
CORC Technical Report TR-2004-07

An active set method for single-cone second-order cone programs

E. Erdoğan∗ G. Iyengar†

June 25, 2005

Abstract

We develop an active set method for solving second-order cone programs that may have an arbitrary
number of linear constraints but are restricted to have only one second-order cone constraint.
Problems of this form arise in the context of robust optimization and trust region methods. The
proposed active set method exploits the fact that a second-order cone program with only one
second-order cone constraint and no inequality constraints can be solved in closed form.

1 Introduction

In this paper we are concerned with the following special case of a second-order cone program (SOCP).

min fTx,
subject to Hx = g,

Ex ≥ 0,
Dx º 0,

(1)

where x ∈ Rn, f ∈ Rn, H ∈ Rm×n, g ∈ Rm, E ∈ Rl×n, D ∈ Rp×n, and º denotes the partial
order with respect to the standard conic quadratic cone Q = {(z0, z̄)

T ∈ Rp : z0 ≥
√

z̄T z̄} ⊂ Rp.
We shall call the optimization problem (1) a single-cone SOCP since it is restricted to have only
one second-order cone constraint.

Our interest in single-cone SOCPs stems from the fact that they arise as the robust counterpart
of uncertain linear programs (LPs). Many decision problems in engineering and operations research
can be formulated as LPs of the form

min cTx,
subject to Ax = b,

x ≥ 0.

Solution techniques for LPs compute a solution assuming that the parameters (A,b, c) are known
exactly. However, in practice, these parameters are typically the result of some measurement or

∗IEOR Department, Columbia University, New York, New York 10027. ee168@columbia.edu. Research partially

supported by NSF grant CCR-00-09972
†IEOR Department, Columbia University, New York, New York 10027. gi10@columbia.edu. Research partially

supported by NSF grants CCR-00-09972, DMS-01-04282 and ONR grant N000140310514.

1



estimation process and are, therefore, never certain. LPs whose parameters are not known exactly
are called uncertain LPs. Several strategies have been proposed to address parameter uncertainty in
optimization problems. One approach is to solve the LP for a nominal set of parameters (A0,b0, c0)
and then analyze the quality of the solution using a post-optimization tool such as sensitivity anal-
ysis [5]. This approach is particularly attractive when the uncertainty is “small” in an appropriate
sense. In the stochastic programming approach, the uncertainty is assumed to be random with
a known distribution, and samples from this known distribution are used to compute good solu-
tions [13]. However, identifying appropriate distributions for the parameters is not straightforward.
Also, as the dimension of the problem grows, the complexity of the stochastic program quickly
becomes prohibitive. Recently Ben-Tal and Nemirovski [2, 3, 4] proposed robust optimization as
another approach to address data uncertainty. In this approach, the uncertain parameters (A,b, c)
are assumed to belong to a bounded uncertainty set U and the goal of the robust counterpart is to
compute a minimax optimal solution. The results in [2, 3, 4] establish that, when U satisfies some
regularity properties, the robust counterpart can be reformulated as an SOCP and, therefore, can
be solved efficiently both in theory [12] and in practice [15].

The robust counterpart of an uncertain LP where the parameters (A,b) are completely known
and the uncertain cost vector c belongs to an ellipsoidal uncertainty set can be reformulated as a
single-cone SOCP [3] (see also Section 5). In many engineering applications the constraints in the
LP are given by design considerations and are, therefore, fixed and certain. For example, in routing
problems, arising in the context of road or air traffic control and communication networks, the
capacities are determined at the network design stage; therefore, the constraints in the problem,
namely the flow balance equations and capacity constraints, are completely known when the routing
problem is to be solved. However, the “cost” of an arc is typically a non-linear function of the
capacity and flows in the network, and measuring this cost is often difficult and expensive [7]. The
“cost” of a feasible flow can often be modeled as an uncertain linear function with an ellipsoidal
uncertainty set by using the so-called delta method [11]. Production planning is another natural
example where the constraints are fixed and only the costs are uncertain. Here the vector c

denotes the vector of future expected market prices for the various raw materials, and is, typically,
estimated from historical prices via linear regression. Since the confidence regions associated with
linear regression are ellipsoidal [9, 11], the resulting robust counterpart is a single-cone SOCP.

From the equivalence

‖Pu‖ ≤ 1 ⇔ u0 = 1,

[
u0

Pu

]
º 0,

it follows that the trust region problem is a special case of a single-cone SOCP. This provides another
motivation for developing active set methods for single cone SOCPs. Note that formulating the
trust region problem as a single-cone SOCP allows one to consider hyperbolic and parabolic trust
regions.

Alizadeh and Goldfarb [1] showed that, under appropriate regularity conditions, the optimal
solution of a single-cone SOCP with no inequality constraints can be computed in closed form.
We use this result to explicitly compute the value of the Lagrangian obtained by dualizing the
non-negativity constraints Ex ≥ 0. We compute the optimal dual multipliers using an active set
method, and then recover an optimal primal solution using the results in [1]. The formulation of the
appropriate dual problem is discussed in Section 2, the active set method is detailed in Section 3,
and Section 4 details how to recover an optimal solution of (1).

Clearly, any algorithm for solving general SOCPs can be used to solve a single-cone SOCP.

2



All known codes for solving SOCPs, e.g. SeDuMi [15] and MOSEK r©, are based on interior point
methods. Our efforts in developing an active set method for the single-cone SOCP were motivated,
in part, by the observation that active set methods are known to solve convex quadratic programs
efficiently. Our goal was to investigate whether a simple active set algorithm outperforms general
purpose SOCP codes at least for certain problem classes. We report the results of our computational
experiments in Section 5.

2 Formulation of the Lagrangian dual

In this section we formulate a Lagrangian dual for the single-cone SOCP (1). We assume that
H ∈ Rm×n has full row rank and the following constraint qualification holds.

Assumption 1 There exists x̄ ∈ Rn such that Hx̄ = g, Ex̄ ≥ 0, and Dx̄ Â 0.

The active set algorithm proposed in this paper exploits the following result from [1].

Lemma 1 Suppose the pair of primal-dual SOCPs

min cTx,
subject to Ax = b,

x º 0,

max bTy,
subject to ATy + z = c,

z º 0,

(2)

are both strictly feasible. Then the optimal solution of the primal SOCP is given by

x∗ =



√
−bT (ARAT )−1b

cTPRc


PRc + RAT (ARAT )−1b, (3)

where

R =

[
1 0T

0 −I

]
, PR = R−RAT (ARAT )−1AR,

and I denotes an identity matrix.

Remark 1 In Lemma 1 we have implicitly assumed that ARAT is non-singular. A similar result
holds when ARAT is singular. See [1] for details.

In order to reformulate (1) into a form similar to the primal SOCP in (2), we dualize the non-
negativity constraints to obtain the Lagrangian

q(λ) ≡ min (f −ET λ)Tx,
subject to Hx = g,

Dx º 0,

(4)

where λ ∈ Rl
+ denotes the Lagrange multipliers for the inequality constraints. Note that the result

in [1] applies only when the primal and the dual SOCPs are both strictly feasible. For SOCPs,
feasibility is a subtle issue, e.g. the fact that the primal is bounded does not imply that the dual
is feasible [4]; therefore, one has to be careful in applying the results in [1]. Elementary properties
of convex duality [6] implies the following claim.

3



Claim 1 Let q(λ) denote the Lagrangian defined in (4). Let x∗ and v∗ denote, respectively, any
optimal solution and the optimum value of (1). Then

(a) v∗ = max
{
q(λ) : λ ≥ 0, λ ∈ Dq

}
, where Dq =

{
λ : q(λ) > −∞

}
,

(b) x∗ ∈ argmin
{
(f −ET λ∗)Tx : Hx = g,Dx º 0

}
, where λ∗ ∈ argmax

{
q(λ) : λ ≥ 0, λ ∈ Dq

}
.

Thus, an optimal solution to (1) can be obtained by first computing an optimal multiplier λ∗ ∈
argmax

{
q(λ) : λ ≥ 0, λ ∈ Dq

}
, and then computing an optimal x∗ by solving q(λ∗). In Section 2.1

we show how to compute the value of the Lagrange dual function q(λ) for a fixed value of λ ∈ Dq,
in Section 3 we describe an active set algorithm to solve for the optimal dual multipliers λ∗, and
in Section 4 we show how to recover the optimal primal solution x∗.

2.1 Computing the Lagrangian q(λ)

Claim 1 allows us to restrict ourselves to λ ≥ 0 such that q(λ) > −∞, i.e. λ ∈ Dq ∩Rl
+, without

any loss in generality. Fix y º 0 and consider the optimization problem in x

q(λ,y) ≡ min (f −ET λ)Tx,
subject to Hx = g,

Dx = y.

(5)

Note that q(λ) > −∞ if, and only if, q(λ,y) > −∞ for all y º 0. Since H has full row rank,
Hx = g if, and only if, x = x0 + Bz, where x0 = HT (HHT )−1g ∈ Rn, B ∈ Rn×(n−m) is any
orthonormal basis for the nullspace N (H) of H, and z ∈ Rn−m. Thus, we have that

q(λ,y) = (f −ET λ)Tx0 + min (f −ET λ)TBz,
subject to DBz = y −Dx0.

