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Symmetric Heteroclinic Connections in the Michelson System: A Computer
Assisted Proof∗

Daniel Wilczak†

Abstract. In this paper we present a new technique of proving the existence of an infinite number of symmet-
ric heteroclinic and homoclinic solutions. This technique combines the covering relations method
introduced by Zgliczyński [Topol. Methods Nonlinear Anal., 8 (1996), pp. 169–177; Nonlinearity, 10
(1997), pp. 243–252] with symmetry properties of a dynamical system. As an example we present
a computer assisted proof of the existence of an infinite number of heteroclinic connections be-
tween equilibrium points in the Kuramoto–Sivashinsky ODE [D. Michelson, Phys. D, 19 (1986),
pp. 89–111]. Moreover, we present the proof of the existence of an infinite number of heteroclinic
connections between periodic orbits and equilibrium points.
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1. Introduction. The aim of this paper is to present a new method for proving the ex-
istence of symmetric homoclinic or heteroclinic solutions in systems possessing the reversing
symmetry property.

In [5] (and references given there) a method of proving the existence of time reversing
symmetric homoclinic and heteroclinic solutions for dynamical systems is presented and it is
called the fixed set iteration method. It applies to dynamical systems with continuous and
discrete time. The basic idea of such a method is to search for the points u which are invariant
under the symmetry and whose trajectories converge to an equilibrium point or a periodic
orbit. This allows us to conclude that the trajectories of the points u must be homoclinic or
heteroclinic.

Galias and Zgliczyński [3] presented the method for proving the existence of homoclinic
and heteroclinic solutions for maps R

2 → R
2. This result was applied to the planar circular

restricted three body problem [1, 16], where the existence of an infinite number of homoclinic
and heteroclinic connections between periodic orbits was shown.

In this paper we demonstrate how to combine these two methods for proving the existence
of symmetric homoclinic or heteroclinic orbits in systems possessing the reversing symmetry
property. Moreover, we present some generalization of the Galias–Zgliczyński method. We
show how to prove the existence of heteroclinic orbits between objects possessing unequal
dimensions—for example, the equilibrium points and periodic orbits.
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As an application of our method we present a computer assisted proof of the existence of
an infinite number of symmetric heteroclinic connections between equilibrium points in the
Michelson system [10]

y′′′ + y′ +
1

2
y2 = c2(1)

arising from the Kuramoto–Sivashinsky PDE as a traveling-wave solution. We rewrite (1) as
the system ⎧⎪⎨⎪⎩

ẋ = y,
ẏ = z,
ż = c2 − y − 1

2x
2.

(2)

The system (2) possesses two equilibrium points: xc,− = (−c
√

2, 0, 0) and xc,+ = (c
√

2, 0, 0).
McCord [9] showed that for every sufficiently large c there exists a unique nonstationary
bounded solution—a heteroclinic orbit connecting equilibrium points. Mrozek and Żelawski
[11] considered the related system with a parameter λ, i.e.,⎧⎪⎨⎪⎩

ẋ = y,
ẏ = z,
ż = 1 − λy − 1

2x
2.

(3)

They proved that for all the parameter values λ ∈ [0, 1] the system (3) possesses a heteroclinic
orbit connecting (

√
2, 0, 0) with (−

√
2, 0, 0). Observe that if x(t) is a solution of (3) with λ > 0,

then x̃(t) := λ−3/2x(λ−1/2t) is a solution of (2) with c = λ−3/2. Hence, this result implies that
for every c ≥ 1 there exists a heteroclinic solution of (2) connecting the equilibrium points
xc,+ and xc,−.

Troy [12] proved that for the parameter value c = 1 there exist two symmetric (with
respect to the y-axis) heteroclinic connections between equilibrium points. He conjectured
the existence of more heteroclinic solutions.

Lau [7] described the structure of the heteroclinic bifurcations of (2). In particular, his
work shows the possibility of the existence of an infinite number of symmetric heteroclinic
solutions. The previously mentioned method gives the positive answer to the conjectures given
by Troy and Lau. The examples of such orbits are presented in Figure 1 (see also [12, Figures
6, 8, 10]).

Troy [12] proved the existence of two odd periodic solutions of (1). These periodic orbits
are presented in Figure 6 (see also [12, Figures 3, 4]). The main novelty about the Michelson
system is the proof of the existence of infinitely many heteroclinic connections between periodic
orbits established in [12] and the equilibrium points (see Figures 2 and 3).

In [13] the dynamics of reversible and conservative systems close to a homoclinic orbit is
studied. In particular, it is shown [13, Thm. 5] that if the system is of an even dimension and
it is R-reversible, where R is a linear involution, then the period blow-up appears close to the
elementary symmetric homoclinic orbit and results in the existence of periodic orbits with all
possible periods greater than some ω0 > 0.
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Figure 1. Two examples of heteroclinic connection between equilibrium points (left) built on the sequence of
symbols (2, 3, 4), the initial condition u ≈ (0, 0.4905645239087398, 0), (right) built on the sequence of symbols
(2, 3, 4, 1, 4), the initial condition u ≈ (0, 0.5229511376516929, 0).
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Figure 2. An example of heteroclinic connection between the periodic orbit S1 and equilibrium point
(−

√
2, 0, 0).

The method presented in this paper concerns odd dimensional flows. However, it is possible
to apply it in the case when the dimension of the dynamical system is even—for example, in
hamiltonian systems [17]. After fixing the energy level we obtain the flow on the (usually)
odd dimensional manifold where the periodic, homo-, and heteroclinic orbits can be isolated.
If we can apply the method to a hamiltonian with a fixed regular energy level, then similar
dynamics occurs in some range of energy values.

The interesting results about the dynamics close to the Hopf-zero bifurcation in reversible
vector fields in R

3 are presented in [6]. The application of the general result to the Michelson
system leads to [6, Thm. 1.4] when the existence of extremely complicated dynamics including
heteroclinic and homoclinic solutions and chaotic dynamics for the parameter values c close
to zero is presented.

Another interesting question is the existence of a heteroclinic loop between equilibrium
points xc,±. In [4] the explicit formula for the one-dimensional heteroclinic solution connecting
xc,− with xc,+ was found,

x(t) = α(−9 tanh(βt) + 11 tanh3(βt)),(4)

where α = 15
√

11/193, β = 1
2

√
11/19, and c = cKT = α

√
2 ≈ .84952. The method presented
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Figure 3. An example of heteroclinic connection between the periodic orbit S2 and equilibrium point
(−

√
2, 0, 0).

in this paper may give a positive answer that for parameter value cKT there exists a heteroclinic
loop between equilibria.

The paper is organized as follows. In section 4 we recall the covering relations method
and we prove the new topological results. In section 5 we recall and generalize the Galias–
Zgliczyński method. In section 6 we give the precise statement of the main results and their
proofs. In section 7 we give details of the numerical proof.

2. Basic notation and definitions. Basic notation and definitions introduced in this sub-
section are used throughout the paper. By int(W ) we denote the interior of a set W . Let
f : X−→◦ Y be a partial function. By dom(f) we denote the domain of f . By Fix(f) we denote
the set of fixed points of f

Fix(f) := {x ∈ dom(f) | f(x) = x}.

Definition 2.1. Let Ix0 denote the maximal interval of the existence of the solution of

ẋ = f(x), x(0) = x0.

The set O(x0) := {x(t) | t ∈ Ix0} is called the trajectory of the point x0.
Definition 2.2. Let f : R

n → R
n be a smooth function. A diffeomorphism R : R

n −→ R
n is

called a reversing symmetry of the ODE

ẋ = f(x)(5)

if

f ◦R = −R ◦ f.

The system (5) is called reversible if it has at least one reversing symmetry.
The existence of reversing symmetry in a given ODE has important consequences for the

induced dynamical system. In particular, the R-image of a trajectory is also the trajectory of
the system.

