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Abstract. Bence, Merriman, and Osher proposed an algorithm for computing the motion
a hypersurface by mean curvature in terms of solutions of the usual heat equation, continually
reinitialized after short time steps. In this paper, applying some techniques of asymptotic analysis
for the Allen–Cahn equation, we give a rate of convergence of their algorithm for the motion of a
smooth and compact hypersurface by mean curvature. We also consider the special case of a circle
evolving by curvature and show that our rate is optimal.

Key words. motion by mean curvature, numerical algorithm, rate of convergence, optimality

AMS subject classifications. 35K05, 35K55, 65M15

DOI. 10.1137/04061862X

1. Introduction. In 1992, Bence, Merriman, and Osher proposed in [2] an al-
gorithm for computing the motion of a hypersurface by its mean curvature. It is
described as follows.

Given a closed set C0 ⊂ R
N , we solve the initial-value problem for the heat

equation ⎧⎨⎩
ut − Δu = 0 in (0,+∞) × R

N ,

u(0, x) =

{
1, x ∈ C0,
−1, x ∈ R

N\C0.
(1.1)

Fix a time step h > 0 and set

C1 = {x ∈ R
N | u(h, x) ≥ 0}.

Next we solve (1.1) with C0 replacing C1 and define a new set C2 with the solution
u replaced by that of (1.1) with the new initial data. Repeating this procedure, we
have a sequence {Ck}k=0,1,... of closed sets in R

N . Then we define

Ch
t = Ck if kh ≤ t < (k + 1)h, k = 0, 1, . . . ,

for t ≥ 0. Letting h ↘ 0, we obtain

∂Ch
t −→ Γt, Γ0 = ∂C0,

and Γt moves by its ((N − 1)-times) mean curvature.
The convergence of the Bence–Merriman–Osher (BMO) algorithm was proved by

Mascarenhas [19], Evans [5], Barles and Georgelin [1], and Goto, Ishii, and Ogawa
[10]. The generalizations of this algorithm were considered by Ishii [14], Ishii, Pires,
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and Souganidis [16], Ishii and Ishii [15], Vivier [23], and Leoni [18]. However, to the
author’s knowledge, there are a few results on the rate of convergence of the BMO
algorithm. In [22] Ruuth gave an error estimate for the case of the planar graph on
[0, h]. Ishii and Nakamura [17] proved that the Hausdorff distance between the motion
by mean curvature Γt and the approximate interface Γh

t := ∂Ch
t is an order of h1/2

as h ↘ 0. This estimate is valid before the onset of singularities, but not optimal.
The purpose of this paper is to show the optimal rate of convergence of the BMO

algorithm, valid before the onset of singularities, for the Hausdorff distance between
Γt and Γh

t . In fact, assuming {Γt}0≤t<T0 is the motion of a smooth and compact
hypersurface by mean curvature, we prove that, for any T < T0,

sup
t∈[0,T ]

dH(Γt,Γ
h
t ) ≤ Lh,

where L is a constant depending on T , but independent of small h > 0, and dH
denotes the Hausdorff distance. This estimate is optimal and improves that of [17].

Both of the order in h and the optimality are the consequence of the maximum
principle and the explicit constructions of sub- and supersolutions of (1.1), which are
inspired by the asymptotic analysis of solutions of the Allen–Cahn equation (see, e.g.,
Fife [7] and de Mottoni and Schatzman [4]). As for the relation between the BMO
algorithm and the Allen–Cahn equation, from the viewpoint of the splitting methods
in numerical analysis, Vivier [23] first pointed out that we may think the Allen–Cahn
equation is an approximation of the BMO algorithm. Leoni [18] and Goto, Ishii, and
Ogawa [10] gave the proofs of the convergence of the BMO algorithm and a generalized
scheme by applying some techniques of the asymptotic analysis for the Allen–Cahn
equation. The arguments in this paper also rely on them.

This paper is organized as follows. In section 2 we discuss the formal asymptotic
expansion of the radially symmetric solution of (1.1). To derive formally the equation
of the motion of the interface, we consider the asymptotic behavior as t ↘ 0 of the
zero of the solution of (1.1). In section 3 we construct sub- and supersolutions of
(1.1) by using some functions provided by the formal asymptotic expansion. We treat
the nonradial case in subsection 3.2 and the radial case in subsection 3.3. Section
4 is devoted to the rate of convergence of the BMO algorithm to the motion of a
smooth and compact hypersurface by mean curvature. The arguments in sections 3–4
are very similar to those in [18], although Leoni considered in her paper a different
situation from ours. In section 5, we return to the special case of a circle evolving by
curvature. By the radial symmetry, we have only to consider the asymptotic behavior
of the radius Rh of the approximate circle as h ↘ 0. In subsection 5.1 we obtain the
short-time asymptotics of Rh. In subsection 5.2 we formally derive a corrector for
Rh. Based on these results, in subsection 5.3 we obtain the behavior of Rh and show
the optimality of our estimate obtained in section 4. The considerations of section 5
are motivated by Nochetto, Paolini, and Verdi [20]. In [20] they obtained the optimal
error estimate of the approximate interface given by the solution of a variational
inequality to the smooth motion by mean curvature. The appendix is devoted to the
proof of a lemma given in section 2.

In the following of this paper, we denote by K various constants depending only
on known ones, and the notation g = O(f) means that |g| ≤ K ′f for some constant
K ′ > 0 independent of small t > 0.

2. Formal asymptotic expansion to the radial case. In this section we
briefly discuss the formal asymptotic expansion to the simplest situation, the radially
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symmetric solution of (1.1) as t ↘ 0. Even though this presentation is only formal,
it shows us several crucial aspects for the constructions of sub- and supersolutions of
(1.1) in the next section. For each x0 ∈ R

N , put B(x0, R) = {x ∈ R
N | |x−x0| < R}.

If u = u(t, r) (r = |x|) and C0 = B(0, R), then the problem (1.1) turns to⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lu := ut − urr −

N − 1

r
ur = 0 in (0,+∞) × (0,+∞),

ur(t, 0) = 0, t > 0,

u(0, r) =

{
1, r ∈ [0, R],
−1, r ∈ (R,+∞).

(2.1)

Set Γ̃0 = ∂B(0, R) and Γ̃t = {x ∈ R
N | u(t, |x|) = 0} for t > 0. Then we can easily

verify that Γ̃t is a sphere in R
N .

As to the behavior of the solution of (2.1) away from Γ̃t, we have the following.
Lemma 2.1. For any δ ∈ (0, R/2), there exist M0 > 0 and t0 ∈ (0, 1) such that,

for all t ∈ (0, t0),

1 −M0e
−δ2/32t ≤ u(t, r) ≤ 1 for all 0 ≤ r ≤ R− δ,

−1 ≤ u(t, r) ≤ −1 + M0e
−δ2/32t for all r ≥ R + δ.

See Goto, Ishii, and Ogawa [10, Proposition 6.1] for the proof. From this lemma,

it is sufficient for us to consider the asymptotics of the solution of (2.1) near Γ̃t. Fix

δ ∈ (0, R/2) and take t0 > 0 so small that Lemma 2.1 holds. Let φ̃(t) be the radius

of Γ̃t. We assume that the solution u of (2.1) is approximated by the following formal
series in (t, r) ∈ (0, t0) × (R− δ,R + δ):

u(t, r) =
+∞∑
j=0

tj/2Uj

(
t,
d̃(t, r)

2
√
t

)
, φ̃(t) =

+∞∑
j=0

tjφj(t), φ̃(0) = φ0(0) = R.(2.2)

Here Uj and φj are assumed to be bounded in (0, t0)×(R−δ,R+δ) for each j ∈ N∪{0}
and d̃(t, r) is the signed distance function to Γ̃t given by

d̃(t, r) = φ̃(t) − r.

Before choosing Uj and φj (j ∈ N ∪ {0}), we give a lemma on the effect of the

diffusion on ∂B(0, R). Select r̃ ≥ 0 so that u(t, R− r̃) = 0. Then r̃ = φ̃(0)− φ̃(t) and

it is the normal distance between ∂B(0, R) and Γ̃t.
Lemma 2.2. We have

r̃ =
(N − 1)t

R
+

(N − 1)(3N − 1)t2

6R3
+ O(t3) as t ↘ 0.

See the appendix for the proof. By this lemma, we formally have

φ̃′
∣∣∣
t=0

= − r̃′|t=0 = −N − 1

R
,

where ′ = d/dt. This suggests that we may set φ0(t) = φ(t), where φ(t) =√
R2 − 2(N − 1)t and it solves

φ′(t) = −N − 1

φ(t)
for t > 0, φ(0) = R.(2.3)
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Using Lemma 2.2 and the definition of φ, we can estimate the distance between
∂B(0, φ(t)) and Γ̃t for small t > 0.

Proposition 2.3. Let φ(t) =
√

R2 − 2(N − 1)t and let r̃ be the normal distance

between ∂B(0, R) and Γ̃t. Then

r̃ − (R− φ(t)) =
(N − 1)t2

3R3
+ O(t3) as t ↘ 0.

Remark 2.1. Ruuth [22, Chapter 4] obtained a similar result to this proposition
in the case of the graph in R

2.

Proof of Proposition 2.3. It is easily seen by Taylor expansion to φ around t = 0
that

φ(t) = R− (N − 1)t

R
− (N − 1)2t2

2R2
+ O(t3) as t ↘ 0.

Hence, we have the result by using Lemma 2.2 and this expansion.

