the next step is completed.
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1. Introduction. We propose a new method for the direct solution of a linear
system of equations Ax = b where A is an n-by-n banded symmetric indefinite matrix
with half bandwidth m. The method performs O(nm2) work. Our method reduces
A to a diagonal matrix by eliminating one or two rows and columns in each step.
After each elimination step, the reduced matrix is a banded symmetric matrix with
half bandwidth at most 2m. Although at each step the reduced matrix is symmetric,
the factors corresponding to steps in which we eliminate two columns together may
not be symmetric. The algorithm requires a mixture of symmetric and unsymmetric
data. The element growth in the reduced matrices is bounded by 4n−1. Elements
of the factors are bounded by 3 or by the elements of the reduced matrices. Our
method achieves these goals using an intricate elimination scheme that employs both
Gaussian row and column operations and Givens rotations.

Our method reduces the matrix to a diagonal one or two rows/columns at a time.
If the next diagonal element is large, an ordinary symmetric Gaussian elimination
step will reduce the next row and column. Such a step adds a column to the left
factor and its transpose to the right factor. Since a symmetric matrix is subtracted
from the symmetric trailing submatrix, it remains symmetric. If the next diagonal
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element is too small, we use a more complex elimination step. During that step, the
trailing submatrix becomes unsymmetric, but it snaps back to symmetry at the end
of the step. That is why we call our method snap-back pivoting. Such a complex
elimination step contributes one row to the right factor that is not a transpose of a
column in the left factor. Therefore, the amount of asymmetry in the factors depends
on the number of these complex elimination steps.

The paper is organized as follows. The next section surveys existing factorization
methods that can be applied to banded symmetric matrices. Section 3 describes the
new method; the presentation is not specific to banded matrices. Section 4 shows
how to adapt the general method to preserve the band structure. Section 5 bounds
the element growth in the reduced matrices and in the factors. Section 6 presents the
results of experiments that we conducted to assess the performance and stability of
our method. We present our conclusions from this research and list open problems in
section 7.

2. Related work. Several existing direct factorization methods can reduce a
banded symmetric matrix to a diagonal, tridiagonal, or block-diagonal form. If the
matrix is indefinite, either some form of pivoting or an orthogonal reduction must be
employed to ensure stability.

Gaussian elimination with partial pivoting (GEPP) maintains a band structure
in the reduced matrices, but not symmetry. The first off-diagonal pivot that is chosen
completely destroys symmetry in the reduced matrix, so from that row/column until
the end of the matrix, both the reduced matrix and the factors become unsymmetric.
The loss of symmetry results in doubling the computational and storage costs. On
the other hand, GEPP maintains a band structure in the reduced matrix and in the
factors. No matter how many off-diagonal pivots are chosen, the reduced matrix and
the right upper-triangular factor have half bandwidth at most 2m. The left lower
triangular factor, and also the lower triangular part of the reduced matrices, maintain
half bandwidth m.

Two other factorization techniques employ pivoting but maintain symmetry in
the factors and in the reduced matrices. One technique, which is used in several
algorithms [4, 6, 7, 8, 14], uses 2-by-2 block pivots. In other words, it reduces the
matrix to a block diagonal form with 1-by-1 and 2-by-2 blocks. This technique usually
cannot be applied to banded matrices, because every 2-by-2 pivot might increase the
half-bandwidth by m − 2. Therefore, the half bandwidth can quickly expand. This
bandwidth expansion can lead to catastrophic increase in the computational and
storage requirements of the algorithm. Still, in some special cases this technique can
be applied to banded matrices. Bunch and Kaufman showed that if m ≤ 2, then one of
the variants of their algorithm (variant D) maintains the band structure [4]. They also
showed that the number of 2-by-2 pivots is bounded by the minimum of the number
of positive and the number of negative eigenvalues of A. This observation led Jones
and Patrick [14] to propose that the Bunch–Kaufman algorithm can be used when A
has very few negative or very few positive eigenvalues; in such cases, the bandwidth
expansion might still be preferable to GEPP. A combination of 1-by-1 and 2-by-2
pivoting steps is also used in multifrontal factorization algorithms for general sparse
matrices [6, 7, 8], but without any a priori bound on the fill that pivoting might cause.

In the 2-by-2 pivoting methods of Bunch and Kaufman, the element growth in the
reduced matrices is bounded by 2.57n−1, but the magnitude of elements in the lower-
triangular factor is not bounded by the magnitude of elements in the reduced matrices.
(In most other factorization methods, the elements of the factors are bounded by 1
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or by the elements of the reduced matrices.) This fact, along with some disappoint-
ing practical experience, led some to question the reliability of these methods [2].
However, the methods were found to be formally backward stable [11, 12].

Another pivoting symmetric factorization technique reduced A to a tridiagonal
form using a sequence of 1-by-1 but off-diagonal pivots. The resulting tridiagonal
matrix is subsequently factored using GEPP, but the cost of that step is usually
insignificant. This technique was initially proposed for dense matrices by Parlett and
Reid [17], and later improved by Aasen [1]. The trouble with these methods is that
they can also quickly expand the bandwidth, so they have never been applied to
banded matrices.

Another way to reduce a banded symmetric matrix to a tridiagonal form is to
employ orthonormal transformations. This technique is used in eigensolvers, which
can only use orthonormal transformations. Algorithms that use this technique [3, 5,
15, 16, 18, 19] annihilate in every step one row and column, or even just one element.
The annihilation creates fill in the form of a bulge, which expands the band. To avoid
gradual band expansion, the algorithm then “chases” the bulge down the matrix, so
that the matrix regains the original half bandwidth m before the next annihilation
step. The trouble with these approaches is that chasing the bulge is expensive, so
the total computational cost of these algorithm is proportional to n2m. By contrast,
the cost of GEPP, as well as the cost of our algorithm, is only nm2. For m � n, the
difference can be enormous.

From the band-preservation viewpoint, the difference between 2-by-2 block al-
gorithms and the orthonormal algorithms lies not in the elementary transformations
that are used, but in whether the bulge is chased or not. In the 2-by-2 block algo-
rithms of Bunch and Kaufman, as well as in the Parlett–Reid and Aasen algorithms,
the bulge is not chased, so the band expands without a bound. In the orthonormal
reductions to tridiagonal, the bulge is chased, so the bandwidth remains bounded, but
at an unacceptable cost to linear-equation solvers. (The use of orthonormal trans-
formations also causes the bulge to always appear, whereas in the other factorization
algorithms the size of the bulge depend on the choice of pivots, but that is not the
main point here.) We believe that a bulge-chasing variant of the other algorithms
can also be developed, but that its cost will still be proportional to n2m, just like the
orthonormal reductions.

3. Snap-back pivoting. This section presents the new pivoting strategy that
we proposed, called snap-back pivoting. We mostly ignore the issue of the bandwidth
of the matrix in this section and focus instead on the mathematical and algorithmic
ideas. Bandwidth issues do narrow down some of the algorithmic design space that
we explore; the text explicitly highlights these cases. The next section explains how
to apply snap-back pivoting to banded matrices.

Let A be a symmetric n-by-n nonsingular matrix. We show how to perform a se-
quence of elementary elimination steps that reduce the matrix to a diagonal form. The
sequence is quasi-symmetric: the trailing uneliminated submatrix is always symmet-
ric. Most, but not all, of the elementary transformations are applied symmetrically
from the left and from the right. We use three classes of elementary transformations:
Gauss transforms, Givens rotations, and permutations. Each elimination step, which
often consists of applying multiple elementary transformations, eliminates the offdi-
agonals in either one row and column or in two. The first row and column are always
eliminated; in some cases, another row and columns, not necessarily the second, are
also eliminated.
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Our method uses three kinds of elimination steps. The next subsection provides
a high-level overview of the possible elimination steps and the one that follows spec-
ifies the transformation matrices in detail. To further clarify the algorithm, we have
produced a Matlab implementation (of the banded variant, described below). This
implementation is freely available.1 It stops after every elimination step, shows the
nonzero structure of the reduced matrix, and prints the class of transformation that
it just applied. It also produces transformation matrices that correspond exactly to
the notation in this section.