Definition 2.3. A trajectory of a point x ∈ R
n of an R-reversible system ẋ = f(x) is called

R-symmetric if it is invariant under symmetry, i.e., R(O(x)) = O(x).
It is a well-known result [5, 13] that for the trajectory O(x) to be R-symmetric it is

necessary and sufficient that O(x) ∩ Fix(R) 	= ∅.
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3. The main results. As was mentioned in the introduction the Michelson system (2)
arises from the Kuramoto–Sivashinsky equation

ut + ∇4u + ∇2u +
1

2
|∇u|2 = 0

as a traveling-wave solution. Observe that (2) possesses the reversing symmetry

R(x, y, z) = (−x, y,−z),(6)

which means that if t → (x(t), y(t), z(t)) is a solution of (2), then

t → R(x(−t), y(−t), z(−t)) = (−x(−t), y(−t),−z(−t))

is a solution, too.
Following Troy [12] we will study (1)–(2) with the parameter value c = 1. The system (2)

possesses two equilibrium points: x− := (−
√

2, 0, 0) and x+ := (
√

2, 0, 0). These equilibria are
not contained in Fix(R), and therefore they are R-images of themselves; i.e., R(x±) = x∓.

Troy [12] gave the proof of the existence of two heteroclinic connections from x+ to x−. He
conjectured the existence of an infinite number of heteroclinic connections between equilibrium
points x±. Here we present the answer to Troy’s question.

Theorem 3.1. There exists an infinite number of R-symmetric heteroclinic solutions of the
Michelson system (2) connecting x+ with x−.

Two symmetric heteroclinic solutions connecting equilibrium points x± are shown in Fig-
ure 1. The symmetric heteroclinic solutions are obtained in the following way. We will show
that there exists an infinite number of points on the y-axis whose trajectory makes an arbi-
trarily large but finite number of loops close to the two symmetric periodic solutions S1, S2

found by Troy [12]. Finally, the trajectory is asymptotic to the equilibrium x−. The symmetry
argument shows that trajectories of these points must be heteroclinic connections between x+

and x−.
Theorem 3.2. Let S1, S2 denote the two R-symmetric periodic solutions of (2) found by

Troy [12].
1. There exists an infinite number of solutions of (2), such that the ω-limit set is the

equilibrium point (−
√

2, 0, 0) and the α-limit set is either S1 or S2.
2. There exists an infinite number of solutions of (2), such that the α-limit set is the

equilibrium point (
√

2, 0, 0) and the ω-limit set is either S1 or S2.
Two heteroclinic connections between odd periodic orbits S1, S2 and the equilibrium point

(−
√

2, 0, 0) are shown in Figures 2 and 3.
These solutions are obtained in the following way. We will show that there are points

whose forward trajectories make an arbitrarily large but finite number of loops close to the
S1 and/or S2 periodic orbits and next are asymptotic to the equilibrium x−. On the other
hand, the whole backward trajectory is close to the fixed periodic orbit Si. Finally, we will
show that since periodic orbits S1 and S2 are hyperbolic in the sense of Definition 5.1, these
trajectories must be backward asymptotic to the periodic solution Si.

The assertion (2) follows from assertion (1) and the R-reversibility of the Michelson sys-
tem. If O(x) is a heteroclinic connection between Si and x−, then R(O(x)) is a heteroclinic
connection between x+ = R(x−) and Si = R(Si).
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In fact, these heteroclinic chains O(x) – R(O(x)) connecting x+ → Si → x− are the limit
of symmetric heteroclinic trajectories between x+ and x− for which the number of loops close
to the periodic orbit Si increases to infinity.

A more precise statement of the above theorems and their connections with the symbolic
dynamics proved by the author in [15] will be given in section 6 (Theorems 6.5 and 6.15). We
also present there the proofs of Theorems 3.1 and 3.2.

4. Topological results. The covering relations method was introduced by Zgliczyński
[19, 20]. Here we recall the basic definitions.

4.1. t-sets.
Definition 4.1. A t-set is a triple N = (|N |, N l, N r) of closed subsets of R

n satisfying the
following properties:

1. |N | is a parallelepiped; N l and N r are two half-spaces.
2. N l ∩N r = ∅.
3. The sets N lw := N l ∩ |N | and N rw := N r ∩ |N | are two parallel walls of |N |.

We call |N |, N l, N r, N lw, and N rw the support, the left side, the right side, the left wall, and
the right wall of the t-set N , respectively.

Definition 4.1 is a generalization of [1, Def. 1]. Special cases of t-sets in R
2 and R

3 are
presented in Figure 4.

left side N l

right side N r

support |N|
support |N|

right side N r

left side N l

Figure 4. An example of a t-set (left) on the plane R
2 and (right) in R

3.

4.2. Representation of t-sets. A t-set in R
n may be defined by specifying

N = t(c, u, s1, . . . , sn−1),

where c, u, si ∈ R
n, i = 1, 2, . . . , n− 1, are such that u, s1, . . . , sn−1 are linearly independent.

We set

|N | = {x ∈ R
n | ∃t1,t2,...,tn∈[−1,1] x = c + t1s1 + · · · + tn−1sn−1 + tnu}

= c + [−1, 1] · u + [−1, 1] · s1 + · · · + [−1, 1] · sn−1,

N l = c + (−∞,−1] · u + (−∞,∞) · s1 + · · · + (−∞,∞) · sn−1,

N r = c + [1,∞) · u + (−∞,∞) · s1 + · · · + (−∞,∞) · sn−1.
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In this representation c is the center point of the parallelepiped |N |, u is called the unstable
direction, and si are called stable directions.

Using this representation, we have

N lw = c− u + [−1, 1] · s1 + · · · + [−1, 1] · sn−1,

N rw = c + u + [−1, 1] · s1 + · · · + [−1, 1] · sn−1.

4.3. Covering relations. Let N , M be t-sets in R
n and R

m, respectively, and let f :
R
n−→◦ R

m be a continuous function such that |N | ⊂ dom(f). Below we present the general-
ization of [1, Def. 2] to the case of unequal dimensions of N and M .

Definition 4.2. We say that N f -covers M if the following conditions hold:
(a) f(|N |) ⊂ int(M l ∪ |M | ∪M r).
(b) Either f(N lw) ⊂ int(M l) and f(N rw) ⊂ int(M r) or f(N lw) ⊂ int(M r) and f(N rw) ⊂

int(M l).

We then write N
f

=⇒ M .

support

right side

left side

|M|

f(|N|)

Figure 5. An example of covering relations N
f

=⇒ M , where N is a t-set in R
2 and M is a t-set in R

3.

The geometry of this concept is presented in Figure 5. We recall and generalize some
results from [15].

Definition 4.3. Let N be a t-set in R
n and let γ : [a, b] −→ R

n be a continuous curve. We
say that γ is a horizontal curve in N if the following conditions hold:

1. γ((a, b)) ⊂ int(|N |).
2. Either γ(a) ∈ N lwand γ(b) ∈ N rw or γ(a) ∈ N rwand γ(b) ∈ N lw.

From the geometrical point of view γ is a continuous curve connecting N rw and N lw inside
the support of N .

Theorem 4.4. Let M0,M1, . . . ,Mn be t-sets in R
d0 , . . . ,Rdn, respectively, for some d0, . . . , dn ∈

N. Assume fi : Mi −→ R
di+1, i = 0, . . . , n− 1, are continuous functions such that

M0
f0

=⇒ M1
f1

=⇒ M2 · · ·
fn−2
=⇒ Mn−1

fn−1
=⇒ Mn.
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If γ : [a, b] −→ R
d0 is a horizontal curve in M0, then there are real numbers t∗, t∗ such that

the composition (fn−1 ◦ fn−2 ◦ · · · ◦ f0) ◦ (γ|[t∗,t∗]) is well defined. Moreover,

(fk−1 ◦ fk−2 ◦ · · · ◦ f0 ◦ γ)([t∗, t
∗]) ⊂ int(|Mk|) for k = 1, . . . , n− 1,

(fn−1 ◦ fn−2 ◦ · · · ◦ f0 ◦ γ)|[t∗,t∗] is a horizontal curve in Mn.