We choose Uj and φj (j ∈ N ∪ {0}) of (2.2). First, we do some φj ’s. It is seen
that, as t ↘ 0,

r̃ − (R− φ(t)) = −
+∞∑
j=1

tjφj(t),

1

R
≈ 1

φ̃(t)
=

1

φ(t)

⎧⎪⎨⎪⎩1 −
+∞∑
j=1

tj
φj(t)

φ(t)
+

⎛⎝+∞∑
j=1

tj
φj(t)

φ(t)

⎞⎠2

− · · ·

⎫⎪⎬⎪⎭ .

It follows from these relations and Proposition 2.3 that

−
+∞∑
j=1

tjφj(t) =
t2(N − 1)

3(φ(t))3

⎧⎪⎨⎪⎩1 −
+∞∑
j=1

tj
φj(t)

φ(t)
+

⎛⎝+∞∑
j=1

tj
φj(t)

φ(t)

⎞⎠2

− · · ·

⎫⎪⎬⎪⎭
3

+ O(t3)

for sufficiently small t > 0. Comparing the coefficients of tj (j = 1, 2) on both sides,
we have

t−term : φ1(t) = 0, t2−term : φ2(t) = − N − 1

3(φ(t))3
.

We omit the choices of φj ’s (j ≥ 3).

Second, we select some Uj ’s. We set φ̃(t) = φ(t) + t2φ2(t) for simplicity. Put

ρ = d̃/2
√
t. Since r = φ− (2

√
tρ− t2φ2), we get

1

r
=

1

φ− (2
√
tρ− t2φ2)

=
1

φ

+∞∑
j=0

{
1

φ

(
2
√
tρ− t2φ2

)}j

for small t > 0.(2.4)

Besides we easily see that

dt = φ′ + 2tφ2 + t2φ′
2, dr = −1, drr = 0.
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Thus we use (2.2), (2.4) and these identities to compute that

Lu = − 1

4t
(U0,ρρ + 2ρU0,ρ) +

1√
t

{
U0,ρ

2

(
φ′ +

N − 1

φ

)
−
(

1

4
U1,ρρ +

ρ

2
U1,ρ −

1

2
U1

)}
+

{
(N − 1)ρU0,ρ

φ2
+

U1,ρ

2

(
φ′ +

N − 1

φ

)
−
(

1

4
U2,ρρ +

ρ

2
U2,ρ − U2

)}
+
√
t

{
U0,ρφ2 + U1,t + (N − 1)

(
2ρ2

φ3
U0,ρ +

ρU1,ρ

φ2

)
+

U2,ρ

2

(
φ′ +

N − 1

φ

)
−
(

1

4
U3,ρρ +

ρ

2
U3,ρ −

3

2
U3

)}
+ · · ·

= 0,

where Ui,ρ = ∂Ui/∂ρ andUi,ρρ = ∂2Ui/∂ρ
2.

We compare the coefficients of tj/2 (j = −2,−1, 0, 1, 2, . . .). In the case of the
t−1-term, we can derive

U0,ρρ + 2ρU0,ρ = 0 on R
1.(2.5)

Taking Lemma 2.1 into account, we impose the following condition on U0:

U0(t, ρ) −→
{

1 as ρ → +∞,
−1 as ρ → −∞ for any small t > 0.(2.6)

Then we have

U0 = U0(ρ) =
2√
π

∫ ρ

0

e−s2ds.(2.7)

As for the t−1/2-term, by (2.3) we obtain

1

4
U1,ρρ +

ρ

2
U1,ρ −

1

2
U1 = 0 on R

1.(2.8)

Since the rate of convergence (2.6) is faster than the exponential one, combining
Lemma 2.1 with this fact, we have the following condition on U1:

U1(t, ρ) −→ 0 as ρ → ±∞ for any small t > 0.(2.9)

Therefore we have U1 ≡ 0 because the uniqueness of solutions of (2.8) under (2.9)
holds in the class of bounded functions.

In the case of the tj/2-term (j = 0, 1), from (2.3) and the fact that U1 ≡ 0 we get

1

4
U2,ρρ +

ρ

2
U2,ρ − U2 =

(N − 1)ρU0,ρ

φ2
on R

1,(2.10)

1

4
U3,ρρ +

ρ

2
U3,ρ −

3

2
U3 = (N − 1)

(
2ρ2 − 1

3

)
U0,ρ

φ3
on R

1.(2.11)

By the same reason as above, the following condition is imposed on Uj ’s (j = 2, 3):

Uj(t, ρ) −→ 0 as ρ → ±∞ for any small t > 0.(2.12)

Solving (2.10) and (2.11) under (2.12), we obtain

U2(t, ρ) = − (N − 1)ρe−ρ2

√
π(φ(t))2

, U3(t, ρ) = −4(N − 1)ρ2e−ρ2

3
√
π(φ(t))3

.(2.13)

We omit selecting Uj (j ≥ 4).



846 KATSUYUKI ISHII

Remark 2.2. In the above discussion, we have not applied the Fredholm alterna-
tive to derive the equation of the motion of the interface, which is used to do so in the
case of the Allen–Cahn equation (see, e.g., Fife [7], de Mottoni and Schatzman [4],
and Nochetto, Paolini, and Verdi [20]), because such equations as (2.8) under (2.9)
have only the trivial solution. For this reason, we have used other methods such as
Lemma 2.2 and Proposition 2.3 to determine φ0, φ1, and φ2.

3. Subsolutions and supersolutions. We construct sub- and supersolutions
of (1.1) in (kh, (k+1)h)×R

N for h > 0 and k ∈ N∪{0}. These functions will be used
in sections 4 and 5 to derive the optimal rate of convergence of the BMO algorithm.

In this and the next section we assume that {Γt}0≤t<T0 is a motion of a smooth
and compact hypersurface by mean curvature. The precise assumption on {Γt}0≤t<T0

is given in subsection 3.1. In addition, the existence, uniqueness, and behavior of
{Γt}0≤t<T0

are mentioned in Remark 4.1 of section 4.

3.1. Signed distance function. For each t ∈ [0, T0), the signed distance func-
tion d = d(t, x) to Γt is defined by

d (t, x) =

⎧⎨⎩
dist (x,Γt) for x ∈ D+

t ,
0 for x ∈ Γt,
−dist (x,Γt) for x ∈ D−

t ,
(3.1)

where D+
t denotes the bounded domain enclosed by Γt and D−

t = R
N\(D+

t ∪ Γt).
Then d satisfies

dt = Δd on Γt, t > 0.(3.2)

For any T ∈ (0, T0) and δ > 0, let Nδ be the tubular neighborhood of {(t, x) ∈
[0, T ] × R

N | x ∈ Γt}:

Nδ := {(t, x) ∈ [0, T ] × R
N | |d(t, x)| ≤ δ}.

We assume that {Γt}0≤t<T0 is so smooth that, for any T < T0, there exists a δ > 0
satisfying

dt, dxi
, dxixj , dxixjt, dxixjxk

, dxixjxkxl
∈ L∞(N5δ) for i, j, k, l = 1, . . . , N.(3.3)

It follows from this condition that for any (t, x) ∈ N5δ, there is a unique y(t, x) ∈ Γt

satisfying

|d(t, x)| = |x− y(t, x)|.(3.4)

Let κ̃ = κ̃(t, x) be the sum of the square of all principal curvatures at x ∈ Γt. Define

κs = κs(t, x) := κ̃(t, y(t, x)) for (t, x) ∈ N5δ.

Then (3.3) yields that

κs, κs
t , κ

s
xi
, κs

xixj
∈ L∞(N5δ) for i, j = 1, 2, . . . , N.(3.5)

Moreover, we observe by this property that there exists a κ1 > 0 such that

|dt − Δd− κsd| ≤ κ1d
2 on N5δ.(3.6)

For the details to (3.2)–(3.6), see, e.g., Chen [3], Gilbarg and Trudinger [9], and Paolini
and Verdi [21].



OPTIMAL RATE OF CONVERGENCE 847

3.2. Nonradial case. In this subsection we construct a sub- and a super-
solution of (1.1) in (kh, (k + 1)h) × R

N for each h > 0 and k ∈ N ∪ {0}.
We modify slightly the signed distance function d in (3.1). For any (t, x) ∈ N5δ,

k ∈ N ∪ {0}, and αk ≥ 0, set

dk(t, x) = d(t, x) − αkh
2, dk(t, x) = d(t, x) + αkh

2.

