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Abstract

The relatively simple Ohta-Kawasaki density functional theory for diblock
copolymer melts allows us to construct and analyze exact solutions to the Euler-
Lagrange equation by singular perturbation techniques. First we consider a so-
lution of a single sphere pattern that models a cell in the spherical morphology.
We show the existence of the sphere pattern and find a stability threshold, so
that if the sphere is larger than the threshold value, the sphere pattern becomes
unstable. Next we study a spherical lamellar pattern, which may be regarded
as a defective lamellar pattern. We reduce the existence and the stability prob-
lems to some finite dimensional problems which are accurately solved with the
help of computer. We find two thresholds. Only when the size of the sam-
ple is larger than the first threshold value, a spherical lamellar pattern exists.
This patten is stable only when the seize of the sample is less than the second
threshold value. As the stability of the spherical lamellar pattern changes at
the second threshold, a bifurcating branch with a pattern of wriggled spherical
interfaces appears. The free energy of the latter pattern is lower than that of
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the first pattern. A similar bifurcation phenomenon also occurs in the single
sphere pattern at its stability threshold.

Keywords: Ohta-Kawasaki diblock copolymer theory, sphere pattern, optimal
size, spherical lamellar pattern, existence threshold, stability threshold, bifur-
cation, wriggled sphere pattern, wriggled spherical lamellar pattern.
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1 Introduction

A diblock copolymer melt is a soft material, characterized by fluid-like disorder on the
molecular scale and a high degree of order at a longer length scale. A molecule in a
diblock copolymer is a linear sub-chain of A-monomers grafted covalently to another
sub-chain of B-monomers. Because of the repulsion between the unlike monomers, the
different type sub-chains tend to segregate, but as they are chemically bonded in chain
molecules, segregation of sub-chains cannot lead to a macroscopic phase separation.
Only a local micro-phase separation occurs: micro-domains rich in A monomers and
micro-domains rich in B monomers emerge as a result. These micro-domains form
morphology patterns/phases.

There are two types of phase separations in a diblock copolymer system: weak
segregation and strong segregation. The weak segregation occurs when the tempera-
ture is relatively high. The micro-domains are small and there are no clear interfaces
separating them. When the temperature is lower, strong segregation is observed. The
micro-domains become larger and they are separated by narrow interfaces.

The self-consistent mean field theory [11, 13, 14, 15, 17, 18] is the most successful
theory in modeling and capturing aspects of the phase separation. It consists of
five equations for five field variables: two density fields of A- and B-monomers, two
mean fields on A- and B-monomers simulating the interaction between the molecular
chains, and a Lagrange multiplier field. Two of the five equations are nonlocal, while
the remaining three are algebraic [22]. The theory is derived from a microscopic
description of interacting polymer chains. Based on a variational principle, the Gibbs
canonical distribution is approximated by the distribution generated by the mean
fields [7]. This theory is quite complex to which only numerical studies have been
done. One of them is the spectral method of Matsen and Schick [22] that yields
predictions with striking resemblances to experiments.

A limitation of such techniques or other test field based methods is that they
proceed by assuming a periodic structure, computing its free energy and then com-
paring that free energy to the free energy of other candidate structures [3]. The
patterns found by such methods in general do not exactly solve the self-consistent
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equations. However finding analytic solutions to these equations is very difficult due
to the complexity of the two nonlocal equations.

The density functional theory of Ohta and Kawasaki [28] is a much simpler model.
The free energy of a diblock copolymer melt is an elegant functional of the A-monomer
density field only. Unlike an earlier density functional theory of Leibler [20] that only
deals with the weak segregation region, the Ohta-Kawasaki theory deals with both the
weak- and strong-segregation phenomena. The Euler-Lagrange equation of the Ohta-
Kawasaki free energy is an integro-differential equation (See (2.9)), which can also be
viewed as a system of two elliptic partial differential equations (See (2.11-2.12)).

A close examination of the derivation of the density functional theory shows that
it is a simplified version of the self-consistent mean field theory. We refer the reader to
[7] for a detailed study of the simplification procedure. Here we briefly summarize the
results of [7]. There are two approximation steps. First we consider the relationship
between the A-monomer density field ua, the B-monomer density field ub, and the
mean fields UA, UB that act respectively on A- and B- monomers. In the self-consistent
mean field theory one can express ua and ub in terms of UA and UB with the help
of Feynman integrals, i.e. by solving some parabolic partial differential equations.
In the density functional theory we simplify this relationship via linearization. This
approximation is accurate if the temperature is not too low. Then we reverse the
linearized relationship between ua, ub and UA, UB to express UA, UB in terms of ua,
ub. An analysis in the Fourier space shows that this reversed relationship is described
by a pseudo-differential, nonlocal operator. In the second approximation step we keep
the long wave and the short wave parts of this operator and discard the intermediate
wave effects. This way we end up with a sum of the Laplace operator −∆ and
the inverse Laplace operator (−∆)−1. When we finally express the free energy as a
functional of ua and ub in the density functional theory, the Laplace operator gives
rise to the local part of the functional and the inverse Laplace operator leads to the
nonlocal part of the functional (See (2.2)).