Proof. The proof is presented in [15, Thm. 4.8] under the assumption that each of the
t-sets is two-dimensional. We omit the proof, since exactly the same arguments justify the
general case.

Theorem 4.5. Let (Nj)j≥0 be a sequence of t-sets in R
dj , respectively; fj : |Nj | −→ R

dj+1,
j ≥ 0, are continuous such that

Nj
fj

=⇒ Nj+1 for j ≥ 0.

If γ : [a, b] −→ R
d0 is a horizontal curve in N0, then there exists τ ∈ [a, b] such that

(fj ◦ · · · ◦ f0)(γ(τ)) ∈ |Nj+1|

for all j ≥ 0.

Proof. From Theorem 4.4, for every j = 1, 2, . . . , there exists tj ∈ [a, b] such that

(fk ◦ · · · ◦ f0)(γ(tj)) ∈ |Nik+1
| for k = 0, . . . , j.

Since [a, b] is compact, we can find a condensation point τ ∈ [a, b] of the set {tj}j>0. Since
|Nj |, j ≥ 0, are compact sets and fj , j ≥ 0, are continuous, we obtain that

(fj ◦ · · · ◦ f0)(γ(τ)) ∈ |Nj+1|

for all j ≥ 0.

Remark 4.6. Let N0, . . . , Nj be t-sets in R
d0 , . . . ,Rdj , respectively. Assume f0, . . . , fj−1, g

are continuous such that

N0
f0

=⇒ N1
f1

=⇒ · · · fj−1
=⇒ Nj

g
=⇒ Nj .

In this special case Theorem 4.5 implies the existence of a point u ∈ N0 such that

(fk ◦ · · · ◦ f0)(u) ∈ |Nk+1|

for k = 0, 1, . . . , j − 1 and

(gp ◦ fj−1 ◦ · · · ◦ f0)(u) ∈ |Nj |

for p ≥ 0.

Since Nj
g

=⇒ Nj , then from [16, Thm. 3.6] there exists a fixed point x∗ of g in |Nj |.
Hence, we can ask if the fixed point x∗ is unique and if the trajectory of u converges to x∗.
The answer is presented in the next section.
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5. Homoclinic and heteroclinic connections: C1-tools. The goal of this section is to
describe tools for proving the existence of homo- or heteroclinic orbits for maps. We will
generalize the method introduced by Galias and Zgliczyński [3] and originating from the
results by Wójcik and Zgliczyński [18]. We recall some results from [3, 16].

5.1. General theorems. Let P : R
n → R

n be a C1-map. For any set X we say that
an interval matrix DP (X) ⊂ R

n×n is an interval enclosure of the derivative DP (X) :=
{DP (x) | x ∈ X} if

M ∈ DP (X) ⇐⇒ inf
x∈X

(DP (x))ij ≤ Mij ≤ sup
x∈X

(DP (x))ij , i, j = 1, 2, . . . , n.

Consider a function f : R
2 → R

2, f(x) = (f1(x), f2(x))T , where x = (x1, x2)
T . We assume

that f(0) = 0, i.e., that 0 is a fixed point of f . For a convex set U such that 0 ∈ U , we define
intervals λ1(U), ε1(U), ε2(U), and λ2(U) by

Df(U) =

(
λ1(U) ε1(U)
ε2(U) λ2(U)

)
.(7)

Let

ε′1(U) = sup{|ε| : ε ∈ ε1(U)}, ε′2(U) = sup{|ε| : ε ∈ ε2(U)},
λ′

1(U) = inf{|λ1| : λ1 ∈ λ1(U)}, λ′
2(U) = sup{|λ2| : λ2 ∈ λ2(U)}.

Let us define the rectangle Nα1,α2 = [−α1, α1] × [−α2, α2].

Definition 5.1 (see [3, Def. 1]). Let x∗ be a fixed point for the map f . We say that f is
hyperbolic on N � x∗ if there exists a local coordinate system on N such that in this coordinate
system

x∗ = 0,

ε′1(N)ε′2(N) < (1 − λ′
2(N))(λ′

1(N) − 1),

N = Nα1,α2 ,

where α1 > 0, α2 > 0 are such that the following conditions are satisfied:

ε′1(N)

λ′
1(N) − 1

<
α1

α2
<

1 − λ′
2(N)

ε′2(N)
.

It is easy to see that for the map f to be hyperbolic on N it is necessary that λ′
1 > 1,

λ′
2 < 1, and the linearization of f at x∗ is hyperbolic with one stable and one unstable direction.

Observe that for f to be hyperbolic on N it is not necessary that f is a diffeomorphism on
|N |. Hence, the Jacobi matrix of f may have a determinant equal to zero at some x ∈ |N |.

Theorem 5.2 (see [3, Thm. 3]). Assume that f is hyperbolic on N .

1. If fk(x) ∈ N for k ≥ 0, then limk→∞ fk(x) = x∗.
2. If yk ∈ N and f(yk−1) = yk for k ≤ 0, then limk→−∞ yk = x∗.
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Remark 5.3. It is possible to extend Definition 5.1 and Theorem 5.2 to the case when the
set N has dimension greater than two. In that case we write the matrix DP as a block
matrix 2 × 2, where two diagonal blocks correspond to the unstable and stable parts. Next
we compute ε′i(N), λ′

i(N), i = 1, 2, as the maximum norm of the corresponding block. We
will not formulate and prove this result since we will not use it in this paper. The required
convergence on some three-dimensional t-set will be proved by use of a certain energy function
(see Lemma 6.9).

Theorem 5.2 may be used to prove the existence of homoclinic and heteroclinic orbits.
The following theorem is a generalization of [3, Thm. 4].

Theorem 5.4. Let M0, . . . ,Mn be t-sets in R
dj , respectively, j = 0, . . . , n. Assume H1, H2

are t-sets in R
2, gi : |Hi| → R

2 are injective and hyperbolic on Hi, and Hi
gi=⇒ Hi for i = 1, 2.

Let xi be a unique fixed point of gi in |Hi| for i = 1, 2.

1. If f0, . . . , fn are such that

H1
f0

=⇒ M0
f1

=⇒ M1
f2

=⇒ · · · fn
=⇒ Mn,

then there exists a point x0 ∈ |H1| satisfying
• g−k

1 (x0) ∈ |H1| for all k ≥ 0 and limk→∞ g−k
1 (x0) = x1,

• (fj ◦ · · · ◦ f0)(x0) ∈ |Mj | for j = 0, . . . , n.
2. If f0, . . . , fn are such that

M0
f0

=⇒ M1
f1

=⇒ · · · fn−1
=⇒ Mn

fn
=⇒ H2,

then there exists a point x0 ∈ |M0| satisfying
• (fj ◦ · · · f0)(x0) ∈ |Mj+1| for j = 0, . . . , n− 1,
• (gk2 ◦ fn ◦ · · · ◦ f0)(x0) ∈ |H2| for k ≥ 0 and limk→∞(gk2 ◦ fn ◦ · · · ◦ f0)(x0) = x2.