We introduce smooth functions η and ζ satisfying

η(r) =

⎧⎨⎩
r, s ≤ δ,
2δ, s ≥ 3δ,
−2δ, s ≤ −3δ,

0 ≤ η′ ≤ 1, |η′′| ≤ M1

δ
,(3.7)

ζ(r) =

{
1, |s| ≤ δ,
0, |s| ≥ 3δ,

0 ≤ ζ ≤ 1, |ζ ′| ≤ M1

δ
, |ζ ′′| ≤ M1

δ2
,(3.8)

where M1 is a constant independent of δ. Motivated by the formal discussion in
section 2, we define u and u by

u (t, x) = U0

(
η(dk(t, x))

2
√
t− kh

)
+ (t− kh)ζ(dk(t, x))U2

(
t, x,

dk(t, x)

2
√
t− kh

)
(3.9)

− (t− kh)3/2U3 − U4αkh
2
√
t− kh,

u (t, x) = U0

(
η(dk(t, x))

2
√
t− kh

)
+ (t− kh)ζ(dk(t, x))U2

(
t, x,

dk(t, x)

2
√
t− kh

)
(3.10)

+ (t− kh)3/2U3 + U4αkh
2
√
t− kh

in (kh, (k + 1)h) × R
N and k ∈ N ∪ {0}. Here U2 = U2(t, x, ρ) is given by

U2(t, x, ρ) = − 1√
π
κs(t, x)ρe−ρ2

,(3.11)

and U3 and U4 are positive constants selected later. At t = kh, we set

u(kh, x) =

{
1 if dk(kh, x) ≥ 0,
−1 if dk(kh, x) < 0,

u(kh, x) =

{
1 if dk(kh, x) ≥ 0,

−1 if dk(kh, x) < 0.
(3.12)
We note that U2 satisfies

1

4
U2,ρρ +

ρ

2
U2,ρ − U2 = κsρU0,ρ for (t, x) ∈ N5δ, ρ ∈ R

1.(3.13)

Proposition 3.1. Let d satisfy (3.3) for some δ > 0. Then there exist h1 > 0,
U3 > 0, and U4 > 0 such that for each h ∈ (0, h1), k ∈ N ∪ {0}, and αk ≥ 0, u and u
are, respectively, a subsolution and a supersolution of (1.1) in (kh, (k + 1)h) × R

N .
Proof. We set k = 0 and prove the subsolution case.
For the notational simplicity, put ρ = d0/2

√
t, z(t, x) = η(d0(t, x)), and ρz =

z/2
√
t. We denote by L

Lu = ut − Δu for u = u(t, x).

It is seen by calculations that

Lu = − 1

4t
(U0,ρρ|Dz|2 + 2ρzU0,ρ) +

U0,ρ

2
√
t
(zt − Δz) − ζ

{
1

4
U2,ρρ|Dd0|2 +

ρ

2
U2,ρ − U2

}
+
√
t
{
ζU2,ρ(d0,t − Δd0) + ζ ′U2,ρ|Dd0|2 + ζ〈DU2,ρ, Dd0〉

}
+ t{ζ(U2,t − ΔU2) + ζ ′U2(d0,t − Δd0)} −

3

2

√
tU3 −

U4α0h
2

2
√
t

,

where Df = (fx1 , . . . , fxN
). We divide our consideration into two cases.
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Case 1. |d0(t, x)| ≤ δ.
In this case, η = ζ = 1. Thus z = d0, ρz = ρ and

|Dz| = |Dd0| = |Dd| = 1, zt − Δz = d0,t − Δd0 = dt − Δd on N5δ.(3.14)

Moreover, we observe that

sup
ρ∈R1

l=0,2

|ρlU0,ρ| + sup
(t,x)∈N5δ,ρ∈R1

(|U2| + |U2,ρ| + |U2,t| + |ΔU2| + |DU2,ρ|) ≤ K.(3.15)

Here we have used (3.3) and (3.5) to obtain the boundedness for the second term on
the left-hand side of this inequality.

It follows from (2.5), (3.3), (3.14), and (3.15) that

Lu ≤ U0,ρ

2
√
t
(dt − Δd) −

{
1

4
U2,ρρ +

ρ

2
U2,ρ − U2

}
+
√
t

{
K(1 +

√
t) − 3

2
U3

}
− U4α0h

2

2
√
t

.

We see by the positivity of U0,ρ, (3.6) and (3.13) that

U0,ρ

2
√
t
(dt − Δd) −

{
1

4
U2,ρρ +

ρ

2
U2,ρ − U2

}
≤ 2

√
tκ1ρ

2U0,ρ +
U0,ρ

2
√
t
(κs + 2κ1d)α0h

2.

Using (3.5), (3.15) and this inequality, we get

Lu ≤
√
t

(
K(1 +

√
t) − 3

2
U3

)
+

h2

2
√
t
(U4,1(U4,2 + 2κ1δ) − U4)α0,

where U4,1 = ‖U0,ρ‖L∞(R) and U4,2 = ‖κs‖L∞(N5δ). Therefore we can take

U3 ≥ 4

3
K, U4 ≥ U4,1(U4,2 + 2κ1δ)

to obtain

Lu ≤ 0 in {(t, x) ∈ (0, h) × R
N | |d0(t, x)| ≤ δ}.

Case 2. |d0(t, x)| ≥ δ.
In this case, |z| ≥ δ. Then we see by (3.3), (3.5), and (3.7) that

|ρlzU0,ρ(ρz)| + |U2(t, x, ρ)| + |U2,ρ(t, x, ρ)| + |U2,t(t, x, ρ)|(3.16)

+|ΔU2(t, x, ρ)| + |DU2,ρ(t, x, ρ)| ≤ Ke−δ2/8t

for small t > 0 and l = 0, 1, 2, 3. By (3.3) and (3.7) we get

|wt − Δw| ≤ K (w = z, d0).

Using (2.5), (3.8), (3.13), (3.16) and this estimate, we obtain

Lu ≤ Ke−δ2/8t − 3
√
t

2
U3.

We choose h1 > 0 so small that e−δ2/8t ≤
√
t for all t ∈ (0, h1). Hence, letting

U3 ≥ 2K/3 and U4 ≥ 0, we have

Lu ≤ 0 in {(t, x) ∈ (0, h) × R
N | |d0(t, x)| ≥ δ}

for all h ∈ (0, h1).
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Consequently, taking a large U3 > 0 and setting U4 = U4,1(U4,2+2κ1δ), we obtain

Lu ≤ 0 in (0, h) × R
N

for all h ∈ (0, h1). The supersolution case can be shown by a method similar to the
above.

For the case k ≥ 1, we can show the assertion of this proposition by using the
same h1, U3, and U4 as in the case k = 0.

3.3. Radial case. This subsection is devoted to the construction of a sub- and
a supersolution of (1.1) which are radially symmetric. We recall that if u = u(t, r)
(r = |x|) and C0 = B(0, R), then the problem (1.1) turns to (2.1). We assume N = 2
to simplify our arguments.

For any R > 0, put

φ(t) =
√
R2 − 2t, φ1(t) =

1

3(φ(t))3
on [0, h],(3.17)

d̃(t, r) = φ(t) − t2φ1(t) − r on [0, h] × R
1.

Let η and ζ be the same functions as (3.7) and (3.8), respectively. Set z(t, r) =

η(d̃(t, r)) and define u and u by

u(t, r) = U0

(
z(t, r)

2
√
t

)
+ ζ(d̃(t, r))

{
tU2

(
t,
d̃(t, r)

2
√
t

)
+ t3/2U3

(
t,
d̃(t, r)

2
√
t

)}
− t2U4,(3.18)

u(t, r) = U0

(
z(t, r)

2
√
t

)
+ ζ(d̃(t, r))

{
tU2

(
t,
d̃(t, r)

2
√
t

)
+ t3/2U3

(
t,
d̃(t, r)

2
√
t

)}
+ t2U4(3.19)

for t > 0, r ∈ R
1. Here U2, U3 are given by (2.13) and U4 is a constant selected later.

At t = 0, we put

u(0, r) = u(0, r) =

{
1, if d̃(0, r) ≥ 0,

−1, if d̃(0, r) < 0.
(3.20)

Proposition 3.2. Fix δ ∈ (0, R/5∧1). Then there exist h2 > 0 and U4 > 0 such
that for each h ∈ (0, h2), u and u are, respectively, a subsolution and a supersolution
of (2.1) in (0, h) × R

1. In addition, they satisfy the boundary condition of (2.1).
Proof. We assume k = 0 and prove the subsolution case. Set ρz = z/2

√
t and

ρ̃ = d̃/2
√
t for the notational simplicity.

It is observed by calculations that

Lu = − 1

4t

(
U0,ρρz

2
r + 2ρzU0,ρ

)
+

U0,ρ

2
√
t

(
zt − zrr −

1

r
zr

)
− ζ

(
1

4
U2,ρρd̃

2
r +

ρ̃

2
U2,ρ − U2

)
+
√
tζ

{
U2,ρ

(
d̃t − d̃rr −

1

r
d̃r

)
−
(

1

4
U3,ρρd̃

2
r +

ρ̃

2
U3,ρ −

3

2
U3

)}
+ t

[
ζ

{
U2,t +

√
tU3,t +

U3,ρ

2

(
d̃t − d̃rr −

1

r
d̃r

)}
− 2U4

]
− 2ζ ′d̃r

{
tU2,ρ

d̃r

2
√
t

+ t3/2U3,ρ
d̃r

2
√
t

}

+ t

{
ζ ′
(
d̃t − d̃rr −

1

r
d̃r

)
− ζ ′′d̃2

r

}
(U2 +

√
tU3).
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We divide our consideration into two cases.
Case 1. |d̃(t, r)| ≤ δ.

In this case, η = ζ = 1. Thus z = d̃, ρz = ρ̃ and

wr = −1, wt − wrr −
1

r
wr = φ′ − 2tφ1 − t2φ′

1 +
1

r
for w = z, d̃.(3.21)

Moreover, we see from (2.13) and (3.17) that

sup
ρ∈R1

l=0,1,2,3

|ρlU0,ρ| + sup
t∈[0,R2/4],ρ∈R1

j=2,3,l=0,1,2,3

(
|ρlUj | + |ρlUj,ρ| + |Uj,t|

)
≤ K.(3.22)

By (2.5), (3.21), and this boundedness, we have

Lu ≤ U0,ρ

2
√
t

(
φ′ − 2tφ1 − t2φ′

1 +
1

r

)
−
(

1

4
U2,ρρ +

ρ̃

2
U2,ρ − U2

)
+ t1/2

{
U2,ρ

(
φ′ − 2tφ1 − t2φ′

1 +
1

r

)
−
(

1

4
U3,ρρ +

ρ̃

2
U3,ρ −

3

2
U3

)}
+

tU3,ρ

2

(
φ′ − 2tφ1 − t2φ′

1 +
1

r

)
+ t(K − 2U4).