3.1. An overview of the elimination process. We begin the presentation
with a high-level overview of the structure of the algorithm.

Elimination steps of the first kind. When a11 is nonzero (to avoid growth it
will need to be not only nonzero, but large; we ignore numerical issues for now), we
can eliminate the offdiagonals in the first row and column using ordinary symmetric
Gaussian elimination,

A =

⎡
⎢⎢⎢⎢⎣

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

⎤
⎥⎥⎥⎥⎦ −→

⎡
⎢⎢⎢⎢⎣

×
× × × ×
× × × ×
× × × ×
× × × ×

⎤
⎥⎥⎥⎥⎦ = L−1AL−T .

In this notation, × symbols denote nonzero elements in a symmetric matrix (that is,
if aij is denoted by a ×, then aij = aji, and they are not necessarily zero). Elements
that are blank are zeros. The matrix product on the right means that we transform
the matrix on the left, A, to the matrix on the right by multiplying A by a lower
triangular matrix L−1 and its transpose. We also use this kind of elimination step,
with L an identity matrix, when the first row and column are identically zero. We
defer the exact specification of the transformation matrices to the next subsection;
here L is an elementary Gauss transform.

Elimination steps of the second kind. When a11 is zero (or simply too small),
our method uses a more elaborate sequence of elementary transformations. We begin
with a series of either Givens or Gauss transforms that eliminate all the nonzeros in
the first column except for the last,

A =

⎡
⎢⎢⎢⎢⎣

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

⎤
⎥⎥⎥⎥⎦ −→

⎡
⎢⎢⎢⎢⎣

× ×
× × × ×
× × × ×
× × × ×

× × × × ×

⎤
⎥⎥⎥⎥⎦ = Y −1AY −T .

Next, we eliminate element (n, 1) in the reduced matrix, which we shall show later
is always nonzero, using a Givens rotation that transforms the first and last rows. If
element

[
Y −1AY −T

]
11

= 0, the Givens rotation is essentially a row exchange, so we

1The code is available from http://www.tau.ac.il/∼stoledo/research.html.
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get the following form:⎡
⎢⎢⎢⎢⎣

× ×
× × × ×
× × × ×
× × × ×

× × × × ×

⎤
⎥⎥⎥⎥⎦ −→

⎡
⎢⎢⎢⎢⎣

× ⊗ ⊗ ⊗ ⊗
× × × ⊗
× × × ⊗
× × × ⊗

×

⎤
⎥⎥⎥⎥⎦ = G−1Y −1AY −T ,

where

G =

⎡
⎢⎣

0 · · · 1
...

. . .
...

−1 · · · 0

⎤
⎥⎦.

The symbol ⊗ denotes a nonsymmetric nonzero, i.e., an aij that might be nonzero
and might be different from aji. Here, when aij is denoted by a ⊗, aji = 0, so it is
left blank. When both aij and aji might be nonzeros and different from each other,
we denote one by ⊗ and the other by ⊕ to emphasize the lack of symmetry, as in the
next equation. If

[
Y −1AY −T

]
11

�= 0, then we get another form, which turns out to
be simpler,⎡

⎢⎢⎢⎢⎣
× ×

× × × ×
× × × ×
× × × ×

× × × × ×

⎤
⎥⎥⎥⎥⎦ −→

⎡
⎢⎢⎢⎢⎣

× ⊗ ⊗ ⊗ ⊗
× × × ⊗
× × × ⊗
× × × ⊗
⊕ ⊕ ⊕ ×

⎤
⎥⎥⎥⎥⎦ = G−1Y −1AY −T .

This is a simpler case than the previous one, because the last row and the last column,
while not a transpose of each other, are symmetric up to a scaling factor (and up to
the first element, which is zero in the row but not zero in the column). In either case,
we now eliminate the offdiagonals in the first row, which have just filled. We use an
ordinary sequence of column operations (a Gauss transform applied from the right),⎡

⎢⎢⎢⎢⎣
× ⊗ ⊗ ⊗ ⊗

× × × ⊗
× × × ⊗
× × × ⊗
⊕ ⊕ ⊕ ×

⎤
⎥⎥⎥⎥⎦ −→

⎡
⎢⎢⎢⎢⎣

×
× × × ⊗
× × × ⊗
× × × ⊗
⊕ ⊕ ⊕ ×

⎤
⎥⎥⎥⎥⎦ = G−1Y −1AY −TU−1

(the offdiagonals in the last row might be zero). If
[
Y −1AY −T

]
11

�= 0, then the last
row and column are symmetric up to a scaling, so we scale the reduced matrix back
to symmetry,⎡

⎢⎢⎢⎢⎣
×

× × × ⊗
× × × ⊗
× × × ⊗
⊕ ⊕ ⊕ ×

⎤
⎥⎥⎥⎥⎦ −→

⎡
⎢⎢⎢⎢⎣

×
× × × ×
× × × ×
× × × ×
× × × ×

⎤
⎥⎥⎥⎥⎦ = S−1G−1Y −1AY −TU−1.

If
[
Y −1AY −T

]
11

was zero, then scaling does not symmetrize the matrix, so instead
of scaling we switch to an elimination step of the third kind. To achieve numerical
stability we also switch to an elimination of the third kind if

[
Y −1AY −T

]
11

was not

zero, but it was so small that after the multiplication by G−1, the (n, n) element was
larger than all the other elements in the last row.
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Elimination steps of the third kind. When we switch from an elimination of
the second kind to an elimination of the third kind, the reduced matrix has the form⎡

⎢⎢⎢⎢⎣
×

× × × ⊗
× × × ⊗
× × × ⊗
⊕ ⊕ ⊕ ×

⎤
⎥⎥⎥⎥⎦ = G−1Y −1AY −TU−1,

where the offdiagonals in the last row might be either all zeros (this is the only case in
exact arithmetic), or else they are identical up to a scaling factor to the last column.
We treat both cases, although some of the transformations in the identically-zero case
can be skipped. We begin by permuting the last row and column to be the second;
this is a bandwidth issue, and if the matrix is not banded, we could continue with the
last row and column in place. We now have⎡
⎢⎢⎢⎢⎣

×
× × × ⊗
× × × ⊗
× × × ⊗
⊕ ⊕ ⊕ ×

⎤
⎥⎥⎥⎥⎦ −→

⎡
⎢⎢⎢⎢⎣

×
× ⊕ ⊕ ⊕
⊗ × × ×
⊗ × × ×
⊗ × × ×

⎤
⎥⎥⎥⎥⎦ = PTG−1Y −1AY −TU−1P.

We now use a sequence of symmetric Gauss or Givens transforms to eliminate all but
the last element in the second row and column. Because the second row and column
are scaled copies of each other, the same transformations applied to both the rows
and the columns eliminate the nonzeros in both,⎡

⎢⎢⎢⎢⎣
×

× ⊕ ⊕ ⊕
⊗ × × ×
⊗ × × ×
⊗ × × ×

⎤
⎥⎥⎥⎥⎦ −→

⎡
⎢⎢⎢⎢⎣

×
× ⊕

× × ×
× × ×

⊗ × × ×

⎤
⎥⎥⎥⎥⎦

= X−1PTG−1Y −1AY −TU−1PX−T .

The last step is to eliminate the offdiagonal nonzero in the second row and column.
We eliminate them using two elementary unsymmetric Gauss transforms. We show
later that this is always possible and stable,

⎡
⎢⎢⎢⎢⎣

×
× ⊕

× × ×
× × ×

⊗ × × ×

⎤
⎥⎥⎥⎥⎦ −→

⎡
⎢⎢⎢⎢⎣

×
×

× × ×
× × ×
× × ×

⎤
⎥⎥⎥⎥⎦

= K−1X−1PTG−1Y −1AY −TU−1PX−T K̂−T .

This concludes the overview of our new elimination method.