3. If f0, . . . , fn, fn+1 are such that

H1
f0

=⇒ M0
f1

=⇒ M1
f2

=⇒ · · · fn
=⇒ Mn

fn+1
=⇒ H2,

then there exists a point x0 ∈ |H1| satisfying
• g−k

1 (x0) ∈ |H1| for all k ≥ 0 and limk→∞ g−k
1 (x0) = x1,

• (fj ◦ · · · ◦ f0)(x0) ∈ |Mj | for j = 0, . . . , n and (fn+1 ◦ · · · ◦ f0)(x0) ∈ |H2|,
• (gk2 ◦fn+1 ◦ · · · ◦f0)(x0) ∈ |H2| for k ≥ 0 and limk→∞(gk2 ◦fn+1 ◦ · · · ◦f0)(x0) = x2.

Proof. We present the proof of the first assertion. The proofs of the second and third
assertions are similar. Let us fix k ≥ 0. We have the following chain of covering relations:

H1
g1

=⇒ H1
g1

=⇒ · · · g1
=⇒ H1︸ ︷︷ ︸

k

f0
=⇒ M0

f1
=⇒ M1

f2
=⇒ · · · fn

=⇒ Mn.

From Theorem 4.5 there exists a point xk0 ∈ |H1| satisfying

gj1(x
k
0) ∈ |H1| for j = 1, . . . , k,

(fj ◦ · · · f0 ◦ gk1 )(xk0) ∈ |Mj | for j = 0, . . . , n.
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Since |H1| is compact and for every k ≥ 0, gk1 (xk0) ∈ |H1|, we can find a condensation point
x0 ∈ |H1| of the set {gk1 (xk0)}k>0. Since g1 is injective, we obtain g−k

1 (x0) ∈ |H1| for all k ≥ 0.
Since g1 is hyperbolic on H1, Theorem 5.2 implies that limk→∞ g−k

1 (x0) = x1. The assertion

(fj ◦ · · · ◦ f0)(x0) ∈ |Mj | for j = 0, . . . , n

follows from the continuity of fi, i = 0, . . . , n, and compactness of |Mi|, i = 0, . . . , n.

5.2. The fuzzy sets. To prove the existence of a heteroclinic orbit we would like to use
the third assertion in Theorem 5.4. Observe that to apply this theorem directly one needs to
know the exact location of the two fixed points x1 ∈ H1 and x2 ∈ H2, because the sets H1

and H2 are centered on x1 and x2, respectively. But the exact coordinates of x1 and x2 are
usually unknown. Following [16], we overcome this obstacle in three steps.

1. Finding very good estimates for x1 and x2. In this paper we use an argument based on
symmetry to obtain tight bounds for x1 and x2. Let F1 and F2 denote the estimates for x1

and x2, respectively.
We choose two fixed points x1 ∈ F1 and x2 ∈ F2 for further consideration.
2. C1-computations, hyperbolicity. We pick up a set U1, H1 ⊂ U1, on which we rigorously

compute Dg1(U1). Then we have to choose a coordinate system, in which the matrix Dg1(U1)
will be as close as possible to the diagonal one. In this paper we take numerically obtained
stable and unstable eigenvectors. Let us denote these eigenvectors by u and s, where u
corresponds to unstable direction and s is pointing in the stable direction. Assume that this
process gives us a coordinate frame in which

ε′1(U1)ε
′
2(U1) < (1 − λ′

2(U1))(λ
′
1(U1) − 1).(8)

From (8) it follows easily that there exist α1 > 0, α2 > 0 such that

ε′1(U1)

λ′
1(U1) − 1

<
α1

α2
<

1 − λ′
2(U1)

ε′2(U1)
.(9)

Observe that the above inequality specifies only the ratio α1/α2; hence we can find a pair
(α1, α2) such that condition (9) is satisfied and the following condition holds:

F1 + α1 · [−1, 1] · u + α2 · [−1, 1] · s ⊂ U1.

We now define a t-set H1 by

H1 = t(x1, α1u, α2s).

Obviously g1 is hyperbolic on H1. Observe that the hyperbolicity implies uniqueness of x1 in
H1.

We do similar construction for g2 to obtain H2 = t(x2, β1ū, β2s̄).
3. Covering relations for fuzzy t-sets. We have to verify the following covering relations:

H1
g1

=⇒ H1
f0

=⇒ M0,(10)

Mn
fn+1
=⇒ H2

g2
=⇒ H2.(11)
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As was mentioned above we do not know the t-sets H1, H2 explicitly, but we know that

H1 ∈ H̃1 = {t(c, α1u, α2s) | c ∈ F1},
H2 ∈ H̃2 = {t(c, β1ū, β2s̄) | c ∈ F2}.

The above equations define a fuzzy t-set as a collection of t-sets. We can now extend the
definition of covering relations to fuzzy t-sets as follows.

For a given fuzzy t-set Ñ we define the support of a fuzzy set as a union of supports, i.e.,

|Ñ | =
⋃

M∈Ñ

|M |.

Definition 5.5. Assume H̃1, H̃2 are fuzzy t-sets on the plane and N is a t-set in R
d.

• Let f : |H̃1| → R
d be continuous. We say that H̃1

f
=⇒ N iff M

f
=⇒ N for all M ∈ H̃1.

• Let f : |N | → R
2 be continuous. We say that N

f
=⇒ H̃1 iff N

f
=⇒ M for all M ∈ H̃1.

• Let f : |H̃1| → R
2 be continuous. We say that H̃1

f
=⇒ H̃2 iff M1

f
=⇒ M2 for all

M1 ∈ H̃1 and M2 ∈ H̃2.
With the above definition it is obvious that to prove the covering relations in (10) and

(11) it is enough to show that

H̃1
g1

=⇒ H̃0
f0

=⇒ M0,

Mn
fn+1
=⇒ H̃2

g2
=⇒ H̃2.

In practice (in rigorous numerical computations) it is convenient to think about a fuzzy
t-set H̃ as a parallelogram with thickened edges; hence all tools developed to verify covering
relations for t-sets can be easily extended to fuzzy t-sets.

6. Proofs of the main theorems. Let L := {(x, y, 0) ∈ R
3 : y = c2− 1

2x
2, x ∈ R}. Observe

that Θ := {(x, y, 0) : x, y ∈ R} \ L is a local cross section for (2).
Since the third coordinate is constant and equal to 0 on Θ, we will identify points on

Θ with the points on R
2. We define five two-dimensional t-sets on Θ, Ni := t(ci, ui, si),

i = 1, . . . , 5, where

c1 = (0.00, 1.55), u1 = (0.14, 0.06), s1 = (−0.14, 0.06),
c2 = (0.00, 0.51), u2 = (0.09, 0.13), s2 = (−0.09, 0.13),
c3 = (1.41, 0.97), u3 = (0.06, 0.05), s3 = (−0.06, 0.05),
c4 = (0.00,−2.35), u4 = (0.06, 0.10), s4 = (−0.06, 0.10),
c5 = (−1.41, 0.97), u5 = (−0.06, 0.05), s5 = (0.06, 0.05).

The sets N1, . . . , N5 are chosen as neighborhoods of the intersections of periodic orbits S1 and
S2 with the section Θ. Let N :=

⋃5
i=1 |Ni|. In [15, Lem. 5.1] the following lemma was proved

with computer assistance.
Lemma 6.1. Let P : Θ−→◦ Θ denote the Poincaré return map for the Michelson system (2)

with the parameter value c = 1. Then N ⊂ dom(P ) and

N4
P

=⇒ N5
P

=⇒ N2
P

=⇒ N3
P

=⇒ N4,(12)

N4
P

=⇒ N1
P

=⇒ N4.(13)
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The numerical evidence of this fact is presented in Figure 6. Note that in (12) there are two
different loops of covering relations corresponding to the two symmetric periodic solutions S1

and S2. The main observation is that these loops contain the common t-set N4, which allows
us to construct essentially different sequences of covering relations of an arbitrary length.

−1 1
x

−1

1

y

N1

N2

N3

N4

N5

Figure 6. Two periodic orbits established in [12], the sets |N1|, . . . , |N5|, and their images P (|N1|), . . . ,
P (|N5|). The sets |Ni|, i = 1, . . . , 5, are chosen as neighborhoods of the intersections of periodic orbits with the
Poincaré section.