Despite the shortcomings associated with these approximations, the density func-
tional theory at least qualitatively captures the properties of diblock copolymers
[21, 10]. Ohta and Kawasaki used their theory to study the common lamellar, cylin-
drical and spherical phases [28]. More recently Teramoto and Nishiura found the less
common double gyroid morphology by numerical simulating the theory [43]. Although
Ohta and Kawasaki only applied their theory to test fields and did not construct ex-
act solutions of the Euler-Lagrange equation, we will show that the simplicity of the
theory actually makes it possible to study exact solutions analytically.

The weak segregation regime may be studied by the bifurcation theory rather
easily. One starts with a uniform state and linearizes the Euler-Lagrange equation at
the uniform state. For some parameter values the principal eigenvalue of the linearized
problem is zero. Then a non-uniform state bifurcates from the uniform state. If one
can show that this non-uniform state is stable, then it gives the profile of a weakly
segregated pattern.
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Figure 1: The spherical phase. The B-monomers form dark spheres and the A-
monomers occupy the background. Not reflected in this figure is the body centered
cubic pattern in which the spheres pack.

In this paper we use the density functional theory to study the more complex
strong segregation phenomenon. Strongly segregated patterns are too different from
the uniform state to be treated as their bifurcating branches. The appropriate math-
ematical tool is the singular perturbation theory in calculus of variations and differ-
ential equations. We find exact solutions, or at least leading order terms of exact
solutions, to the Euler-Lagrange equation of the free energy functional [26, 30, 32,
31, 35, 39, 40, 9, 6, 16]. Often these solutions may be carefully analyzed and their
stability in space can be determined [33, 38].

The first strongly segregated pattern we study is the single sphere pattern. This
pattern arises from the spherical phase of a diblock copolymer. When the monomer
fraction is skewed in favor of A-monomers, the B-monomers form spherical micro-
domains, Figure 2. We find a pattern with one sphere of B-monomers as a solution to
the Euler-Lagrange equation. There is an optimal size for the sphere. The sphere of
the optimal size has lower free energy than those of other spheres. Then we linearize
the Euler-Lagrange equation at the sphere solution and study the spectrum of the
linearized operator. We will show that there is an upper bound for the size of the
sphere. Beyond the upper bound, the sphere can not be stable.

The second pattern is the spherical lamellar pattern. This pattern may be viewed
as a defective lamellar pattern. Other defective patterns are considered in [44] where
a model of a forth order differential equation is used. Given the number of interfaces
we look for a solution that consists of spherical layers of micro-domains separated by
narrow interfaces. In this case the existence and stability problems are reduced by
singular perturbation techniques to some finite dimensional problems. The reduced
problems are easily solved with the help of computer. Note that here we apply nu-
merical methods to the reduced finite dimensional problems only. This way we obtain
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far more accurate and reliable results compared to results found from direct numer-
ical simulations of infinite dimensional problems. There is an existence threshold.
Only when the sample is greater than this threshold a spherical lamellar pattern ex-
ists. There is also a stability threshold which is greater than the existence threshold.
When the sample is larger than the stability threshold, the spherical lamellar pattern
becomes unstable.

We emphasize that all the results presented in this paper are mathematically
rigorous. The informal style adopted here when we describe perturbation expansions
can be changed to a strict mathematical framework, part of which is known as the
Γ-convergence theory [8, 24, 23, 19].

2 Free energy

We review the density functional theory of Ohta and Kawasaki [28] in this section.
We consider a diblock copolymer melt that occupies a region D in space. The system
has the following parameters.

1. The polymerization index N that is the number of all the monomers in a chain
molecule.

2. The A-monomer number NA and the B-monomer number NB in a chain. Note
that NA + NB = N .

3. The number of chain molecules in the melt n. The average total monomer
number density is ρ0 = nN

V
.

4. The Kuhn statistical length l measuring the average distance between two ad-
jacent monomers in a chain molecule.

5. The inverse absolute temperature β.

6. The dimensionless Flory-Huggins parameter χ that measures the repulsion be-
tween unlike monomers; it is defined by

χ = β(VAB − VAA + VBB

2
) (2.1)

where VAB (and VAA, VBB respectively) is the energy cost to bring an A-
monomer (A-monomer and B-monomer respectively) and a B monomer (A-
monomer and B-monomer respectively) close to each other. This number is
positive because the repulsion force between unlike monomers is stronger than
those between like ones. Note that χ is inversely proportional to temperature.

7. The volume V of the sample. The domain D is non-dimensionalized so that the
size of D, denoted by |D| is a convenient value. In this paper D is a ball so we
take the radius of D to be 1 and the size of D to be |D| = 4π/3.

5



The main field in the Ohta-Kawasaki theory is the relative A-monomer number
density field u(x). The melt is assumed to be incompressible, so when u(x) = 1
(or u(x) = 0, respectively), the point x in D is occupied by A-monomers only (or
B-monomers only, respectively); if 0 < u(x) < 1, a mixture of A- and B-monomers
occupies x. The free energy F of the system is a functional of u(x). In a dimensionless
form we write

βF

χρ0V
=

∫

D
[
ǫ2

2
|∇u|2 + W (u) +

ǫγ

2
|(−∆)−1/2(u − a)|2] dx. (2.2)

On the right side of (2.2) we have introduced three dimensionless parameters:

ǫ2 =
|D|2/3l2

12a(1 − a)χV 2/3
, (2.3)

γ =
18
√

3V

|D|a3/2(1 − a)3/2χ1/2N2l3
, (2.4)

a =
NA

N
. (2.5)

Note that the parameter a = NA/N is the average A-monomer density. The field
u must satisfy the constraint

u = a (2.6)

where u = 1
|D|

∫

D u(x) dx is the average of u.

The exact form of W is not given in [28]. In [7] an approximation

W (u) =

{

u − u2 if u ∈ [0, 1]
∞ otherwise

(2.7)

is found. A more accurate W should be a smooth double well function of equal
depth. It must have a global minimum value 0 achieved at 0 and 1. It must have the
symmetry W (u) = W (1 − u). 0 and 1 are non-degenerate: W ′′(0) = W ′′(1) > 0.

Central in (2.2) is the third term in the integrand. It is nonlocal and models the
long range interaction between monomers due to the connectivity of the molecular
chains. The operator (−∆)−1/2 is the square root of the inverse of −∆ with the
natural boundary condition. Alternatively in (2.2) one may write

∫

D
|(−∆)−1/2(u − a)|2 dx =

∫

D

∫

D
(u(x) − a)G(x, y)(u(y) − a) dxdy (2.8)

where G is the Green function of −∆ with the natural boundary condition.
The second term in (2.2) can be regarded as the internal energy field of the system,

and the first and the third terms give the entropy of the system. As mentioned in
the introduction we have only taken the long wave and short wave effects, modeled
by the ∇ and (−∆)−1/2 operators, into consideration in this model.
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When we minimize (2.2), the first term in the integrand of (2.2) penalizes any
space non-uniformity. The second term favors u being either close to 0 or close to 1
everywhere. The best profile for the third term is to have u close to a everywhere.
However this is not a good profile for the second term. The second best profile for
the third term is for u to have many oscillations. Local minimizers of the free energy
result from these three competing preferences.

The Euler-Lagrange equation of (2.2) is a nonlinear integro-differential equation:

−ǫ2∆u + f(u) + ǫγ(−∆)−1(u − a) = η in D (2.9)

subject to the natural boundary condition

∂νu = 0 on ∂D. (2.10)

Here f = W ′. The constant η on the right side of (2.9) is a Lagrange multiplier
coming from the constraint (2.6). The equation (2.9) may also be written as a system
of elliptic partial differential equations:

−ǫ2∆u + f(u) + ǫγv = η (2.11)

−∆v = u − a (2.12)

subject to the conditions

∂νu = ∂νv = 0 on ∂D, u − a = v = 0. (2.13)

Note that (2.9) always has the uniform solution u(x) = a. When ǫ is large, cor-
responding to high temperature, this solution is stable and it models the disordered
phase. One may decrease ǫ to a value so that the principal eigenvalue of the linearized
problem at u(x) = a becomes 0. Then one finds a non-uniform solution bifurcating
out of the uniform solution. This bifurcation solution explains the weak segrega-
tion phenomenon and the corresponding ǫ identifies the parameter range for weak
segregation.

However in the strong segregation regime ǫ is much smaller. In this case the free
energy (2.2) is most easily analyzed in the parameter range

ǫ ≪ 1 (2.14)

γ ∼ 1. (2.15)

Here the uniform solution u(x) = a has much higher free energy than those of many
other states and is hence thermodynamically un-favored. Under (2.14-2.15), we are
in the strong segregation regime and have taken the volume of the sample to be of
order

V ∼ a3/2(1 − a)3/2χ1/2N2l3. (2.16)

We will see that in the parameter range (2.14-2.15) the number of micro-domains is
of order 1. Therefore the right side of (2.16) also predicts the size of a micro-domain.
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Figure 2: A single sphere solution with the natural boundary condition in the unit
ball.

Particularly we find the domain size V 1/3 to be proportional to N2/3, which is the
celebrated N2/3 law [28].

Having a small ǫ makes (2.9) a singular perturbation problem. Although in math-
ematics the singular perturbation theory is much harder and less mature than the
regular perturbation theory, a great deal of quantitative properties of solutions to
(2.9) can be obtained, using the existing techniques in the theory. Many problems
can be solved exactly in the leading order, and many other problems can be reduced to
much simpler finite dimensional problems that are solved with the help of computer.

3 Sphere pattern

When the monomer fraction a is close to 1, the diblock polymer typically exists in
the spherical phase. B-rich micro-domains form spheres and pack in a body centered
cubic pattern (BCC). Here we study a single sphere, Figure 2, based on the model
(2.2). Mathematically this must be done before we can analyze the BCC pattern. In
a future publication we will “connect” several single sphere patterns to construct a
BBC pattern solution in a general domain.

3.1 Existence

When one takes the domain D to be a unit ball, a radially symmetric solution u(r)
of (2.9) is found where u now is a function of r = |x|, Figure 2. A narrow interface,
whose thickness is of order ǫ, exists at some r1 where u(r1) = 1/2. The leading order
of r1 is determined by (2.6):

r1 = (1 − a)1/3 + O(ǫ). (3.17)
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Inside the interface u(r) is close to 0 and outside u(r) is close to 1. The profile of
u near r1 is described by the inner expansion

u(r) = H(
r − r1

ǫ
) + ǫP (

r − r1

ǫ
) + O(ǫ2). (3.18)

The leading order term H is the solution of

−H ′′ + f(H) = 0 (3.19)

with the conditions H(−∞) = 0, H(∞) = 1, and H(0) = 1/2. The next term P is
the solution of

−P ′′ + f ′(H)P − 2H ′

r1

+
2τ

r1

= 0, P (0) = 0. (3.20)

The definition of P involves r1. Because 1/r1 is the mean curvature of the interface,
the curvature affects the inner expansion of u in the ǫ order but not in the leading
order, for H is independent of r1.

In (3.20) we have a constant τ , which is the interface tension. For a general W ,

τ =
∫ 1

0

√

2W (s)dx, (3.21)

and for (2.7) we have

τ =

√
2π

8
. (3.22)

The interface tension may also be calculated in the self-consistent mean field theory
[12]. The value obtained there differs slightly from (3.22) of the density functional
theory.

The free energy of this solution may be viewed as a sum of two parts. The first
part comes from the two local terms of (2.2) and is equal to

4πr2
1τǫ + O(ǫ2). (3.23)

Note that the first term on the right side is the area of the interface times τ times ǫ.
The second part of the free energy comes from the nonlocal term of (2.2) and is

equal to
2πr5

1(r
3
1 − 3r1 + 2)γǫ

15
+ O(ǫ2). (3.24)

Note that the free energy of the disordered phase modeled by the uniform solution
u(x) = a is W (a)|D|, a quantity of order 1, which is much larger than the free energy
of the sphere pattern solution which is of order ǫ. Hence under the condition (2.14-
2.15) the system is in an ordered phase.
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a .5 .525 .55 .575 .6 .625 .65 .675 .7 .725
γo 140 130 122 115 109 104 100 97 95 93

a .75 .775 .8 .825 .85 .875 .9 .925 .95 .975
γo 92 92 93 95 99 106 117 137 176 290

Table 1: The values of γo for various a.

3.2 Optimal size

There is a sphere pattern solution of (2.9) for any γ as long as ǫ is sufficiently small.
This means that there is a solution for a wide range of V of the sample (the volume of
the B-monomer sphere in the middle is then (1− a)V ). It is natural to ask for which
value of V the sphere pattern is most energetically favored. Intuitively we know that
V can not be too large or too small. By (2.3-2.4) we write ǫ = ǫ̃V −1/3 and γ = γ̃V
so that ǫ̃ and γ̃ no longer depend on V . Then by (3.23-3.24) we find that the leading
term of the re-scaled free energy of a sphere pattern is

4πr2
1τ ǫ̃V −1/3 +

2πr5
1(r

3
1 − 3r1 + 2)γ̃

15
ǫ̃V 2/3. (3.25)

With respect to V , (3.25) is minimized at

V = Vo =
15τ

r3
1(r

3
1 − 3r1 + 2)γ̃

. (3.26)

The optimal size of the sample is now given by (3.26). It is more convenient to
express this in terms of the dimensionless γ. The optimal γ is denoted by γo which
is just

γo = γ̃Vo =
15τ

r3
1(r

3
1 − 3r1 + 2)

. (3.27)

Table 1 reports the values of γo for various a.

3.3 Stability

We return to a sphere pattern solution with a general γ which is not necessarily
equal to γo. Although a sphere solution of (2.9) is found for every γ, we will see
that it is stable only if γ is not too large. A stable solution of (2.9) is a free energy
local minimizer, which corresponds to a meta-stable state of the physical system. An
unstable solution can not be observed in experiments.

The stability analysis requires that we solve the eigenvalue problem

−ǫ2∆ϕ + f ′(u)ϕ − f ′(u)ϕ + ǫγ(−∆)−1ϕ = λϕ. (3.28)
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The left side of (3.28) comes from linearizing the Euler-Lagrange equation (2.9) at a
sphere pattern solution u. The eigenvalues λ are classified by the mode l = 0, 1, 2, ....
The eigenvalues whose modes are l are denoted by λl. Their corresponding eigenfunc-
tions take the form

ϕ(x) = φl(r)Ylm(θ, ω) (3.29)

where m = 0,±1, ...,±l, and the Ylm’s are the spherical harmonics. An eigenvalue
either approaches 0, a critical eigenvalue, or stays positively away from 0 when ǫ → 0.
Hence it suffices to consider the critical eigenvalues.

For the l = 0 mode there is one critical eigenvalue of order ǫ. It is of multiplicity
1 and has the form

λ0 =
3f ′(0)r2

1ǫ

τ
+ O(ǫ2). (3.30)

This eigenvalue is positive, and l = 0 is a stable mode. The eigenfunction associated
with this eigenvalue is radially symmetric. We denote it by φ0(r). It has the expansion

φ0(r) = H ′(
r − r1

ǫ
) + ǫP ′(

r − r1

ǫ
) − [H ′(

r − r1

ǫ
) + ǫP ′(

r − r1

ǫ
)] + O(ǫ2). (3.31)

Here H ′ and P ′ are the derivatives of H and P , defined in (3.19-3.18), respectively.
For l = 1 there is one critical eigenvalue of order ǫ2. It has multiplicity 3 and is

of the form

λ1 =
γr4

1ǫ
2

τ
+ O(ǫ3). (3.32)

This mode is again stable. The eigenfunctions associated with this eigenvalue are
(x/r)φ1(r), (y/r)φ1(r), and (z/r)φ1(r) where φ1 has the expansion

φ1(r) = H ′(
r − r1

ǫ
) + ǫP ′(

r − r1

ǫ
) + O(ǫ2). (3.33)

For each l greater than 1, there is one critical eigenvalue of order ǫ2. This eigen-
value has multiplicity 2l + 1 and has the form

λl = [
l(l + 1) − 2

r2
1

+
γ

τ
(
r4
1 − r1

3
+

(l + 1)r2l+2
1

l(2l + 1)
+

r1

2l + 1
)]ǫ2 + O(ǫ3). (3.34)

The quantity in (3.34) may not always be positive. One finds a threshold γs so that
when γ < γs all the eigenvalues in (3.34) are positive, but when γ > γs at least for
one l the eigenvalue λl in (3.34) is negative. Therefore the sphere solution u is stable
if γ < γs and unstable if γ > γs. The eigenfunctions associated with λl are φl(r)Ylm

with m = 0,±1, ...,±l. φl has the same expansion as in (3.33).
The leading order of γs is determined from (3.34) following these steps:

1. For each l ≥ 2, set the leading term

l(l + 1) − 2

r2
1

+
γ

τ
(
r4
1 − r1

3
+

(l + 1)r2l+2
1

l(2l + 1)
+

r1

2l + 1
) (3.35)
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a .5 .525 .55 .575 .6 .625 .65 .675 .7 .725
γs 463 425 372 336 312 296 276 250 234 225
l 5 5 4 4 4 4 3 3 3 3

a .75 .775 .8 .825 .85 .875 .9 .925 .95 .975
γs 222 225 232 216 209 215 237 283 387 714
l 3 3 3 2 2 2 2 2 2 2

Table 2: The (leading order) values of γs for various a and the corresponding mode l.

in (3.34) to be 0, and solve for γ. Denote the solution for γ by γ̂l. If this γ̂l is
less than or equal to 0, the mode l does not yield a zero eigenvalue. Discard
such γ̂l.

2. Minimize the remaining γ̂l’s from the last step with respect to l. The minimum
is achieved at a γ̂l which is the leading order of γs.

Table 2 reports the leading order of γs for various a. At γ = γs the smallest eigenvalue
is 0. The mode l of this eigenvalue is also given in Table 2.

We compare the stability threshold γs to the optimal size γo in Table 1. All the
γo’s are significantly less than the corresponding γs’s. Therefore, not surprisingly, the
sphere with optimal size is stable.

4 Spherical lamellar pattern

When a is close to 1/2, the diblock copolymer exists in the lamellar phase. The perfect
lamellar pattern consists micro-domains separated by parallel flat planes, Figure 3.
However one often observes the lamellar pattern with topological defects such as
dislocations, disclinations, grain boundaries, and tilt boundaries [44]. In this section
we consider the spherical lamellar pattern, Figure 4, which we view as a defective
lamellar pattern.

Because it involves many interfaces, the study in this section is more complex.
Nevertheless we will show that by singular perturbation argument, solving the Euler-
Lagrange equation (2.9) and analyzing the stability of the solution are reduced to
studying some finite dimensional problems.

4.1 Existence

Unlike the existence problem for the sphere pattern where no condition on γ is needed,
the existence of a spherical lamellar pattern as a solution of (2.9) requires that γ is not
too small. We now have an existence threshold γK,e. Given the number of interfaces
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Figure 3: A perfect lamellar pattern.