3.2. Specification of the transformations. We now specify exactly each one
of the transformations that are involved in the new elimination method. More specifi-
cally, we show how to construct the matrices L, Y , G, U , S, P , X, K, and K̂. Some of
them can be constructed in many different ways; we present the different options, but
focus on the ones that guarantee stability and maintain the bandwidth of the matrix.
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The matrix L. When a11 is large in absolute value relative to the rest of the
first column, the column can be eliminated using a conventional Gauss transform

A =

⎡
⎢⎢⎢⎣

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1
l2,1 1
...

. . .

ln,1 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a1,1 0 · · · 0

0 a
(1)
2,2 · · · a

(1)
2,n

...
...

. . .
...

0 a
(1)
n,2 · · · a

(1)
n,n

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 l2,1 · · · ln,1
1

. . .

1

⎤
⎥⎥⎥⎦,

where li,1 = ai,1/a1,1. If all the elements in the first row and column are zeros, then
we simply set L to be the identity matrix.

The matrix Y . The task of Y is to zero rows 2, . . . , n − 1 in the first column
of A, even when a11 is zero or small. There are many choices for Y . For example,
we could define Y to be a product of a permutation matrix that exchanges row n
with the row whose first element is largest in absolute value, and a Gauss transform
that uses the last row to zero the first element in the other rows. For example, if the
largest element in the first column is in row 2,

Y −1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 yn,2

1 yn,3

1
...

1 yn,n−1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
0 1

1
. . .

1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

However, this would ruin the banded structure, so we resort to a slightly more com-
plex transformation. Our strategy is to annihilate the nonzeros in the first column
sequentially from top to bottom, and, in particular, to annihilate nonzero in position
(i, 1) using a row operation involving only rows i and i+1. That row operation can be
either a Givens rotation or a Gauss transform possibly preceded by a row exchange,
to ensure that the first element in row i+ 1 is larger or equal in absolute value to the
first element in row i. Our implementation uses a Givens rotation. The matrix Y has
the following structure:

Y −1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
1

y
(n−1)
n−1,n−1 y

(n−1)
n−1,n

y
(n−1)
n,n−1 y

(n−1)
n,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
· · ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

y
(2)
2,2 y

(2)
2,3

y
(2)
3,2 y

(2)
3,3

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Each 2-by-2 block is either a Givens rotation, or (if we use Gauss transforms) a
product of a row exchange, perhaps identity, and a row operation on one row. After
the application of Y −1 and Y −T to A, the (n, 1) element of the reduced matrix cannot
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be zero: if it is, then all the subdiagonal elements of A in the first column were zeros,
and we would have eliminated the first column using an elimination step of the first
kind.

The matrix G. The role of G is to annihilate the (n, 1) element in the reduced
matrix. If we are using G, then that element is larger than the (1, 1) element, oth-
erwise we would have used an elimination step of the first kind. Therefore, there
are essentially two options for G−1: an exchange of rows 1 and n, followed by a row
operation that reduces row n using row 1, or a Givens transform on rows 1 and n.
We always use a Givens transform, but the other choice is valid as well.

The matrix U . After the application of G−1, the (1, 1) element of the reduced
matrix is always nonzero, although it is not necessarily large relative to the rest of
row 1. We use a matrix U−1, an elementary Gauss transform applied from the right
to annihilate elements (1, 2), (1, 3), . . . , (1, n) using column operations with the first
column. Because only the first element in the first column is nonzero, the trailing
submatrix is not modified. This will prove to be important when we analyze the
numerical stability of the algorithm, since U is potentially ill-conditioned. Formally,

U−1 =

⎡
⎢⎢⎢⎣

u1,1 u1,2 · · · u1,n

1
. . .

1

⎤
⎥⎥⎥⎦.

The matrix S. The job of S is simply to scale the last row so that it becomes
identical to the last column, so it is a diagonal matrix with 1s on the diagonal, except
for the last element, which is nonzero but different from 1.

The matrix P . If an appropriate S does not exist or if it would be too ill-
conditioned, the algorithm switches to an elimination step of the third kind. The
matrix P now moves the last row and column to the second position, so that they
can be eliminated. If there are no band issues, we could simply use a single row
and column exchange. But to maintain the band, we do not exchange rows 2 and
n. Instead, we use a cyclic permutation that puts row n in row 2 and shifts rows
2, . . . , n− 1 one row down each,

P−1 =

⎡
⎢⎢⎢⎢⎢⎣

1
0 1
1 0

. . .
. . .

1 0

⎤
⎥⎥⎥⎥⎥⎦.

The matrix X. The matrix X has the same structure as Y , except that it
operates on the second column, not the first. Although row 2 and column 2 in the
reduced matrix are not transposes of each other, they are transposes up to a scaling
except for the diagonal element. Since X and XT do not use the diagonal element,
they reduce the matrix to the desired form when applied symmetrically.

The matrices K and K̂. These two matrices use the (2, 2) element in the
reduced matrix to annihilate the (n, 2) and (2, n) elements in the reduced matrix.
These elements are different, so we use two different Gauss transforms from the left
and the right.
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Y −1

U−1
G−1 U−1

Y −1

(f)(e)(d)

(c)(b)(a)

Fig. 1. An elimination step of the second kind.

4. Applying the new method to banded matrices. When A is banded, we
need to modify the elimination algorithm to avoid increasing the band too much. To
simplify the description of the algorithm, we assume that no exact cancellation occurs;
but the algorithm itself copes easily with exact cancellations. It turns out that with
a careful selection of transformations, the bandwidth of the reduced matrix grows,
but not by much. We denote the half-bandwidth of A by m, so all but 2m+ 1 of A’s
diagonals are zero. An elimination step of the first kind does not fill the matrix at all,
so it does not require any special attention, except to ensure that no computation on
zeros occurs. Elimination steps of the second and third kinds require more care.

Figures 1 and 2 illustrate elimination steps of the second and third kinds. They
depict nonzero elements in gray; light gray signifies that an element has not been
modified in this elimination step, and dark gray signifies that an element has been
modified. The original profile of the matrix is indicated by a heavy black border.
The arrows show which column/row are scaled and subtracted from which other
column/row to annihilate a nonzero. The letters indicate the transformation matrix
that performs the elimination.

When an elimination step of the second kind is applied to a banded matrix, we
must construct transformation Y in a way that A does not fill too much. Specifically,
we eliminate element i in the first row and column using columns/rows i and i+1, but
we stop if elements i+ 2, . . . , n are all zeros. We do not “roll” the last nonzero in the
row/column down to the end of the row/column. This is illustrated in Figure 1 (top
row). The rest of the step proceeds without modification. As shown in the figure,
an elimination step of the second kind can increase the half-bandwidth of the matrix,
but only by one, and only in rows and columns 2, . . . ,m′, where m′ +1 is the number
of nonzeros in row/column 1 (m′ might be larger than m if the bandwidth increased
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K̂−1X−1
K−1

X−1P

(f)(e)(d)

(b) (c)(a)

Fig. 2. An elimination step of the third kind. The top left illustration describes the matrix
after all the operations of a second-kind elimination step have been applied.

in previous elimination steps).

Applying an elimination step of the third kind to a banded matrix is more in-
volved. After the permutation P has been applied, the second row and column are
eliminated. The elimination of these nonzeros can destroy the band structure if done
carelessly. We can eliminate all but one of the nonzeros using a series X of Givens
transforms, as we have done (using Y ) in the beginning of the second-kind elimination.
We can also use column operations to annihilate the second row using its diagonal
element as a pivot, and then row operations to annihilate the second column; these
are the transformations K and K̂ that we described above. In the dense case, we
use K and K̂ only to annihilate a single nonzero in the row and a single nonzero in
the column. But in the banded case, we need to restrict X to the annihilation of
just m′ − 2 nonzeros near the diagonal, and use K and K̂ to annihilate the rest. As
we shall see later, this does not introduce growth in the reduced matrix, since the
diagonal element in row 2 is larger than the offdiagonal nonzeros.