Definition 6.2. We say that a sequence (ij)j∈Z ∈ {1, . . . , 5}Z is admissible with respect to
the Poincaré map P if

Nij
P

=⇒ Nij+1 for j ∈ Z.

We formulate a similar definition for the finite sequences.
Definition 6.3. We say that a sequence (i0, i1, . . . , in) ∈ {1, . . . , 5}n+1 is admissible with

respect to the Poincaré map P if

Ni0
P

=⇒ · · · P
=⇒ Nin .

Recall that by R (6) we denote the reversing symmetry of (2). The existence of the
reversing symmetry for (2) implies the existence of the reversing symmetry for the Poincaré
map P [15, Lem. 3.3], which means that for every x ∈ dom(Pn), n > 0, holds R(x) ∈
dom(P−n) and

R(Pn(x)) = P−n(R(x)).(14)

The following theorem summarizes the results proved by the author in [15].
Theorem 6.4. Let P : Θ−→◦ Θ denote the Poincaré return map for the Michelson system

with the parameter value c = 1.
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(i) Assume (ij)j∈Z is an admissible sequence with respect to P . Then there exists a point
x0 ∈ |Ni0 | such that P j(x0) ∈ |Nij | for j ∈ Z. Moreover, if (ij)j∈Z is a periodic
sequence, then x0 may be chosen as a periodic point of P with the same principal
period.

(ii) Assume (i0, . . . , in), n > 0, is an admissible sequence with respect to P . If i0, in ∈
{1, 2, 4}, then there exists a point x0 ∈ |Ni0 | such that
(a) R(x0) = x0, R(Pn(x0)) = Pn(x0), where R is the reversing symmetry of P ,
(b) P j(x0) ∈ |Nij |, P−j(x0) ∈ R(|Nij |) for j = 0, . . . , n,
(c) P 2n(x0) = x0.
In particular, the solution of (1) with the initial condition (y, y′, y′′) = x0 is a periodic
odd function.

6.1. Odd heteroclinic connections between equilibrium points. The goal of this section
is to prove the following theorem.

Theorem 6.5. Let (i0, i1, . . . , ik) be an admissible sequence with respect to P . Assume i0 ∈
{1, 2, 4}, ik = 4. Then there exists a solution u of the Michelson system with parameter value
c = 1 satisfying the following properties:

1. The solution u is defined for all t ∈ R.
2. There is a sequence 0 = t0 < t1 < · · · < tk such that u(tj) ∈ |Nij |, u(−tj) ∈ R(|Nij |)

for j = 1, . . . , k, and u(t0 = 0) ∈ |Ni0 | ∩ Fix(R).
3. limt→∞ u(t) = (−

√
2, 0, 0) and limt→−∞ u(t) = (

√
2, 0, 0).

Two heteroclinic solutions resulting from Theorem 6.5 are presented in Figure 1.

Let φ : R × R
3−→◦ R

3 denote the local dynamical system induced by (2). The proof of
Theorem 6.5 is a consequence of the following steps:

1. We construct a three-dimensional t-set H centered in the equilibrium point (−
√

2, 0, 0)
and we find a time TH > 0 such that

H
ΦH=⇒ H and φ([0, TH ], H) ⊂ {(x, y, z) ∈ R

3 | x < 0},

where ΦH := φ(TH , ·).
2. We construct a two-dimensional t-set M and we find a time TM > 0 such that |M | ⊂

|N4|, N1
P

=⇒ M , N3
P

=⇒ M , and M
ΦM=⇒ H, where ΦM := φ(TM , ·).

3. We find a symmetric trajectory associated with the sequence of covering relations

Ni0
P

=⇒ Ni1
P

=⇒ · · · P
=⇒ Nik−1

P
=⇒ M

ΦM=⇒ H
ΦH=⇒ H

ΦH=⇒ · · ·

and we show that it must converge to the equilibrium point. Next we use the symmetry
argument to show that this trajectory must be a heteroclinic connection between
equilibrium points (±

√
2, 0, 0).

Let us denote x− = (−
√

2, 0, 0). One observes that the linearized flow in x− possesses
one real eigenvalue λ1 > 0 and a pair of complex eigenvalues λ2, λ3 with negative real parts.
Therefore, we have a one-dimensional unstable manifold and a two-dimensional stable mani-
fold. We define a three-dimensional t-set H = t(x−, 0.33 ·u, 0.33 ·s1, 0.33 ·s2) (see section 4.2),
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Figure 7. The sets |H| and ΦH(|H|), (left) in (x, y, z) coordinates, (right) in (u, s1, s2) coordinates.

where the vectors

u = (1, 0.8340388297674541, 0.6956207695598643),

s1 = (0, 1.2335783628006363,−1.028852254136695),

s2 = (1,−0.4170194148837272,−1.347810384779932)

are good numerical approximations of the stable and unstable eigenvectors (in fact the stable
and unstable eigenvectors may be computed exactly, but this is not necessary for our method).
We proved the following lemma with computer assistance.

Lemma 6.6. Let TH = 1.4 and ΦH := φ(TH , ·). Then for each u ∈ |H| the solution of (2)
with the initial condition u is defined on the interval [0, TH ]. Moreover,

φ([0, TH ], |H|) ⊂ {(x, y, z) ∈ R
3 | x < 0} and H

ΦH=⇒ H.

The numerical evidence of this fact is presented in Figures 7 and 11.
Next we construct the set M as was required in step 2. Let us recall that the set N4 is

defined by N4 = t(c4, u4, s4), where

c4 = (0.00,−2.35), u4 = (0.06, 0.10), s4 = (−0.06, 0.10).

The numerical simulation shows that the intersection of the stable manifold of x− with the
Poincaré section Θ crosses the set N4; see Figure 8. Therefore, we define the set M as a subset
of N4 containing a part of this intersection. Put M = t(cM , uM , sM ), where

cM = c4 − 0.84 · u4,sM = s4, uM = 0.1 · u4.(15)
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Figure 8. A part of the intersection of the stable manifold W s
x− of x− with the Poincaré section Θ.

Lemma 6.7. The following covering relations hold:

N1
P

=⇒ M, N3
P

=⇒ M.

Proof. The t-set M (15) has been chosen such that the following inclusions hold:

int(N l
4 ∪ |N4| ∪N r

4 ) ⊂ int(M l ∪ |M | ∪M r),

int(N r
4 ) ⊂ int(M r), int(N l

4) ⊂ int(M l)

(see also Figure 8, right panel). From Lemma 6.1 we know that

N1
P

=⇒ N4, N3
P

=⇒ N4.

Therefore, all the required inclusions from the definition of covering relations are
satisfied.

With computer assistance we proved the following lemma.
Lemma 6.8. Let TM = 6.4 and ΦM := φ(TM , ·). Then for each u ∈ |M | the solution of (2)

with the initial condition u is defined on interval [0, TM ]. Moreover, M
ΦM=⇒ H.

The numerical evidence of Lemma 6.8 is presented in Figure 9.
Lemma 6.9. Assume u ∈ |H| is such that Φn

H(u) is defined for all n > 0 and Φn
H(u) ∈ |H|

for n > 0. Then

lim
t→∞

φ(t, u) = (−
√

2, 0, 0).

Proof. Let

V (x, y, z) = z2/2 + y(y − 2 + x2)/2

be an energy function whose derivative along the solution is given by

d

dt
V (x(t), y(t), z(t)) = x(t)(y(t))2.(16)
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Figure 9. The sets |M | and ΦM (|M |), (left) in (x, y, z) coordinates, (right) in (u, s1, s2) coordinates.