(6)

Since DB ∈ Rp×(n−m) the following three cases exhaust all possibilities.

(i) rank(DB) = r < min{p, n − m}: In this case, the singular value decomposition (SVD) of
DB has the following form

DB = UΣVT =
[
U0 U1

] [Σ0 0

0 0

] [
VT

0

VT
1

]
= U0Σ0V

T
0 ,

where U0 ∈ Rp×r, U1 ∈ Rp×(p−r), V0 ∈ R(n−m)×r, V1 ∈ R(n−m)×(n−m−r), and Σ0 ∈ Rr×r

is a diagonal matrix. Consequently, UT
1 (y−Dx0) = 0, and z = V0Σ

−1
0 UT

0 (y−Dx0) + V1t,
where t ∈ Rn−m−r. Thus,

q(λ,y) = (f −ET λ)T z0 + ξTy + min
t

{
(f −ET λ)TBV1t

}
, (7)

where z0 = (I−BV0Σ
−1
0 UT

0 D)x0, and ξ = U0Σ
−1
0 VT

0 BT (f −ET λ). From (7), we have

q(λ,y) > −∞ ⇔ VT
1 BT (f −ET λ) = 0, (8)

and in that case
q(λ) = (f −ET λ)T z0 + q̄(ξ), (9)

4



where
q̄(ξ) = min ξTy,

subject to Ay = b,
y º 0,

(10)

and
z0 = (I−BV0Σ

−1
0 UT

0 D)HT (HHT )−1g,

ξ = U0Σ
−1
0 VT

0 BT (f −ET λ),
b = UT

1 DHT (HHT )−1g,
A = UT

1 .

(11)

(ii) rank(DB) = n−m < p: In this case, we have

DB = UΣVT =
[
U0 U1

] [Σ0

0

] [
VT

0

]
= U0Σ0V

T
0 ,

where U0 ∈ Rp×(n−m), U1 ∈ Rp×(p−n+m), V0 ∈ R(n−m)×(n−m), and Σ0 ∈ R(n−m)×(n−m) is a
diagonal matrix. Thus, (6) is feasible if, and only if,

UT
1 (y −Dx0) = 0. (12)

Since V0 has full rank, it follows that when (12) holds we have z = V0Σ
−1
0 UT

0 (y − Dx0).
Consequently,

q(λ,y) = (f −ET λ)T z0 + ξTy, (13)

where z0 = (I − BV0Σ
−1
0 UT

0 D)x0, and ξ = U0Σ
−1
0 VT

0 BT (f − ET λ). Thus, (9), (10) and
(11) remain valid in this case.

(iii) rank(DB) = p < n−m: The SVD of DB is given by

DB = UΣVT =
[
U0

] [
Σ0 0

] [VT
0

VT
1

]
= U0Σ0V

T
0 ,

where U0 ∈ Rp×p, V0 ∈ R(n−m)×p, V1 ∈ R(n−m)×(n−m−p), and Σ0 ∈ Rp×p is a diagonal
matrix. Since U0 has full rank, (6) is always feasible. Thus, z = V0Σ

−1
0 UT

0 (y−Dx0) + V1t,
where t ∈ Rn−m−p. Consequently,

q(λ,y) = (f −ET λ)T z0 + ξTy + min
t

{
(f −ET λ)TBV1t

}
, (14)

where z0 = (I−BV0Σ
−1
0 UT

0 D)x0, and ξ = U0Σ
−1
0 VT

0 BT (f −ET λ). From (14), we have

q(λ,y) > −∞ ⇔ VT
1 BT (f −ET λ) = 0. (15)

Thus,
q(λ) = (f −ET λ)T z0 + q̂(ξ), (16)

where
q̂(ξ) = min ξTy,

subject to y º 0,
(17)

and
z0 = (I−BV0Σ

−1
0 UT

0 D)HT (HHT )−1g,

ξ = U0Σ
−1
0 VT

0 BT (f −ET λ).
(18)

5



Since the structures of the optimization problems (10) and (17), although similar, are not identical;
the corresponding active set methods are also similar, but not identical. In the paper we focus
on developing an active set method for optimizing the Lagrangian defined in (9). The active set
method for optimizing the Lagrangian defined in (16) is in Appendix B.

Lemma 2 Let q̄ : Rp 7→ R denote the function defined in (10). Then the domain Dq̄ =
{
ξ : q̄(ξ) >

−∞
}

is given by

Dq̄ =

{
Rp, γ < 0,{

ξ : eTPξ ≥ 0, (eTPξ)2 − γ‖Pξ‖2 ≥ 0
}

, γ ≥ 0,
(19)

where e = (1,0T )T , P = I−AT (AAT )−1A, a = Ae, and γ = 1
2 − aT (AAT )−1a. For all ξ ∈ Dq̄,

q̄(ξ) = vT ξ + f(Pξ),

where

v =

{
RAT (ARAT )−1b, γ 6= 0,
AT (AAT )−1b, γ = 0,

(20)

f(u) =





√
−γ(bT (ARAT )−1b)

γ

√
(eTu)2 − γ‖u‖2, γ 6= 0,(

‖y0‖2−2(eT y0)2

2eT y0

)
eTu− eTy0

(
‖u‖2−2(eT u)2

2eT u

)
, γ = 0,

(21)

and y0 = AT (AAT )−1b.

The proof of this result is fairly straightforward, and is, therefore, relegated to Appendix A.

3 Active set algorithm for the Lagrangian dual problem

Note that from (11) we have that Aξ = UT
1 U0Σ

−1
0 VT

0 BT (f − ET λ) = 0, i.e. ξ = Pξ. Thus, (8),
(9), (10), (11), and Lemma 2 imply that the Lagrangian dual problem is given by

max (f −ET λ)T z0 + vT ξ + f(ξ),
subject to Lλ + ξ = h,

Mλ = p,
λ ≥ 0,

ξ ∈ K,

(22)

where
L = U0Σ

−1
0 VT

0 BTET ,

h = U0Σ
−1
0 VT

0 BT f ,
M = VT

1 BTET ,
p = VT

1 BT f ,

and

K =

{
Rp, γ < 0,{
z : eT z ≥ 0, (eT z)2 − γ‖z‖2 ≥ 0

}
, γ ≥ 0,

where v and f(·) are as defined in (20) and (21) respectively. In the rest of the paper we denote
the system of linear equalities in (22) by A[λ, ξ,h,p] = 0.

6



When γ ≤ 0, the constraints in (22) are linear, hence (22) can be solved using any standard
active set method for optimizing a concave function over a polytope. Moreover, γ is strictly positive
for all single-cone SOCPs arising in the context of robust optimization. Therefore, in this paper
we focus on constructing an active set algorithm for the case when γ is strictly positive. In the
rest of this section we prove that the LagrangeDual algorithm displayed in Figure 1 computes
an optimal solution of (22). We adopt the convention that a solution algorithm returns the empty
set as a solution if, and only if, the problem is infeasible.

Let C =
{
ξ : ∃λ ≥ 0 s.t. A[λ, ξ,h,p] = 0

}
. Then C ∩ K = {h −Mλ : Mλ = p,h −Mλ ∈

K, λ ≥ 0}. We construct the active set algorithm by considering the following three mutually
exclusive cases: C ∩K = ∅, C ∩K ⊂ ∂K, and C ∩ int(K) 6= ∅. In order to distinguish between these
three cases we “homogenize” the set C ∩ K and solve the following least squares problem

min ‖αh− Lλ‖2,
subject to αeTh − eTLλ = 1,

αp − Mλ = 0,
α ≥ 0,

λ ≥ 0.

(23)

Let (α(0), µ(0)) denote the optimal solution of (23). Then one of the following four mutually
exclusive conditions holds.

(i) Either (23) is infeasible or ‖α(0)h−Lµ(0)‖2 > 1
γ
. Since (23) was constructed by “homogeniz-

ing” C ∩ K, it follows that either C ∩ K = ∅ or C ∩ K = {0}. The latter can be checked by
solving an LP.

(ii) ‖α(0)h− Lµ(0)‖2 < 1
γ
. We have the following two possibilities:

(a) α(0) > 0: µ(2) = 1
α(0) µ

(0) satisfies h− Lµ(2) ∈ C ∩ int(K).

(b) α(0) = 0: It is easy to check that µ(0) is a recession direction of the polytope P = {λ :
Mλ = p, λ ≥ 0} and −eTLµ(0) = 1. Let λ̂ ∈ P (in particular, if µ(1) is well defined,
one can set λ̂ = µ(1)). Then, by definition, λω = λ̂ + ωµ(0) ∈ P for all ω ≥ 0. Since
eT (h−Lλω) > 0 for all large enough ω, and limω→∞

{
‖h−Lλω‖/(eT (h−Lλω))

}
< 1√

γ
,

it follows that there exists ω > 0 such that µ(2) = λω satisfies h− Lµ(2) ∈ C ∩ int(K).