The strategy that we use is shown in Figure 2. It is easy to see that if we use
Givens transforms to annihilate all but the last element in the second row and column,
the band will grow by one in rows/columns higher than m′, which we try to avoid.
On the other hand, if we use only diagonal Gauss transforms, an entire bulge outside
the band would fill, which we also seek to avoid. Therefore, we use Givens transforms,
which only increase the band locally by one, to annihilate m′− 2 nonzeros in the first
row and column, and Gauss transforms, which introduce no fill at all, to annihilate
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the rest.

4.1. Bound on half-bandwidth. We now prove that this strategy ensures that
the half-bandwidth of the reduced matrix is bounded by 2m − 1. We do this in two
steps. We first define a variant of our algorithm, which we call ALG2, and show that
the fill in our algorithm is a subset of the fill created by ALG2. This variant always
uses reductions of the second type; it may be unstable, so it is not useful in practice.
We only use it to bound the bandwidth of the reduced matrix.

In the context of this section we ignore any numerical considerations. Our analysis
deals only with the structural aspects of our algorithm (and of the variant ALG2). In
particular, we assume that A has no zeros inside its band and we ignore zeros that
may appear during the reduction process.

We start with a few definitions. A reduction step in our algorithm starts with a
symmetric banded matrix A(k), where k denotes the size of the matrix (in the first
step, A(n) = A), and outputs a reduced symmetric matrix A(k−s) of size (k − s)-by-
(k − s). The number s of eliminated rows and columns may be 1 or 2. This notation

is borrowed from [4]. We denote by a
(k)
ij both the ij element of A(k) at the start and

during the reduction step. The local half-bandwidth of a banded matrix B in column
(row) j, defined as the minimum r′ ≥ 0 for which bij = 0 for all i > j + r′, is denoted

by rjB . In the case of the input matrix A, all the columns (rows) have the same local
half bandwidth m.

We now define the variant algorithm, ALG2. It is similar to our actual algorithm,
which we denote by ALG1, except that it only uses reduction steps of the second
type, and that it eliminates the offdiagonal nonzeros in the first column only using
Givens rotations. (ALG1 uses Gauss transforms, perhaps with row exchanges.) ALG2
eliminates one row and column in each reduction step, so it uses exactly n−1 reduction
steps. We denote by Ã(k) the reduced matrix we get after applying the first n − k
reduction steps of ALG2 on A, where 0 < k ≤ n. Note that Ã(k) is k-by-k.

The following theorem states the main result of this section.
Theorem 4.1. Let m be the bandwidth of A. Then the local half-bandwidth of

the reduced matrices in our algorithm (ALG1) satisfies ri
A(k) < 2m for 0 < k ≤ n,

1 ≤ i ≤ k.
This theorem is an immediate corollary of Lemmas 4.3 and 4.4, which we state

and prove below. But we first state and prove a technical lemma.
Lemma 4.2. In ALG2, ri+1

Ã(k)
≤ ri

Ã(k)
≤ ri+1

Ã(k)
+1, where 1 < k ≤ n and 1 ≤ i < k.

Proof. We prove the lemma by induction on k. The lemma holds for A = Ã(n).
We assume that the lemma holds for Ã(k). During the n − k + 1th reduction step,
each of the columns 2, . . . , r1

Ã(k)
gets the structure of the column to its right. This is

because

ri
Ã(k) ≤ ri+1

Ã(k)
+ 1

by the induction assumption. Each of the rows 2, . . . , r1
Ã(k)

behaves in a symmetric

way. For j such that 1 ≤ j < r1
Ã(k)

− 1, we have (see Figure 3)

rj
Ã(k−1)

= rj+2

Ã(k)
+ 1

and

rj+1

Ã(k−1)
= rj+3

Ã(k)
+ 1.
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Ã(k)

Ã(k−1)

column j + 2 of Ã(k)

column j of Ã(k−1)

i + 1, j + 2

l′ − k + i, l′ − k + j + 2

i, j

l − k + i, l − k + i − m − 1

(e)

(d)(c)

(b)

l + 1 − k + i, l + 1 − k + i − m

l + 1

l

l′

k + 1k

(a)

Fig. 3. Left: An illustration of the proof of Lemma 4.2. Right: An illustration of the main
steps in the proof of Lemma 4.4. The submatrix depicted in gray is always k-by-k. The row and
column indices of the black element are shown below each matrix (the black element within the gray
submatrix).

From this and the induction assumption,

rj+1

Ã(k−1)
≤ rj

Ã(k−1)
≤ rj+1

Ã(k−1)
+ 1,

where 1 ≤ j < r1
Ã(k)

− 1. We also have

rj
Ã(k−1)

= rj+2

Ã(k)
+ 1 = rj+1

Ã(k−1)
+ 1

for j = r1
Ã(k)

− 1, which means that

rj+1

Ã(k−1)
≤ rj

Ã(k−1)
≤ rj+1

Ã(k−1)
+ 1
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is true also for such j. For r1
Ã(k)

− 1 < j < k − 1 the lemma is immediate from the
induction assumption.

Lemma 4.3. Denote by ηM the set of nonzero entries in a given matrix M . If
A(k) is a reduced matrix that ALG1 generates when it is applied to A, and if Ã(k) is
a reduced matrix that ALG2 generates when it is applied to A, then

ηA(k) ⊆ ηÃ(k) .

Proof. Let A(k) be the reduced matrix we get from the lth reduction step of
ALG1, when applied to A.

The proof is immediate for l = 0 (and so k = n) when no reduction step has been
applied to A yet.

Otherwise, the output of the previous reduction step is either A(k+1) or A(k+2).
If the output of reduction step l − 1 is A(k+1), then by the induction assumption we
have

ηA(k+1) ⊆ ηÃ(k+1) .

Moreover, it is guaranteed that either Gaussian elimination or a reduction of the
second kind is applied to A(k+1) in order to get A(k). Due to the facts that the
reduction applied on Ã(k+1) by ALG2 is of the second kind and that the Gaussian
elimination, if applied by ALG1 to A(k+1), does not increase the band, we have

ηA(k) ⊆ ηÃ(k) .

If the output of the l− 1th reduction step is A(k+2), then a reduction of the third
kind is applied to A(k+2) in order to get A(k). The operations whose effect on the
structure of A(k) we need to consider are applying Y −1, bringing column and row

r
(1)

Ak+2 + 1 to the second position, applying X−1, and finally applying a nonsymmetric
Gauss reduction. Let B be the k + 1× k + 1 right bottom block of the matrix we get
after applying Y −1 to A(k+2). We have

ηB ⊆ ηÃ(k+1)(4.1)

due to similar arguments to those by which we have shown that ηA(k) ⊆ ηÃ(k) , in case

the output of the l − 1th reduction step is A(k+1). Let C be the matrix we get after

bringing the r
(1)

A(k+2) column and row of B to the first column and row, respectively.

During this operation, each of the columns (rows) 1, . . . , r
(1)

A(k+2) − 1 of B is moved
one location to the right (down). From the combination of (4.1) with Lemma 4.2 we

have that the structures of columns (rows) 2, ldots, r
(1)

A(k+2) in C are contained in the

structures of these columns (rows) in Ã(k+1), respectively. We get

ηC[k]
⊆ η

Ã
(k+1)
[k]

,(4.2)

where M[k] denotes the k-by-k right bottom block of the matrix M . The next
structure-relevant part of a third-kind reduction is X−1. The last element elimination
performed during applying X−1 on C in the first column is done by the r1

A(k+2)th row.
The last element elimination performed during the Y −1 part in the ALG2 reduction
step of Ã(k+1) in the first column is done by the r1

Ã(k+1)
+ 1th row. For these two

indices, we have

r1
A(k+2) ≤ r1

Ã(k+2) ≤ r2
Ã(k+2) + 1 ≤ r1

Ã(k+1) + 1(4.3)
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by the induction assumption, Lemma 4.2, and the trivial fact r2
Ã(k+2)

≤ r1
Ã(k+1)

. De-

note the matrix we get by applying X−1 on C by D. By combining (4.3) with (4.2) we

get that the structure of D[k] is contained in the structure of Ã(k). The last operation
performed during a reduction of the third kind is a nonsymmetric Gauss reduction.
The effect on the fill that this operation may have on D is limited to elements dij ,
where

r1
A(k+2) ≤ i, j ≤ r1

C + 1.

