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Numerical cubature using error-correcting codes
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We present a construction for improving numerical cubafarsulas with equal weights and a convolution
structure, in particular equal-weight product formulasing linear error-correcting codes. The construction
is most effective in low degree with extended BCH codes. gdinwe obtain several sequences of explicit,
positive, interior cubature formulas with good asymptefior each fixed degreeas the dimensiom — oo,
Using a special quadrature formula for the interizal [13],al¢ain an equal-weightcubature formula on the
n-cube withO(nl'/2}) points, which is within a constant of the Stroud lower bouvik also obtairi-cubature
formulas on ther-spheren-ball, and GaussiaR" with O(nt=2) points whert is odd. Whenu is spherically
symmetric and =5, we obtairo(nz) points. For each> 4, we also obtain explicit, positive, interior formulas
for the n-simplex withO(n"~1) points; fort = 3, we obtainO(n) points. These constructions asymptotically
improve the non-constructive Tchakaloff bound.

Some related results were recently found independentlyibipiy [21], who also noted that the basic con-
struction more directly uses orthogonal arrays.

1. GENERAL RESULTS a PB formula.) Tchakaloff's theorem has a short proof, but
it is computationally non-constructive. Many known formu-
Let 4 be a normalized measure &1 with finite moments. 18 Withn small, or withn large andt < 2, are better than

A cubature formula of degree brt-cubature formula, fop e Tchakaloff bounc [3, 20]. Butifis larget > 3, andu is
is a set of point§& = {Pa} C R" and a weight functiorp, — reasonably natural, most explicit formulas in the existitag-

W, € R such that atu_r? are either negative, exterior, or have exponentiadigy
points.
N In this article we present a new method to thin equal-weight
/P(X)d;.l =P(F)= z WaP(Pa) cubature formulas with a convolution structure, in patfacu
a=1 product formulas for product measures. (Bynninga for-

mula, we mean removing some of its points without reducing
its cubature degree.) The thinned formulas are efficienigh h
dimensions and low degree. The method also applies to some
non-product measures that are related to product measures,
Wise It ST i - b PRI - particular spheres and simplices with uniform measure- Vic
is interior if every pointpa is in the interior ofX; itis bound- i [27] independently obtained the basic constructioremh
ary if every pa is in X and somepa € 0X; and otherwise itis g _ 5 tggether with some other generalizations not consid-

exterior. These properties of cubature formulas are often abgye py this author. However, many of our asymptotic bounds
breviated.E.g, Pl means positive and interior and EB means, 4 derived constructions are new.

equal-weight and boundary. (Exterior formulas are denoted |+ £ 21dG are two cubature formulas. we define thein-

‘0, for outside.) An equal-weight fqrmula is abbreviatdd™ o tion Fx G to be their sum as sets, + G. The weightwa
and is also called a (geometricjlesignor aChebyshev-type ¢ Bain F %G is given by a product rule:

for polynomialsP of degree at mogt (If n=1, thenF is also
called aquadrature formulg The formulaF is equal-weight
if the w, are all equalpositiveif w, > 0 for all a; and other-
wise it isnegative Let X be the support oft. The formulaF

formula

The main use of a cubature formula is to numerically inte- Wy = WpWe.
grate a functionf which is approximately a polynomial. In Pa= P+ Pc
this application, formulas with many points or non-exglici PbeF,PcbeG

points are impractical, exterior formulas are ill-foundted is
only defined onX, and formulas with large negative weights
are ill-conditioned on the class of continuous functiang, [2
Ch. 1]. Thus PI formulas with few points are the best kind.
By Tchakaloff's theorem [20, p. 61], every measyren

Convolution of cubature formulas is related to convoluidn

measures in two ways: First, it is convolution of measures if

cubature formulas are interpreted as atomic measures. Sec-

ond, if F is at-cubature formula fou andG is at-cubature

n ) ; ) noi formula forv, thenF « Gis at-cubature formula fop « v. In

R" has a Pt-cubature formula with at mogt'{") points, the a3 rticylar, product formulas and product measures areczonv

same as the dimension of the vector space of.relevant PolyN®stions in independent directions.