We estimate φ′−2tφ1−t2φ′
1+1/r. We remark that d̃ = 2

√
tρ̃ and r = φ−(2

√
tρ̃+

t2φ1). It follows from (3.17) that there exists an h2 ∈ (0, δ) such that φ(t) ≥ 4δ and
t2φ1(t) ≤ δ for t ∈ (0, h2). Thus we get 2

√
t|ρ̃| + t2φ1 ≤ 2δ and

1

r
≤ 1

φ

{
1 +

1

φ
(2
√
tρ̃ + t2φ1) +

1

φ2
(2
√
tρ̃ + t2φ1)

2

}
+

1

3δφ3
(2
√
t|ρ̃| + t2φ1)

3

for all t ∈ (0, h2). Since φ satisfies φ′ + 1/φ = 0 and φ′
1 is bounded, we observe that

φ′ − 2tφ1 − t2φ′
1 +

1

r
≤ 2

√
tρ̃

φ2
+

4tρ̃2

φ3
− 2tφ1 +

8t3/2|ρ̃|3
3δφ3

+ Kt2.(3.23)

We observe from the positivity of U0,ρ on R
1, (2.10), (2.11), (3.22), and this estimate

that

U0,ρ

2
√
t

(
φ′ − 2tφ1 − t2φ′

1 +
1

r

)
−
(

1

4
U2,ρρ +

ρ̃

2
U2,ρ − U2

)
−
√
t

(
1

4
U3,ρρ +

ρ̃

2
U3,ρ −

3

2
U3

)
≤ U0,ρ(Ktρ̃3 + Kt3/2) ≤ tK(1 +

√
t).

In addition, (3.22) and (3.23) yield that

t1/2U2,ρ

(
φ′ − 2tφ1 − t2φ′

1 +
1

r

)
+

tU3,ρ

2

(
φ′ − 2tφ1 − t2φ′

1 +
1

r

)
≤ Kt.

Therefore we obtain

Lu ≤ t(K(1 +
√
t) − 2U4).

Consequently, taking U4 sufficiently large, we obtain

Lu ≤ 0 in {(t, r) ∈ (0, h) × R
1 | |d̃(t, r)| ≤ δ}

for all h ∈ (0, h2).
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Case 2. |d̃(t, r)| ≥ δ.
In this case, |z| ≥ δ. Then we see by (2.13) that

|ρlzU0,ρ(ρz)| + |ρ̃lUj(t, ρ̃)| + |ρ̃lUj,ρ(t, ρ̃)| + |Uj,t(t, ρ̃)| ≤ Ke−δ2/8t(3.24)

for small t > 0, j = 2, 3, and l = 0, 1, 2, 3. Then it is easily observed by the fact that
δ ≤ r ≤ R + 3δ and by (3.7) and (3.17) that∣∣∣∣wt − wrr −

1

r
wr

∣∣∣∣ ≤ K for w = z, d̃.

Thus we apply (3.7), (3.8), (3.24), and this inequality to obtain

Lu ≤ Ke−δ2/8t − 2tU4.

Taking h2 > 0 smaller if necessary, we have e−δ2/8t ≤ t for all t ∈ (0, h2). Thus we
choose U4 ≥ K/2 to have

Lu ≤ 0 in {(t, r) ∈ (0, h) × R
1 | |d̃(t, r)| ≥ δ}

for all h ∈ (0, h2).
Consequently, taking U4 > 0 large and h2 > 0 small, we obtain

Lu ≤ 0 in (0, h) × R
1

for all h ∈ (0, h2). Since u(t, r) = U0(δ/
√
t) − t2U4 for 0 ≤ r � 1, it is easily verified

that ur(t, 0) = 0. The supersolution case can be shown in a similar way.

4. Rate of convergence. In this section we consider the rate of convergence of
the BMO algorithm to the motion of a smooth and compact hypersurface by mean
curvature.

To state our theorem, we rewrite the BMO algorithm as follows. Let Γ0 ⊂ R
N

be a smooth and compact hypersurface and C0 ⊂ R
N the compact set such that

∂C0 = Γ0. Fix a time step h > 0. Let uh = uh(t, x) be the solution of⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

uh
t = Δuh in (kh, (k + 1)h) × R

N ,

uh(kh, x) =

{
1, x ∈ Ck,
−1, x ∈ R

N\Ck,

Ck =

⎧⎨⎩
the above set C0 for k = 0,{
x ∈ R

N

∣∣∣∣ lim
t→kh−

uh(t, x) ≥ 0

}
for k = 1, 2, . . . .

(4.1)

Set

Ch
t =

{
{x ∈ R

N | uh(t, x) ≥ 0} for t �= kh,
Ck for t = kh,

Γh
t = ∂Ch

t (= {x ∈ R
N | uh(t, x) = 0}).(4.2)

We note that Ch
kh coincides with Ck defined in the introduction and that Γh

t is a
smooth and compact hypersurface for each t ≥ 0, h > 0. Furthermore, there exists
an R0 > 0 such that Γh

t ⊂ B(0, R0) for all t ≥ 0 and h > 0 (see Barles and Georgelin
[1, Lemma 5.1]). Using this formulation, we have the following theorem.
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Theorem 4.1. Let {Γt}0≤t<T0
be a smooth and compact motion by mean cur-

vature satisfying (3.3). Let Γh
t be defined by (4.2). Then, for any T ∈ (0, T0), there

exist h0 > 0 and L > 0 such that

sup
t∈[0,T ]

dH
(
Γh
t ,Γt

)
≤ Lh(4.3)

for all h ∈ (0, h0). Here dH(A,B) denotes the Hausdorff distance between A, B ⊂
R

N .
Remark 4.1. On the existence, uniqueness, and behavior of a motion by mean

curvature {Γt}0≤t<T0 , the following results are known. Assume that Γ0 is the bound-
ary of class Ck,α of a bounded domain (k ≥ 2, 0 < α < 1).

(i) For some T0 = T0(Γ0) > 0, there uniquely exists a smooth and compact
motion by mean curvature {Γt}0≤t<T0 starting from Γ0. Moreover, the signed
distance function d defined by (3.1) is of class C(k+α)/2,k+α(Nδ0) for some
small δ0 > 0 (see Evans and Spruck [6]).

(ii) If N = 2 or Γ0 is convex, then the motion {Γt}0≤t<T0
can be extended up to

T0 = Tmax, where Tmax is the extinction time for Γt (see Gage and Hamilton
[8], Grayson [11], and Huisken [13]). In other cases the singularities may
appear before Γt shrinks to a point (see, e.g., Grayson [12]).

Therefore (4.3) is valid before Γt shrinks to a point or develops the singularities.
Proof of Theorem 4.1. Set k = 0, u = uh and let u and u be defined by (3.9) and

(3.10), respectively. Define

Σh
t := {x ∈ R

N | u(t, x) = 0}, Θh
t := {x ∈ R

N | d0(t, x) = 0},
Σ

h

t := {x ∈ R
N | u(t, x) = 0}, Θ

h

t := {x ∈ R
N | d0(t, x) = 0}.

Note that these sets are smooth and compact hypersurfaces.
Step 1. We prove that there exist h0,1 > 0, L1 and L2 > 0 such that

dH(Θh
t ,Σ

h
t ), dH(Θ

h

t ,Σ
h

t ) ≤ (L1hα0 + L2)h
2(4.4)

for all t ∈ (0, h) and h ∈ (0, h0,1).
We easily see from (3.15) that there exists an h0,1 = h0,1 > 0 such that

|d0(t, x)| < 2
√
t on Σh

t ∪ Θh
t(4.5)

for all t ∈ [0, h) and h ∈ (0, h0,1). Moreover, taking h0,1 smaller if necessary, we
observe that for any t ∈ (0, h0,1) and x ∈ R

N satisfying |d0(t, x)| ≤ 2
√
t,

〈Du(t, x), Dd0(t, x)〉 ≥ U0,ρ(1)

2
√
t

−Kt ≥ 1

10
√
πt

.(4.6)

Let x ∈ Θh
t and take y ∈ Σh

t so that y = x+ |x− y|Dd0(t, x). Applying the mean
value theorem, we obtain

0 = u(t, y) = u(t, x) + 〈Du(t, θx + (1 − θ)y), y − x〉 (0 < θ < 1)

= −t3/2U3 − U4α0h
2
√
t + |x− y|〈Du(t, θy + (1 − θ)x), Dd0(t, x)〉.

It is easily seen that Dd0(t, x) = Dd(t, θy+ (1− θ)x). Hence we can use (4.6) to have

|x− y| ≤ 10
√
πt(U4α0h

2 + tU3) and thus

sup
x∈Θh

t

dist(x,Σh
t ) ≤ (L1hα0 + L2)h

2,
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where L1 = 10
√
πU4, L2 = 10

√
πU3 and U3, U4 are the same constants as in Propo-

sition 3.1. Similarly, we can show that

sup
x∈Σh

t

dist(x,Θh
t ), sup

x∈Θ
h

t

dist(x,Σ
h

t ), sup
x∈Σ

h

t

dist(x,Θ
h

t ) ≤ (L1hα0 + L2)h
2.

Hence we obtain (4.4).
Step 2. We show that there exists an h0 > 0 such that

dH(Γt,Γ
h
t ) ≤ {(1 + L1h)α0 + L2}h2 for all t ∈ (0, h) and h ∈ (0, h0).(4.7)

Let h1 > 0 be given in Proposition 3.1. Set h0 = min{h0,1, h1} and fix h ∈ (0, h0).
Since it is easily verified by (3.12) that u(0, x) ≤ u(0, x) ≤ u(0, x) on R

N , we have
u(t, x) ≤ u(t, x) ≤ u(t, x) on [0, h) × R

N by Proposition 3.1 and the comparison
principle for the heat equation. This implies that

Γh
t ⊂ {x ∈ R

N | u(t, x) ≤ 0 ≤ u(t, x)} for all t ∈ [0, h),(4.8)

that is, Γh
t lies between Σh

t and Σ
h

t .
For any x ∈ Γt, we can find an x ∈ Θh

t such that dist(x,Θh
t ) = α0h

2 = |x − x|.
From Step 1, we have

dist(x,Σh
t ) ≤ |x− x| + dist(x,Σh

t ) ≤ {(1 + L1h)α0 + L2}h2

for all t ∈ [0, h). Since x ∈ Γt is arbitrary, we get

sup
x∈Γt

dist(x,Σh
t ) ≤ {(1 + L1h)α0 + L2}h2 for all t ∈ [0, h).(4.9)

Similarly, we can show that

sup
x∈Γt

dist(x,Σ
h

t ) ≤ {(1 + L1h)α0 + L2}h2 for all t ∈ [0, h),(4.10)

with the same L1, L2 as above.
Hence, using (4.8)–(4.10), we obtain

sup
x∈Γt

dist(x,Γh
t ) ≤ max

{
sup
x∈Γt

dist(x,Σ
h

t ), sup
x∈Γt

dist(x,Σh
t )

}
≤ {(1 + L1h)α0 + L2}h2

for all t ∈ (0, h).

Since Γt also lies between Σh
t and Σ

h

t , by the same argument as above, we get

sup
x∈Γh

t

dist(x,Γt) ≤ max

⎧⎨⎩ sup
x∈Σ

h

t

dist(x,Γt), sup
x∈Σh

t

dist(x,Γt)

⎫⎬⎭ ≤ {(1 + L1h)α0 + L2}h2

for all t ∈ (0, h). Therefore we obtain (4.7).
Step 3. We consider the case k = 1. Put α1 = (1+L1h)α0+L2 and fix h ∈ (0, h0).

Then we can see by Proposition 3.1 that u and u are, respectively, a subsolution and
a supersolution of (1.1) in (h, 2h)×R

N . Since Γh
t moves continuously in t in the sense

of the Hausdorff distance (cf. Goto, Ishii, and Ogawa [10, Corollary 3.1]), we observe
by (4.7) that

Γh
h ⊂ {x ∈ R

N | d1(h, x) ≤ 0 ≤ d1(h, x)}.
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It is easily seen by (3.12) and this inclusion that u(h, x) ≤ u(h, x) ≤ u(h, x) on R
N ,

and hence we obtain u(t, x) ≤ u(t, x) ≤ u(t, x) on [h, 2h) × R
N by the comparison

principle for the heat equation. Therefore applying the argument in Step 2, we have

dH(Γt,Γ
h
t ) ≤ {(1 + L1h)α1 + L2}h2 for all t ∈ [h, 2h).

Step 4. We select m ∈ N satisfying mh ≤ T < (m + 1)h for each h ∈ (0, h0) and
repeat the arguments in Steps 2–3 inductively. Set

αk = (1 + L1h)αk−1 + L2 for k = 1, 2, . . . ,m.

Then it follows from Proposition 3.1 that u and u are, respectively, a subsolution
and a supersolution of (1.1) in (kh, (k + 1)h) × R

N . Since we can verify from (3.12)
that u(kh, x) ≤ u(kh, x) ≤ u(kh, x) on R

N , we have u(t, x) ≤ u(t, x) ≤ u(t, x) on
[kh, (k + 1)h) × R

N by the comparison principle for the heat equation. Thus we
obtain

dH(Γt,Γ
h
t ) ≤ {(1 + L1h)αk + L2}h2 for all t ∈ [kh, (k + 1)h) and k = 0, 1, 2, . . . ,m

by an argument similar to Step 2.
Step 5. We estimate the sequence {αk}1≤k≤m. Since α0 ≥ 0 is arbitrary, we can

take α0 = 0. Then we observe from the definition of αk that

αk = (1 + L1h)αk−1 + L2 = (1 + L1h)2αk−2 + L2 {1 + (1 + L1h)}
= · · ·

= L2

k∑
l=1

(1 + L1h)l−1 ≤ L2
(1 + L1h)m − 1

L1h
.

By the choice of m, we get

αk ≤ L2(e
L1T0 − 1)

L1h
≤ L2T0e

L1T0

h
for k = 0, 1, . . . ,m.

Thus we obtain

sup
t∈[0,T ]

dH(Γt,Γ
h
t ) ≤

{
(1 + L1)L2T0e

L1T0 + L2

}
h

for all h ∈ (0, h0). Therefore the proof is completed.

5. Optimality. This section is devoted to the optimality for the estimate in
Theorem 4.1. For this purpose, we consider a circle evolving by curvature.

Let C0 = {x ∈ R
2 | |x| ≤ 1} and fix a time step h > 0. Let uh be the radially

symmetric solution of (4.1). Then we can easily verify that for any t > 0, Γh
t defined

in (4.2) is a circle centered at the origin, and we denote by Rh(t) the radius of Γh
t .

Put φ(t) =
√

1 − 2t and let Γt = ∂B(0, φ(t)). Take δ ∈ (0, 1/5) and set

Tmax =
1

2
, Tδ =

1

2
− 25δ2

2
, m =

[
Tδ

h

]
,(5.1)

where Tmax is the extinction time for Γt and [s] denotes the Gauss symbol for s ∈ R.
Applying Theorem 4.1, we see that for each δ ∈ (0, 1/5), there exist h2 > 0 and
M1 > 0 such that

sup
t∈[0,Tδ]

|Rh(t) − φ(t)| ≤ M1h for all h ∈ (0, h2).(5.2)
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In the remainder of this section we consider a more precise behavior of Rh as h ↘ 0
than (5.2) and show that the estimate of Theorem 4.1 is optimal. Our main result of
this section is stated as follows.

Theorem 5.1. For each δ ∈ (0, 1/5), there exist h0 > 0 and L > 0 such that

|Rh(t) − (φ(t) − t2φ0
1(t))| ≤ Lt5/2 for t ∈ [t, h],(5.3)

|Rh(t) − (φ(t) − hϕ(t))| ≤ Lh3/2 for t ∈ [h, Tδ](5.4)

for all h ∈ (0, h0). Here φ0
1(t), ϕ(t) are given by

φ0
1(t) =

1

3(φ(t))3
, ϕ(t) = − log φ(t)

3φ(t)
.

This theorem shows that Γh
t moves faster than Γt.

As a corollary of Theorem 5.1, we obtain an estimate of the distance between Γt

and Γh
t .

Corollary 5.2. For each δ ∈ (0, 1/5), there exist h1 ∈ (0, h0), L > 0, and
L > 0 such that

Lt2 ≤ dH(Γt,Γ
h
t ) ≤ Lt2 for t ∈ [0, h],(5.5)

Lth ≤ dH(Γt,Γ
h
t ) ≤ Lth for t ∈ [h, Tδ](5.6)

for all h ∈ (0, h1).
This corollary shows that in the case where {Γt}t≥0 is a motion of a smooth

and compact hypersurface by mean curvature, the linear rate in h is optimal to the
convergence of the BMO algorithm.

We prepare some functions which will be used in the following subsections. For
k = 0, 1, 2, . . . ,m, we define

φk(t) =
√

(Rh(kh))2 − 2t, φk
1(t) =

1

3(φk(t))3
for t ∈ [0, h].(5.7)

Note that φ0 = φ and (φk)′ = −1/φk in (0, h). It is easily seen by (5.2) and these
facts that, for any δ > 0, there exists an h0 > 0 such that

1

3(1 + δ)3
≤ φk

1(t) ≤ 1

3 · (3δ)3 ,
1

(1 + δ)5
≤ (φk

1)′(t) ≤ 1

(3δ)5
(5.8)

for all t ∈ [0, h], k = 0, 1, . . . ,m, and h ∈ (0, h0).

5.1. Short-time asymptotics of Rh. In this subsection, we prove the following
theorem suggested by Proposition 2.3.

Theorem 5.3. There exist h3 > 0 and L1 > 0 such that

|Rh(t + kh) − (φk(t) − t2φk
1(t))| ≤ L1t

5/2

for all t ∈ [0, h), k = 0, 1, . . . ,m, and h ∈ (0, h3).

Proof. Set k = 0 and u = uh for simplicity. Define φ̃(t) = φ(t) − t2φ0
1(t) and

d̃(t, r) = φ̃(t)−r. Let u and u be defined by (3.18) and (3.19), respectively. Let h2 be
given in Proposition 3.2. Since u(0, r) = u(0, r) = u(0, r) on R

1 by (3.20), applying
Proposition 3.2 and the comparison principle for the heat equation, we get

u(t, r) ≤ u(t, r) ≤ u(t, r) in [0, h) × R
1(5.9)
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for all h ∈ (0, h2). Let φ = φ(t) and φ = φ(t) be the zero of u(t, ·) and u(t, ·),
respectively. Then it follows from (5.9) and (5.12) that

φ(t) ≤ Rh(t) ≤ φ(t) for all t ∈ [0, h) and h ∈ (0, h2)(5.10)

for all h ∈ (0, h2).

We estimate φ and φ. At first, it is easily seen by (3.22) that there exists an

h3 ∈ (0, δ2/4 ∧ h2) such that

−t2U4 = u(t, φ̃(t)) < 0 = u(t, φ(t)) < u(t, φ̃(t) − 2t2),(5.11)

ur(t, r) ≤ −U0,ρ(1)

2
√
t

+ Kt ≤ −U0,ρ(1)

4
√
t

< 0(5.12)

for all t ∈ (0, h3) and r ∈ R satisfying |d̃(t, r)| ≤ 2
√
t(≤ δ). Here we have used (3.22)

to derive these estimates. Thus we can observe from (5.11) and (5.12) that

φ̃(t) −Kt5/2 ≤ φ(t) ≤ φ̃(t) for all t ∈ (0, h) and h ∈ (0, h3).(5.13)

We can also show similarly that

φ̃(t) ≤ φ(t) ≤ φ̃(t) + Kt5/2 for all t ∈ (0, h) and h ∈ (0, h3).(5.14)

Combining (5.13), (5.14) with (5.10) and setting L1 = K, we obtain the result for
k = 0.

In the case k ≥ 1, let η be defined by (3.7) and set

d̃k(t, r) = φk(t) − t2φk
1(t) − r, zk(t, r) = η(d̃k(t, r)).

We define uk and uk by (3.18)–(3.20) with replacing d̃, z with d̃k, zk, respectively.
Then we can check that Proposition 3.2 holds for these uk and uk for any h ∈ (0, h2)
and small h2 > 0. Since we can easily verify that the choices of h2 and h3 depend
only on δ ∈ (0, 1/5), we can apply the above argument to obtain the result.

5.2. Derivation of a corrector for Rh. In this subsection we formally calcu-
late Rh(t) − φ(t) and find a corrector for Rh(t) on each time interval [kh, (k + 1)h)
(k ∈ N ∪ {0}). By Theorem 5.3, we see that

|Rh(t) − (φ(t) − t
2
φ0

1(t))| ≤ L1t
5/2

for all t ∈ [0, h] and h ∈ (0, h3).(5.15)

Next we compute Rh(t+ h)− φ(t+ h) for t ∈ [0, h]. Theorem 5.3 yields that |Rh(t+

h) − (φ1(t) − t
2
φ1

1(t))| ≤ L1t
5/2

for all t ∈ [0, h3]. From (5.15) and this estimate, we
have

Rh(t + h) − φ(t + h) ≥ φ1(t) − t
2
φ1

1(t) − φ(t + h) − L1t
5/2

(5.16)

=
√

(Rh(h))2 − 2t−
√

1 − 2(t + h) − t
2
φ1

1(t) + L1t
5/2

≥
√

(φ(h) − h2φ0
1(h) − L1h5/2)2 − 2t−

√
(φ(h))2 − 2t− t

2
φ1

1(t) − L1t
5/2

=: I1 − I2 − t
2
φ1

1(t) − L1t
5/2

.
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We observe by Taylor expansion to I1 and I2 around t = 0 that

I1 − I2 = −h2φ0
1(h) − L1h

5/2 − (h2φ0
1(h) + L1h

5/2)t

φ(h)(φ(h) − h2φ0
1(h) − L1h5/2)

(5.17)

−
∫ t

0

(
(t− s)

{(φ(h) − h2φ0
1(h) − L1h5/2)2 − 2s}3/2

− (t− s)

{(φ(h))
2 − 2s}3/2

)
ds.

It follows from (
1

1 − r

)3

≤ 1 + 8r for all |r| � 1(5.18)

that

1

{(φ(h) − h2φ0
1(h) − L1h5/2)2 − 2s}3/2

≤ 1

{(φ(h))2 − 2s}3/2

(
1 +

8(h2φ0
1(h) + L1h

5/2)(2φ(h) − h2φ0
1(h) − L1h

5/2)

(φ(h))2 − 2s

)
for any s ∈ [0, h] and small h > 0. By using this inequality, we have

I1 − I2 ≥ −h2φ0
1(h) − L1h

5/2 − t(h2φ0
1(h) + L1h

5/2)

φ(h)(φ(h) − h2φ0
1(h) − L1h5/2)

−4t
2
(h2φ0

1(h) + L1h
5/2)(2φ(h) − h2φ0

1(h) − L1h
5/2)

{(φ(h))2 − 2t}5/2
.

In addition, since we also see by (5.18) that

1

φ(h) − h2φ0
1(h) − L1h5/2

≤ 1

φ(h)

(
1 +

8(h2φ0
1(h) + L1h

5/2)

φ(h)

)
for any small h > 0, noting that h2φ0

1(h) + L1h
5/2 > 0 and (φ(h))2 − 2t ≥ (φ(2h))2

on [0, h], we get

I1 − I2 ≥ −h2φ0
1(h) − L1h

5/2(5.19)

− th2

{(
1

(φ(h))2
+

8hφ(h)

(φ(2h))5

)
φ0

1(h) +
8h2(φ0

1(h))2

(φ(h))3

}
− t

{(
1

(φ(h))2
+

8hφ(h)

(φ(2h))5
+

16h2φ0
1(h)

(φ(h))3

)
L1h

5/2 +
8(L1h

5/2)2

(φ(h))3

}
.

Setting

φ1
1 =

(
1

(φ(h))2
+

8hφ(h)

(φ(2h))5

)
φ0

1(h) +
8h2(φ0

1(h))2

(φ(h))3
,

L1 =

(
1

(φ(h))2
+

8hφ(h)

(φ(2h))5
+

16h2φ0
1(h)

(φ(h))3

)
L1h

5/2 +
8(L1h

5/2)2

(φ(h))3
,

we obtain

Rh(t + h) − φ(t + h) ≥ −h2φ0
1(h) − t

2
φ1

1(t) − th2φ1
2 − L1h

5/2 − L1t
5/2 − L1t



858 KATSUYUKI ISHII

for all t ∈ [0, h] and small h > 0.
To consider the case k = 2, 3, . . . ,m, we define

ψk = ψk
1 + hψk

2 , ψk
1 =

k∑
l=0

φl
1(h), ψk

2 =

k∑
l=0

φl
2, Lk

2 = h

k∑
l=0

Ll(5.20)

(φ0
2 = 0,L0 = 0),

φl
2 =

(
1

(φ(lh))2
+

8hφ(lh)

(φ((l + 1)h))5

)
ψl−1 +

8h2(ψl−1)2

(φ(lh))3
,(5.21)

Ll =

(
1

(φ(lh))2
+

8hφ(lh)

(φ((l + 1)h))5
+

16h2ψl−1

(φ(lh))3

)
(L1lh

5/2 + Ll−1
2 )(5.22)

+
8(L1lh

5/2 + Ll−1
2 )2

(φ(lh))3
.

Assume that for k ≥ 2,

Rh(t + (k − 1)h) − (φ(t + (k − 1)h)

≥ −h2ψk−2 − t
2
φk−1

1 (t) − th2φk−1
2 − L1(k − 1)h5/2 − L1t

5/2 − Lk−2
2 − Lk−1t

for all t ∈ [0, h]. Since by Theorem 5.3 we have |Rh(t+kh)−(φk(t)−t
2
φk

1(t))| ≤ L1t
5/2

for all t ∈ [0, h2], similar calculations to (5.16) yield

Rh(t + kh) − φ(t + kh)

≥
√

(φ(kh) − h2ψk−1 − L1kh5/2 − Lk−1
2 )2 − 2t−

√
(φ(kh))2 − 2t− t

2
φk

1(t) − L1t
5/2

=: I4 − t
2
φk

1(t) − L1t
5/2

.

Replacing h2φ0
1(h) and L1h

5/2 with, respectively, h2ψk−1 and L1kh
5/2 + Lk−1

2 in the
case k = 1, we get

I4 ≥ −h2ψk−1 − t
2
φk

1(t) − th2φk
2 − L1kh

5/2 − L1t
5/2 − Lk−1

2 − Lkt.

Thus we have

Rh(t + kh) − φ(t + kh) ≥ −h2ψk−1 − t
2
φk

1(t) − th2φk
2

− kL1h
5/2 − L1t

5/2 − Lk−1
2 − Lkt

for all t ∈ [0, h] and small h > 0.
Similarly, we can observe that

Rh(t + kh) − φ(t + kh) ≤ −h2ψk−1 − t
2
φk

1(t) − th2φk
2

+L1kh
5/2 + L1t

5/2
+ Lk

2 + Lkt

for all t ∈ [0, h], k ∈ N ∪ {0} and small h > 0. Therefore we obtain

|Rh(t + kh) − {φ(t + kh) − (h2ψk−1 + t
2
φk

1(t) + th2φk
2)}|(5.23)

≤ L1kh
5/2 + L1t

5/2
+ Lk

2 + Lkt

for all t ∈ [0, h], k ∈ N ∪ {0} and small h > 0. This inequality shows that the term

h2ψk−1 + t
2
φk

1(t) + th2φk
2 is a (formal) corrector for Rh(t).
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5.3. Proofs of Theorem 5.1 and Corollary 5.2. This subsection is devoted
to the estimates and the limits of ψk

1 , ψk
2 , Lk

2 , and Lk and the proofs of Theorem 5.1
and Corollary 5.2. Remember that we have taken δ ∈ (0, 1/5) and set Tmax, Tδ, and
m as in (5.1).

Proposition 5.4. Let ϕ1(t) = (1/φ(t) − 1)/3. Then there exist h3 > 0 and
M3 > 0 such that

sup
t∈[0,Tδ]

|ϕ1(t) − hψ
[t/h]
1 | ≤ M3h for all h ∈ (0, h3).

Proof. We remark that ϕ1(t) = 1
3

∫ t

0
1

(φ(s))3 ds. Set k = [t/h]. It is easily seen by

the definition of φk
1 in (5.20) and kh ≤ Tmax that

|ϕ1(t) − hψ
[t/h]
1 | ≤ 1

3

∣∣∣∣∣
∫ kh

0

1

(φ(s))3
ds− h

k∑
l=0

1

(φ(lh))3

∣∣∣∣∣ +
h

3(φ(Tδ))3

+
Tmax

3
max
0≤l≤k

∣∣∣∣ 1

(φ(lh))3
− 1

{(Rh(lh))2 − 2h}3/2

∣∣∣∣ .
Since 1/(φ(t))3 is increasing in t, we easily observe that∣∣∣∣∣

∫ kh

0

1

(φ(s))3
ds− h

k∑
l=0

1

(φ(lh))3

∣∣∣∣∣ ≤
(

1

(φ(Tδ))3
− 1

(φ(0))3

)
h.

Combining (5.2) with this inequality, we have the result.
We obtain the estimates for ψk

2 by the following lemma.
Lemma 5.5. There exist h4 > 0, M4 > 0, and M5 > 0 such that

M4(kh)2 ≤ h2ψk
2 ≤ M5

for k = 0, 1, . . . ,m and h ∈ (0, h4).
Proof. The definition of ψk

1 in (5.20) yields that

0 < ψ1
1 ≤ · · · ≤ ψm

1 .(5.24)

Besides we easily see that

α := sup
0≤l≤m,h>0

max

{
1

(φ(lh))2
,

8φ(lh)

(φ((l + 1)h))5
,

8

(φ(lh))3

}
< +∞.

Thus, for l = 1, 2, . . . ,m, φl
2 satisfies

φl
2 ≤ α{(1 + h)ψl−1 + h2(ψl−1)2}.(5.25)

We estimate φl
2 by using (5.21) and this inequality.

First, for sufficiently small h > 0 we get ψ0
2(h) = φ0

2(h) ≤ 1 and

φ1
2 ≤ α(2 + h).

Fix k = 2, 3, . . . ,m and let l = 2, 3, . . . , k. From the fact m = [Tδ/h] we remark that

(1 + αh(2 + h))l ≤ (1 + αh(2 + h))m ≤ e3αTmax(5.26)
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for l = 2, 3, . . . ,m and h ∈ (0, 1). Taking (5.24) and this estimate into account, we
choose h4 ∈ (0, 1) such that for any h ∈ (0, h4),

h(ψm
1 + hψ1

1) ≤ M5,1, M5,1h ≤ M5,1e
3αTmaxh ≤ 1,(5.27)

where M5,1 = ϕ1(Tδ) + 1.
It follows from (5.21) with l = 2 and (5.25) that

φ2
2 ≤ α{(1 + h)(ψ1

1 + hψ1
2) + h2(ψ1

1 + hψ1
2)2}.

We easily see by (5.27) that h2(ψ1
1 + hψ1

2) ≤ M5,1h ≤ 1. Thus we get

φ2
2 ≤ α(2 + h)(ψ1

1 + hψ1
2).(5.28)

In the case of l = 3, since ψ2 = ψ2
1 + hψ1

2 + hφ2
2, we see by (5.24), (5.25), and (5.28)

that

φ3
2 ≤ α[(1 + h)(1 + αh(2 + h))(ψ2

1 + hψ1
2) + h2{(1 + αh(2 + h))(ψ2

1 + hψ1
2)}2].

Using (5.26) and (5.27), we get

h2(1 + αh(2 + h))(ψ2
1 + hψ1

2) ≤ M5,1e
3αTmaxh ≤ 1.

Therefore we have

φ3
2 ≤ α(2 + h)(1 + αh(2 + h))(ψ2

1 + hψ1
2).(5.29)

As to the case of l = 4, note that ψ3 = ψ3
1 + hψ1

2 + h(φ2
2 + φ3

2). Hence it is observed
by (5.25)–(5.29) and a similar argument that

φ4
2 ≤ α(2 + h)(1 + αh(2 + h))2(ψ3

1 + hψ1
2).

By repeating this procedure, we can show that

φl
2 ≤ α(2 + h)(1 + αh(2 + h))l−2(ψl−1

1 + hψ1
2) for l = 4, . . . , k.

Summing up l = 0 to l = k and using (5.27), we get

h2ψk
2 = h2

k∑
l=0

φl
2 ≤ 3α(1 + M5,1e

3αTmax) for h ∈ (0, h4).

Setting M5 = 3α(1 + M5,1e
3αTmax), we have an upper bound for h2ψk

2 .
As for a lower bound for h2ψk

2 , we observe from the definition of φl
2 in (5.21) and

(5.8) that

φl
2 ≥ ψl

(φ(lh))2
≥ lφ0

1(0)

(φ(0))2
≥ l

3(1 + δ)3
.

Thus, putting M4 = 1/6(1 + δ)3, we obtain h2ψk
2 ≥ M4(kh)2.

We use this lemma to prove the following.
Proposition 5.6. Let ϕ2(t) = − log φ(t)/3φ(t)−ϕ1(t). Then there exist h5 > 0

and M6 > 0 such that

sup
t∈[0,Tδ]

|ϕ2(t) − h2ψ
[t/h]
2 | ≤ M6h for all h ∈ (0, h5).
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Proof. We easily see that ϕ2 is a unique solution of

ϕ2(t) =

∫ t

0

ϕ1(s) + ϕ2(s)

(φ(s))2
ds.

For each t ∈ [0, Tδ], set k = [t/h]. It is easily observed from the definition of ψk
2 in

(5.20) and Lemma 5.5 that

|ϕ2(t) − h2ψ
[t/h]
2 | ≤ (1 + Kh)

{∣∣∣∣∣
∫ t

0

ϕ1(s)

(φ(s))2
ds− h

k∑
l=0

hψl
1

(φ(lh))2

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

ϕ2(s)

(φ(s))2
ds− h

k∑
l=0

h2ψl
2

(φ(lh))2

∣∣∣∣∣
}

+ Kh

=: (1 + Kh)(I1 + I2) + Kh.

Since 1/(φ(t))2 (resp., ψk) is increasing with respect to t (resp., k), we have∫ (l+1)h

lh

hψ
[s/h]
1

(φ(s))2
ds ≤ h2ψl+1

1

(φ((l + 1)h))2
.

Using Proposition 5.4 and this inequality, we calculate

I1 =

∣∣∣∣∣
∫ kh

0

ϕ1(s) − hψ
[s/h]
1 + hψ

[s/h]
1

(φ(s))2
ds− h

k∑
l=0

hψl
1

(φ(lh))2
+

∫ t

kh

ϕ1(s)

(φ(s))2
ds

∣∣∣∣∣
≤ Kh

∫ kh

0

ds

(φ(s))2
+ h

∣∣∣∣∣
k∑

l=0

hψl+1
1

(φ((l + 1)h))2
−

k∑
l=0

hψl
1

(φ(lh))2

∣∣∣∣∣ + Kh

≤ Kh.

Similarly we can show that

I2 ≤
∫ t

0

|ϕ2(s) − h2ψ
[s/h]
2 |

(φ(s))2
ds + Kh.

Therefore we obtain

|ϕ2(t) − h2ψ
[t/h]
2 | ≤ Kh + (1 + Kh)

∫ t

0

|ϕ2(s) − h2ψ
[s/h]
2 |

(φ(s))2
ds.

We apply the Gronwall inequality to get

|ϕ2(t) − h2ψ
[t/h]
2 | ≤ Kh exp

(
(1 + Kh)

∫ Tδ

0

ds

(φ(s))2

)

for all t ∈ [0, Tδ] and small h > 0. Thus we have the result.
Finally we obtain the bounds for Lk and Lk

2 .
Proposition 5.7. There exist h6 > 0 and M7 > 0 such that

Lk ≤ M7(kh)h3/2, Lk
2 ≤ M7(kh)2h3/2

for all k = 1, 2, . . . ,m and h ∈ (0, h6).
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Proof. The proof is similar to that of Lemma 5.5.
It follows from (5.2) and Proposition 5.4 that

α := sup
0≤l≤m,h>0

max

{
1

(φ(lh))2
,

8φ(lh)

(φ((l + 1)h)5
,

16hψl

(φ(lh))3
,

8

(φ(lh))3

}
< +∞.

Thus, for l = 1, 2, . . . ,m, Ll satisfies

Ll ≤ α{(1 + h)(L1lh
5/2 + Ll−1

2 ) + (L1lh
5/2 + Ll−1

2 )2}.(5.30)

We estimate Ll by using (5.22) and this inequality.
First, for sufficiently small h ∈ (0, 1), we have

L1 ≤ α(2 + h)L1h
5/2 ≤ M7,1h

5/2, M7,1 = 3αL1.

Fix k = 2, 3, . . . ,m and let l = 2, 3, . . . , k. In view of

(1 + αh(2 + h))l ≤ (1 + αh(2 + h))m ≤ e3αTmax(5.31)

for l = 2, 3, . . . ,m and h ∈ (0, 1), we can choose h6 ∈ (0, 1) such that for any h ∈
(0, h6),

e3αTmax(TmaxL1 + M7,1h)h3/2 ≤ 1.(5.32)

It is easily seen from (5.20) that L1
2 = hL1 ≤ M7,1h

7/2. Thus we get, by (5.30),

L2 ≤ α{(1 + h)(2L1h
5/2 + M7,1h

7/2) + (2L1h
5/2 + M7,1h

7/2)2}.(5.33)

We easily observe by (5.32) that 2L1h
5/2 + M7,1h

7/2 ≤ 1. Hence we have

L2 ≤ α(2 + h)(2L1h
5/2 + M7,1h

7/2) ≤ 3α(L1 + M7,1h)(2h)h3/2.(5.34)

In the case of l = 3, since L2
2 = h(L1 + L2), we see by (5.30) that

L3 ≤ α[(1 + h)(1 + αh(2 + h))(3L1h
5/2 + M7,1h

7/2)

+{(1 + αh(2 + h))(3L1h
5/2 + M7,1h

7/2)}2].

Using (5.31) and (5.32), we obtain

(1 + αh(2 + h))(3L1h
5/2 + M7,1h

7/2) ≤ e3αTmax(Tmax + 1)L1h
3/2 ≤ 1.

Thus we get

L3 ≤ α(2+h)(1+αh(2+h))(3L1h
5/2 +M7,1h

7/2) ≤ 3αe3αTmax(L1 +M7,1h)(3h)h3/2.

We repeat the above arguments to obtain

Ll ≤ α(2 + h)(1 + αh(2 + h))l−2(L1lh
5/2 + M7,1h

7/2) ≤ M7(lh)h3/2(5.35)

for M7 = 3αe3αTmax(L1 + M7,1). From this estimate, we get

Lk
2 = h

k∑
l=1

Ll ≤ M7(kh)2h3/2

for all k = 0, 1, . . . ,m and h ∈ (0, h5).
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We observe from Propositions 5.4–5.7 that

0 ≤ h2ψk−1 + t
2
φk

1(t) + th2φk
2 ≤ Kh, 0 ≤ L1kh

5/2 + L1t
5/2

+ Lk
2 + Lkt ≤ Kh3/2

for all t ∈ [0, h), k = 0, 1, . . . ,m. Thus (5.23) rigorously holds for sufficiently small
h > 0.

Proof of Theorem 5.1. In the case k = 0, (5.3) is obtained by Theorem 5.3. Thus
we assume k ≥ 1 and prove (5.4).

Noting that ϕ = ϕ1 + ϕ2, in view of Propositions 5.4–5.7, we can find an h0 > 0
so small that

|Rh(t) − (φ(t) − hϕ(t))| ≤ Kh2 + Kh3/2 ≤ Lh3/2(5.36)

for some large L > 0 and all t ∈ [0, Tδ] and h ∈ (0, h0).
Proof of Corollary 5.2. In the case k = 0, we have (5.5) by (5.3). Thus we may

assume k ≥ 1 and kh ≤ t < (k + 1)h. Let h0 > 0 be given in Theorem 5.1.
Using (5.8), (5.23), Lemma 5.5, and Proposition 5.7, we have

Rh(t) − φ(t) ≤ −kKh2 −M4(kh)2h−K(t− kh)2

+kL1h
5/2 + L1(t− kh)5/2 + M7(kh)2h3/2 + M7(t− kh)(kh)h3/2

≤ −(K − L1h
1/2)(kh2 + (t− kh)2) − (M4 − 2M7h

1/2)(kh)2h

≤ −(K − L1h
1/2)(kh2 + (t− kh)2)

for any h ∈ (0, h0) satisfying M4 ≥ 2M7h
1/2. Take h1 ∈ (0, h0) such that 2M7h

1/2 ≤
M4 and Lh1/2 ≤ K/2. Since we get, from kh ≥ t− h,

kh2 + (t− kh)2 ≥ 1

2
kh2 +

1

2
kh2 ≥ 1

2
(t− h)h +

1

2
kh2 ≥ 1

2
th,

setting L = K/4, we obtain

Rh(t) − φ(t) ≤ −Lth.

Similarly we can show that

Rh(t) − φ(t) ≥ −Lth for all t ∈ [h, Tδ] and h ∈ (0, h1)

for some L > 0. From these two estimates, we have (5.6).

6. Appendix. We give the proof of Lemma 2.2.
Proof of Lemma 2.2. Put r̃ = vt. Then it follows from Evans [5, Theorem 4.1]

that |v− (N −1)/R| ≤ Kt1/2 for any small t > 0. Hence we estimate v as t ↘ 0 more
precisely. In the following we always assume that t > 0 is sufficiently small.

To simplify our consideration, we treat the following problem instead of (2.1):⎧⎨⎩
ut − Δu = 0 in (0,+∞) × R

N ,

u(0, x) =

{
1, x ∈ B(z0, R),

0, x ∈ R
N\B(z0, R),

(6.1)

where z0 = (0, . . . , 0, R) ∈ R
N . We note that, in this setting, Ch

t = {x ∈ R
N | u(t, x) ≥

1/2}. Then the solution u of (6.1) can be represented as

u(t, x) =
1

(4πt)N/2

∫
B(z0,R)

e−|y−x|2/4tdy.
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Set x0 = (0, . . . , 0, vt) with v ≥ 0 and assume that u(t, x0) = 1/2. Then

1

2
=

1

(4πt)N/2

∫
B(z0,R)

e−(|y′|2+|yN−vt|2)/4tdy.

Since the lower hemisphere of ∂B(z0, R) can be written as

yN = R−
√
R2 − |y′|2 (y = (y′, yN ) ∈ ∂B(z0, R), y′ ∈ B′(0, R)),

where B′(0, R) = {x′ ∈ R
N−1 | |x′| < R}, we observe that

1

2
=

1

(4πt)N/2

∫
B′(0,R)

e−|y′|2/4t
∫ +∞

R−
√

R2−|y′|2
e−|yN−vt|2/4tdyNdy′ + O(e−K/t).

Changing the variable by setting z′ = y′/2
√
t, zN = (yN − vt)/2

√
t, we compute that

1

2
=

1

πN/2

∫
B′(0,R/2

√
t)

e−|z′|2
{∫ +∞

0

−
∫ √

t(g(t,z′)−v/2)

0

}
e−|zN |2dzNdz′ + O(e−K/t).

Here g(t, z′) is defined by

g(t, z′) =
1

2t
(R−

√
R2 − 4t|z′|2) =

|z′|2
R

+
t|z′|4
R3

+ O

(
t2|z′|6
R5

)
.(6.2)

Since

1

πN/2

∫
B′(0,R/2

√
t)

e−|z′|2
∫ +∞

0

e−|zN |2dzNdz′ =
1

2
−O(e−K/t),

we deduce that

1

πN/2

∫
B′(0,R/2

√
t)

e−|z′|2
∫ √

t(g(t,z′)−v/2)

0

e−|zN |2dzNdz′ = O(e−K/t).

Using Taylor expansion to the function
∫ s

0
e−|zN |2dzN around s = 0, we can observe

that

1

πN/2

∫
B′(0,R/2

√
t)

e−|z′|2
{

(2g(t, z′) − v) − t

12
(2g(t, z′) − v)3

}
= O(t2).(6.3)

By the way, lengthy calculations yield that∫
B′(0,R/2

√
t)

e−|z′|2 |z′|2kdz′ = π(N−1)/2
k∏

l=1

N + 2l − 3

2
−O(e−K/t).(6.4)

We use this estimate to compute the left-hand side of (6.3). Combining (6.2) with
(6.4) with k = 1, 2, we get

1

π(N−1)/2

∫
B′(0,R/2

√
t)

e−|z′|2(2g(t, z′) − v)dz′ =
N − 1

R
+

(N2 − 1)t

2R3
− v + O(e−K/t).

We note that

(2g(t, z′) − v)3 =
8|z′|6
R3

− 12v|z′|4
R2

+
6v2|z′|2

R
− v3 + tP (t, |z′|),
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where tP (t, |z′|) is the remainder term satisfying∫
RN−1

e−|z′|2P (t, |z′|)dz′ = O(1).

We use (6.4) with k = 0, 1, 2, 3 and this estimate to obtain

t

12π(N−1)/2

∫
B′(0,R/2

√
t)

e−|z′|2(2g(t, z′) − v)3dz′

=
(N + 3)(N2 − 1)t

12R3
− (N2 − 1)t

4R2
v +

(N − 1)t

4R
v2 − t

12
v3 + O(t2).

Therefore we obtain the following:

N − 1

R
− (N2 − 1)(N − 3)t

12R3
− v +

(N2 − 1)t

4R2
v − (N − 1)t

4R
v2 +

t

12
v3 = O(t2).

Let G(v) be the left-hand side of this estimate. We find a root v∗ of G(v) = 0
near v0 = (N − 1)/R and consider v∗ − v0. We easily see that

G (v0 + s) =
(N − 1)(3N − 1)t

6R3
−
(

1 − (N − 1)t

2R2

)
s +

t

12
s3.(6.5)

Set

v1 = v1(t) :=
(N − 1)(3N − 1)t

6R3 − 3R(N − 1)t
.

It is observed by (6.5) that

G(v0 + 2v1) < 0 < G(v0 + v1) ≤ Kt4, −1 ≤ dG

dv
(v0 + s) ≤ −1

2
for s ∈ [0, 2v1).

Hence there exists a root v∗ of G(v) = 0 satisfying 0 < v∗ − (v0 + v1) ≤ Kt4. Thus
we conclude that ∣∣∣∣v∗ − (

v0 +
(N − 1)(3N − 1)t

6R3

)∣∣∣∣ ≤ Kt2.

In the case of G(v) = O(t2), we can obtain the result of Lemma 2.2 by slightly
modifying the above argument.
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