The fact that Ã(k+1) has a nonzero element in entry (r1
C + 1, r1

A(k+2)) (because B has
a nonzero there, and due to (4.1)) and Lemma 4.2 bring us to the conclusion that the

elements of Ã(k) in entries i, j, where r1
A(k+2) − 1 ≤ i, j ≤ r1

C are all nonzeros. We got

ηA(k) ⊆ ηÃ(k) .

We now prove the following lemma on ALG2.
Lemma 4.4. Let m be the half-bandwidth of A. Then ri

Ã(k)
< 2m for 0 < k ≤ n,

1 ≤ i ≤ k.
Proof. Let us focus in a nonzero element located at i, j such that i− j is maximal

over all elements that appear during the factorization. More formally, i and j are

such that i − j = maxi′,j′,t{i′ − j′ : ã
(t)
i′j′ �= 0}, i > j. Assume, without loss of

generality, that this nonzero is the first to fill the criterion and that the reduced
matrix F = Ã(k) is the first in which the nonzero appears (see Figure 3:A). The

appearance of the nonzero in the jth column of the ith row of Ã(k) implies that the
i+1, j+2 element in Ã(k+1) is nonzero (Figure 3:B). This, in turn, implies that there

is some l′ > k + 1 s.t. ã
(l′)
l′−k+i,l′−k+j+2 �= 0 (Figure 3:C). If we continue similarly, we

get to the observation that there is some l > k+i−j−m−2 s.t. ã
(l)
l−k+i,l−k+i−m−1 �= 0

(Figure 3:D). Assume, without loss of generality, that l is maximal, which means that

ã
(l+1)
l+1−k+i,l+1−k+i−m−1 = 0 (Figure 3:E). This implies that r1

Ã(l+1)
≥ 2i− j − 2m− 1.

On the other hand, r1
Ã(l+1)

< i− j. We get 2i− j − 2m− 1 < i− j, i.e., i < 2m + 1
and therefore i− j < 2m. This proves the lemma.

4.2. Storing the factors. We store the input matrix and the factors in a format
that is quite similar to LAPACK’s banded storage format. The code expects to receive
only the upper triangle of A. The representation of the matrix A will be stored in
a two-dimensional array, with n columns and with a number of rows related to the
half-bandwidth m. On input, each column of A will be stored in the corresponding
column of the representation. Each row of the representation will correspond to a
diagonal of A, with the main diagonal given as the first row of the representation, the
first superdiagonal of A as the second row of the representation, and so forth. Rows
of A will correspond to diagonals of the representation, filling the first m rows of the
representation. As the algorithm runs, rows of A are overwritten with elements of the
factors.

The factors of A require more storage than A itself. We accomodate the factors by
requiring that the row dimension of the representation array be larger than the half-
bandwidth m. This storage format is similar to the input/output format of LAPACK’s
dgbtrf routine, which implements Gaussian elimination with partial pivoting, where
reduced rows also expand.

Strictly speaking, the leading dimension of the array should be at least eight times
the half-bandwidth, to allow for storage of the output. Since most matrices do not



412 DROR IRONY AND SIVAN TOLEDO

require that much storage to factor, the code can be called with a smaller leading
dimension. In particular, we have never encountered a matrix that requires more
than six times the half-bandwidth, so all the runs reported later in this paper use a
leading dimension that is six times the half-bandwidth.

The details of how we pack the representation of the factors into the array are not
important and are omitted. Only three aspects of the data structure are important.
First, the fact that rows of A are not packed, but stored with spaces in between
them, allows the algorithm to reduce the remaining rows in each elimination step.
That is, the algorithm is essentially a right-looking algorithm. A fully packed storage
would not have allowed a right-looking algorithm. Second, the coefficients of the
transformations that eliminate a row are stored in the memory that was used to store
the row of A and additional memory locations that are statically preallocated for that
row in the input/output array. Third, the representation of each Givens rotation is
stored in one word using the scheme of [20].

We note that it is possible to reduce the storage requirements of the algorithm
using dynamic storage allocation for the factors, rather than using static preallocated
areas. The static allocation leaves some unused storage.

5. Numerical stability: Bounding the factors. In this section we show that
the growth during the algorithm is bounded from above by 4n−1, and that the factors
are bounded. The growth factor ρA is the ratio of the largest element in absolute
value in the reduced matrices to the largest element in A,

ρA =
maxi,j,k

∣∣∣a(k)
i,j

∣∣∣
maxi,j |ai,j |

.

A bound of this form, even an exponential bound like the one that we prove here,
is often associated with backward stable elimination algorithms. In particular, the
growth in GEPP is bounded by 2n−1, the growth in Bunch and Kaufman’s algorithm
is bounded by 2.57n−1, and the growth in Aasen’s algorithm is bounded by 4n−2. In
practice, such growth factors are rarely encountered; the growth in practice is usually
small. Researchers have shown that when the growth is small, these algorithms are
backward stable [11, 12, 21, 22]. Since large growth factors are rare, these algorithms
are stable in practice [9, 13]. Although we do not show that a similar implication
holds for our algorithm, we believe that one does.

Moreover, the fact that a bound on the growth exists at all, even if the bound is
exponential, is usually a reflection of a sound numerical design of the pivoting strategy.
This observation does hold for our algorithm. The careful design of the snap-back
pivoting strategy ensures that the elements of the reduced matrix can grow by at
most a factor of 4 in every step.

Growth is measured on the reduced matrices, the intermediate matrices after
some elimination steps have been carried out. In some algorithms, such as GEPP
and Aasen, the entries in the factors are also bounded. In GEPP, for example, the
magnitude of the entries of the lower triangular factor are bounded by 1 and the mag-
nitudes in the upper triangular factor are bounded by the magnitude of elements in
reduced matrices. Bounded factors are a stronger property than bounded growth. In
particular, in some cases, bounded factors imply backward stability [2, Appendix B].
We show in this section that the factors in our algorithm are bounded, although this
does not formally imply backward stability. We note that in the algorithms of Bunch
and Kaufman, the factors are not bounded: they can have large entries even when
the reduced matrices remain small (see, for example, [13, p. 219]).
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Before we analyze growth, we should define formally the conditions by which we
choose the next type of reduction step to perform. If possible, Gaussian elimination
is applied. The condition for applying this reduction is the same as the condition
that appears in the Bunch–Kaufman algorithm. This condition involves a constant

α with a value between 0 and 1 and the values γ
(k)
1 = max1<l≤k | a(k)

l,1 | and γ
(k)
t =

max1<l≤k | a(k)
l,t |, where t is the index of the row of the entry with the maximum

magnitude in the first column. Using this notation, we use a reduction of the first
kind if one of the following conditions is satisfied:

1. | a(k)
1,1 |> α · γ(k)

1 , or

2. | a(k)
1,1 | ·γ(k)

t > α(γ
(k)
1 )2 (optional; see below).

Otherwise, a reduction of one of the other two types is applied. Condition 2 is optional
in the sense that if we use it, growth in the reduced matrices is still bounded, but
the factors may grow; if we only use a reduction of the first type when condition 1 is
satisfied, then both the reduced matrices and the factors are bounded.

The two other types of reductions start with the same sequences of elementary
transformations. The decision about the chosen type is taken only after this shared
sequence of transformations terminates. If the element ar1

A(k)+1,r1

A(k)+1 is less than or

equal (a threshold may be used) to all the other elements in its row, then the second
type of reduction is chosen and S−1 is applied. Otherwise, the reduction proceeds as
a third type reduction.

We now analyze the growth.
Consider first symmetric Gauss transformations. The analysis of this case is the

same as in [4, 2]. For an element a
(k)
ij in the input matrix A(k) and an element a

(k−1)
ij

in the reduced matrix A(k−1) we have

a
(k−1)
ij = a

(k)
ij −

a
(k)
i1 a

(k)
1j

a
(k)
11

, i > 1, j > 1.(5.1)

Let μ be the magnitude of the largest entry in A(k) and μ′ the maximum magnitude

of any entry in the reduced matrix A(k−1). If a
(k)
11 > α · max1<l≤k(a

(k)
l,1 ), then from

(5.1) we get

μ′ ≤ μ +
| a(k)

i1 a
(k)
1j |

| a(k)
11 |

≤ μ

(
1 +

1

α

)
.(5.2)

If | a(k)
11 | ·γ(k)

t ≥ α · (γ(k)
1 )2, then using (5.1)

μ′ ≤ μ +
(γ

(k)
1 )2

| a(k)
11 |

≤ μ +
γ

(k)
t

α
≤ μ

(
1 +

1

α

)
.(5.3)

Now, consider the second and third kinds of transformations. In order to analyze
the growth for these kinds of transformations, we look at the elementary transforma-
tions from which these two complex kinds are made up. We may divide the elementary
transformations into four categories. The first category includes the transformation
that annihilates an element in the first or second column (row) by its nearby element
in the same column (row). In our algorithm, this transformation is applied as a part
of an elimination of a full column. During such an elimination, the first annihilated
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element is the one directly under the diagonal. The next elementary transforma-
tion annihilates the element located two entries under the diagonal, and so on. If
an element to be annihilated is greater than the element under it, the rows of these
two elements and the symmetric columns are swapped first. The second category
of elementary transformations is the Gauss transformations, and the third includes
the Givens transformation that annihilates one nondiagonal element by a diagonal
element, both in the first column. The fourth category includes the one-row-scaling
diagonal transformation S−1, in which all of the diagonal is 1’s, except, maybe, for
one diagonal element, whose magnitude is smaller than 1.

The last three categories of transformations with the conditions for applying them
trivially imply an upper bound of 2 on the growth the transformations induce on the
matrix they are applied on. We now focus on the first category. We show it has an
upper bound of 4 on the growth it induces. Assume that a sequence of Q elementary
transformations of the first category, as described above, is applied on a matrix B(0),
with a maximum magnitude element ν, in order to eliminate its first column. Denote
the matrix we get after applying q ≤ Q such elementary transformations by B(q), and

its i, j element by b
(q)
ij .

Lemma 5.1. A. If i ≥ q + 2 and j ≥ q + 2, then | b(q)ij |≤ ν.

B. If 1 ≤ i < q + 2 and j ≥ q + 2 (or i ≥ q + 2 and 1 ≤ j < q + 2), then

| b(q)ij |≤ 2 · ν.
C. If 1 ≤ i < q + 2 and 1 ≤ j < q + 2, then | b(q)ij |≤ 4 · ν.
Proof. The lemma is trivially correct for q = 0.

Assume the lemma is correct for some q ≤ Q− 1.

The only rows that may change due to the q+1th left elementary transformation
are the q + 2 and q + 3 rows, and similarly, the q + 2 and q + 3 columns are the only
columns that may change due to the q + 1th right elementary transformation.

Elements b
(q+1)
i,q+3 and b

(q+1)
q+3,i , where i > q+3 are equal either to elements b

(q)
i,q+3 and

b
(q)
q+3,i, where i > q + 3 or to elements b

(q)
i,q+2 and b

(q)
q+2,i, where i > q + 3, respectively,

depends on whether or not a swap is part of the q + 1th elementary transformation.

Similarly, element b
(q+1)
q+3,q+3 equals either to b

(q)
q+3,q+3 or to b

(q)
q+2,q+2. By the induction

assumption we have | b(q+1)
ij |≤ ν for i ≥ q + 3 and j ≥ q + 3. By that we proved A.

We also have | b(q+1)
ij |≤ 2ν for i ≥ q + 3 and j = q + 2 and for i = q + 2 and

j ≥ q+3, because each of these elements is computed as a sum of two elements in B(q),
which are at most ν by the induction assumption. In addition, from the induction

assumption, | b(q+1)
ij |≤ 2ν for i ≥ q + 3 and 1 ≤ j < q + 2 and for 1 ≤ i < q + 2 and

j ≥ q + 3. This completes the proof of B.

In order to prove C it is enough to show that | b(q+1)
ij |≤ 4 · ν for i = q + 2 and

1 < j < q + 3 (and for 1 < i < q + 3 and j = q + 2). When i �= j this bound holds
because each of the elements is computed as the sum of two elements in B(q), which

are at most 2ν by the induction assumption. If i = j = q + 2 then b
(q+1)
i,j , is the sum

of the four elements b
(q)
i,j , b

(q)
i+1,j , b

(q)
i,j+1, and b

(q)
i+1,j+1. By the induction assumption,

each of these elements is at most ν. This completes the proof.

A similar lemma holds for the case where the second column and row are elimi-
nated using a sequence of transformations of the first category. Such a case may be
interpreted simply as eliminating the first row and column of a matrix C, which is B(0)

without its first row and column and with some permutation on its columns/rows.
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This extraction of the lemma bounds the growth induced by the second sequence of
transformations of the first category applied during the third type of reduction.

From the above upper bounds on growth during the first type of reduction and
on growth induced by the four categories of elementary transformations, we can now
conclude an upper bound on the growth during the full reduction step. In case the first
type of elimination is chosen, the growth is bounded by 1 + 1

α . In case the second or
third type is applied, we have from Lemma 5.1 that the sequences of the first category
of elementary transformations (Y −1or X−1) causes each a growth bounded by 4. The
other elementary transformations may cause growth only to elements that didn’t grow
above the old maximum element in the matrix during the last applied Y −1 (or X−1)
transformation. It means that at the end of a second type reduction step, the growth
is bounded by 4. It means also that this is the case just before applying X−1. The
growth caused by the X−1 transformation itself and the elementary transformation
that follows, is again bounded by 4 .This brings us to total growth bounded by 16 for
the third type of reduction.

We now can use a similar approach to the one used by the Bunch–Kaufman
algorithm to determine the value α. We have growth bounded by 16 for a double
column elimination done during the third type of reduction, and bounded by 4 for a
single column elimination done during the second type. It means that the elimination
of a column during the second or third reduction types induces a growth of 4. In
order to minimize the bound that we have on a general reduction step, we need to
find α such that

μ

(
1 +

1

α

)
≤ 4μ.

Therefore, we need to ensure that α ≥ 1/3; by setting α = 1/3, we maximize the
opportunity to use elimination steps of the first type, which is the cheapest type.

In total we have an upper bound of 4n−1 on the growth factor during the factor-
ization.

We now prove a bound on the entries of the factors.

Lemma 5.2. Suppose that we use a reduction of the first type only when | a(k)
1,1 |>

α ·γ(k)
1 for some 0 < α ≤ 1. Then the magnitude of elements of the factors is bounded

by α−1 or by the elements of the reduced matrices. By reduced matrix we refer here
to the matrix after the application of both full and partial elimination steps, not just
after some rows and columns have been completely eliminated.

Proof. We show that elements of the nine matrices L, Y , G, U , S, P , X, K,
and K̂ are all bounded. L is a Gauss transform in which the pivot is smaller than
the elements in its row and column by at most a factor of α, so the elements of L
are bounded by α−1. K is a similar transform, except that the pivot is larger or
equal to the rest of its row. Therefore, the elements of K are bounded by 1 ≤ α−1.
G represents a single Givens rotation, so its entries are bounded by 1. Y and X
represent either a sequence of Givens rotations, or a sequence of offdiagonal Gauss
transforms in which the pivot is larger than the element that it annihilates. If we
use Givens rotations, Y and X are orthonormal so their entries are bounded by 1.
If we use Gauss transforms, Y and X are row permutations of unit lower-triangular
matrices with subdiagonal elements bounded by 1. The matrix U represents a series
of column operations that annihilate a row in a reduced matrix. Thus, U is an upper
triangular matrix, with one row that contains a copy of the annihilated row in the
reduced matrix, and with a unit diagonal elsewhere. Therefore, the elements of U are
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elements of a reduced matrix and 1’s, so they are bounded. The matrix K̂ is similar,
except that it represents row operations. P is a permutation matrix, so its entries are
bounded by 1. S is a transformation that scales a single row down (S−1 scales a row
up), so it is a diagonal matrix, with diagonal entries that are 1 except for one entry,
which is smaller than 1.