mials, R[%|<t. (If 0X has non-zero measure, it may only be  \ye also recall some basic facts from coding theory. For
each prime powen, there is a unique finite fielq with g el-
ements. Alinear error-correcting codef length?, dimension

, ) : o k, and distance over[F is ak-dimensional vector subspace
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zero-sum cod# the coordinates of everg € C sum to 0. large. Butwhermg <t—1, org<t—2inthe odd and centrally

o symmetric case, they are asymptotically overdetermined.
Theorem 1.1. Lett, n, and/ be positive integers, letq bea A third comparison is with the Stroud lower bound: Ay
prime power, and left be a measure oR". Foreachl <i<  cypature formula im dimensions, not necessarily interior or
{, let K be an equal-weight formula with g elements such thabositive, require€(nl/2l) points. TheorerI12 achieves the
the convolution Stroud bound (up to a constant factor) whes 2.

A final comparison is with an interesting thinning construc-
tion of Novak and Ritter for products of quadrature formulas
. [L€]. (Itis similar to an earlier construction due to Gruratim
'S, a t—cub:?\turle formula fo;u. 7'[her-1 an[t, kit +,1,]q cgde C and Moller for then-simplex [7].) They producé-cubature
yields a thinning GC F ywth_qf points. In addition, if each  ¢5mjas withO(nlt/2]) points, which is within a constant fac-

F is centrally symmetric, t is odd, and either q is odd or C iSq of the Stroud bound and better than Theofem 1.2 when
a zero-sum code, then C need only be(ak,t]q code. q> 2. Crucially, their formulas are not positive, although
Wey can be made interior. They also require that the factors
- . of u be 1-dimensional. The Novak-Ritter construction does
of an orthogonal array [9]. Linear error-correcting cods a e#eralize to convolutions, as long as each factor formasa h
dual to linear orthogonal arrays, and the proof actualI)susegonmear points ' 9

orthogonal arrays rather than codes. In some cases nan-line . .
orthogonal arrays are slightly better than linear ones.Sgee TheorenL1P can b_e gs_ed to construct interesting cubature
: formulas for several infinite sequences of regions and mea-
tionsi2 ands. idered by Stroud|[20, Ch 7,8]:

The most effective case of TheorEml1.1 is in the asymptotic?ures considered by Strold|[20, 8J:
limit n — co with t andq fixed. Recall that a functiofi(n) is  Theorem 1.3. Foranyt:
quasilinearif f(n) =0O((logn)“n) for somea. Quasilinearity

is also writtenf (n) = O(n). Say that a family{F } of cubature ~ 1. The n-cube € with u_niforrE/zTeas_ure has a QLEI t-
formulas is quasilinear (abbreviated “QL") if the pointsdan cubature formula with (/<)) points.

weights of eacl can be generated in quasilinear time in the2' The cubical shell §— rC,, has a QLEI t-cubature formula
length of the output. with O(nU/ZJH) points,

F=Fx«xFx...xF

Theoren Il can be strengthened further using the notio

Theorem 1.2. Assume all variables as in Theor€ml1.1. Theng,, any odd t> 3:

G can have @%) points (with the constant depending only -

on q), where 1. R" with Gaussian weight function has a QLEI t-cubature
formula with Qnt=2) points.

t—1
a=t—1- LTJ 2. Any spherically symmetric measure BA has a QLPI t-
cubature formula with @1t~?) points. This includes the
If each G is centrally symmetric and t is odd, then n-ball By, the spherical shell B—rB;,, and the(n—1)-
sphere 81 with uniform measure; an®" with radial
ad—t_2_ LEJ . exponential weight functioexp(—||X||2).
a Foranyt> 2:

Moreover, G is quasilinear aé — o, assuming precomputa-

tion of each 1. The n-simplex;, has a QLPI t-cubature formula with

O(n*~1) points.

in I_:‘_#elsrgnmmfolyds%r(t)g:];:(t ﬁ\é\{/;th:mg(rr:&t)r?elrr: Vc\:lgrﬁ?)g:iiléi,mt?] e 2. The n-cross—polytope,*;@yith qutc/)anj 1meajc,ure has a QLPI

Tchakaloff upper bound i®(n') points, orO(nt~1) whent t-cubature formula with ) points.

is odd andu is centrally symmetric (Sectidd 4). Thus Theo-

rem[L2 is asymptotically better than Tchakaloff’s theofem All cases of Theorerfill.3 other than the cross poly@pe

all such product measures. Tchakaloff's theorem also doies nimprove the Tchakaloff bound. On the other hand, the con-

guarantee equal weights. struction for the cub&, matches the Stroud bound up to a
Another comparison is with the cardinality of exact de- constant factor. We admit that thislependent factor is very

termination. At-cubature formuld is overdeterminedun-  generous whehis large: For each = 2s+ 1, it approaches

derdeterminedor exactly determined the parameters of its 2-s°-sl asn — o in the favorable case = 2™. By contrast,

points provide fewer, more, or the same number of degreethe Novak-Ritter formulas use only? 2nore points than the

of freedom, respectively, as the constraints imposed & int Stroud bound as — co.

grating all polynomials of degree The cardinality of exact Theoren{ LB partially solves a problem of Strolud [20, p.

determination i@(ntfl) for generalu and@(ntfl) whent is 18]: Are there PI 5-cubature formulas f@,, Bn, or An

odd andu is centrally symmetric. Thus for product measures,with O(n?) or O(n®) points? Theorerill.3 provides QLPI 5-

the formulas in Theorefiil.2 are asymptotically exactly de<ubature formulas wit(n?) points forC,, O(n®) points for

termined (up to a constant factor that depends)avhengis  Bp, andO(n*) points forA,. In SectiorB, we will establish
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a special QLPI 5-cubature formula & with O(n?) points  vertices of an affinely regular cross polytope, plus theiorjg
and QLPB and QLPI 3-cubature formulas #tw with O(n) ~ We further demand that negation iy coincides with nega-

points. Thus the only remaining case of Stroud’s question igion in R(1/2. Then any centrally symmetric subget W

then-simplex in degree 4 or 5. is centrally symmetric ifR(4-1¢/2, |n this case both S|des of
Remark.The formulain Theoredidl. 3 f@ ' is technicallya () vanish wherP is an odd polynomial. ThuA need only
QLPB formula if we take the definition of boundary in general be an orthogonal array of strength- 1. In particular, this is
topology. However, we take boundary in the sense of geomeso if A= C*, becaus€* is a vector space ovéiy and vector
ric topology, so that Theoreln1.3 is correct as stated. spaces are centrally symmetric sets.
Finally if t is odd,q is even, and is a zero-sum code, then
C* contains the vectofl,1,...,1) and is therefore invariant
Acknowledgments under addition by this vector. In this case we repl&fe? in
the general construction B%2 and we realizéfq as a cen-
The author would like to thank Hermann Konig, Eric Rains trally symmetric set (the vertices of a regular cross pgigjo
and Hong Xiao for useful discussions. The author is also inWe further demand that adding 1 Ity coincides with nega-
debted to the late Arthur Stroud for his excellent introchuet  tion in R%2. Then once agai@* is centrally symmetric and
to the cubature problem. need only be an orthogonal array of strenigthl. O

The following lemma establishes TheorEml 1.2 as a corol-
2. PROOFS lary of TheorenfiT11.

oo . , . L 2.1. Letgb [ , let ine Z>o, and let
Proof of Theorer Il 1First, identify an affinely independent emma etqbe aprime power, letin< 2o, and le

set ofq points inR9~1 with the finite fieldFq. For each X t—1
i < ¢, choose a linear mag : RY — R" that send& to F, a=t—1- LTJ-
and definet: R4D! — R" to be their direct sum:
Then there is 49™,k, u]q zero-sum code C with
M=MmPTHD - --DTL.
u>t+1 k>g"—ma -1
Becausd- x Fo x - - - x F is at-design for the measugeonR",

the identity ) )
The code in Lemm&21 is called an (extended, narrow-

P(R)dy = 1 P sense)BCH code[2, 4, 110,114]. We will use the duals of
/ 7 Z[ (m(R)) BCH codes to thin cubature formulas. As it happens, the dual
PFq of a BCH code of this type is another BCH of the same type.

holds for any polynomiaP of degreeeat mogtonR™. Now  proof. It is easier to define the dual co@ and show that it
suppose that we thin the sBt= 7(FFy) to a setG = m(A) s an orthogonal array. Since it is a linear space, it suffioes
for some sefA C Fé. Sincertis linear, if we wantG to be a  show that every coordinate projectian: C* — IF{] with |1] <t

t-cubature formula fopt asF is, it suffices that is onto. There is an importafit-linear function
1 1 TR
g 2 PE= 3P 1) T Ham = Ko
9 sy peA

called thetrace (It is analogous to the taking the real part of

a complex number.) First, we interpﬂEﬂm as the space of

i (@-1)¢ i
for any polynomiaP on it of degree at modt If P is all functions fromFgm to Fq. We defineC* as the set of all

a monomial, then as a function dﬁﬁl it depends on at most

i i _ functions
t coordinates. Conversely, any function Eﬁl it depends on
at mostt coordinates is realized by a polynomial of degree at f:Fqn — Fq f(x) = Trq(P(x)),
mostt. It follows that equation[{l) is equivalent to the sta-
tistical property that the projection @ onto anyt of thel  whereP is a polynomial of degree at most-1. If | C Fgm
coordinates OFé is constant-to-1. Such a satis called an and|l| <t, the polynomiaP can achieve any desired values
orthogonal arrayof strengttt. on| by Lagrange interpolation. Thus the distanceCait at

If Cis an[¢,k,t + 1]q code, then the dual spac® (in the  |eastt + 1.
sense of linear algebra ovigy) is a linear orthogonal array of  The space of polynomials of degree 1 onFgn hasFqn-
strengtht. SinceC has dimensiotk, C* has dimensiof —k  dimensiont, and thereforéfq-dimensionmt. But taking the
and therefore hag’ % points. Thus we can le&s = 17(C*). trace reduces the dimension in two ways. To give an explicit
The refinement whenis odd and eack; is centrally sym-  example, suppose thgt= 2,t = 3, andm is arbitrary. Then
metric is as follows. Ifjis odd, we replac®4 1 by R(@-1/2 ¢+ s the set of all
and we positior¥q as a centrally symmetric set that does not
lie in a hyperplane. (In other words, the pointsifare the f(x) = Tra(@? +bx+c).
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The apparent dimension & is 3m. But f only depends on Therefore we can project any non-exterior cubature formula
the trace ot, soc contributes 1 rather thanto the dimension for Rggl radially ontoA, without loss of degree, although
of C*. Moreover, Tp(bx) = Try(b?x?), so the linear term can the weights change. (If the origin happens to be a cubature

be removed fronf, with the conclusion that point, discard it.) In particular, we can project the cubatu
_ formulas provided by Theoren1.2 as explained previously.
dimC* <m+1. The formulas still haved(nt~1) points, although the weights

are no longer equal.

In general, the constant term Bfcontributes 1 to the dimen-  The same argument works for the sph8te! c R" for cen-
sion and the other— 1 terms contributen each, except that  tra|ly symmetric formulas. Every polynomi& on S™1 can
[%J terms are superfluous by the Frobenius automorphisrBe expressed @&+ Pa, wherePs is centrally symmetric and

x— xd. Thus Pa is centrally antisymmetric. The integral &k vanishes,
) as does its sum with respect to any centrally symmetric for-
dimC* <ma +1, mula. Meanwhile every term d¥s has even degree, so it can
. be expressed as a homogeneous polynomidt'dbosing the
as desired. equation
Since constants are polynomials of degre€0contains 5 5
constant vectors. Therefo@is a zero-sum code. O X{+...+x=1

On the face of it, LemmBE2.1 only establishes Thedremh 1_£or the unit sphere. Then

when/ = g™ If g™ < ¢ < g™, we can project a BCH code ' P(R)dQ = 2
from Fgm to [Fg. This preserves th®(t%) bound at the ex- Jo-1 (M -1y
pense of worsening the constant factor i$ not much more
thang™ 1, we can slightly improve the projected code with a
projection that annihilates up — 1 independent vectors in

C*. (See Theorein3.1 for an example.)

[, PEexp—|RI3)dx.

whereQ is usual surface volume @ ~1. Again, any centrally
symmetric cubature formula can be radially projected aed th
weights adjusted.
_ - i Formulas for the balB, and the spherical sheB, — rBy
Remark. The inequalities fou andk in LemmalZlL become  can pe derived from formulas for the sph&fe? using radial
sharp asn — co. separation of variables [20, Th 2.8]. The result is a product
formula where the radial factor can be Gaussian quadrature.
The number of points in this factor does not increase with
dimension.

The cross-polytop€;; is the union of 2 simplices. Thus
we can obtain formulas fdZ;; by repeating formulas foh,.
In degred, we do not need all’2copies; instead we can repeat
it in the pattern of the BCH code ové&p defined by polyno-

Proof of Theorerfi I13The simplest case to consider is with
uniform measure and" with Gaussian weight function. This
fits Theoreni T2 withf = n, provided that for each we find
an Elt-quadrature formula with Gaussian weight and wegth
points for some prime powey. Since there is no bound ap
the Seymour-Zaslavsky theorem|[18] establishes that sreh f

mulas exist. One explicit method begins with the PI GaUSSiarPnials of degre¢ — 1 overFom. Such a code ha®(nlt/2))

(2 + 1)-quadrature formula with+1 points. Viewed as & vectors and the formula fdx,, hasO(n'~1) points, so the total

quadrgture formula, thie+ 1 points can be freely _perturbed. is O(nl2/21-1) points.
In particular they can be perturbed so that the weights becom Then-cubeCy = |1, 1]" is in some ways the most interest-

multiples of 4/ for some large prime poway. The pertur- g case. Like the Gaussian case, it is a straight applicafio

bation can be chosen to retain central symmetry. On the oth heorenT LR using an equal-weight quadrature formula. But
hand, sinceq is large, |(t —2)/gq] = 0. Thus Theoreri 112 . hi ?I ? v ch 9 qh d formul

roduces formulas wit(nt-2) points. in this case we will carefully choose the quadrature formula
P on [—1,1] to itself be a convolution o = |t/2] formulas

We will need the same construction for the orthiahg, with . . i
: : : . with two points. For example, the Chebyshev 5-quadrature
exponential weight function exp-||X||1). This measure does formula has points at

not have central symmetry, and the end result is formulas wit
t71 . . . _
O(n""1) points, again withf = n. jE\/5Jr v 5_ 5

The next simplest case is thesimplexA,. Recall thatA, +
has barycentric coordinates 30 30
This is evidently a convolution, as is any centrally symnaetr
Xo+X1+...+Xn=1 equal-weight formula with 4 points. Elsewherel[13] we show

that the 2 points
which realize it as a subset of the orthﬁ&ﬁgl. If P(X) is a P

polynomial of degre¢ on Ay, then it can béhomogenizedit tz1+2+--£7
can be expressed as a hor?PSgeneous polynomial of degreg, ., 5 Chebyshev-type2s + 1)-quadrature formula for
by attaching a factor ofy;x) ~ to each term of degre® In |1, 1] with constant weight if and only if the’s are the roots
this case of the polynomial
g 1 g 1 xs2 (_1)5
P(R)dX = / P(X) exp(—||%]1)d%. e .
Ja, (%) e (%) exp(—|[X[|2) Q(x) =x° T +1.3.15...(4s_1)'



We also show that all roots @) are real and that the resulting
guadrature formula is interior. Thefold product power of
this formula is thus a convolution ghpairs of points, so we
can apply Theoreill.2 with= snandq = 2.

Finally the O(nlt/2!) formula for then-cubeC, yields a
O(nlt/2/+1) formula for the cube surfaaiC;, just by repeating
the formula forC,_1 on each facet o€,. Then radial sepa-
ration of variables produces a product formula for the calbic
shellC, — rC, which also ha®©(nlt/2/+1) points. O

3. SPECIAL CONSTRUCTIONSAND EXAMPLES

5

Kerdock OA(2*™ 22M 2 5), and then projected down todi-
mensions.

If 22M < n < 22M4 2™ then the[22™1 4m+ 3,6, BCH
code can be reduced by half by carefully choosing the projec-
tion. The code has a vector of weigft™2- 2™, so whem is
only slightly larger than 2", we can choose a projection that
annihilates this vector.

In each of the three cases, the result is a formula with 2
2n points. O

Actually, TheoreniZ3]1 is not quite optimal, because it uses
a convenient set of good distance-6 linear codes and non-
linear strength-5 orthogonal arrays rather than the bes$ on

In this section we will consider some examples and spepresently known. A complicated map of the best presently

cial constructions with concern for constant factors. s t

known linear codes ovéf, of lengthn < 256 is provided by

purpose, we spell out more precisely the notion of an orthogthe “best codes” functions in Magmia [22]. Undoubtedly this

onal array. LetA be a finite set. If a subs&t C A" has the
property that its projectioX — A' is a constant-to-1 map for
every|l| <t, thenT is anorthogonal arrayof strengttt, or an
OA(|T|,n,|A[,t) [€]. If A=TqandX =C* is the dual of an
[n,k,t]q code, therX is an OAg" K n,g,t —1). We will also
say thatX is an[n,n—Kk,t*]q to refer to its linear structure and
indicate its dual distance.

If |S| =qis a prime power antlis fixed, then BCH codes
are the best presently knowig-linear orthogonal arrays in the
limit n — oo, But a few non-linear arrays are slightly better.

A Hadamard matrixof ordern is ann x n matrix with en-

map could be augmented by non-linear orthogonal arrays, but
we know of no effort to do so. Whemis a power of 2, Ker-
dock and BCH codes are the best presently known choices.
Victoir [21] also established Theoreini B.1 (with BCH
codes). Ifn= 2™ and Stroud’s formulas fo8"! is thinned
using a BCH code, it then has equal weights and is therefore a
5-design. Interestingly, in this case it has a transitivarsye-
try group and was previously found by Calderbank, Hardin,
Rains, Shor, and Sloarle [3]. Similar constructions weradou
by Konig |12], by Sidelnikovi[19], and by Schechtman, inter
preting work of Hajelal[8].

tries +1 and with orthogonal rows (and therefore orthogonal \we can obtain a good 3-cubature formula for the dDbley
columns as well). Itis easy to show that a Hadamard matrix ig, straightforward application of Theor&mll.2 using the B¥po

equivalentto an O&n,n,2,3). A 2™ m+ 1,4*], BCH code,

Gaussian quadrature formulafor the inteffval, 1]. Thinning

which is also called a first-order Reed-Muller code, yields athe product formula using a BCH code yields & 2point

Hadamard matrix of order™2 But there are also Hadamard
matrices for other values of for example whenhandn—1

formulawhen 2-1 < n< 2. Whenn= 2, or more generally
whenever there is a Hadamard matrix of ordgthe product

is prime. The Hadamard conjecture asserts that there is f@rmula can be thinned to then&ertices of a certain regular

Hadamard matrix of every orderdivisible by 4.

For any everm > 4, there is a Kerdock code which is a
non-linear OA22M, 2™ 2 5). It has% as many points as the
corresponding2™ 2m+ 1,6%], BCH code|[L| B 11]. For any

cross-polytope insid€,. A formula due to Stroud,:3-1
[20, p. 230]) also uses the vertices of a regular cross-ppéjt
but not the same one.

We can obtain a 3-cubature formula wi(n) points for

evenm > 6, there is a Delsarte-Goethals code which is a nona, _, with a similar construction. Using known Hadamard ma-

linear OA(23™2,2™ 2,7) [£]. It has; as many points as the
corresponding2™, 3m+ 1,8], BCH code.

trices, the formula has3t o(n) points; if the Hadamard con-

jecture holds, it has betweem3 1 and 31+ 5 points. First,

The following result comes from thinning some cubaturethe positive rayR-o with exponential weight has a equal-
formulas of Stroud, some of whose points have a producfeight 2-quadrature formula with points at 0 and 2. If we ap-

structure.

Theorem 3.1. Letn> 6 and let

4m 221 - n< 22m
k={4m+2 22" p<22mom
Im+3 22My oM < 22mtl

Then the sphere’St, R" with Gaussian measure, and the ball
B, admit QLPI 5-cubature formulas witek + 2n points.

Proof. The formulas$,:5-3, Un:5-2 and E,’12:5—3 listed in
Stroud [20, pp. 270,294,317] hav8 2 2n points with 2' of

them lying on the vertices of a cube. Thedgppints can be
thinned to either thé22™1 4m+ 3,6*], BCH code, or the

ply Theoreni_IH to this formula and a Hadamard matrix of or-
dern, the result is a @-point formulaF onRZ, which also has
degree 2. However, if our interest is integration/gn ;, we
need only consider homogeneous polynomial&Rdy. The
formulaF correctly integrates every degree 3 monomial other
thanx®. We can fixF for these monomials, without changing
its sum forx?x; or x;XjX«, by adding a point atL,0,0,....) (and
permutations) with weight 2.

The projected formula of,,_1 consists of these points and
weights in barycentric coordinates:

2
) 2(170727"'70)5 Wg(nm
(ﬁ?ﬁ""aﬁaoaoa"'ao)H W .
(l i l) 4
n n’ccton (n+1)(n+2)



The subscript “S” denotes full symmetrization, as in Streud If a linear action of a finite groufs preservesu, then a cu-
notation. The subscript “H” denotes symmetrization in thebature formula consisting of orbits G need only be checked
pattern of a Hadamard design. (See Sedibn 4.) This prdor G-invariant polynomials. Victoir extends Sobolev’s the-
duces a formula with3— 1 points provided that there exists orem with aG-invariant generalization of Tchakaloff’s theo-

a Hadamard matrix of order. When there is none, we can rem: A Pl cubature formula only needs as many orbits as the
use a Hadamard matrix of ordér> n. The formula omy,_;  dimension ofR[X/S,, the space oG-invariant polynomials of
with 3¢ — 1 points can be projected ondg_3, as in the proof degree at most. One important special case is whénis

of TheorenTIB. We can take= n+o(n) by letting/—1  the 2-element central symmetry group.plfis a measure on

be the first prime aften which is 3 mod 4. If the Hadamard R" with central symmetry andis odd, the bound from this
conjecture holds, we can take= 4[n/4]. version of Tchakaloff's theorem B(nt~1) points.

Stroud asked for a practical, Pl 5-cubature formulagy. Even if a cubature formul uses very few orbits o6

Foliowing Theoren I3, we can find one by thinning thesome of the orbits might be very large. Victoir proposes-thin

product formula coming from the 4-point Chebyshev quadra-_. : :
ture on[-1,1]. This product formula is the convolution of ning each large orbit separately. He notes that this can be

| . o : done using linear programming, among other methods; linear
200 pairs of points, so we can thin it using the Kerdock ' : .
OA(ZQG 28 o 5';’ projected to 200 dimensionnghe cubatureProdramming on a set @-orbits should be much easier than
formule{ th’er’efo,re has'® — 65536 points which would have general numerical methods to find positive cubature forswula

— n; i i
been fairly practical even in 1971 when Stroud asked the—quefor K. If G=(Z/2)"is the group of independent sign changes

; : f all n coordinates, then an orbit @ is a Cartesian power
tion. (The Kerdock code used here was discovered shortly a2 1 be identified WitﬁFlé for somek < n. In this case Victoir

terward [11], but the BCH codes was known in 1959 [2, 10].) ;
L o2 N found the constructions of Theorémll.1 and Thedrein 1.2. (In
Victoir [21] found another thinning of the same Chebyshevthe case of 5-cubature @, he found a special construction(

o : . )
Fr:ggtl:g(tjE?]rmglgrgt\?efsi;n10?1;;21: g(r)mts, which the au- i O(n?) points with elements of both Theoréml1.1 and the
Paper. rn-cube case of Theordm1.3.)

Note that the Chebyshev-Kerdock 5-cubature formula fo
Ci00 is overdetermined. The threshold of exact determina- If G is the group of coordinate permutations, then an orbit
tion for centrally symmetric 5-cubature formulas 6o is ~ whose points have two distinct coordinates can be identified
87651 points. Meanwhile the centrally symmetric TchaKalof with the set ofk-subsets of am-set. A geometri¢-designT
bound is 8852652 points, while the Stroud lower bound iswithin this orbit is also a traditional combinatorigdesign,
5050 points. or an(n,k,t) — A design. NamelyT is a collection of blocks

Finally Schirerl[1i7] compared the numerical accuracy ofof sizek in a set ofn such that each-subset is contained
various cubature and quasi-Monte-Carlo methods for tiee int in exactly A blocks. In particular, arin,J,3) — 7 design is
gration of various test functions defined 6pwith 2 < n < called aHadamard desigrbecause it comes from the rows of
100. He assumed a more modern limit 8P 2valuations of ~a Hadamard matrix.
the integrand. For much of this test regime we can suggest the
following cubature formulas: Start with the power of the €on
volutional 7-quadrature formula[13] f¢+ 1, 1], whose points
are approximately at

These constructions motivate the notion of a weighted or-
thogonal array. We define it as a finite geand a measure

U on A" that projects to uniform measure on eathwith

[l| <t. More generallyu might project tocg" for some ref-
erence measurg on S. Such arrays could improve of The-
orem[I1; the factor formulas would not need to have equal

Then thin then-fold product power of this formula using a Weights.
Delsarte-Goethals code. The result is an El 7-cubature for- Finally, cubature formulas coming from TheorEm 1.1 could
mula with at most 2% points up to dimensiofn256/3| =85.  be viewed as quasi-Monte-Carlo methods. They are simi-
lar to some constructions df,m, s)-nets, which are quasi-
Monte-Carlo methods first defined and largely developed by
4. OTHER COMMENTS Niederreiter [15]. Nonetheless PI cubature formulas and
discrepancy-based quasi-Monte-Carlo methods are thaoight
Victoir [21] proposes thinning symmetric cubature formu- have complementary advantages [17]. We believe that the im-
las rather than product or convolution formulas. The emapli proved asymptotics presented here could change the standin
result of symmetric cubature formulas is Sobolev’s theoremof cubature among numerical methods for integration.
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