In this case, LagrangeDual completes the optimization by calling the ActiveSet algorithm
displayed in Figure 2.

(iii) ‖α(0)h− Lµ(0)‖2 = 1
γ
. In this case C ∩ int(K) = ∅ and one has to consider the following two

possibilities.

(a) α(0) > 0: µ(2) = 1
α(0) µ

(0) satisfies h − Lµ(2) ∈ C ∩ ∂K. Since the optimal value of (23)
is 1/γ and the Euclidean norm is a strictly convex function, it follows that C ∩ K =
{ω(h − Lµ(2)) : h − Lλ = ω(h − Lµ(2)),Mλ = p, λ ≥ 0, ω ≥ 0

}
. Since f(ξ) = 0 for all

ξ ∈ C ∩ K (see (21)), it follows that the optimization problem (22) reduces to the LP

max (f −ET λ)T z0 + vT (h− Lµ(2))ω,

subject to Lλ + (h− Lµ(2))ω = h,
Mλ = p,

λ ≥ 0,
ω ≥ 0.

(24)

7



The LagrangeDual Algorithm:

Input: Optimization problem (22).

Output: Optimal solution of (22).

set µ(1) ← argmax
{
−zT

0 ET λ : A[λ,0,h,p] = 0, λ ≥ 0
}

set (α(0), µ(0))← argmin{(23)}.

if (α(0), µ(0)) = ∅ or
(
‖α(0)h− Lµ(0)‖2 > 1/γ

)

set µ← µ(1)

else if
(
‖α(0)h− Lµ(0)‖2 < 1/γ

)

if (α(0) > 0) set µ(2) ← 1
α(0) µ

(0)

else
if µ(1) 6= ∅ set µ← µ(1); else choose µ ∈ {λ : Mλ = p, λ ≥ 0}
choose ω̂ s.t. h− L(µ + ω̂µ(0)) ∈ int(K)
set µ(2) ← µ + ω̂µ(0)

end

set µ← ActiveSet(µ(1), µ(2))

else

if (α(0) > 0)

set µ(2) ← 1
α(0) µ

(0)

set (ω, µ)← argmin{(24)}
else

set (ω, µ)← argmin{(25)}
end

end

return µ

Figure 1: Lagrangian Dual Algorithm

8



(b) α(0) = 0: The recession direction µ(0) satisfies −Lµ(0) ∈ ∂K. An argument similar to the
one in part (a) implies that (22) reduces to the LP

max (f −ET λ)T z0 + vT (h− Lµ(2))ω,

subject to Lλ + (h− Lµ(2))ω = h,
Mλ = p,

λ ≥ 0,
ω ≥ 0.

(25)

Next, we establish the correctness of the procedure ActiveSet displayed in Figure 2. We begin
by showing that for any optimal solution (ξ∗, λ∗) of (22) either ξ∗ = 0 or ξ∗ ∈ C ∩ int(K), i.e.
ξ 6∈ C ∩

(
∂K\{0}).

Lemma 3 Suppose C ∩ int(K) 6= ∅ and let (ξ∗, λ∗) denote any optimal solution of (22). Then
ξ∗ 6∈ C ∩

(
∂K\{0}

)
.

Proof: Assume otherwise, i.e. ξ∗ ∈ C ∩
(
∂K\{0}

)
for some optimal solution (ξ∗, λ∗). Let (ξ0, λ0)

denote any feasible solution of (22) with ξ0 ∈ C ∩ int(K). For β ∈ [0, 1], let (ξβ , λβ) denote the
convex combination (ξβ , λβ) = β(ξ0, λ0) + (1− β)(ξ∗, λ∗) and let r(β) denote the objective value
of (22) evaluated at (ξβ , λβ). Then

r(β) = vT ξβ + fT z0 − zT
0 ET λβ + f(ξβ),

= vT ξβ + fT z0 − zT
0 ET λβ + θ

√
(eT ξβ)2 − γ‖ξβ‖2,

≥
(
vT ξ∗ + fT z0 − zT

0 ET λ∗
)

︸ ︷︷ ︸
=r(0)

+β
(
vT (ξ0 − ξ∗)− zT

0 ET (λ0 − λ∗)
)

︸ ︷︷ ︸
∆
=δ

+ θ
√

β2 ((eT ξ0)
2 − γ‖ξ0‖2) + 2β(1− β) ((eT ξ0)(e

T ξ∗)− γ‖ξ0‖‖ξ∗‖), (26)

where θ =

√
−γbT (ARAT )−1b

γ
and the last inequality follows from the fact that (eT ξ∗)2−γ‖ξ∗‖2 = 0.

Since ξ0 ∈ C ∩ int(K) we have ε = min
{
(eT ξ0)

2 − γ‖ξ0‖2, (eT ξ0)(e
T ξ∗)− γ‖ξ0‖‖ξ∗‖

}
> 0.

From (26) we have that r(β)− r(0) ≥ θ
√

ε
√

2β − β2 + βδ. Choose β0 as follows.

β0 =

{
1 δ ≥ 0,

1 + δ√
θ2ε+δ2

δ < 0.

Then it follows that β0 > 0 and r(β0)− r(0) > 0. A contradiction.
The ActiveSet algorithm receives as input

(i) µ(1) = argmax{−zT
0 ET λ : A[λ,0,h,p], λ ≥ 0}, and

(ii) a vector µ(2) such that h− Lµ(2) ∈ C ∩ int(K).

When µ(1) 6= ∅, the algorithm calls the procedure FindDirection that returns an ascent direction
at (ξ, λ) = (0, µ(1)), if it exists; otherwise it returns (0,0). If FindDirection returns (0,0),
it follows that (0, µ(1)) is optimal and the algorithm terminates; otherwise ActiveSet calls the
procedure FindStep((ξ, λ), (dξ,dλ), αq) that computes the iterate (ξ(0), λ(0)) as follows.

(ξ(0), λ(0)) = (ξ, λ) + αmin(dξ,dλ), αmin = min{max{α : λ + αdλ ≥ 0}, αq}.

9



The ActiveSet Algorithm:

Input: Optimization problem (22), µ(1), and µ(2).

Output: Optimal solution of (22).

quit ← 0 k ← 0

if (µ(1) 6= ∅)
(dξ,dλ)← FindDirection(∅)
if
(
vTdξ − zT

0 ETdλ + f(dξ) ≤ 0
)

return (0, µ(1))

else (ξ(0), λ(0))← FindStep((0, µ(1)), (dξ,dλ),∞)

else

λ(0) ← µ(2)

end if

W(k) ←∑
i:λ

(k)
i

=0
eie

T
i

/* ei denotes the i-th column of an identity matrix */

while (∼quit)

(dξ,dλ, αq)← FindOpt(ξ(k), λ(k),W(k))
if ((dξ,dλ) 6= 0)

(ξ(k+1), λ(k+1))← FindStep((ξ(k), λ(k)), (dξ,dλ), αq)
k ← k + 1
W(k) ←∑

i:λ
(k)
i

=0
eie

T
i

else
ρ← FindMultipliers(W(k), ξ(k))
if (maxi{ρi} ≤ 0)

quit ← 1
else

choose j: ρj > 0
W(k+1) ←W(k) − eje

T
j

end

end

end

return λ(k)

Figure 2: Active Set Algorithm

10



Since αdξ ∈ K for all α ≥ 0, αmin is only limited by the non-negativity constraints on λ. Note that

the iterate (ξ(0), λ(0)) satisfies ξ(0) ∈ int(K); therefore, the optimum solution (ξ∗, λ∗) also satisfies
ξ∗ ∈ int(K) by Lemma 3.

Next, we show that the procedure FindDirection can be implemented efficiently. The pair
(dξ,dλ) is an ascent direction at (0, µ(1)) if, and only if, (dξ,dλ) is a recession direction for the set

−zT
0 ETdλ + vTdξ + θ

√
(eTdξ)2 − γ‖dξ‖2 > 0,

A[dλ,dξ,0,0] = 0,
dξ ∈ K,

(27)

Lemma 4 Let AW[u,v, γ, ν] = 0 denote the system of linear equalities



L I

M 0

W 0



[
u

v

]
=




γ

ν

0


 ,

where (u,v) are variables, and (γ, ν,W) are parameters. Then a recession direction (dξ,dλ) for
the set

−zT
0 ETdλ + vTdξ + θ

√
(eTdξ)2 − γ‖dξ‖2 > 0,

AW[dλ,dξ,0,0] = 0,
dξ ∈ K,

(28)

if it exists, can be computed by solving two systems of linear equalities.

Remark 2 Although FindDirection computes an ascent direction of the set (28) for the special
case W = 0, we prove the result for general W since we need such a result at a later stage.

Proof: The set in (28) has a recession direction if, and only if, the optimization problem

max −zT
0 ETdλ + vTdξ + θ

√
(eTdξ)2 − γ‖dξ‖2,

subject to AW[dλ,dξ,0,0] = 0,
dξ ∈ K,

(29)

is unbounded.
An argument similar to the one employed in the proof of Lemma 3 establishes that one can

restrict attention to (dξ,dλ) satisfying dξ ∈ int(K)∪{0}. The direction (dξ,dλ) can be computed
by considering the following three cases:

(a) First consider positive recession directions of the form (0,dλ). It is easy to see that the all
such directions are solutions of the following set of linear equalities.

−zT
0 ETdλ = 1,

AW[dλ,0,0,0] = 0.
(30)

(b) Next, suppose (30) is infeasible; however, there still exists a positive recession direction for (29).
Set eTdξ = 1 in (29) to obtain

max −zT
0 ETdλ + vTdξ + θ

√
1− γ‖dξ‖2,

subject to AW[dλ,dξ,0,0] = 0,
eTdξ = 1,

γ‖dξ‖2 ≤ 1.

(31)

11



Since (30) is assumed to be infeasible, (31) is bounded. Setting dξ = −Ldλ, we get

max −
(
Ez0 + LTv

)T
dλ + θ

√
1− γ‖Ldλ‖2,

subject to AW[dλ,−Ldλ,0,0] = 0,
eTLdλ = −1,

γ‖Ldλ‖2 ≤ 1.

(32)

Since the optimal d∗ξ ∈ int(K), we have γ‖Ld∗λ‖2 < 1, and therefore, the optimal Lagrange
multiplier corresponding to this constraint is zero. Thus, the Lagrangian L of (32) reduces to

L = −(Ez0 + LTv)Tdλ + θ
√

1− γ‖Ldλ‖2 − τ TMdλ − ρTWdλ − η(eTLdλ + 1)

and the first-order optimality conditions are given by

θγ
β
LTLdλ +MT τ +WT ρ +LTeη = −(Ez0 + LTv),

Mdλ = 0,
Wdλ = 0,

eTLdλ = −1,

(33)

where β =
√

1− γ‖Ldλ‖2. Since we are looking for solutions dξ = −Ldλ ∈ int(K), we are
only interested in the solutions to (33) that satisfy β > 0.

By setting ρ̄ = βρ, τ̄ = βτ , and η̄ = βη, we see that (33) is equivalent to



θγLTL MT WT LTe

M 0 0 0

W 0 0 0

eTL 0 0 0




︸ ︷︷ ︸
∆
=K




dλ

τ̄

ρ̄

η̄


 =




0

0

0

−1


− β




Ez0 + LTv

0

0

0


 . (34)

Suppose K is non-singular. Let w = (τ̄ T , ρ̄T , η̄)T , b1 = (0T ,0T ,−1)T and b2 = Ez0 + LTv.
Partition K−1 into submatrices

K−1 =

[
K−1

11 K−1
12

K−T
12 K−1

22

]

such that [
dλ

w

]
= K−1

[
0

b1

]
− βK−1

[
b2

0

]
=

[
K−1

12 b1 − βK−1
11 b2

K−1
22 b1 − βK−T

12 b2

]

This partition implies that K−T
12 LTLK−1

11 = 0. Therefore,

β2 + γ‖Ldλ‖2 − 1 = β2(1 + γ‖LK−1
11 b2‖2)− 2βγ(LK−1

12 b1)
TLK−1

11 b2 + γ‖LK−1
12 b1‖2 − 1,

= β2(1 + γ‖LK−1
11 b2‖2) + γ‖LK−1

12 b1‖2 − 1.

Consequently, the unique positive solution of the quadratic equation β2 = 1− γ‖Ldλ‖2 is

β =

√
1− γ‖LK−1

12 b1‖2
1 + γ‖LK−1

11 b2‖2
.

Thus, (33) has a solution if, and only if, 1− γ‖LK−1
12 b1‖2 > 0.

The case where K is singular can be handled by taking the singular value decomposition of K

and working in the appropriate range spaces.

12



(c) In case one is not able to produce a solution in either (a) or (b), it follows that the optimal
solution of (29) is 0, and (dξ,dλ) = (0,0) achieves this value.

When ActiveSet algorithm enters the while loop, we are guaranteed that ξ∗ ∈ int(K). Within
the loop, one has to compute the optimal value of

max −zT
0 ET λ + vT ξ + f(ξ),

subject to AW[λ, ξ,h,p] = 0,
ξ ∈ K\{0},

(35)

where W denotes the current inactive set, i.e. W =
∑

i:λi=0 eie
T
i . At this stage we have already

determined that ξ = 0 is not optimal for (22); therefore, by Lemma 3 it follows that we can restrict
ourselves to ξ ∈ int(K). The procedure (dξ,dλ, αq) = FindOpt(ξ, λ,W) takes as input the current
iterate and the current W; and returns an output (dξ,dλ, αq) that satisfies the following.

(i) When (35) is bounded, (dξ,dλ) = (ξ∗, λ∗) − (ξ, λ), where (ξ∗, λ∗) is the optimal solution of
(35) and αq = 1;

(ii) When (35) is unbounded, (dξ,dλ) is any recession direction of the feasible set of (35) satisfying
−zT

0 ETdλ + vTdξ + f(dξ) > 0 and αq =∞.

When (dξ,dλ) = (0,0), the ActiveSet algorithm checks the Lagrange multipliers ρ corresponding
to the constraints Wλ = 0 by calling the procedure FindMultipliers that computes the solution
of

[
WT MT

] [ρ
τ

]
= −

[
Ez0 + LTv + LT∇f(ξ∗)

]
. (36)

If the signs of all the Lagrange multipliers are consistent with the KKT conditions, i.e. maxi{ρi} ≤ 0,
the algorithm terminates; otherwise, it drops one of the constraints with the incorrect sign. Lemma 6
establishes that ActiveSet terminates finitely. Thus, all that remains to be shown is that Find-
Opt can be implemented efficiently.

Lemma 5 Suppose there exists a feasible (ξ̄, λ̄) for (35) such that ξ̄ ∈ int(K). Then (35) can be
solved in closed form by solving at most three systems of linear equations.

Proof: Let dξ = ξ − ξ̄ and dλ = λ− λ̄. Then (35) is equivalent to

max −zT
0 ETdλ + vTdξ + θ

√
(eT (ξ̄ + dξ))2 − γ‖ξ̄ + dξ‖2,

subject to AW[dλ,dξ,0,0] = 0,
ξ̄ + dξ ∈ K\{0}.

(37)

First, suppose (37) is unbounded, i.e. there exists (dξ,dλ) such that

lim
t→∞

{
− tzT

0 ETdλ + tvTdξ + θ
√

(eT (ξ̄ + tdξ))2 − γ‖ξ̄ + tdξ‖2
}

= lim
t→∞

{
− tzT

0 ETdλ + tvTdξ + tθ
√

(eT (ξ̄/t + dξ))2 − γ‖ξ̄/t + dξ‖2
}

= +∞.

13



Since ξ̄/t→ 0, it follows that (37) is unbounded if, and only if, (dξ,dλ) is a recession direction for

−zT
0 ETdλ + vTdξ + θ

√
(eTdξ)2 − γ‖dξ‖2 > 0,

AW[dλ,dξ,0,0] = 0,
dξ ∈ K.

(38)

Since (38) is the same as (28), it follows that a positive recession direction for (37), if it exists, can
be computed by solving at most two systems of linear equations.

Next, suppose (37) is bounded. By introducing a scaling parameter α, (37) can be reformulated
as

max −(Ez0 + LTv)Tdλ + θ
√

1− γ‖αξ̄ − Ldλ‖2,
subject to AW[dλ,−Ldλ,0,0] = 0,

α ≥ 0,
−eTLdλ + eT ξ̄α = 1,

γ‖αξ̄ − Ldλ‖2 ≤ 1.

Since (37) is bounded, i.e. it does not have any positive recession direction, we have that α∗ > 0.
Also, by Lemma 3 it follows that α∗ξ̄ + d∗ξ ∈ int(K), i.e. γ‖α∗ξ̄ − Ld∗λ‖2 < 1, therefore the
optimal Lagrange multiplier corresponding to this constraint is zero. Consequently, the Lagrangian
L reduces to

L = −(Ez0 + LTv)Tdλ + θ
√

1− γ‖αξ̄ − Ldλ‖2 − τ TMdλ − ρTWdλ − η(eT αξ̄ − eTLdλ − 1).

The first-order optimality conditions are given by

θγ
β
LTLdλ − θγ

β
LT ξ̄α − LTeη + MT τ + WT ρ = −(Ez0 + LTv),

− θγ
β

ξ̄
T
Ldλ + θγ

β
‖ξ̄‖2α + eT ξ̄η = 0,

−eTLdλ + eT ξ̄α = 1,
Mdλ = 0,
Wdλ = 0,

(39)

where β =
√

1− γ‖αξ̄ − Ldλ‖2. Set ρ̄ = βρ, τ̄ = βτ , and η̄ = βη. Then (39) is equivalent to




θγLTL −θγLT ξ̄ −LTe MT WT

−θγξ̄
T
L θγ‖ξ̄‖2 eT ξ̄ 0 0

−eTL eT ξ̄ 0 0 0

M 0 0 0 0

W 0 0 0 0




︸ ︷︷ ︸
∆
=K




dλ

α
η̄
τ̄

ρ̄




=




0

0
1
0

0



− β




Ez0 + LTv

0
0
0

0




. (40)

Suppose K is non-singular. Let d̂ = (dT
λ , α)T , w = (η̄, τ̄T , ρ̄T )T , b1 = (1,0T ,0T )T , and b2 =

((Ez0 + LTv)T ,0T )T . Partition K−1 such that

[
d̂

w

]
= K−1

[
0

b1

]
− βK−1

[
b2

0

]
=

[
K−1

12 b1 − βK−1
11 b2

K−1
22 b1 − βK−T

12 b2

]

14



This partition implies that K−T
12 [−L, ξ̄]T [−L, ξ̄]K−1

11 = 0. Therefore,

β2 + γ‖[−L, ξ̄]d̂‖2 − 1 = β2(1 + γ‖[−L, ξ̄]K−1
11 b2‖2)− 2βγ([−L, ξ̄]K−1

12 b1)
T [−L, ξ̄]K−1

11 b2

+ γ‖[−L, ξ̄]K−1
12 b1‖2 − 1,

= β2(1 + γ‖LK−1
11 b2‖2) + γ‖LK−1

12 b1‖2 − 1.

Consequently, the unique positive solution of the quadratic equation β2 = 1− γ‖[−L, ξ̄]d̂‖2 is

β =

√
1− γ‖[−L, ξ̄]K−1

12 b1‖2
1 + γ‖[−L, ξ̄]K−1

11 b2‖2
.

The case where K is singular can be handled by taking the SVD of K and working in the appropriate
range spaces.
In our numerical experiments we found that solving (40) as a least squares problem was much faster
than computing the inverse or the SVD of K.

Lemma 5 implies that at each iteration of the ActiveSet algorithm, we have to solve at most
three systems of linear equations, namely the equations (30), (34), and (40). Next we show that
the special structures of these systems of linear equalities can be leveraged to solve them more
efficiently. We will demonstrate our technique on the linear system (34). Extensions to (30) and
(40) are straightforward.

The matrix K in (34) is a (l+n−m−r+1+w)-dimensional square matrix, where r = rank (DB)
and w is the cardinality of the current inactive set, i.e. number of rows of W. Only the matrix W

changes from one iteration to the next – all the other elements of K remain fixed. This fact can be
leveraged as follows.

1. The equality Wdλ = 0 sets the components of dλ corresponding to the current inactive set
to zero. Removing these variables and dropping the corresponding rows of K reduces the
dimension of K to l + n−m− r + 1. Thus, this simple operation ensures that the size of the
linear equations remains independent of the cardinality of the inactive set.

2. Let

d̃ =



dλ

τ̄

η̄


 , K̃ =




θγLTL MT LTe

M 0 0

eTL 0 0


 ∈ R(l+n−m−r+1)×(l+n−m−r+1), (41)

B1 be any orthonormal basis for row space of K̃, and B2 be any orthonormal basis for
the nullspace N (K̃). Then, d̃ = B1µ + B2ζ, where µ ∈ RrK , ζ ∈ Rl+n−m−r+1−rK , and
rK = rank(K̃). An SVD-based argument similar to the one in Section 2.1 (detailed in
Appendix C) shows that the dimension of K can be reduced to l + n−m− r + 1− rK + w.

These observations suggest that one can speed up FindOpt as follows: If (l + n −m − r + 1) <
(l+n−m−r+1−rK +w), i.e. if w > rK , solve (34) using the first dimension reduction technique;
otherwise, use the second dimension reduction.

In each iteration either new rows are added to W or some of the rows of W are dropped.
Since every row of W is a row of an identity matrix, one can suitably adapt the revised simplex
method [5] to efficiently update the iterates. For example, adding a new row to W forces an entry
of dλ to be equal to zero, i.e. a variable leaves the basis, and introduces a new variable through ρ̄,

15



i.e. a variable enters the basis. This process, although requiring a careful bookkeeping of variables
and bases, is fairly straightforward.

We conclude this section with the following finite convergence result.

Lemma 6 The ActiveSet algorithm terminates after a finite number of iterations.

Proof: Let Aj , j ≥ 1, denote the active set on the j-th call to the procedure FindMultipliers.
Since every iteration of ActiveSet strictly improves the objective value of (22), it follows that
Aj1 6= Aj2 for all j1 6= j2. Since the size of the active set can only increase between successive calls
to FindMultipliers, it follows that ActiveSet terminates after, at most, l2l iterations, where l
is number of inequality constraints in the single-cone SOCP (1).

4 Recovering an optimal solution

Let λ∗ denote the solution returned by LagrangeDual, i.e. λ∗ is optimal for (22). Set ξ∗ =
U0Σ

−1
0 VT

0 BT (f−ET λ∗), and using Lemma (2) obtain the closed form optimal solution y∗ to q̄(ξ∗)
defined in (10). Then all x∗ satisfying

x∗ = x0 + Bz∗ = x0 + BV0Σ
−1
0 UT

0 (y∗ −Dx0) + BV1t,

where x0 = HT (HHT )−1g, t ∈ Rn−m−r, and r = rank(DB), are optimal for (1). Thus, if V1 6= ∅,
i.e. rank(DB) 6= n−m, the optimal solution is not unique; in fact, an entire affine space is optimal.

5 Computational experiments

In this section we discuss the computational performance of the LagrangeDual algorithm on
special classes of single-cone SOCPs that arise in the context of robust optimization.

Consider the following LP
min cTz,

subject to Az = b,
z ≥ 0,

(42)

where c, z ∈ Rn̄, A ∈ Rm̄×n̄, and b ∈ Rm̄. Suppose the constraint matrix (A,b) is known exactly;
however, the cost vector c is uncertain and is only known to lie within an ellipsoidal uncertainty
set S given by

S = {c = c0 + PT α : α ∈ Rs, αT α ≤ 1}.
We will call (42) an LP with uncertain cost. Such an LP is a special case of a more general class
of uncertain LPs where the constraints are also uncertain [2, 3].

Let f(z) = maxc∈S{cT z} denote the worst case cost of the decision z. Then we have that

f(z) = cT
0 z + max

{α:αT α≤1}

{
αTPz

}
= cT

0 z + ‖Pz‖.

The robust counterpart of the uncertain LP is defined as follows [2, 3].

min cT
0 z + ‖Pz‖,

subject to Az = b,
z ≥ 0.

(43)

16



By defining,

x =




z

y0

y


 , H =

[
A 0 0

P 0 −I

]
, E =

[
I 0 0

]
, D =

[
0 1 0

0 0 I

]
, g =

[
b

0

]
, f =



c0

1
0


 ,

it is easy to see that (43) can be reformulated as a single-cone SOCP. The constant γ for problems
of the form (43) is given by γ = 0.5. Thus, we are in a position to use the LagrangeDual
algorithm.

All the systems of linear equations encountered during the course of the LagrangeDual
algorithm were solved using the MATLAB r© function mldivide and all the computations were
carried out using MATLAB R13 on a PC with a Pentium M (1.50GHz) and 512 MB of RAM. For
moderate values of (n̄, m̄) the LP that defines µ(1) (see Figure 1) was solved using SeDuMi. For
large (n̄, m̄) µ(1) was computed using the simplex algorithm.

In the first set of experiments, the LP instances were randomly generated. In particular, the
entries of matrix A and the cost vector c0 were drawn independently at random according to the
uniform distribution on the unit [0, 1] interval. To ensure feasibility of (42), the vector b was set
to b = Aw, where each component of the vector w was generated independently at random from
the uniform distribution on [0, 1]. The matrix P defining the uncertainty set S was set equal to
the n̄-dimensional identity matrix and for each (n̄, m̄) pair, we generated 50 random instances.

Table 1 compares the running time of LagrangeDual to that of SeDuMi on the randomly
generated instances. Column 3 lists the average of the ratio of running time tsed of SeDuMi to
running time talg of LagrangeDual and Column 4 lists the average of the ratio of tsed to the
running time tact of ActiveSet. Note that the running time of ActiveSet is equal to the
difference between the running time of LagrangeDual and the time tinit required to compute the
initial Lagrange multipliers (µ(1), µ(2)). The time tinit is listed in Column 6. Columns 5 and 7 list,
respectively, the average running time talg of LagrangeDual and the average number of iterations
of the while loop in ActiveSet.

From the results displayed in Table 1, it is clear that the performance of the LagrangeDual
algorithm (including the time spent to obtain the initial Lagrange multipliers) is superior to the
SeDuMi when

(i) either the number of variables n̄ is small,

(ii) and/or the ratio of the number of constraints to the number of variables m̄/n̄ ≤ 0.1 or
m̄/n̄ ≥ 0.5.

The data in Column 4 of Table 1 implies that the performance of LagrangeDual algorithm is
superior to the SeDuMi when the time spent to obtain the initial Lagrange multipliers is excluded.
This observation suggests that the performance of LagrangeDual is likely to improve if it is
initialized using a more efficient LP-solver.

Since network flow problems are a natural class of linear programs where the number of variables
is large but the number of constraints is reasonably small, next we tested LagrangeDual on
random instances of the uncertain min-cost flow problems. The random networks were generated
using the network generator developed by Goldberg [8]. Results are averaged over 10 runs for each
pair (n̄, m̄).

Table 2 displays the results for the randomly generated network matrices. In order to be
consistent with the previous set of results, we continue to denote the number of variables by n̄ and

17



n̄ m̄ tsed/talg tsed/tact talg tinit iterations
100 20 2.5880 14.0623 0.2225 0.1892 6.0400
100 40 2.1039 10.7260 0.2767 0.2230 7.7000
100 60 2.1201 6.9539 0.3435 0.2247 6.6200
100 80 2.8624 9.4862 0.3019 0.2048 3.4600
200 20 2.0144 9.8526 0.8085 0.6560 10.4400
200 50 1.0479 2.0670 1.4371 0.7446 20.3200
200 80 1.4784 2.7523 1.5546 0.7540 22.2800
200 100 1.5296 2.4418 1.7406 0.6909 32.4500
200 125 1.6418 2.2056 1.9302 0.6854 37.5400
200 150 2.6301 4.1392 1.5328 0.6821 20.5200
200 175 2.9156 4.9983 1.3913 0.6639 12.4600
300 30 1.3012 7.8696 2.4029 2.0261 13.1200
300 60 0.7355 1.5558 4.3684 2.1425 26.5800
300 90 0.8926 1.8139 4.7719 2.1576 32.7200
300 120 1.0898 2.3107 5.1750 2.1817 40.3400
300 150 1.0190 1.8005 8.3897 2.0995 75.5400
300 180 1.4281 2.9468 6.4953 2.1301 54.7800
300 210 1.3864 2.3917 5.6592 2.0499 47.4200
300 240 1.8482 3.8423 6.5621 2.1846 46.0600
300 270 2.4261 6.3807 6.6542 2.3099 36.1400
500 50 1.2789 9.5464 10.6301 9.8295 16.2400
500 100 0.6193 1.3513 18.0874 8.9554 34.3800
500 200 0.8238 1.5742 23.3625 8.9827 56.9000
500 300 1.0865 1.9030 26.2689 8.8647 74.1200
500 400 1.4921 2.6069 29.8203 9.0223 76.0400
1000 100 1.1382 9.3120 88.6851 74.3340 40.2400
1000 250 0.6622 1.1354 199.0423 76.2742 84.2800
1000 500 1.0170 1.5283 249.0415 75.6579 121.1200
1000 750 1.5285 2.5135 214.9937 75.5053 92.3800
1500 150 1.1910 14.0390 369.9276 345.9236 46.1400
1500 500 0.7092 1.0651 867.7425 283.1938 138.8200
1500 1000 0.9616 1.2590 1259.9096 280.9712 230.9400
1500 1250 1.5668 2.1655 1024.6152 269.9120 158.5800
2000 200 1.1245 10.2186 604.3456 513.5234 55.2200
2000 500 ∞ ∞ 3456.4591 2183.3089 208.3400
5000 500 ∞ ∞ 4067.1300 2967.4054 405.1200

Table 1: Running time of SeDuMi and the LagrangeDual algorithm

18



n̄ m̄ tsed/talg talg iterations
1000 100 4.2342 20.5434 53.5000
1000 150 1.7765 37.9068 65.4000
1500 150 3.6572 55.1678 74.8000
1500 250 3.0398 64.8549 88.3000
2000 330 2.4105 817.8575 94.1000

Table 2: Running time of SeDuMi and the LagrangeDual algorithm on networks

the number of constraints by m̄. Thus, n̄ and m̄ denote, respectively, the number of arcs and the
number of nodes in the network. As before, Column 3 lists the average of the ratio of running
time tsed of SeDuMi to running time talg of LagrangeDual. Column 4 and 5 list respectively the
average running time of LagrangeDual and the average number of iterations of the while loop
in ActiveSet. Since the version of LagrangeDual that we implemented did not take advantage
of sparsity, in this set of experiments we did not allow SeDuMi to leverage sparsity. From the
results of our computational experiments it appears that LagrangeDual is faster than SeDuMi
on relatively dense networks. Also, for large networks n̄ ≈ 5000 the SeDuMi failed to solve the
problem but LagrangeDual did not have any trouble converging.

We also compared the performance of LagrangeDual with that of SeDuMi on some of the
small problems from the NETLIB LP [14] library. All the LP instances were converted to canonical
form LPs (42). To define the uncertainty set S, we took the nominal cost vector c0 as given by
the NETLIB LP library, assumed that only the non-zero elements of c0 are uncertain, and then
defined the matrix P accordingly. In these experiments the performance of SeDuMi was superior
to that of LagrangeDual. This is not surprising given that for most of these small problems the
ratio m̄/n̄ (after the problem was converted to the canonical form) was between 0.1 and 0.6.

Before concluding, we would like to mention that these experiments are biased in favor of
SeDuMi. As mentioned in [15] (the version updated for SeDuMi 1.05) SeDuMi “takes full advantage
of sparsity” which increases its speed considerably and it uses a dense column factorization proposed
in [10]. In addition, most of the subroutines of the SeDuMi are written in C code. On the other
hand, the LagrangeDual algorithm was implemented using only MATLAB functions, without
any special treatment of sparsity and dense columns.

References

[1] F. Alizadeh and Goldfarb D. Second-order cone programming. Mathematical Programming,
95(1):3–51, 2003.

[2] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Math. Oper. Res., 23(4):769–805,
1998.

[3] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Oper. Res.
Lett., 25(1):1–13, 1999.

[4] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization. SIAM, Philadelphia,
PA, 2001.

[5] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific,
1997.

19



[6] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[7] N. Gartner, C.J. Messer, and A.K. Rathi. Traffic flow theory: A state of the art report.
Technical report, Turner Fairbank Highway Research Center (TFHRC), 1997. Available at
http://www.tfhrc.gov/its/tft/tft.htm.

[8] A. Goldberg. C-code for a random network generator. Available via anonymous ftp from
ftp://dimacs.rutgers.edu/pub/netflow/generators/network/grid-on-torus/goto.c.

[9] D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Math. Oper. Res., 28(1):1–37,
2003.

[10] D. Goldfarb and K. Scheinberg. A product-form cholesky factorization method for handling
dense columns in interior point methods for linear programming. Mathematical Programming,
99:1–34, 2004.

[11] W. H. Greene. Econometric analysis. Macmillan Pub. Co., 1990.

[12] Y. Nesterov and A. Nemirovski. Interior-point polynomial algorithms in convex programming.
SIAM, Philadelphia, 1993.

[13] A. Ruszczynski and A. Shapiro, editors. Stochastic Programming. Handbook in Operations
Research and Management Science. Elsevier, 2003.

[14] The NETLIB LP Test Problem Set. Available at http://cuter.rl.ac.uk/cuter-
www/Problems/netlib.shtml.

[15] J. Sturm. Using SeDuMi 1.02, a matlab toolbox for optimization over symmetric cones. Optim.
Methods and Software, 11-12:625–653, 1999.

A Proofs

A.1 Structural results for single-cone SOCPs

Lemma 7 Suppose A ∈ Rm×n has full row rank and there exists d º 0, d 6= 0 such that Ad = 0.
Let a denote the first column of the matrix A. Then

(a) γ = 1
2 − aT (AAT )−1a ∈ [0, 0.5].

(b) for all d such that Ad = 0, we have ‖d‖2 ≥ 2
1+2γ

(eTd)2.

(c) γ > 0 ⇔ ∃d Â 0 : Ad = 0.

(d) γ = 0 ⇔ {d : Ad = 0,d º 0} =
{
β
(
e−AT (AAT )−1a

)
: β ≥ 0

}
.

Proof: Partition the matrix A as A = [a, Ā]. By scaling, we can assume that d = (1; d̄) º 0.
Since d º 0, ‖d̄‖ ≤ 1. Then,

AAT − 2aaT = aaT + ĀĀT − 2aaT ,

= ĀĀT − aaT ,

= ĀĀT − Ād̄d̄T ĀT , (44)

= Ā(I− d̄d̄T )ĀT º 0, (45)

20



where (44) follows from the fact that Ad = a + Ād̄ = 0, and (45) follows from the fact that
‖d̄‖ ≤ 1. Define

M =

[
1
2 aT

a AAT

]
.

Since 1
2 > 0 and the Schur complement of 1

2 in M is AAT − 2aaT º 0, it follows that M º 0.
Since A has full row rank, it follows that AAT Â 0, and the matrix M º 0 if, and only if, the
Schur complement of AAT

γ =
1

2
− aT (AAT )−1a ≥ 0.

Since (AAT )−1 Â 0, it follows that γ = 1
2 − aT (AAT )−1a ≤ 1

2 . This establishes part (a).
To establish the other results, consider the following minimum norm problem

min ‖d‖2,
subject to Ad = 0,

eTd = 1.
(46)

The optimal solution d∗ and the optimal value v∗ of (46) can be obtained easily via the Lagrange
multipliers technique, and is given by

d∗ =
2

1 + 2γ

(
e−AT (AAT )−1a

)
, v∗ =

2

1 + 2γ
.

Thus, it follows that for all d such that Ad = 0, we have ‖d‖2 ≥ 2
1+2γ

(eTd)2.

Since there exists d = (1; d̄) º 0 with Ad = 0, there exists a d Â 0 with Ad = 0 if, and only
if, v∗ < 2, i.e. γ > 0. Moreover when γ = 0,

{
d : Ad = 0,d º 0

}
= {βd∗ : β ≥ 0}.

Lemma 8 Suppose A ∈ Rm×n has full row rank and consider the following SOCP

min ξTy,
subject to Ay = b,

y º 0,

(47)

Let a denote the first column of the matrix A, and let γ = 1
2 − aT (AAT )−1a 6= 0. Then we have

the following.

(i) The dual of (47) is strictly feasible for all γ < 0.

(ii) When γ > 0, the dual of (47) is strictly feasible if, and only if, eTPξ > 0 and (eTPξ)2 −
γ‖Pξ‖2 > 0, where P = I − AT (AAT )−1A denotes the orthogonal projector operator onto
N (A).

Proof: The dual of (47) is given by

max bT µ,
subject to ξ −AT µ º 0.

Since A has full row rank, ξ can be written as ξ = Pξ + ATw for some w ∈ Rm. Thus, it follows
that there exists a µ such that ξ−AT µ Â 0 if, and only if, there exists a µ such that Pξ+AT µ Â 0.

21



From the definition of the Lorentz cone, it follows that there exists a µ such that Pξ+AT µ Â 0

if, and only if, the optimal value of

min ‖αPξ + AT µ‖2,
subject to αeTPξ + aT µ = 1,

α ≥ 0,
(48)

is less than 2.
First consider the case γ < 0. Note that the solution α = 0, µ = (AAT )−1a

aT (AAT )−1a
is feasible to (48)

with the objective function value 1
aT (AAT )−1a

= 2
1−2γ

< 2.

If γ > 0, then the first part of Lemma 2 shows that ξ has to satisfy eTPξ ≥ 0 and (eTPξ)2 −
γ‖Pξ‖2 ≥ 0. Otherwise, (47) becomes unbounded and therefore, by the Weak Duality Lemma for
SOCPs [1], its dual is infeasible.

The rest of the analysis is very similar to the one used in the proof of Lemma 7 and is left to
the reader.

A.2 Proof of Lemma 2

By definition, ξ ∈ Dq̄ if, and only if, (10) is bounded, or equivalently the optimal value of the
homogeneous problem

min ξTd,
subject to Ad = 0,

d º 0,

(49)

is non-negative. Without loss of generality, we assume that ξ ∈ N (A). Otherwise, ξ can be
decomposed as ξ = Pξ + ξ1 where Pξ ∈ N (A) and ξ1 belongs to the row space of A (the space
orthogonal to N (A)). Since Ad = 0 implies ξT

1 d = 0, we can drop ξ1 from the objective.
Lemma 7 part (b) in Appendix A.1 establishes that ‖d‖2 ≥ 2

1+2γ
(eTd)2 for all d such that

Ad = 0. Since d º 0 implies that 2(eTd)2 ≥ ‖d‖2, it follows that d = 0 is the only feasible
solution to (49) when γ < 0. Hence, Dq̄ = Rp.

Next, suppose γ ≥ 0. Then (49) is bounded if, and only if,

min ξTd,
subject to Ad = 0,

eTd = 1,
dTd ≤ 2,

(50)

has a non-negative optimal value.
The Lagrangian of (50) is given by

L = ξTd− τ̂TAd− δ̂(eTd− 1) + β̂(dTd− 2),

where β̂ ≥ 0. Setting the derivative ∇L = 0 we get

d = −βξ + AT τ + δe,

where β, τ , and δ are rescaled values of β̂, τ̂ , and δ̂; however, β ≥ 0 still holds. Since Aξ = 0, the
constraint Ad = 0 yields

τ = −δ(AAT )−1Ae = −δ(AAT )−1a.

22



Next, the constraint eTd = 1 implies that

1 = −βeT ξ + δeT (e−AT (AA)−1a) = −βeT ξ + δ(1− aT (AA)−1a) = −βeT ξ + δ

(
1 + 2γ

2

)
.

Thus,

d = −βξ +

(
2

1 + 2γ

)
(1 + βeT ξ)

(
e−AT (AAT )−1a

)
.

From Lemma 7 part (a) we have γ ∈ [0, 0.5], therefore d is well-defined.
Since (50) has a linear objective and its feasible set is the intersection of an affine set with a

Euclidean ball, there exists an optimal solution to (50) that satisfies dTd = 2. It is easy to see this
when the matrix [A; eT ] does not have full column rank. When [A; eT ] has full column rank, the
system Ad = 0, eTd = 1 admits the unique solution d̃ = 2

1+2γ
(e −AT (AAT )−1a) which implies

{d : Ad = 0,d º 0} =
{
t
(
e −AT (AAT )−1a

)
: t ≥ 0

}
. Then, by Lemma 7 part (d) in Appendix

A.1, we have γ = 0. Therefore, d̃T d̃ = 2
1+2γ

= 2. Simplifying the constraint dTd = 2, we get

β2

(
‖ξ‖2 − 2

1 + 2γ
(eT ξ)2

)
=

4γ

1 + 2γ
.

Since Aξ = 0, Lemma 7 part (b) implies that ‖ξ‖2 ≥ 2
1+2γ

(eT ξ)2. Therefore, we only have to
consider the following two cases.

(i) (eT ξ)2 = 1+2γ
2 ‖ξ‖2.

Suppose eT ξ =
√

1+2γ
2 ‖ξ‖. Then ξ º 0, and the optimal value of (50) is non-negative, or

equivalently (49) is bounded. Next, suppose eT ξ = −
√

1+2γ
2 ‖ξ‖. Then d = −ξ º 0, and

dT ξ = −‖ξ‖2 < 0. Therefore, (49) is unbounded.

(ii) (eT ξ)2 < 1+2γ
2 ‖ξ‖2.

In this case β =
√

4γ

(1+2γ)‖ξ‖2−2(eT ξ)2
. And (50) has a non-negative optimal value if, and only

if,

0 ≤ ξTd,

= −β‖ξ‖2 +

(
2

1 + 2γ

)
(1 + βeT ξ)(eT ξ),

= − β

1 + 2γ

(
(1 + 2γ)‖ξ‖2 − 2(eT ξ)2

)
+

2(eT ξ)

1 + 2γ
.

Substituting the value of β and simplifying we get

eT ξ ≥ 0, (eT ξ)2 ≥ γ‖ξ‖2.

Since, as we discussed above, assuming ξ ∈ N (A) is equivalent to replacing ξ by Pξ, the result
follows.

For the second part of Lemma 2, first consider the case γ 6= 0, or equivalently ARAT is non-
singular [1]. Using the results of the first part of this Lemma, one can be prove that (see Lemma 8

23



in Appendix A.1) if γ < 0, then the dual of (49) is strictly feasible for any ξ ∈ Rp and when γ > 0
the dual of (49) is strictly feasible if, and only if, eTPξ ≥ 0 and (eTPξ)2 − γ‖Pξ‖2 > 0; and from
[1] Section 5 it follows that when the dual is strictly feasible

q̄(ξ) =

√
−γ(bT (ARAT )−1b)

γ

√
(eTPξ)2 − γ‖Pξ‖2 + ξTRAT (ARAT )−1b.

When the dual is not strictly feasible, i.e. (eTPξ)2 = γ‖Pξ‖2, choose ξ̂ ∈ Dq̄ such that the dual

corresponding to ξ̂ is strictly feasible. For 0 < ε ≤ 1, let ξε = (1 − ε)ξ + εξ̂. Then we have two
cases:

(i) Pξ = 0. In this case, (eTPξε)
2 − γ‖Pξε‖2 = ε2

(
(eTPξ̂)2 − γ‖Pξ̂‖2

)
> 0.

(ii) Pξ 6= 0. In this case, γ > 0. Since eTPξ−√γ‖Pξ‖ is a concave function of ξ, it follows that

eTPξε−
√

γ‖Pξε‖ ≥ ε
(
eTPξ̂−√γ‖Pξ̂‖

)
+(1−ε)

(
eTPξ−√γ‖Pξ‖

)
= ε
(
eTPξ̂−√γ‖Pξ̂‖

)
> 0.

Thus, the dual corresponding to ξε is always strictly feasible and

q̄(ξε) = f(Pξε) + vT ξε.

Taking the limit as ε ↓ 0 establishes the result.
Next, consider the case γ = 0, or equivalently ARAT is singular. Note that

q̄(ξ) = ξTy0 + q̂(Pξ),

where y0 = AT (AAT )−1b, and

q̂(Pξ) = min (Pξ)Tw,
subject to Aw = 0,

y0 + w º 0.

(51)

The following are easy to check linear algebra facts:

(i) γ = 0 ⇒ 2(eTy0)
2 ≤ ‖y0‖2.

(ii) γ = 0 ⇒ 2(eTw)2 ≤ ‖w‖2, for all w ∈ N (A). In particular, ‖Pξ‖2 ≥ 2(eTPξ)2.

We solve (51) by first scaling it to reduce it to a minimum norm problem and then optimizing over
the scaling factor. Let w∗ denote the optimal solution of (51) and let α∗ = eT (y0 + w∗). Then

‖w∗ + y0‖2 = ‖w∗‖2 + ‖y0‖2 ≤ 2(α∗)2,

where the equality follows from the fact that yT
0 w∗ = bT (AAT )−1Aw∗ = 0. It follows that w∗ is

the optimal solution of
min (Pξ)Tw,

subject to Aw = 0,
eTw = α− eTy0,
‖w‖2 ≤ 2α2 − ‖y0‖2,

(52)

24



with α set equal to α∗. Using Lagrange multipliers, the optimal value of (52) is given by

(Pξ)Twα = −
√
‖Pξ‖2 − 2(eTPξ)2

√
4α(eTy0)− ‖y0‖2 − 2(eTy0)2 + 2(eTPξ)(α− eTy0). (53)

Differentiating this expression with respect to α we get

4α∗(eTy0)− ‖y0‖2 − 2(eTy0)
2 =

(
eTy0

eTPξ

)2 (
‖Pξ‖2 − 2(eTPξ)2

)
.

It is easy to check that 2(α∗)2 ≥ ‖y0‖2. Substituting α∗ into (53) and simplifying we get

q̄(ξ) = ξTy0 + (Pξ)Twα∗ ,

= ξTy0 +

(‖y0‖2 − 2(eTy0)
2

2eTy0

)
eTPξ − eTy0

(‖Pξ‖2 − 2(eTPξ)2

2eTPξ

)
.

B Analysis for the case rank(DB) = p < n−m

Note that in this case A = UT
1 = ∅, so γ = 1

2 and P = I. The following Lemma is easy to prove.

Lemma 9 Let q̂ : Rp 7→ R denote the function defined in (17). Then the domain Dbq =
{
ξ : q̂(ξ) >

−∞
}

is given by

Dbq =
{

ξ : eT ξ ≥ 0, 2(eT ξ)2 − ‖ξ‖2 ≥ 0
}

. (54)

where e = (1,0T )T . For all ξ ∈ Dbq, we have q̂(ξ) = 0.

Then (15), (16), (17), (18), and Lemma 9 imply that the Lagrangian dual problem is given by

max (f −ET λ)T z0,
subject to A[λ, ξ,h,p] = 0,

λ ≥ 0,
ξ ∈ K,

(55)

whereA[λ, ξ,h,p] denotes the set of linear equalities in (22) andK =
{
z : eT z ≥ 0, 2(eT z)2 − ‖z‖2 ≥ 0

}
.

As in the case discussed in the paper, first set ξ = 0 and solve (55). Let µ(1) be its optimal
solution. A direction (dξ,dλ) is an ascent direction at (0, µ(1)) if, and only if, (dξ,dλ) is a recession
direction of the set

−zT
0 ETdλ > 0,

AW[dλ,dξ,0,0] = 0,
dξ ∈ K,

(56)

with the matrix W = 0.

Lemma 10 A recession direction (dξ,dλ) of (56), if it exists, can be computed by solving two
systems of linear equations.

Proof: We will find a recession direction of (56) by solving the following problem.

max −zT
0 ETdλ,

subject to AW[dλ,dξ,0,0] = 0,
dξ ∈ K.

(57)

If the optimal value of this problem is positive, then (56) has a recession direction. The direction
(dξ,dλ) can be computed by considering the following three cases:

25



(a) Suppose dξ = 0. Then (0,dλ) is a recession direction for (56) if, and only if, dλ solves

−zT
0 ETdλ = 1,

AW[dλ,0,0,0] = 0.
(58)

(b) Next, suppose (58) is infeasible; however, there exists a positive recession direction for (57).
Set eTdξ = 1 in (57) to obtain

max −zT
0 ETdλ,

subject to AW[dλ,dξ,0,0] = 0,
eTdξ = 1,
‖dξ‖2 ≤ 2.

(59)

Since (58) is assumed to be infeasible, (59) is bounded. Setting dξ = −Ldλ, we get

max −
(
Ez0

)T
dλ,

subject to AW[dλ,−Ldλ,0,0] = 0,
eTLdλ = −1,
‖Ldλ‖2 ≤ 2.

Since the objective function of this problem is linear, the optimal d∗λ satisfies ‖Ld∗λ‖2 = 2 and
the Lagrangian function L is given by

L = −(Ez0)
Tdλ − τ TMdλ − ρTWdλ − η(eTLdλ + 1)− β(‖Ldλ‖2 − 2)

where β ≥ 0 and the first-order optimality conditions are given by

2βLTLdλ +MT τ +WT ρ +LTeη = −Ez0,
Mdλ = 0,
Wdλ = 0,

eTLdλ = −1,

(60)

and β(‖Ldλ‖2 − 2) = 0. If β = 0, then (60) can be solved easily. Suppose β > 0. Then by
setting ρ̄ = 1

β
ρ, τ̄ = 1

β
τ , and η̄ = 1

β
η, we see that (60) is equivalent to




2LTL MT WT LTe

M 0 0 0

W 0 0 0

eTL 0 0 0




︸ ︷︷ ︸
∆
=K




dλ

τ̄

ρ̄

η̄


 =




0

0

0

−1


−

1

β




Ez0

0

0

0


 .

Suppose K is non-singular. Let w = (τ̄ T , ρ̄T , η̄)T , b1 = (0T ,0T ,−1)T , and b2 = Ez0. Partition
K−1 into submatrices

K−1 =

[
K−1

11 K−1
12

K−T
12 K−1

22

]

such that [
dλ

w

]
= K−1

[
0

b1

]
− βK−1

[
b2

0

]
=

[
K−1

12 b1 − βK−1
11 b2

K−1
22 b1 − βK−T

12 b2

]

26



This partition implies that K−T
12 LTLK−1

11 . Therefore, β is the unique positive root of

2 = ‖Ldλ‖2,
= ‖LK−1

12 b1‖2 − 2
1

β
(LK−1

12 b1)
TLK−1

11 b2 +
1

β2
‖LK−1

11 b2‖2,

= ‖LK−1
12 b1‖2 −

1

β2
‖LK−1

11 b2‖2.

Consequently,

β =

√
‖LK−1

11 b2‖2
2− ‖LK−1

12 b1‖2
.

Thus, (60) has a solution if, and only if, 2− ‖LK−1
12 b1‖2 > 0.

The case where K is singular can be handled by taking the SVD of K and working in the
appropriate range spaces.

(c) In case one is not able to produce a solution in either (a) or (b), it follows that the optimal
solution of (29) is 0, and (dξ,dλ) = (0,0) achieves this value.

In a typical step of the ActiveSet when rank(DB) = p, we have to solve the following
problem.

max −zT
0 ET λ,

subject to AW[λ, ξ,h,p] = 0,
ξ ∈ K,

(61)

where W denotes the current inactive set, i.e. W =
∑

i:λi=0 eie
T
i .

Lemma 11 Suppose there exists a feasible (ξ̄, λ̄) for (61) such that ξ̄ ∈ int(K). Then (61) can be
solved in closed form by solving at most three systems of linear equations.

This result can be established using a combination of the techniques used to establish Lemma 10
and Lemma 5.

C Decreasing the Dimension of K

Consider the following system of linear equalities

K̃d̃ + W̃T ρ̄ = b,

W̃d̃ = 0,
(62)

where K̃ and d̃ are given in (41) and W̃ = [W,0,0]. Let SVD of K̃ be given by

K̃ = UΣVT = U

[
Σ0 0

0 0

] [
VT

0

VT
1

]
,

27



where Σ0 ∈ RrK×rK is a diagonal matrix and rK = rank(K̃). Decompose d̃ = V0µ + V1ζ. Then
(62) is equivalent to

U

[
Σ0µ

0

]
+ W̃T ρ̄ = b,

W̃(V0µ + V1ζ) = 0,

which is equivalent to [
Σ0µ

0

]
+ UTW̃T ρ̄ = UTb,

W̃(V0µ + V1ζ) = 0.

(63)

Let

UT =

[
UT

0

UT
1

]
.

Then (63) is equivalent to

Σ0µ + UT
0 W̃T ρ̄ = UT

0 b,

UT
1 W̃T ρ̄ = UT

1 b,

W̃V0µ + W̃V1ζ = 0.

Setting µ = Σ−1
0 (UT

0 b−UT
0 W̃T ρ̄), we obtain the following system which has a smaller number of

variables.
UT

1 W̃T ρ̄ = UT
1 b,

W̃V1ζ − W̃V0Σ
−1
0 UT

0 W̃T ρ̄ = −W̃V0Σ
−1
0 UT

0 b.

28