The qualification that the factors are bounded with respect to partially-eliminated
reduced matrices, not with respect to reduced matrices after the full elimination of
some rows and columns, is not a significant one. Our previous analysis of the growth
in the reduced matrices covers partially-eliminated reduced matrices as well.

6. Implementation and results. This section describes our implementation of
the algorithm and presents results of experiments that investigate the behavior and
performance of the algorithm.

6.1. Implementation and benchmark codes. We have implemented the al-
gorithm in the C language2 using LAPACK-style interfaces. The implementation
includes two externally-visible routines, one to factor a symmetric banded matrix and
another to solve a linear system using a previously-computed factorization.

The threshold value α that our implementation uses is α = 1/3, the value that
minimizes worst-case element growth. The implementation uses Givens rotations in
the Y and X factors.

We tested this implementation against three other codes: LAPACK’s banded LU
with partial pivoting (dgbtrf), LAPACK’s banded LU with partial pivoting but
without blocking (dgbtf2; this is an internal LAPACK routine), and the symmetric
band reduction, an orthogonal factorization code for banded symmetric matrices [3].
Our code is not blocked. That is, it does not partition the matrix into blocks to
achieve high cache efficiency. Thus, from the algorithmic point of view, it is most
appropriate to compare it to other nonblocked factorization codes, such as dgbtf2.
From the practical point of view, it is also important to know how our implementation
compares to the best existing factorization code, which is dgbtrf. (This comparison,
however, does not reveal much about our algorithm, since it is difficult to separate
the algorithmic and cache issues that influence the performance of dgbtrf.)

6.2. Test environment. We conducted the experiments on two different ma-
chines. Some of the experiments were conducted on a 3.2 GHz Pentium 4 computer
running Linux with 2 GB of main memory. We compiled our code using GCC version
4.0.0. The version of LAPACK that we used was compiled using GCC 2.91 from C
sources that were generated from the Fortran sources using f2c. We linked our code
as well as LAPACK with an implementation of the blas by Kazushige Goto, version
0.99 for Pentium 4 (Coppermine). We measured this LAPACK/blas combination
against Intel’s Math Kernel Library (MKL) version 7.2.1 and found that the per-
formance of the banded GEPP subroutines in the two implementations was similar.
Therefore, the performance that we report does not appear to be affected by the use
of the Fortran-to-C translation or of GCC. We used this LAPACK/blas combination
because it delivered better performance for our algorithm than MKL.

Other experiments were performed on a dual 3 GHz AMD Opteron machine with
8 GB of main memory. On this machine we used GCC 3.4.2 and Goto’s blas version
0.97 for 64-bit Opterons (we do not report detailed timing data on this machine, only
accuracy data).

2The code is available from http://www.tau.ac.il/∼stoledo/research.html.
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Table 1

Test matrices from the Gould–Scott study.

# name n m # name n m # name n m

1 linverse 11999 4 12 crystk02 13965 821 23 bcsstk39 46772 817
2 spmsrtls 29995 4 13 mario001 38434 356 24 dawson5 51537 867
3 dtoc 24993 5 14 aug3d 24300 759 25 bcsstk35 30237 1764
4 dixmaanl 60000 7 15 crystk03 24696 1034 26 vibrobox 12328 4535
5 sit100 10262 396 16 bratu3d 27792 945 27 helm3d01 32226 2593
6 tuma2 12992 322 17 cont-201 80595 403 28 ncvxbqp1 50000 1682
7 stokes64 12546 384 18 ncvxqp1 12111 2692 29 k1 san 67759 1574
8 stokes64s 12546 384 19 aug3dcqp 35543 994 30 olesnik0 88263 1214
9 aug2d 29008 198 20 bcsstk37 25503 1427 31 cont-300 180895 603

10 aug2dc 30200 202 21 ncvxqp9 16554 2216 32 copter2 55476 2304
11 tuma1 22967 483 22 stokes128 49666 768 33 qa8fk 66127 2016

Table 2

Test matrices from John Betts.

# name n m # name n m # name n m

1 traj02 1665 457 4 traj15a 1999 1882 7 traj15d 1999 1882
2 traj06a 1665 466 5 traj15b 1999 1882
3 traj06b 1665 466 6 traj15c 1999 1882

We used two different machines because we had the MKL performance of GEPP
as a baseline only on Intel Pentium 4 machines, but 32-bit Pentium 4 machines could
not factor some of the larger test matrices. The 64-bit Opteron allowed us to factor
large matrices.

6.3. Reliability, stability, and accuracy. We performed several experiments
in order to assess the reliability, stability, and accuracy of the algorithm. These were
all conducted on the Opteron machine. We used three families of test matrices for
these experiments. One family consists of the 61 matrices that Gould and Scott used
to evaluate sparse symmetric indefinite direct solvers [10]. We reordered the rows and
columns using reverse Cuthill–McKee ordering, to reduce their bandwidth. Of the 61
matrices, our algorithm ran out of memory on 28 on a machine with 8 GB of memory,
leaving for our experiment the 33 matrices listed in Table 1. Another family consisted
of 7 matrices that were collected by Roger Grimes from John Betts of Boeing, listed
in Table 2. They are KKT matrices extracted out of a sparse nonlinear optimization
package called SOCS. These problems were among those that led to the discovery
that the Bunch–Kaufman algorithm can create large entries in the lower-triangular
factor. Solving linear systems with these factors resulted in very-low-accuracy solu-
tions, which led to convergence failures in the nonlinear optimization algorithm.

Figure 4 shows the growth and the norm of the residual on the Gould–Scott
matrices. These runs were performed with α = 1/3. The right-hand-side b was
generated by multiplying A by a random solution vector x. The figure shows the
growth in the reduced matrices in our algorithm and the residual in both our algorithm
and LAPACK’s GEPP. Our code failed on one matrix due to overflows in the solve
phase (GEPP overflowed on 4), and produced an unacceptable residual on only one
matrix. That matrix suffered from large growth. The data suggests that very large
growth leads to backward instability in the algorithm. The data also suggests that
problems in the solve phase can occur even when there is no growth. On the other
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Fig. 4. Growth in the reduced matrices in our algorithm and the residual in both our algorithm
and GEPP on the 33 matrices from the Gould–Scott study.

hand, our algorithm suffers from fewer problems in the solve phase than GEPP. On
the 7 Betts matrices the residual was always at least a factor of 1012 smaller than the
right-hand side; we did not detect any problems.

We also conducted experiments to assess the behavior of the algorithm under
various α-thresholds. For this experiment we selected two of the Betts matrices and
two particularly difficult matrices from the Gould–Scott collection, cont-300 and
bratu3d. These two matrices caused large growth under α = 1/3; cont-300 caused
instability, but bratu3d did not. Figure 5 shows the norms of the forward errors,
normalized with respect to ‖x‖, as a function of α. The results show that increasing
α can improve significantly the accuracy of the algorithm. This is particularly pro-
nounced in the difficult Gould–Scott matrices. The accuracy appears to be roughly
monotone with α. We note that a small α improves performance, as we shall see later,
but even with a large α our theoretical results concerning growth and bandwidth hold.

6.4. Performance. Next, we describe several experiments that evaluate the per-
formance of our algorithm. These experiments were all carried out on the Pentium 4
machine.



THE SNAP-BACK PIVOTING METHOD 419

Fig. 5. Forward accuracy as a function of α on four matrices.

Fig. 6. Performance as a function of the bandwidth.

Figure 6 shows the performance of our algorithm relative to LAPACK’s implemen-
tations of GEPP. The experiment was performed on random 1000-by-1000 matrices
with 50 negative eigenvalues. We generated the matrices as follows. We start with
a real normally distributed random nonsymmetric matrix T , and compute its QR
factorization, T = QR, where Q is unitary and R is upper triangular. We then select
1000 uniform random values wi between 0 and 25. From the wi’s we construct a
diagonal matrix Λ with diagonal elements λi = (−1)[i≤ν]2wi , where [i ≤ ν] is 1 when
i ≤ ν and 0 otherwise. Next, we compute QΛQT , which has eigenvalues λi, exactly ν
of which are negative and the rest positive. Finally, we apply the SBR library [3] to
QΛQT with the target bandwidth as input. This unitarily reduces QΛQT to a banded
symmetric matrix A with the same spectrum as QΛQT and Λ. By the construction of
the λi’s, A is ill conditioned but far from numerical rank deficiency in double-precision
IEEE 754 arithmetic.

The results show that our algorithm is always faster than LAPACK’s subroutine
DGBTF2, which is not blocked for cache efficiency. When the bandwidth is small (e.g.,
60 in this experiment), our algorithm is also faster than DGBTRF, which partitions
the matrix for cache efficiency. For matrices with higher bandwidth, DGBTRF is
faster than our algorithm.

Figure 7 presents similar results on real-world, nonrandom matrices, s3rmt3m1
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Fig. 7. Performance on two real-world matrices, shifted to produce different numbers of negative
eigenvalues.

and bcsstk15. Both are available from public sparse-matrix collections.3 The figure
plots the performance of the three algorithms on shifted versions of the two matrices.
All the shifts are half-way between eigenvalues, so the matrices are relatively well
conditioned. On s3rmt3m1, which has a relatively narrow bandwidth, our algorithm
outperforms both GEPP implementations at many inertia values, and is always at
least as fast as DGBTF2. On bcsstk15, which has a much larger bandwidth, our
algorithm is sometimes faster and sometimes slower than DGBTF2 but usually slower
than DGBTRF. On this matrix our algorithm exhibits another behavior: higher per-
formance at the ends of the inertia axis than in the middle. We further explore this
behavior below.

In another experiment on real-world matrices, we compared the performance of
our algorithm to that of DGBTF2 and DGBTRF on the 33 matrices from the Gould–

3For example, from http://math.nist.gov/MatrixMarket/.
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Fig. 8. Running times of our algorithm on random 5000-by-5000 matrices with bandwidth 50,
and the number of type 2 and type 3 eliminations steps (combined). Each dot corresponds to one
matrix.

Scott study, on the Opteron machine. Most of these matrices have high bandwidths.
Our algorithm delivered similar performance to DGBTF2, but DGBTRF was much
faster than our algorithm. We omit the detailed results of this experiment.

Figure 8 presents the results of another experiment. For this experiment, we
used random 5000-by-5000 matrices with bandwidth 50 and with varying inertia, 10
matrices for each inertia value. We used the Pentium 4 machine for the experiment.
The data shown in the top graph of Figure 8 shows that the algorithm runs fastest
when most of the eigenvalues have the same sign, and it degrades as the ratio of
positive to negative eigenvalues nears 1. This is consistent with the results on some
real-world matrices, such as bcsstk15. The algorithm does not always exhibit this
behavior, as the results on s3rmt3m1 show, but it often does.

The bottom graph in Figure 8 explains this phenomenon. The graph shows that
near the middle of the inertia axis, the number of type-two and -three elimination
steps grows. These elimination steps are more expensive than type-one steps, and
they produce more fill, so a larger number of these steps slows down the algorithm. It
appears that at least in some cases, the number of type-two and -three steps depends
on the inertia.
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6.5. Comparisons to other symmetric-indefinite factorization codes. In
addition for the tests introduced in this section, we have performed some tests on the
SBR library. We have found that the performances of SBR and of our algorithm are
almost incomparable: SBR is about three orders of magnitude (about 1000 times)
slower.

We were not able to obtain the code of Jones and Patrick [14]. Therefore, we did
not compare our algorithm to theirs. We believe that when matrices have only few
negative (or few positive) eigenvalues, the behavior of our algorithm and of Jones and
Patrick’s Bunch–Kaufman code are similar. However, Jones and Patrick’s algorithm
is not designed for general symmetric banded matrices; it may suffer catastrophic fill
when the ratio of positive to negative eigenvalues is near 1, whereas our algorithm de-
grades smoothly toward this case, and the degradation is never catastrophic (because
the bandwidth of the reduced matrices is bounded).

7. Conclusions. The algorithm that we propose in this paper is the first banded
symmetric direct solver that exploits symmetry and achieves an O(nm2) running time
and an O(nm) storage requirement.

The reduced matrices in our algorithm may fill somewhat, but they remain
banded. This behavior is similar to that of Gaussian elimination with partial piv-
oting (GEPP) when applied to a banded matrix. However, representation of the fac-
tors in our algorithm can require more memory than the representation of the GEPP
factors. Also, our algorithm represents the factors in a product form, consisting of
several elementary transformation matrices per elimination step. This representation
does not allow our algorithm to be easily blocked for cache efficiency, so for large m
and highly-indefinite matrices, our algorithm can be slower than the blocked version
of GEPP.

When most of the diagonal elements are large enough to be used as 1-by-1 pivots,
our algorithm performs much less work than GEPP. The performance of the algorithm
seems to be related to the ratio of the numbers of positive and negative eigenvalues.
When there are only a few negative (or only a few positive) eigenvalues, our algo-
rithm uses mostly cheap symmetric Gaussian reduction steps. When there are many
eigenvalues of both signs, the algorithm must resort to more expensive Givens and
unsymmetric Gaussian reduction steps, so its performance degrades. But even when
m is large and A is highly indefinite, our new algorithm is competitive with the un-
blocked version of GEPP. For small m, our algorithm outperforms even the blocked
version of GEPP.

The new algorithm is reliable when implemented in floating-point arithmetic.
More specifically, we believe that the algorithm is backward stable, but we formally
show only a weaker result: that the element growth is bounded by 4n−1. That is,
the entries of the reduced matrices are at most a factor of 4n−1 larger in absolute
value than the entries of A. In most of the existing elimination algorithms, including
GEPP, Bunch–Kaufman and Aasen, a result of this type holds (2 in GEPP, 2.57 in
Bunch–Kaufman and 4 in Aasen) and can be used to show backward stability. The
existence of such a bound on the growth, in both existing algorithms and in our
new algorithm, reflects a careful numerical design whose goal is to avoid catastrophic
cancellation. In particular, the growth bound that we show in section 5 holds thanks
to an intricate elimination strategy that is designed to simultaneously avoid growth,
maintain symmetry, and maintain the band structure. Also, the elements of the factors
in our method are bounded in magnitude by the maximum of 1 and the elements of
the reduced matrices. We note that the backward stability of the Aasen and Bunch–
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Kaufman algorithms, which were proposed in 1971 and 1977, respectively, was only
formally proved by Higham in [11, 12].

Numerical experiments show that in practice, growth is almost always much
smaller than the worst-case bound, and residuals are small, suggesting that the algo-
rithm is backward stable. Furthermore, the accuracy (forward errors) of our algorithm
is similar to that of GEPP even on notoriously difficult matrices. This suggests that
the accuracy problems in Bunch–Kaufman, reported in [2], are not present in our
algorithm.

This paper leaves a few interesting questions open.

• Can this algorithm be blocked for cache efficiency? That is, can this algorithm
be accelerated by exploiting fast level-3 blas subroutines?

• Is this algorithm backward stable? Our bound on the element growth, the
boundedness of the factors, and our numerical experiments suggest that it is,
but we have not formally proved backward stability.

• Can a similar elimination scheme be developed for symmetric indefinite ma-
trices with a general sparsity pattern?
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