From Lemma 6.6 we have

φ([0, TH ], |H|) ⊂ {(x, y, z) ∈ R
3 | x < 0}.

From the assumptions we know that the trajectory of u is defined on interval [0,∞) and
φ([0,∞), u) ⊂ ΦH([0, TH ], |H|). Since ΦH([0, TH ], |H|) is a compact set, we get that the
ω-limit set ω(u) is a nonempty compact set and it satisfies

ω(u) ⊂ {(x, y, z) ∈ R
3 | x < 0}.(17)

From (16)–(17) we obtain that the x coordinate is nonzero on ω(u) and the y coordinate is
equal to zero on ω(u). Hence x′ = y = 0 and the x coordinate must be constant on ω(u).
Therefore,

z′ = 1 − y − x2/2

is a constant function on ω(u). Since ω(u) is bounded and the Lie derivative of V is less than
or equal to zero the structure of the graph of V implies that ω(u) = {(−

√
2, 0, 0)}, the only

critical value of V in {(x, y, z) ∈ R
3 | x < 0}.

Now we are in the position to present the proof of Theorem 6.5.

Proof of Theorem 6.5. Let (i0, i1, . . . , in), n > 0, be an admissible sequence with respect
to P , such that i0 ∈ {1, 2, 4} and in = 4. We have

Ni0
P

=⇒ Ni1
P

=⇒ · · · P
=⇒ Nin = N4.

From Lemma 6.1 either in−1 = 1 or in−1 = 3. From this and Lemma 6.7 we get

Ni0
P

=⇒ Ni1
P

=⇒ · · · P
=⇒ Nin−1

P
=⇒ M.
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Lemmas 6.8 and 6.6 imply

Ni0
P

=⇒ Ni1
P

=⇒ · · · P
=⇒ Nin−1

P
=⇒ M

ΦM=⇒ H
ΦH=⇒ H.(18)

Recall that by R (6) we denoted the reversing symmetry of (2). Observe that the set Fix(R)∩
|Ni0 |, i0 ∈ {1, 2, 4}, may be parameterized as a horizontal curve γ : [a, b] → R

2 in Ni0 . Hence,
from Theorem 4.5 there exists τ ∈ [a, b] such that

P k(γ(τ)) ∈ |Nik |, k = 0, . . . , n

(recall that |M | ⊂ |Nin | = |N4|), and(
Φk
H ◦ ΦM ◦ Pn

)
(γ(τ)) ∈ |H|, k = 0, 1, . . . .

From Lemma 6.9 we obtain

lim
t→∞

φ(t,ΦM (Pn(γ(τ)))) = (−
√

2, 0, 0) = x−.

Put u = γ(τ) ∈ Fix(R) ∩ |Ni0 |. By the definition of the Poincaré map there are numbers
0 = t0 < t1 < · · · < tn such that

φ(tj , u) ∈ |Nij |, j = 0, . . . , n.

Since R(u) = u, we get

φ(−tj , u) = φ(−tj , R(u)) = R(φ(tj , u)) ∈ R(|Nij |), j = 0, . . . , n.

A similar argument shows that

lim
t→−∞

φ(t, u) = lim
t→−∞

φ(t, R(u)) = lim
t→∞

R(φ(t, u)) = R(x−) = x+ = (
√

2, 0, 0),

and the proof is completed.

Proof of Theorem 3.1. Consider the family of the admissible sequences {(1, 4)n ∈ N
2n,

n > 0}. All of them satisfy the assumptions of Theorem 6.5 and each of them gives a different
R-symmetric heteroclinic orbit.

6.2. Heteroclinic connections between periodic orbits and equilibrium points. We use
the method introduced in section 5.2 in order to prove the existence of heteroclinic connections
between the odd periodic orbits and equilibrium points. As was remarked in the introduction,
the main difference between the method presented in [3] and that in section 5.2 is that we use
t-sets which have unequal dimensions.

In [12, Thm. 1] it was proven that (1) possesses at least two R-symmetric periodic solutions
(see Figure 6). The same assertion follows from Theorem 6.4 (ii) for the sequence of symbols
(1, 4) and (2, 3, 4).

As remarked in section 5.2, we will need a very good estimation of such orbits. Unfortu-
nately, the above mentioned theorems do not give a sufficiently precise location of such orbits.
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0 8×10− 13−8×10− 13
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− 2.291186331351192429
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0 15×10− 13−15×10− 13

− 2.450289565760203736

− 2.450289565756199828

Figure 10. (Left) the bounds of P (q1±η) computed in the rigorous routine; (right) the bounds of P 2(q2±η)
computed in the rigorous routine.

In this section we will find a very good approximation of such periodic orbits and prove the
existence of heteroclinic connections between them and the equilibrium points.

As remarked in section 5.2, we will proceed in three steps.

1. The existence of two R-symmetric periodic solutions.

Lemma 6.10. Let I1 = [q1 − η, q1 + η], I2 = [q2 − η, q2 + η], where

q1 = 1.5259617305037,

q2 = 0.5000256485352,

η = 4 · 10−13.

Then there exist q∗1 ∈ I1, q
∗
2 ∈ I2 such that the solutions S1, S2 of (2) with the initial conditions

(0, q∗j , 0), j = 1, 2, respectively, are R-symmetric periodic solutions.

Proof. Let πx denote the projection onto the x coordinate. Since the interval [0]×I1 ⊂ |N1|,
by Lemma 6.1 the Poincaré map is defined on the set [0]×I1 ⊂ |N1|. With computer assistance
we verified the following conditions:

1. P 2 is well defined and continuous on [0] × I2.
2. πx(P (q1 − η)) > 0, πx(P (q1 + η)) < 0.
3. πx(P

2(q2 − η)) < 0, πx(P
2(q2 + η)) > 0.

The Darboux property implies the existence of a q∗1 ∈ I1 and q∗2 ∈ I2 such that πx(P (0, q∗1)) = 0
and πx(P

2(0, q∗2)) = 0. Hence, from (14) we obtain

P (0, q∗1) = R(P (0, q∗1)) = P−1(0, R(q∗1)) = P−1(0, q∗1),

and the trajectory of (0, q∗1, 0) must be an R-symmetric periodic function. Similarly,

P 2(0, q∗2) = R(P 2(0, q∗2)) = P−2(0, R(q∗2)) = P−2(0, q∗2),

and the proof is finished.

The numerical evidence of Lemma 6.10 is presented in Figure 10. Now we define the
sets F1 = [0] × I1, F2 = [0] × I2. We define two fuzzy t-sets H̃1 = t(F1, α1u1, α1s1), H̃2 =
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(F2, α2u2, α2s2), where

s1 = (−1, 0.4574907884495629796), u1 = R(s1),

s2 = (−1, 0.4538927285382189370), u2 = R(s2),

α1 = 3 · 10−4, α2 = 3 · 10−5.

(19)

These vectors appear to be good approximations for unstable (ui) and stable eigenvectors (si)
at (0, qi) of the Poincaré map P 2 and P 4, respectively. With computer assistance we proved
the following lemma.

Lemma 6.11. P 2 is smooth on |H̃1|, and P 4 is smooth on |H̃2|. Moreover,

DP 2(|H̃1|) ⊂
[
A1 B1

C1 D1

]
, DP 4(|H̃2|) ⊂

[
A2 B2

C2 D2

]
,

where the intervals

A1 = [−16.20797124287215496,−15.5141950243296769],

B1 = [−35.32679704133074239,−33.87386922840860848],

C1 = [−7.301556805980839116,−7.163445906569215538],

D1 = [−15.97740049976343535,−15.70439650055097935],

A2 = [53.7551522870797811, 54.21349342352709755],

B2 = [118.4351762233210224, 119.3964660170624512],

C2 = [24.3823739267779871, 24.62135790755886333],

D2 = [53.73353569893723148, 54.24827743305298356].