Figure 4: A cross section of a spherical lamellar pattern with two interfaces.
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K ≥ 2 a K-interface spherical lamellar pattern solution of (2.9) exists if γ > γK,e. If
γ < γK,e there is no K-interface spherical lamellar solution.

When γ > γK,e, we define the interfaces rj, j = 1, 2, ..., K, to be the radii where
u(rj) = 1/2. They have the expansion

rj = r0
j + O(ǫ). (4.36)

The leading order r0
j ’s are determined by solving a system of K+1 nonlinear equations

τ

r0
j

+
(−1)jγ

2
V(r0

j ; r
0
1, r

0
2, ..., r

0
K) = (−1)jη0, j = 1, 2, ..., K

K
∑

j=1

(−1)j(r0
j )

3 +
1 − (−1)K

2
= a (4.37)

for r0
1, r0

2,...,r
0
K , and η0. Here η0 is a Lagrange multiplier. The function V in (4.37) is

the solution of

−V ′′ − 2

r
V = U − a, V ′(0) = V ′(1) = 0, V = 0, (4.38)

where
U(r) = 0, if r ∈ (0, r0

1), = 1 if r ∈ (r0
1, r

0
2), .... (4.39)

Denote this solution by V(r; r0
1, ..., r

0
K) where we emphasize in its arguments that V

depends on r0
1,...,r

0
K . In (4.37) this V is evaluated at r = r0

j .
The system (4.37-4.37) is the Euler-Lagrange equations of the minimizer of the

function

J(q1, q2, ..., qK) = 3τ
K

∑

k=1

q2
k +

3γ

2

∫ 1

0
V ′(r; q1, ..., qK)2r2dr (4.40)

subject to the constraint

−q2
1 + q3

2 + ... + (−1)Kq3
K +

1 − (−1)K

2
= a. (4.41)

In the mathematics literature J is known as the Γ-limit of (4πǫ/3)−1I. The Γ-limit
theory thus reduces the study of the infinite dimensional problem I to the study of
the finite dimensional problem J [30, 31].

Whether J has a minimizer depends on γ. In general J has a minimizer only if
γ is large. The border line is exactly the leading order of γK,e. For K = 2, Table 3
reports the leading order of γ2,e for various a.

Let us consider the K = 2 case in more detail. We introduce y so that

y = q3
1, y + a = q3

2. (4.42)
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a .5 .525 .55 .575 .6 .625 .65 .675 .7 .725
γ2,e 171 175 180 186 194 204 216 230 249 271

a .75 .775 .8 .825 .85 .875 .9 .925 .95 .975
γ2,e 300 337 386 453 549 694 932 1379 2432 6590

Table 3: The leading order values of γ2,e for various a.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
1.42

1.44

1.46

1.48

1.5

1.52

1.54

1.56

1.58

Figure 5: J as a function of y is increasing when a = 1/2 and γ = 100.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
1.73

1.735

1.74

1.745

Figure 6: J as a function of y has a local minimum when a = 1/2 and γ = 180.
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0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
1.785

1.79

1.795

1.8

1.805

1.81

Figure 7: J as a function of y has a global minimum when a = 1/2 and γ = 200.

J can be viewed as a function of y only without the constraint (4.41). Take a = 1/2.
For γ = 100, J is monotonically increasing in y, Figure 5. Since γ < γ2,e ≈ 171 from
Table 3, there is no 2-interface spherical lamellar solution of (2.9).

When γ = 180 > γ2,e, J is no longer monotone, Figure 6. In this case J has a
local minimum, and (2.9) has a 2-interface spherical lamellar solution. If we further
increase γ to 200, the local minimum of J becomes a global minimum, Figure 7. The
spherical lamellar solution continues to exist.

We now return to the general solution with K interfaces. Near each interface rj

the solution u again has a profile

u(r) = H(
r − rj

ǫ
) + ǫPj(

r − rj

ǫ
) + O(ǫ2) (4.43)

when j is odd and

u(r) = H(−r − rj

ǫ
) + ǫPj(−

r − rj

ǫ
) + O(ǫ2) (4.44)

when j is even. H is the same function defined in (3.19) and Pj is define by (3.18)
with r1 replaced by rj.

The free energy of this solution is

[4πτ
K

∑

j=1

r2
j + 2πγ

∫ 1

0
V ′(r)2r2 dr]ǫ + O(ǫ2). (4.45)

4.2 Stability

Similar to the sphere pattern solution, a K-interface spherical lamellar solution is
stable only if γ is not too large. More precisely for any given number of interfaces K,
there is a stability threshold γK,s, which is larger than the existence threshold γK,e,
such that the K-interface spherical lamellar solution is stable if γK,e < γ < γK,s. The
solution becomes unstable if γ > γK,s.

16



To verify these statements and determine γK,s we again turn to the linearized
problem (3.28). But this time u is the K-interface spherical lamellar solution found
in Section 4.1. The eigenvalues are again classified by the mode l = 0, 1, 2, .... Denote
the eigenvalues whose modes are l by λl. For each l the non-critical eigenvalues all
stay positively away from 0, so it suffices to find the critical eigenvalues to determine
whether u is stable.

When l is equal to 0, there exist K critical eigenvalues. All of them are simple.
One of them is of order ǫ and has the expansion

λ0 =
3f ′(0)

∑K
k=1(r

0
k)

2

τ
ǫ + O(ǫ2), (4.46)

which is positive. The associated eigenfunction is

φ0(r) =
K

∑

j=1

{H ′(
r − rj

ǫ
) + ǫP ′

j(
r − rj

ǫ
) − [H ′(

r − rj

ǫ
) + ǫP ′

j(
r − rj

ǫ
)]} + O(ǫ2). (4.47)

The remaining K − 1 eigenvalues of mode l = 0 are of order ǫ2. Let us expand
them as

λ0 = µ0ǫ
2 + O(ǫ3). (4.48)

The determination of µ0 is more complex.
First we define a K by K matrix M whose kj-entry is

{

(− 2τ
(r0

k
)2

+ γ(−1)kV ′(r0
k)) + γG0(r

0
k, r

0
k) if k = j

γG0(r
0
k, r

0
j ) if k 6= j

(4.49)

where G0 is a Green function:

G0(r, s) =

{

s2r2

2
+ s − 9s2

5
+ s4

2
if r < s

s2r2

2
+ s2

r
− 9s2

5
+ s4

2
if r ≥ s

. (4.50)

Then we set a non-standard inner product

〈A,B〉 =
K

∑

k=1

AkBk(r
0
j )

2. (4.51)

Let e1, e2,..., eK be an orthonormal basis with respect to the inner product (4.51)
and

e1 =
(1, 1, ..., 1)

√

〈(1, 1, ..., 1), (1, 1, ..., 1)〉
. (4.52)

The µ0’s are determined from a K − 1 dimensional eigenvalue problem:

K
∑

m=2

dmNmn = µ0τdn, n = 2, 3, ..., K. (4.53)
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The K − 1 by K − 1 matrix N is obtained by projecting the K by K matrix M into
the K − 1 dimensional subspace spanned by e2, e3, ..., eK :

Nmn = 〈Mem, en〉, m, n = 2, 3, ..., K. (4.54)

The inner product in (4.54) is the one defined in (4.51).
These critical eigenvalues turn out to be all positive. This follows as a consequence

of Section 4.1. That N is positive definite is equivalent to the fact that r0
j minimizes

J , defined in (4.40). The latter condition is fulfilled when γ > γK,e. Hence l = 0 is a
stable mode. To each one of these k − 1 λ0’s, the corresponding eigenfunction φ0(r)
is given with the help of the eigenvector (d2, d3, ..., dK) of (4.53):

φ0(r) =
K

∑

j=1

cj[H
′(

r − rj

ǫ
) + ǫP ′

j(
r − rj

ǫ
)] + O(ǫ2), (4.55)

where

(c1, c2, ..., cK) =
K

∑

n=2

dnen. (4.56)

When l is greater than 0, there are K critical eigenvalue for each l. They all have
multiplicity 2l + 1. All of them are of order ǫ2. If we write

λl = ǫ2µl + O(ǫ3), (4.57)

then the µl’s are found by solving the K-dimensional eigenvalue problem

[
(l(l + 1) − 2)τ

(r0
k)

2
+ (−1)kγV(r0

k)]ck + γ
K

∑

j=1

Gl(r
0
k, r

0
j )cj = µlτck, k = 1, 2, ..., K (4.58)

where Gl is another Green function:

Gl(r, s) =







( s1−l

2l+1
+ (l+1)s2+l

l(2l+1)
)rl if r < s

s2+l( r−1−l

2l+1
+ (l+1)rl

l(2l+1)
) if r ≥ s

. (4.59)

These critical eigenvalues are not always positive. There exists a stability threshold
γK,s so that when γK,e < γ < γK,s, all the critical eigenvalues are positive and hence
the K-interface solution u is stable, and when γ > γK,s at lease one critical eigenvalue
is negative and the K-interface solution u is unstable. To each λl the corresponding
eigenfunctions are φl(r)Ylm, m = 0,±1, ...,±l. φl is determined with the help of the
eigenvectors ck in (4.58):

φl(r) =
K

∑

j=1

cj[H
′(

r − rj

ǫ
) + ǫP ′

j(
r − rj

ǫ
)] + O(ǫ2). (4.60)

Table 4 reports the stability threshold values for various a. Note that the γ2,s’s
are greater than the corresponding γ2,e. Hence there is a range (γ2,e, γ2,s) for γ where
the 2-interface spherical lamellar pattern is stable.
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a .5 .525 .55 .575 .6 .625 .65 .675 .7 .725
γ2,s 1162 1067 1002 956 931 919 924 943 951 939

l 4 3 3 3 3 3 3 3 2 2

a .75 .775 .8 .825 .85 .875 .9 .925 .95 .975
γ2,s 952 999 1077 1199 1393 1711 2241 3254 5684 15454

l 2 2 2 2 2 2 2 2 2 2

Table 4: The (leading order) values of γ2,s for various a and the corresponding mode
l.

5 Discussion

The single sphere pattern studied in Section 3 only gives a limited picture of the
spherical phase of a diblock copolymer, where multiple spheres co-exist. Moreover the
spheres are observed to pack in the body centered cubic pattern. An analytic study
of such a multi-sphere pattern requires more refined singular perturbation techniques.
The main difficulty is that the spheres in such a phase are only approximately round.
The following argument illustrates this point.

It is known that even in a general domain, which we call Ω, (2.9) has a singular
limit as ǫ → 0 [30]. The leading order outer expansion u0 of u, a solution of (2.9),
has the property that for a.e. x ∈ Ω u0(x) = 0 or u0(x) = 1 and u0 = a. Let S be the
union of the interfaces that separate the regions u0 = 0 (B-rich micro-domains) from
the regions u0 = 1 (A-rich micro-domains), and v0 = (−∆)−1(u0 −a). In the singular
limit an interface is a two-dimensional surface, with no thickness. At every x ∈ S

τκ(x) + γv0(x) = η0 (5.61)

where κ(x) is the mean curvature of S at x viewed from the u0 = 1 side, and η0 is
a Lagrange multiplier to be determined. The equation (5.61) is a generalization of
(4.37). The constraint (4.37) is replaced by u0 = a. If the free boundary problem
(5.61) admits an isolated stable solution u0, then near u0 there exists a local minimizer
solution u of (2.9). However (5.61) is still a challenging nonlocal geometric problem.
Even though Figure 1 (3) suggest that we look for solutions with multiple spheres,
(5.61) implies that for such a solution the curvature of the interface of a sphere is
in general not constant (there is the impact of v0), i.e. the spheres are not exactly
round, unless we deal with the one sphere or the spherically lamellar solutions in a
ball as in this paper.

Nevertheless if we consider the situation where a is close to 0 (or 1), then v0

is near constant throughout Ω and hence κ becomes close to a constant and the
spheres are approximately round. The spherical phase in Figure 1 is thus heuristically
explained. One must realize that in the small a case, i.e. small droplet-high curvature
case, the parameter ǫ should be significantly less than a, otherwise we can not have
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Figure 8: A cross section of a wiggling sphere solution, and a cross section of a
wriggled spherical lamellar solution with two interfaces.

morphologies with micro-domains separated by sharp interfaces. It was shown in [40]
that the borderline range for a in one-dimension is a ∼ ǫ1/2. It is not clear at the
moment what the borderline values for a are in two and three dimensions.

The stability threshold γs (or γK,s) is related to a strong segregation bifurcation
phenomenon (not to be confused with the bifurcation analysis in the weak segregation
regime). When γ passes γs (or γK,s) a second solution bifurcates out of the sphere (or
spherical lamellar) solution. The new solution differs from the old one by a quantity
which is roughly proportional to the eigenfunction of the 0 principal eigenvalue at
γ = γs (or γK,s). Because the eigenfunction has the form (3.29), the new solution
has a wiggling interface (or interfaces). The wiggles are determined by the spherical
harmonics Ylm in (3.29), Figure 8. Such a wiggling interface solution can be regarded
as another defective pattern. If we consider the free energy during the bifurcation
process, the bifurcating branch lowers the nonlocal part of the free energy by intro-
ducing more oscillation but increases the interface energy. The overall free energy of
the bifurcating branch is lower than that of the first branch.

We did not discuss the dynamics of a diblock copolymer system. The purpose
of studying the critical eigenvalues of a solution of (2.9) in this paper is to deter-
mine whether the solution is a local minimizer of (2.2). However the same critical
eigenvalues also determine the local dynamics, near the solution, of the evolution
equation

ut = ǫ2∆u − f(u) − ǫγ(−∆)−1(u − a) + f(u), ∂νu = 0 on ∂D. (5.62)

Note that
∫

D u(x) dx is conserved under (5.62) because d
dt

∫

D u(x) dx = 0 after one
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integrates (5.62) over D. The eigenfunctions of the critical eigenvalues give the di-
rections along which the dynamics of (5.62) runs slowly (the eigenfunctions of the
non-critical eigenvalues are directions of fast dynamics).

The critical eigenvalues in this context admit geometric interpretations. For the
sphere pattern the eigenfunction of the critical eigenvalue λ0 in (3.30) is radially
symmetric. So the dynamics in this direction involves only the shape change of u
in the radial direction. The eigenfunctions of the critical eigenvalue λ1 in (3.32)
have the forms (x/r)φ1(r), (y/r)φ1(r) and (z/r)φ1(r). They lead to translations of
u in x, y, or z directions in the dynamics. Finally the eigenfunctions of the critical
eigenvalues λl, l > 1, in (3.34) give rise to oscillations of the interfaces. The same
interpretations are also valid for the spherical lamellar pattern. