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EXISTENCE OF EIGENVALUES OF A LINEAR OPERATOR
PENCIL IN A CURVED WAVEGUIDE—LOCALIZED SHELF WAVES

ON A CURVED COAST∗
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Abstract. The question of the existence of nonpropagating, trapped continental shelf waves
(CSWs) along curved coasts reduces mathematically to a spectral problem for a self-adjoint operator
pencil in a curved strip. Using methods developed for the waveguide trapped mode problem, we
show that such CSWs exist for a wide class of coast curvature and depth profiles.
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1. Introduction. Measurements of velocity fields along the coasts of oceans
throughout the world show that much of the fluid energy is contained in motions
with periods of a few days or longer. The comparison of measurements at different
places along the same coast shows that in general these low-frequency disturbances
propagate along coasts with shallow water to the right in the northern hemisphere
and to the left in the southern hemisphere. These waves have come to be known as
continental shelf waves (CSWs). The purpose of the present paper is to demonstrate,
using the most straightforward model possible, the possibility of nonpropagating,
trapped CSWs along curved coasts. The existence of such nonpropagating modes
would be significant as they would tend to be forced by atmospheric weather systems,
which have similar periods of a few days, similar horizontal extent, and a reasonably
broad spectrum in space and time. Areas where such modes were trapped would thus
appear to be likely to show higher than normal energy in the low-frequency horizontal
velocity field.

The simplest models for CSWs take the coastal oceans to be inviscid and of con-
stant density. Both these assumptions might be expected to fail in various regions
such as when strong currents pass sharp capes or when the coastal flow is strongly
stratified. However, for small-amplitude CSWs in quiescent flow along smooth coasts,
viscous separation is negligible. Similarly most disturbance energy is concentrated in
the modes with the least vertical structure, which are well described by the constant
density model [LBMy]. The governing equations are then simply the rotating incom-
pressible Euler equations. Further, coastal flows are shallow in the sense that the ratio
of depth to typical horizontal scale is small. Expanding the rotating incompressible
Euler equations in powers of this ratio and retaining only the leading order terms
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gives the rotating shallow water equations [Pe]:

∂u

∂t
+ u · gradu − 2Ωk × u = −g grad H̃,(1.1)

∂H̃

∂t
+ div[(H̃ + H)u] = 0.(1.2)

Here div and grad are taken with respect to horizontal coordinates (x, y) in a frame
fixed to the rotating Earth, k is a vertical unit vector, u(x, y, t) is the horizontal
velocity (with components u = (u, v)), Ω is the (locally constant) vertical component

of the Earth’s rotation, g is the gravitational acceleration, H̃(x, y, t) is the vertical
displacement of the free surface, and H(x, y) is the local undisturbed fluid depth.

System (1.1), (1.2) admits waves of two types, denoted Class 1 and Class 2 by
[La]. Class 1 waves are fast high-frequency waves, the rotation-modified form of the
usual free surface water waves, although here present only as long, nondispersive
waves with speeds of order

√
gH. Class 2 waves are slower, low-frequency waves that

vanish in the absence of depth change or in the absence of rotation. It is the Class 2
waves that give CSWs. They have little signature in the vertical height field H̃(x, y, t)
and are observed through their associated horizontal velocity fields [Ha]. The Class 1
waves can be removed from (1.1), (1.2) by considering the “rigid-lid” limit, where
the external Rossby radius

√
gH/2Ω (which gives the relaxation distance of the free

surface) is large compared to the horizontal scale of the motion. This is perhaps the
most accurate of the approximations noted here, causing the time-dependent term to
vanish from (1.2) and the right side of (1.1) to become a simple pressure gradient.

For small amplitude waves the nonlinear terms in (1.1), (1.2) are negligible, and
cross-differentiating gives

∂ζ

∂t
+ 2Ωdivu = 0,(1.3)

div(Hu) = 0,(1.4)

where ζ = ∂v
∂x − ∂u

∂y is the vertical component of relative vorticity. Equation (1.4) is
satisfied by introducing the volume flux streamfunction defined through

Hu = −∂ψ

∂y
, Hv =

∂ψ

∂x
,(1.5)

allowing (1.3) to be written as the single equation

div

(
1

H
grad

∂ψ

∂t

)
+ 2Ωk · gradψ × grad

(
1

H

)
= 0.(1.6)

Equation (1.6) is generally described as the topographic Rossby wave equation or
the equation for barotropic CSWs. Many solutions have been presented for straight
coasts, where the coast lies along y = 0 (say) and the depth H is a function of
y alone (described as rectilinear topography here) [LBMy]. These have shown ex-
cellent agreement with observations of CSWs, as in [Ha]. There has been far less
discussion of nonrectilinear geometries, where either the coast or the depth profile or
both are not functions of a single coordinate. Yet interesting results appear. The
papers [StHu1], [StHu2] present extensive numerical integrations of a low-order spec-
tral model of a rectangular lake with idealized topography. For their chosen depth
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profiles normal modes can be divided into two types: basin-wide modes which extend
throughout the lake and localized bay modes. These bay modes correspond to the
high-frequency modes found in a finite-element model of Lake Lugarno by [Tr] and
observed by [StHuSaTrZa]. The papers [Jo2], [StJo1], [StJo2] give a variational for-
mulation and describe simplified quasi-analytical models that admit localized trapped
bay modes. However the geometry changes in these models are large, with the sloping
lower boundary terminating abruptly where it strikes a coastal wall. Further [Jo1]
notes that (1.6) is invariant under conformal mappings and so any geometry that can
be mapped conformally to a rectilinear shelf cannot support trapped modes. The
question thus arises as to whether it is only for the most extreme topographic changes
that shelf waves can be trapped or whether trapping can occur on smoothly varying
shelves. The purpose of this paper is to provide the answer: trapped modes can exist
on smoothly curving coasts.

The geometry considered here is that of a shelf of finite width lying along an
impermeable coast. Thus sufficiently far from the coast the undisturbed fluid depth
becomes the constant depth of the open ocean. It is shown in [Jo3] that at the shelf-
ocean boundary of finite-width rectilinear shelves the tangential velocity component u
vanishes for waves sufficiently long compared to the shelf width. The wavelength of
long propagating disturbances is proportional to their frequency which is in turn pro-
portional to the slope of the shelf. Thus it appears that for sufficiently weakly sloping
shelves the tangential velocity component, i.e., the normal derivative of the stream-
function, at the shelf-ocean boundary can be made arbitrarily small. Here this will be
taken as also giving a close approximation to the boundary condition at the shelf-ocean
boundary when this boundary is no longer straight. The unapproximated boundary
condition is that the streamfunction and its normal derivative are continuous across
the boundary where they match to the decaying solution of Laplace’s equation (to
which (1.6) reduces in regions of constant depth). This gives a linear integral condi-
tion along the boundary. The unapproximated problem will not be pursued further
here. The boundary condition at the coast is simply one of impermeability and thus
on both rectilinear and curving coasts is simply that the streamfunction vanishes.
Now consider flows of the form

ψ(x, y, t) = Re{Φ(x, y) exp(−2iωΩt)},(1.7)

so Φ(x, y) gives the spatial structure of the flow and ω its nondimensional frequency.
Then Φ satisfies

1

H
Δ Φ + grad

(
1

H

)
· gradΦ +

i

ω
k ·

(
gradΦ × grad

(
1

H

))
= 0,(1.8)

Φ = 0 at the coast,(1.9)

n̂ · gradΦ = 0 at the shelf-ocean boundary,(1.10)

where vector n̂ is normal to the shelf-ocean boundary.
Mathematically, we are going to study the existence of trapped modes (i.e., the

eigenvalues either embedded into the essential spectrum or lying in the gap of the
essential spectrum) for the problem (1.8)–(1.10) in a curved strip. Similar problems
for the Laplace operator have been extensively studied in the literature—either in
a curved strip, in a straight strip with an obstacle, or in a strip with compactly
perturbed boundary. In the case of Laplacians with Dirichlet boundary conditions
these problems are usually called “quantum waveguides”; the Neumann case is usu-
ally referred to as “acoustic waveguides.” The important result concerning quantum
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waveguides was established in [ExSe], [DuEx]: in the curved waveguides there always
exists a trapped mode. Later this result was extended to more general settings; in
particular, in [DiKr] (see also [KrKr]) it was shown that in the case of mixed boundary
conditions (i.e., Dirichlet conditions on one side of the strip and Neumann conditions
on the other side) trapped modes exist if the strip is curved “in the direction of the
Dirichlet boundary.”

The case of acoustic waveguides is more complicated because any eventual eigen-
values are embedded into the essential spectrum and are, therefore, highly unstable.
Therefore, it is believed that in general the existence of trapped modes in this case is
due to some sort of the symmetry of the problem (see [EvLeVa], [DaPa], [AsPaVa]).

In the present paper we use an approach similar to the one used in [DuEx] and
[EvLeVa]; however, we have to modify this approach substantially due to the fact
that we are working with a spectral problem for an operator pencil rather than that
for an ordinary operator.

The rest of the paper is organized in the following way. In section 2, we discuss the
rigorous mathematical statement of the problem; in section 3, we study the essential
spectrum; and in section 4, we state and prove the main result on the existence
of a discrete spectrum (Theorem 4.1). In particular we show that a trapped mode
always exists if all of the following conditions are satisfied: (a) the depth profile H
does not depend upon the longitudinal coordinate and is monotone increasing and
logarithmically concave in the direction perpendicular to the coast; (b) the channel
is curved in the direction of the Dirichlet boundary; (c) the curvature is sufficiently
small.

Similar results can be obtained in a straight strip if the depth profile H depends
nontrivially upon the longitudinal coordinate; we however do not discuss this problem
here.

2. Mathematical statement of the problem.

2.1. Geometry. The original geometry is a straight planar strip of width δ:

G0 = {(x, y) : x ∈ R, y ∈ (0, δ)}.

Deformed geometry G is assumed to be a curved planar strip of constant width δ.
To describe it precisely, we introduce the curve Γ = {(x = X(ξ), y = Y (ξ))}, ξ ∈ R,
where ξ is a natural arc-length parameter, i.e., X ′(ξ)2 + Y ′(ξ)2 ≡ 1. By

γ(ξ) = X ′′(ξ)Y ′(ξ) −X ′(ξ)Y ′′(ξ)(2.1)

we denote a (signed) curvature of Γ (see Figure 1 and Remark 2.2). Note that |γ(ξ)|2 =
X ′′(ξ)2 + Y ′′(ξ)2.

We additionally assume

supp γ � [−R,R] for some R > 0,(2.2)

and set

κ+ = sup
ξ∈[−R,R]

γ(ξ), κ− = − inf
ξ∈[−R,R]

γ(ξ).(2.3)

We shall assume throughout the paper the smoothness condition

γ ∈ C∞(R),(2.4)

which can be obviously softened.
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Fig. 1. Domain G and curvilinear coordinates ξ, η. The solid line denotes the boundary
∂1G with the Dirichlet boundary condition, and the dotted line denotes the boundary ∂2G with the
Neumann boundary condition.

Now we can introduce, in a neighborhood of Γ, the curvilinear coordinates (ξ, η)
as

x = X(ξ) − ηY ′(ξ), y = Y (ξ) + ηX ′(ξ),(2.5)

(where η is a distance from a point (x, y) to Γ) and describe the deformed strip G in
these coordinates as

G = Gγ = {(ξ, η) : ξ ∈ R, η ∈ (0, δ)}.(2.6)

Remark 2.1. As sets of points, Gγ ≡ G0 for any γ, but the metrics are different,
see below. We shall often omit the index γ if the metric is obvious from the context.

Remark 2.2. Often one chooses the opposite sign in the definition of the signed
curvature γ in (2.1). Our choice, though not canonical, is made to match the one in
[ExSe].

To avoid local self-intersections, we must restrict the width of the strip by natural
conditions

κ± ≤ Aδ−1, A = const ∈ [0, 1).(2.7)

We shall also assume throughout, without stating it explicitly, that G does not self-
intersect globally, i.e., the mapping (ξ, η) �→ (x, y) given by (2.5) is an injection on G.

Finally, it is an easy computation to show that the Euclidean metric in the curvi-
linear coordinates has a form dx2 + dy2 = gdξ2 + dη2, where

g(ξ, η) = (1 + ηγ(ξ))2.

Later on, we shall widely use the notation

p(ξ, η) = (g(ξ, η))1/2 = 1 + ηγ(ξ).(2.8)

Note that in all the volume integrals,

dGγ = p(ξ, η) dξ dη = (1 + ηγ(ξ)) dξ dη = p(ξ, η) dG0.
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2.2. Governing equations. For a given positive continuously differentiable
function H(ξ, η) (describing a depth profile), we are looking for a function Φ(ξ, η)
satisfying (1.8) with spectral parameter ω.

By substituting

β(ξ, η) := lnH(ξ, η),(2.9)

and using explicit expressions for differential operators in curvilinear coordinates, we
can rewrite (1.8) as

ω

(
− 1

p2

∂2Φ

∂ξ2
− ∂2Φ

∂η2
+

(
1

p3

∂p

∂ξ
+

1

p2

∂β

∂ξ

)
∂Φ

∂ξ
+

(
∂β

∂η
− 1

p

∂p

∂η

)
∂Φ

∂η

)
=

i

p

(
∂β

∂ξ

∂Φ

∂η
− ∂β

∂η

∂Φ

∂ξ

)
.

(2.10)

Remark 2.3. When deducing (2.10), we have cancelled, on both sides, a common
positive factor h(ξ, η) := 1

H(ξ,η) = e−β(ξ,η). However, we have to use this factor when

considering corresponding variational equations, in order to keep the resulting forms
symmetric. This leads to a special choice of weighted Hilbert spaces below.

Further on, we consider only the case of a longitudinally uniform monotone depth
profile,

β(ξ, η) ≡ β(η), β′(η) > 0,(2.11)

in which case (2.10) simplifies to

ω

(
− 1

p2

∂2Φ

∂ξ2
− ∂2Φ

∂η2
+

1

p3

∂p

∂ξ

∂Φ

∂ξ
+

(
β′ − 1

p

∂p

∂η

)
∂Φ

∂η

)
= − i

p
β′ ∂Φ

∂ξ
,

(2.12)

with β′ = dβ
dη .

2.3. Boundary conditions. Let ∂1G = {(ξ, 0) : ξ ∈ R} and ∂2G = {(ξ, δ) :
ξ ∈ R} denote the lower and the upper boundary of the strip G, respectively. Bound-
ary conditions (1.9), (1.10) then become

Φ|∂1G =
∂Φ

∂η

∣∣∣∣
∂2G

= 0.(2.13)

Remark 2.4. If the flow is confined to a channel, then the Dirichlet boundary
condition (1.9) applies on both channel walls. This leads to a mathematically different
problem which we do not consider in this paper.

2.4. Function spaces and rigorous operator statement. We want to dis-
cuss the function spaces in which everything acts. Let us denote by L2(G;h) the
Hilbert space of functions φ : G → C which are square-integrable on G with the
weight h(η) ≡ 1

H = exp(−β(η)):

‖φ‖2
L2(G;h) =

∫
G

|φ(ξ, η)|2 h(η) dG =

∫
R

∫ δ

0

|φ(ξ, η)|2 h(η)p(ξ, η) dη dξ < ∞.
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The corresponding inner product will be denoted 〈·, ·〉L2(G;h). Similarly we can define
the space L2(F ;h) for an arbitrary open subset F of G.

Let us formally introduce the operators

Lγ : Φ �→ − 1

p2

∂2Φ

∂ξ2
− ∂2Φ

∂η2
+

1

p3

∂p

∂ξ

∂Φ

∂ξ
+

(
β′ − 1

p

∂p

∂η

)
∂Φ

∂η

and

Mγ : Φ �→ − i

p
β′ ∂Φ

∂ξ
.

(The dependence on γ is of course via p; see (2.8).) Then (2.12) can be formally
rewritten as

ωLγΦ = MγΦ,(2.14)

or via an operator pencil

Aγ ≡ Aγ(ω) = ωLγ −Mγ(2.15)

as

Aγ(ω)Φ = 0.(2.16)

The domain of the pencil Aγ in the L2-sense is naturally defined as

Dom(Aγ) = {Φ ∈ H2(G), Φ satisfies (2.13)},(2.17)

where H2 denotes a standard Sobolev space.
On the domain (2.17), Mγ is symmetric, and Lγ is symmetric and positive in the

sense of the scalar product 〈·, ·〉L2(G;h), with

〈LγΦ,Φ〉L2(G;h) =

∫
R

∫ δ

0

(
1

p

∣∣∣∣∂Φ

∂ξ

∣∣∣∣2 + p

∣∣∣∣∂Φ

∂η

∣∣∣∣2
)

e−β dη dξ.

Later on, we shall use a weak (or variational) form of (2.16), and shall require
some other function spaces described below. Let F ⊆ G, and suppose its boundary is
decomposed into two disjoint parts: ∂F = ∂1F 
 ∂2F . We introduce the space

C̃∞
0 (F ; ∂1F ) = {φ ∈ C∞(F ) : suppφ ∩ ∂1F = ∅,

and there exists r > 0 such that φ(ξ, η) = 0 for (ξ, η) ∈ F, |ξ| ≥ r}

consisting of smooth functions with compact support vanishing near ∂1F .

By H̃1
0 (F ; ∂1F ;h) we denote the closure of C̃∞

0 (F ; ∂1F ) with respect to the scalar
product

〈φ, ψ〉
H̃1

0 (F,∂1F ;h)
= 〈φ, ψ〉L2(F ;h) + 〈gradφ,gradψ〉L2(F ;h).

In what follows we shall study the operators Lγ , Mγ and the pencil Aγ from a
variational point of view. The details are given in the next section; here we note only
that from now we understand the expression 〈LγΨ,Ψ〉L2(Gγ ,h) as the quadratic form

for the operator Lγ , with the quadratic form domain H̃1
0 (G; ∂1G;h).
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The main purpose of this paper is to study the spectral properties of the operator
pencil Aγ . We recall the following definitions.

A number ω ∈ C is said to belong to the spectrum of Aγ (denoted spec(Aγ)) if
Aγ(ω) is not invertible.

It is easily seen that in our case the spectrum of Aγ is real.
We say that ω ∈ R belongs to the essential spectrum of the operator pencil Aγ

(denoted ω ∈ specess(Aγ)) if for this ω the operator Aγ(ω) is non-Fredholm.
We say that ω ∈ C belongs to the point spectrum of the operator pencil Aγ

(denoted ω ∈ specpt(Aγ)), or, in other words, say that ω is an eigenvalue, if for this ω
there exists a nontrivial solution Ψ ∈ Dom(Aγ) of the problem Aγ(ω)Ψ = 0.

It is known that the essential spectrum is a closed subset of R, and that any
point of the spectrum outside the essential spectrum is an isolated eigenvalue of finite
multiplicity. The set of all such points is called the discrete spectrum, and will be
denoted specdis(Aγ). There may, however, exist the points of the spectrum which
belong to both the essential spectrum and the point spectrum.

Our main result (Theorem 4.1 below) establishes some conditions on the curva-
ture γ of the waveguide which guarantee the existence of eigenvalues of Aγ .

It is more convenient to deal with problems of this type variationally, and we start
the next section with an abstract variational scheme suitable for self-adjoint pencils
with nonempty essential spectrum.

3. Essential spectrum.

3.1. Variational principle for the essential spectrum.
Definition 3.1. We set, for j ∈ N,

μγ,j = sup
U⊂H̃1

0 (G;∂1G;h)
dimU=j

inf
Ψ∈U,Ψ �=0

〈MγΨ,Ψ〉L2(Gγ ,h)

〈LγΨ,Ψ〉L2(Gγ ,h)
.(3.1)

As 〈LγΨ,Ψ〉L2(Gγ ,h) is positive, the right-hand side of (3.1) is well defined, though
the numbers μγ,j may a priori be finite or infinite.

Obviously, for any fixed curvature profile γ the numbers μγ,j form a nonincreasing
sequence:

μγ,1 ≥ μγ,2 ≥ · · · ≥ μγ,j ≥ μγ,j+1 ≥ · · · .
Definition 3.2. Denote

μγ = lim
j→∞

μγ,j .(3.2)

For general self-adjoint operator pencils the analogue of (3.2) may be finite or
equal to ±∞; as we shall see below, in our case μγ is finite.

The following result is a modification, to the case of an abstract self-adjoint linear
pencil, of the general variational principle for a self-adjoint operator with an essential
spectrum; see [Da, Prop. 4.5.2].

Proposition 3.3. Either
(i) μγ > −∞, and then sup specess(Aγ) = μγ ,

or
(ii) μγ = −∞, and then specess(Aγ) = ∅.

Moreover, if μγ,j > μγ , then μγ,j ∈ specdis(Aγ).
Proposition 3.3 ensures that we can use the variational principle (3.1) in order to

find the eigenvalues of the pencil Aγ lying above the supremum μγ of the essential
spectrum.
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3.2. Essential spectrum for the straight strip. The spectral analysis in the
case of a straight strip (γ ≡ 0) is rather straightforward as the problem admits in this
case the separation of variables.

Let us seek the solutions of (2.12), (2.13) in the case of a straight strip (γ ≡ 0,
and so p ≡ 1) in the form

Φ(ξ, η) = φ(η) exp(iαξ);(3.3)

it is sufficient to consider only real values of α.
After separation of variables, (2.12), (2.13) are written, for each α, as a one-

dimensional transversal spectral problem

ω(−φ′′ + β′φ′ + α2φ) = αβ′φ, φ(0) = φ′(δ) = 0.(3.4)

Alternatively, introduce operators

lα : φ �→ −φ′′ + β′φ′ + α2φ, mα : φ �→ αβ′φ,

and a pencil

aα(ω) = ωlα − mα,

(again understood in an L2((0, δ);h) sense with the domain defined similarly to
(2.17)), and consider a one-dimensional operator pencil spectral problem aα(ω)φ = 0.

For a fixed value of α, the one-dimensional linear operator pencil (3.4) has the
essential spectrum {0} and a discrete spectrum spec(aα); note that

spec(a−α) = − spec(aα).(3.5)

Denote, for α > 0, the top of the spectrum of this transversal problem by ωα =
sup spec(aα).

Lemma 3.4. Let α > 0. Then, under condition (2.11),
(i) spec(aα) ⊂ [0,+∞);
(ii) 0 < ωα < +∞;
(iii) ωα → +0 as α → ∞.
Proof. By the variational principle analogous to Proposition 3.3(i),

ωα = sup
φ∈H̃1

0 ((0,δ),0,h)
φ�=0

Jα(φ),

where we set

Jα(φ) =
〈mαφ, φ〉L2((0,δ),h)

〈lαφ, φ〉L2((0,δ),h)
=

∫ δ

0

αβ′(η)φ(η)2h(η) dη∫ δ

0

(−φ′′(η) + β′(η)φ′(η) + α2φ(η))φ(η)h(η) dη

.(3.6)

After integrating by parts using h(η) = e−β(η) and inverting the quotient, we get

Jα(φ) =

(
αJ (1)(φ) +

1

α
J (2)(φ)

)−1

,(3.7)
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where we denote

J (1)(φ) =

∫ δ

0

e−β(η)|φ(η)|2 dη∫ δ

0

β′(η)e−β(η)|φ(η)|2 dη

and

J (2)(φ) =

∫ δ

0

e−β(η)|φ′(η)|2 dη∫ δ

0

β′(η)e−β(η)|φ(η)|2 dη

.

The statements (ii) and (iii) of the lemma now follow immediately from the estimates

J (1)(φ) ≥
inf

η∈(0,δ)
e−β(η)

sup
η∈(0,δ)

(β′(η)e−β(η))

and

J (2)(φ) ≥ π2

4δ2

inf
η∈(0,δ)

e−β(η)

sup
η∈(0,δ)

(β′(η)e−β(η))
,

where the latter inequality uses the variational principle and the fact that the principal

eigenvalue of the mixed Dirichlet–Neumann spectral problem for the operator − d2

dη2

on the interval (0, δ) is equal to π2

4δ2 . The statement (i) follows from the positivity of
the right-hand side of (3.7).

We are now able to find the essential spectrum of the problem in a straight strip.
Lemma 3.5. Assume that conditions (2.11) hold. Then

specess(A0) = [−Ω∗,Ω∗],(3.8)

where

Ω∗ = sup
φ∈H̃1

0 ((0,δ),0,h)

1

2

∫ δ

0

β′(η)e−β(η)|φ(η)|2 dη√∫ δ

0

e−β(η)|φ′(η)|2 dη ·
∫ δ

0

e−β(η)|φ(η)|2 dη

> 0.(3.9)

Proof. It is standard that

specess(A0) =
⋃
α∈R

spec(aα).

Thus, by Lemma 3.4, and with account of the antisymmetry of the spectrum of aα

with respect to α and its positivity for α > 0, we have

sup specess(A0) = sup
α>0

ωα = sup
α>0

sup
φ∈H̃1

0 ((0,δ),0,h)

Jα(φ).
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By maximizing first with respect to α, we obtain, from (3.7),

Jα(φ) ≤ Jα∗(φ)(φ)

with the maximizer

α∗(φ) =

√
J (2)(φ)

J (1)(φ)
.

Maximizing now with respect to φ gives sup specess(A0) = Ω∗, with Ω∗ given by
(3.9). Finally, we note that ωα depends continuously on α > 0. Since ωα → +0 as
α → +∞ by Lemma 3.4(iii), ωα thus takes all the values in (0,Ω∗]. Therefore, the
closed interval [0,Ω∗] lies in specess(A0). By symmetry (3.5), we also have [−Ω∗, 0] ⊂
specess(A0), which finishes the proof.

3.3. Essential spectrum for a curved strip. It is now a standard procedure
to show that under our conditions the essential spectrum of the problem in a curved
strip coincides with the essential spectrum of the problem in a straight strip given by
Lemma 3.5. Namely, we have the following.

Lemma 3.6. Let us assume conditions (2.2), (2.4), and (2.11) hold. Then

specess(Aγ) = specess(A0) = [−Ω∗,Ω∗]

with Ω∗ given by (3.9).
The proof is based on the fact that any solution of the problem (2.12), (2.13) with

γ �≡ 0 (and thus p �≡ 1) should coincide in

G ∩ {|ξ| > R > max(|inf supp γ|, |sup supp γ|)}

with a solution of the same problem for γ ≡ 0. An analogous result has been proved in
a number of similar situations elsewhere (see, e.g., [ExSe], [EvLeVa], [DaPa], [KrTA]),
so we omit the details of the proof. We briefly note that the inclusion specess(Aγ) ⊆
specess(A0) is proved using the separation of variables as above and a construction
of appropriate Weyl’s sequences, and in order to prove the inclusion specess(Aγ) ⊇
specess(A0) one can use the Dirichlet–Neumann bracketing and the discreteness of the
spectrum of the problem (2.12), (2.13) considered in G ∩ {|ξ| < R} with additional
Dirichlet or Neumann boundary conditions imposed on the “cuts” {ξ = ±R}.

4. Main result. Our main result consists in stating some sufficient conditions
on the depth profile β(η) and the curvature profile γ(ξ) which guarantee the existence
of an eigenvalue of the pencil Aγ lying outside the essential spectrum.

Theorem 4.1. Assume, as before, that condition (2.11) holds. Assume addition-
ally that

β′′(η) < 0 for η ∈ (0, δ).(4.1)

Then there exists a constant Cβ > 0, which depends only on the depth profile β, such
that specdis(Aγ) �= ∅ whenever γ satisfies conditions (2.2), (2.4), and∫

γ(ξ) dξ > Cβ

∫
γ(ξ)2 dξ.(4.2)

We give an explicit expression for Cβ below; see (4.15).
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An integral sufficient condition (4.2) may be replaced by a pointwise, although
more restrictive, condition.

Corollary 4.2. Assume that conditions (2.11) and (4.1) hold. Then there exists

a constant cβ,R =
Cβ

2R which depends only on the depth profile β and a given R > 0
such that specdis(Aγ) �= ∅ whenever γ �≡ 0 satisfies conditions (2.2), (2.4), and

0 ≤ γ(ξ) < cβ,R for |ξ| ≤ R.(4.3)

We prove Theorem 4.1 using a number of simple lemmas, the central of which is
the following.

Lemma 4.3. Suppose there exists a function Ψ̃ ∈ H̃1
0 (Gγ , h) such that

〈MγΨ̃, Ψ̃〉L2(Gγ ,h)

〈LγΨ̃, Ψ̃〉L2(Gγ ,h)

> Ω∗.(4.4)

Then there exists ω > Ω∗ which belongs to specdis(Aγ).

Lemma 4.3 is just a restatement of the variational principle of Proposition 3.3.
The main difficulty in its application is of course the choice of an appropriate test func-
tion Ψ̃. However such choice becomes much easier if we use the following modification
of this lemma which allows us to consider test functions which are not necessarily
square-integrable on Gγ .

Denote, for brevity, Gr
γ = Gγ ∩ {|ξ| < r}.

Lemma 4.4. Suppose there exist a function Ψ and a constant D such that, for
any r > R, we have Ψ ∈ H̃1

0 (Gr
γ , h) and

〈MγΨ,Ψ〉L2(Gr
γ ,h) − Ω∗〈LγΨ,Ψ〉L2(Gr

γ ,h) ≥ D > 0.(4.5)

Then there exists ω > Ω∗ which belongs to specdis(Aγ).

The proof of Lemma 4.4 uses the construction of an appropriate cutoff function
χ(ξ) such that Ψ̃ = χΨ satisfies the conditions of Lemma 4.3; cf. [DaPa, Prop. 1].

We now proceed as follows.

Let φ∗(η) be a maximizer in (3.9), and set

Ψ(ξ, η) = φ∗(η)e
iα•ξ,

where

α• = α∗(φ∗) =

√
J (2)(φ∗)

J (1)(φ∗)
.(4.6)

It is important to note that Ψ is in fact an “eigenfunction” of the essential spec-
trum of Aγ corresponding to its highest positive point Ω∗ and that φ∗ is an eigen-
function of (3.4) with α = α• (i.e., of the pencil aα•) again corresponding to the
eigenvalue Ω∗, and so

φ′′
∗ = β′φ′

∗ + (α2
• − Λ∗α•β

′)φ∗, φ∗(0) = φ′
∗(δ) = 0(4.7)

with Λ∗ := 1
Ω∗

(cf. (3.4)).
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For future use, we summarize the relations obtained so far:

L0Ψ = (−φ′′
∗(η) + β′(η)φ′

∗(η) + α•φ∗(η)) eiα•ξ = (lα•φ∗) eiα•ξ,

M0Ψ = α•β
′(η)φ∗(η) eiα•ξ = (mα•φ∗) eiα•ξ,

LγΨ =

(
−φ′′

∗(η) +

(
β′(η) − 1

p(ξ, η)

∂p(ξ, η)

∂η

)
φ′
∗(η)

+

(
iα•

p(ξ, η)3
∂p(ξ, η)

∂ξ
+

α2
•

p(ξ, η)2

)
φ∗(η)

)
eiα•ξ,

MγΨ =
α•

p(ξ, η)
β′(η)φ∗(η) eiα•ξ,

p(ξ, η) = 1 + γ(ξ)η

(with ′ denoting differentiation with respect to η).
It is important to note that for any r > 0,

〈M0Ψ,Ψ〉L2(Gr
0,h)

〈L0Ψ,Ψ〉L2(Gr
0,h)

=
〈mα•φ∗, φ∗〉L2((0,δ),h)

〈lα•φ∗, φ∗〉L2((0,δ),h)
= Ω∗ > 0

and, as explicit formulae above show,

〈MγΨ,Ψ〉L2(Gr
γ ,h) = 〈M0Ψ,Ψ〉L2(Gr

0,h) = α•

∫ r

−r

∫ δ

0

β′(η)e−β(η)|φ∗(η)|2 dη dξ

= 2rα•

∫ δ

0

β′(η)e−β(η)|φ∗(η)|2 dη > 0.

(4.8)

We want to show that under conditions of Theorem 4.1 and with the choice of Ψ
as above, inequality (4.5) holds for any r > R.

In view of (4.8), it is enough to show that

Dγ := 〈LγΨ,Ψ〉L2(Gr
γ ,h) − 〈L0Ψ,Ψ〉L2(Gr

0,h)

is negative for r > R.
Explicit substitution gives, after taking into account the formula∫

1

p(ξ, η)2
∂p(ξ, η)

∂ξ
dξ = 0

(due to (2.2), with account of (2.8)), the following expression:

Dγ =

∫ r

−r

∫ δ

0

γ(ξ)ηe−β(η)|φ′
∗(η)|2 dη dξ −

∫ r

−r

∫ δ

0

α2
•

ηγ(ξ)

1 + ηγ(ξ)
e−β(η)|φ∗(η)|2 dη dξ.

This, in turn, can be rewritten, using the obvious identity

ηγ(ξ)

1 + ηγ(ξ)
= ηγ(ξ) − η2γ(ξ)2

1 + ηγ(ξ)
,

as

Dγ =

∫ r

−r

γ(ξ)

∫ δ

0

ηe−β(η)
(
|φ′

∗(η)|2 − α2
•|φ∗(η)|2

)
dη dξ

+ α2
•

∫ r

−r

∫ δ

0

η2γ(ξ)2

1 + ηγ(ξ)
e−β(η)|φ∗(η)|2 dη dξ.

(4.9)
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We shall deal with the two terms in (4.9) separately.
The first one is more difficult. As (4.6) yields explicitly

α2
• =

∫ δ

0

e−β(η)|φ′
∗(η)|2 dη∫ δ

0

e−β(η)|φ∗(η)|2 dη

,

we get

I1 :=

∫ δ

0

ηe−β(η)
(
|φ′

∗(η)|2 − α2
•|φ∗(η)|2

)
dη

=
1∫ δ

0

e−β(η)|φ∗(η)|2 dη

×
(∫ δ

0

ηe−β(η)|φ′
∗(η)|2 dη ·

∫ δ

0

e−β(η)|φ∗(η)|2 dη

−
∫ δ

0

e−β(η)|φ′
∗(η)|2 dη ·

∫ δ

0

ηe−β(η)|φ∗(η)|2 dη

)
.

(4.10)

We want to show that the term in brackets is negative under some reasonable
assumptions.

Lemma 4.5. Assume that the conditions of Theorem 4.1 hold. Then I1 < 0.
The proof of Lemma 4.5 uses the following simple fact.1

Lemma 4.6. Let (a, b) ⊂ (0,+∞) be a finite interval, and let a function g :
(a, b) → R be nonincreasing. Then(∫ b

a

xg(x)f(x) dx

)
·
(∫ b

a

f(x) dx

)
−
(∫ b

a

g(x)f(x) dx

)
·
(∫ b

a

xf(x) dx

)
≤ 0

for any nonnegative function f : (a, b) → R.
Proof of Lemma 4.6. We have(∫ b

a

xg(x)f(x) dx

)
·
(∫ b

a

f(x) dx

)
−
(∫ b

a

g(x)f(x) dx

)
·
(∫ b

a

xf(x) dx

)

=

∫ b

a

∫ b

a

xg(x)f(x)f(y) dxdy −
∫ b

a

∫ b

a

g(x)f(x)yf(y) dxdy

=

∫ b

a

∫ y

a

(x− y)f(x)f(y)g(x) dxdy +

∫ b

a

∫ b

y

(x− y)f(x)f(y)g(x) dxdy.

Interchanging the variables x and y in the last integral, we obtain that the whole
expression is equal to∫ b

a

∫ y

a

(x− y)︸ ︷︷ ︸
nonpositive

f(x)f(y)(g(x) − g(y))︸ ︷︷ ︸
nonnegative

dxdy

and is therefore nonpositive.

1We are grateful to Daniel Elton for a useful suggestion that helped to prove this lemma.
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We can now proceed with evaluating I1.
Proof of Lemma 4.5. We act by doing a lot of integrations by parts. We shall

also use (4.7).
We have (all integrals are over [0, δ] and with respect to η)∫

ηe−β |φ′
∗|2 = −

∫
φ∗ · (ηe−βφ′

∗)
′

= −
∫

φ∗ · (e−βφ′
∗ − β′ηe−βφ′

∗ + ηe−βφ′′
∗)

= −
∫

φ∗ · (e−βφ′
∗ + (α2

• − Λ∗α•β
′)e−βηφ∗).

Further,

−
∫

(φ∗e
−β)φ′

∗ =

(∫ (
φ′
∗e

−β − β′φ∗e
−β

)
φ∗

)
− e−β(δ)φ2

∗(δ),

thus producing ∫
ηe−β |φ′

∗|2 = −1

2

∫
β′φ2

∗e
−β −1

2
e−β(δ)φ2

∗(δ)︸ ︷︷ ︸
negative constant

− α2
•

∫
ηe−β |φ∗|2 + Λ∗α•

∫
ηβ′e−β |φ∗|2.

(4.11)

Also, ∫
e−β |φ′

∗|2 = −
∫

e−βφ∗(−β′φ′
∗ + φ′′

∗)

= −
∫

e−βφ∗
(
−β′φ′

∗ + β′φ′
∗ + α2

•φ∗ − Λ∗α•β
′φ∗

)
= −

∫
e−βφ2

∗ (α2
• − Λ∗α•β

′).

(4.12)

Substituting (4.11) and (4.12) into (4.10), and simplifying, we get

I1 ·
∫

e−β(η)|φ∗(η)|2︸ ︷︷ ︸
positive integral

=

∫
ηe−β |φ′

∗|2 ·
∫

e−β |φ∗|2 −
∫

e−β |φ′
∗|2 ·

∫
ηe−β |φ∗|2

=

⎛⎜⎜⎜⎝
(
−1

2

∫
β′e−β |φ∗|2

)
︸ ︷︷ ︸

negative as β′>0

+

(
−1

2
e−β(δ)φ2

∗(δ)

)
︸ ︷︷ ︸

negative constant

⎞⎟⎟⎟⎠
∫

e−β |φ∗|2

+ (Λ∗α•)︸ ︷︷ ︸
+ve constant

×
(∫

ηβ′e−β |φ∗|2 ·
∫

e−β |φ∗|2 −
∫

β′e−β |φ∗|2 ·
∫

ηe−β |φ∗|2
)

︸ ︷︷ ︸
nonpositive by Lemma 4.6 with g=β′, f=e−β |φ∗|2 as g′=β′′≤0

.

(4.13)

Thus I1 < 0.
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Let us now return to (4.9) and deal with the second term in the right-hand side.
We have, with account of (2.3) and (2.7),

η2γ(ξ)2

1 + ηγ(ξ)
≤

⎧⎨⎩
η2γ(ξ)2 if γ(ξ) ≥ 0,

1

1 −A
η2γ(ξ)2 if γ(ξ) < 0

≤ max

{
1,

1

1 −A

}
η2γ(ξ)2,

and so

α2
•

∫ r

−r

∫ δ

0

η2γ(ξ)2

1 + ηγ(ξ)
e−β(η)|φ∗(η)|2 dη dξ ≤ I2

∫ r

−r

γ(ξ)2 dξ,

where

I2 := max

{
1,

1

1 −A

}
α2
•

∫ δ

0

η2e−β(η)|φ∗(η)|2 dη ≥ 0.(4.14)

Thus, as γ(ξ) vanishes for |ξ| > R, we have

Dγ = I1

∫
γ(ξ) dξ + I2

∫
γ(ξ)2 dξ = (−I1)

(
Cβ

∫
γ(ξ)2 dξ −

∫
γ(ξ) dξ

)
,

where

Cβ =
I2
−I1

=

max

{
1,

1

1 −A

}
α2
•

∫ δ

0

η2e−β(η)|φ∗(η)|2 dη∫ δ

0

ηe−β(η)
(
|φ′

∗(η)|2 − α2
•|φ∗(η)|2

)
dη

(4.15)

is a positive constant.
As soon as (4.2) holds, Dγ is negative, and so (4.5) holds. This proves Theo-

rem 4.1.
Finally, it is sufficient to note that (4.3) implies

∫
γ(ξ)2 dξ < 2Rcβ,R

∫
γ(ξ) dξ,

which proves Corollary 4.2.

5. Conclusions. It has been shown that a trapped mode is possible in the model
presented here. To increase confidence that such modes exist on real coasts further
work is clearly required to demonstrate that this mode is not an artifact of the mod-
elling assumptions. However these assumptions are the usual ones for the simple
theory of CSWs and extensions to include stratification and more realistic boundary
conditions have not in general contradicted them [LBMy]. The result here suggests
that it would be of interest to compare low-frequency velocity records in the neigh-
borhood of capes with those on nearby straight coasts to determine whether there is
indeed enhanced energy at the cape. Both the above endeavors are being pursued.
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