Let S∗
1 = (0, q∗1) and S∗

2 = (0, q∗2).
Lemma 6.12. S∗

1 is the unique fixed point for P 2 in |H̃1|. S∗
2 is the unique fixed point for

P 4 in |H̃2|.
Proof. Easy computations show that

0 /∈ det D(P 2 − Id)(|H̃1|) = {det(M − Id) | M ∈ DP 2(|H̃1|)}

and

0 /∈ det D(P 4 − Id)(|H̃2|) = {det(M − Id) | M ∈ DP 4(|H̃2|)}.

From [16, Thm. 4.2] there exist at most one fixed point in |H̃1| for P 2 and at most one fixed
point in |H̃2| for P 4.

2. Hyperbolicity. We define two t-sets Hj = t(S∗
j , αjuj , αjsj), j = 1, 2, where αj , uj , sj are

defined as in (19).
Lemma 6.13. P 2 is hyperbolic on H1, and P 4 is hyperbolic on H2.
Proof. Observe that the transformation of DP 2(|H̃1|)), DP 4(|H̃2|) to new coordinates

does not depend on the exact location of S∗
1 , S∗

2 . In new coordinates S∗
1 = S∗

2 = 0,
but we have to choose the coordinate directions in |H̃1| and |H̃2|. It turns out that the
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vectors (ui, si) which were used in the definition of H̃i are good for this purpose, as they
are reasonably good approximations of unstable and stable directions of the corresponding
Poincaré map.

After the change of the coordinate system, DP 2(|H̃1|) and DP 4(|H̃2|) have the form

DP 2(|H̃1|) ⊂
[
λ11 ε11

ε21 λ21

]
, DP 4(|H̃2|) ⊂

[
λ12 ε12

ε22 λ22

]
,

where

λ11 = [−32.15353216472522036,−31.1868475976410906],

ε11 = [−0.4631153446352325176, 0.5035692224488864666],

ε21 = [−0.4833845890051770011, 0.4832999780789397626],

λ21 = [−0.5151340361170263504, 0.4515505309670904133],

λ12 = [107.4819576670972197, 108.4499207461666828],

ε12 = [−0.4773917028128066286, 0.4905713762566483726],

ε22 = [−0.4839876655649711923, 0.4839754135044633254],

λ22 = [−0.4746913248681289832, 0.4932717542013055345].

It is clear that λi2 < 1 < λi1 and εi1εi2 < (1 − λi2)(λi1 − 1). Moreover,

ε11

λ11 − 1
< 1 <

1 − λ12

ε12
,

ε21

λ21 − 1
< 1 <

1 − λ22

ε22
.

Observe that by construction |Hi| ⊂ |H̃i|, i = 1, 2. This shows that P 2 is hyperbolic on H1

and P 4 is hyperbolic on H2.
3. Covering relations for fuzzy sets. Let G1 = t(q2, α2u1, α2s1) and G2 = t(q2, β2u2, β2s2),

where α2 = 25α1, β2 = 90β1.
The reason for this construction is the following. The C1-computations are much more

complicated and time-consuming than C0. Therefore, we want to bound C1-computations to
the very small sets around the fixed points, namely, H̃1, H̃2. But the sets H̃1, H̃2 are small, so

we cannot find the covering relations H̃1
P 2

=⇒ N1 and H̃2
P 4

=⇒ N2. Therefore, we construct new
sets G1, G2, |H̃j | ⊂ |Gj | ⊂ |Nj |, j = 1, 2, with properties expressed in the following lemma.

Lemma 6.14. The following conditions are satisfied:
1. P 2 is well defined and continuous on G1.
2. P 4 is well defined and continuous on G2.

3. H1
P 2

=⇒ H1
P 2

=⇒ G1
P 2

=⇒ N1.

4. H2
P 4

=⇒ H2
P 4

=⇒ G2
P 4

=⇒ N2.
Proof. With computer assistance we have verified the following covering relations for the

fuzzy sets:

H̃1
P 2

=⇒ H̃1
P 2

=⇒ G1
P 2

=⇒ N1,

H̃2
P 4

=⇒ H̃2
P 4

=⇒ G2
P 4

=⇒ N2.
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Hence, the assertion 3–4 follows from the definition of covering relations for the fuzzy sets.
The proof of assertions 1–2 will be presented in section 7.

Theorem 6.15. Assume that (i0, i1, . . . , in) is an admissible sequence with respect to P and
in = 4.

1. If i0 = 1, then there exists x0 ∈ |Ni0 | such that
(a) P k(x0) ∈ |Nik | for k = 1, . . . , n,
(b) limt→∞ φ(t, x0) = (−

√
2, 0, 0), and

(c) P−2k(x0) exists for all k > 0 and limk→∞ P−2k(x0) = S∗
1 .

2. If i0 = 2, then there exists x0 ∈ |Ni0 | such that
(a) P k(x0) ∈ |Nik | for k = 1, . . . , n,
(b) limt→−∞ φ(t, x0) = (−

√
2, 0, 0), and

(c) P−4k(x0) exists for all k > 0 and limk→∞ P−4k(x0) = S∗
2 .

Proof. Let (i0, i2, . . . , in) be an admissible sequence with respect to P and i0 = 1, in = 4
as in assertion (1). From Lemmas 6.14, 6.6, and 6.8 we get

H1
P 2

=⇒ H1
P 2

=⇒ G1
P 2

=⇒ N1 = Ni0
P

=⇒ · · · P
=⇒ Nin−1

P
=⇒ M

ΦM=⇒ H
ΦH=⇒ H.

Since P 2 is hyperbolic on H1 Theorem 5.2 shows that for every k ≥ 0 there exists a point
xk0 ∈ |Ni0 | such that

1. P j(xk0) ∈ |Nij | for j = 1, . . . , n,

2. (Φj
H ◦ ΦM ◦ Pn)(xk0) ∈ |H| for j = 0, . . . , k, and

3. P−2j(xk0) exists for all j > 0 and limj→∞ P−2j(x0) = S∗
1 .

Since |Ni0 | is a compact set, we can find x0 ∈ |Ni0 | such that

1. P k(x0) ∈ |Nij | for j = 1, . . . , n,
2. (Φk

H ◦ ΦM ◦ Pn)(xk0) ∈ |H| for all k ≥ 0,
3. P−2k(x0) exists for all k > 0 and limk→∞ P−2k(x0) = S∗

1 .

Now Lemma 6.9 implies that

lim
t→∞

φ(t, x0) = lim
t→∞

φ(t,ΦM (Pn(x0))) = (−
√

2, 0, 0).

The second assertion can be proved in a similar way.

Proof of Theorem 3.2. The first assertion of Theorem 3.2 follows directly from Theo-
rem 6.15. The second assertion is a consequence of the reversing symmetry property of the
Michelson system. Namely, if u : R → R

3 is the solution of (2) connecting the periodic orbit
Sj , j = 1, 2, and the equilibrium point x− = (−

√
2, 0, 0), then R(u) is a heteroclinic orbit

connecting R(x−) = x+ = (
√

2, 0, 0) with R(Sj) = Sj .

7. Numerical proofs. In this section we give details of the computer assisted proofs of
Lemmas 6.6, 6.8, 6.10, 6.11, and 6.14. In these lemmas we can find three types of assertions:
the existence of the map, the existence of covering relations or some inclusions, and the
hyperbolicity of some sets (C1-computations).

7.1. The existence and continuity of the maps. We had to prove the following assertions:

1. (In Lemma 6.6) ΦH is well defined and continuous on |H| and φ([0, TH ], |H|) ⊂
{(x, y, z) ∈ R

3 | x < 0}.
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2. (In Lemma 6.8) ΦM is well defined and continuous on |M |.
3. (In Lemma 6.14) P 2 is well defined and continuous on |G1|, and P 4 is well defined

and continuous on |G2|. Observe that this implies the existence of P 2 on the set
[0] × I2 ⊂ G2 required in Lemma 6.10.

The first assertion requires us to check the existence of ΦH on a three-dimensional set.
We divided each edge of |H| into three equal parts and covered the whole set |H| by 3× 3× 3
smaller parallelepipeds Qj , j = 1, . . . , 27. Next, each of them was used as an initial condition
to our routine computing ΦH(Qj). As in [15] we used the C0-Lohner algorithm [8, 21] for
computing the time-T flow. We used the third order Lohner method with the time step
h = 0.2. Our routine verified that φ(kh+[0, h], Qj) ⊂ {(x, y, z) ∈ R

3 | x < 0} for j = 1, . . . , 27
and k = 1, . . . , 6 (recall that TH = 1.4 = 7 · 0.2).

The second and third assertions were proved in a similar way. We divided the sets |M |,
|G1|, |G2| into m× n parallelograms and each of m× n sets was used as an initial condition.
The parameter settings used in these computations are listed in Table 1.

Table 1
The parameter settings of the Lohner method used in the proof of the existence of the Poincaré map in

Lemma 6.14 and in the existence of ΦM and in the verification of M
ΦM=⇒ H in Lemma 6.8.

Set Order Step Horizontal grid Vertical grid

|M | 5 0.2 22 16

|G1| 3 0.1 2 2

|G2| 3 0.1 5 5

7.2. Verifications of covering relations. We have to prove the following assertions:

1. (In Lemma 6.6) H
ΦH=⇒ H.

2. (In Lemma 6.8) M
ΦM=⇒ H.

3. (In Lemma 6.14) H̃1
P 2

=⇒ H̃1
P 2

=⇒ G1
P 2

=⇒ N1 and H̃2
P 4

=⇒ H̃2
P 4

=⇒ G2
P 4

=⇒ N2.
4. (In Lemma 6.10) verification of the conditions 2–3.

The following lemma allows us to restrict our computations to the boundary of a t-set.
Lemma 7.1. Let N , M be t-sets in R

m. Assume f : |N | → R
m is an injective map. Then

N
f

=⇒ M iff
(a′) f(bd|N |) ⊂ int(M l ∪ |M | ∪M r),
(b) either f(N lw) ⊂ int(M l) and f(N rw) ⊂ int(M r) or f(N lw) ⊂ int(M r) and f(N rw) ⊂

int(M l).
Proof. We will show that condition (a′) implies condition (a) from Definition 4.2. Assume

this is not the case, i.e., that there exists a point x ∈ int(|N |) such that

f(x) /∈ int(M l ∪ |M | ∪M r).(20)

From the Brouwer–Jordan theorem the set R
m \ f(bd(|N |)) has two connected components,

one bounded and one unbounded. Moreover, f(x) must be in the bounded component of
R
m \ f(bd(|N |)). From (20) it follows that

f(x) ∈ R
m \ int(M l ∪ |M | ∪M r) =: M.
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Table 2
The parameter settings of the Lohner method used in the proof of the existence of covering relation H

ΦH=⇒ H
in Lemma 6.6.

Wall Order Step Horizontal grid Vertical grid

x− + u1 + I · s1 + I · s2 3 0.2 3 3

x− − u1 + I · s1 + I · s2 3 0.2 4 4

x− + I · u1 + s1 + I · s2 3 0.2 25 25

x− + I · u1 − s1 + I · s2 3 0.2 30 30

x− + I · u1 + I · s1 + s2 3 0.2 30 30

x− + I · u1 + I · s1 − s2 3 0.2 30 30

Moreover, M is a union of two connected, convex, unbounded sets. Therefore, one can find
a half-line starting at f(x) and contained in M . Since f(x) lies in a bounded component
of R

m \ f(bd(|N |)), it follows that this half-line must intersect f(bd(|N |)). Hence, we have
shown that there is a point y ∈ bd(|N |) such that f(y) ∈ M . This contradicts assumption
(a′).

In the proof of the first assertion we covered each of six walls of |H| by a finite number
of smaller parallelograms. Next, each of them was used as an initial condition to our routine
computing ΦH . The parameter settings of the Lohner method are listed in Table 2 (to simplify
the notation we set I = [−1, 1]). The bound on ΦH(bd|H|) obtained in the rigorous procedure
is presented in Figure 11 (see also Figure 7).

-1.5 -1 -0.5 0 0.5 1
u

-0.4

-0.2

0

0.2

0.4

s 1

|H|

-1.5 -1 -0.5 0 0.5 1
u

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

s 2

|H|

Figure 11. The bound on ΦH(bd|H|) obtained in the rigorous procedure, (left) projected onto (u, s1)
coordinates, (right) projected onto (u,s2) coordinates.

In the proof of the second assertion we could not use Lemma 7.1 since the t-sets M and H
have different dimensions. Therefore, the conditions from the definition of covering relations
were verified together with the verification of the existence of ΦM on |M |; see Table 1.

The third assertion was proved using Lemma 7.1. Let N = t(c, u, s) be a t-set on the
plane. To simplify notation we set N te = c+ s+ [−1, 1] · u and N be = c− s+ [−1, 1] · u. The
parameter settings of the Lohner method are listed in Table 3.

In the proof of the fourth assertion we just inserted the points qj ± η, j = 1, 2, into our
routine. The parameter settings of the Lohner method are listed in Table 4; see also Figure 10.
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Table 3
The parameter settings of the Lohner method used in the proof of the existence of covering relations in

Lemma 6.14.

Edge Relation Order Step Grid

H̃re
1 and H̃le

1 H̃1
P2

=⇒ H̃1
P2

=⇒ G1 9 0.4 6

H̃te
1 and H̃be

1 H̃1
P2

=⇒ H̃1
P2

=⇒ G1 9 0.4 45

H̃re
2 and H̃le

2 H̃2
P4

=⇒ H̃2
P4

=⇒ G2 9 0.3 7

H̃te
2 and H̃be

2 H̃2
P4

=⇒ H̃2
P4

=⇒ G2 9 0.3 145

Gre
1 and Gle

1 G1
P2

=⇒ N1 9 0.4 4

Gte
1 and Gbe

1 G1
P2

=⇒ N1 9 0.4 3

Gre
2 and Gle

2 G2
P4

=⇒ N2 9 0.3 3

Gte
2 and Gbe

2 G2
P4

=⇒ N2 9 0.3 3

Table 4
The parameter settings of the Lohner method used in the proof of the existence of odd periodic orbits S∗

1 , S∗
2 .

Points Order Step

q1 ± η, q2 ± η 10 0.1

Table 5
The parameter settings of the Lohner method used in C1-computations.

Set Order Step Horizontal grid Vertical grid

|H̃1| 9 0.3 7 7

|H̃2| 9 0.3 7 7

7.3. C1-computations. The proof of the Lemma 6.11 requires the C1-computations. We
used the C1-Lohner algorithm [21]. As in the proof of the existence of the Poincaré map we
covered the sets |H̃j |, j = 1, 2, by a finite numer of parallelograms, and each of them was used
as an initial condition in our routine computing the derivative of the Poincaré map. Parameter
settings of the Lohner method used in the proof are listed in Table 5.

7.4. Some technical data. All computations took 25 seconds on the Intel Pentium 4,
3GHz processor. The algorithms were implemented in C++ and the source codes are available
from [14]. The algorithms use an implementation of interval arithmetic, vector arithmetic,
and set algebra developed at Jagiellonian University by the CAPD group [2].
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[21] P. Zgliczyński, C1-Lohner algorithm, Found. Comput. Math., 2 (2002), pp. 429–465.

http://www.wsb-nlu.edu.pl/~{}dwilczak
http://www.wsb-nlu.edu.pl/~{}dwilczak

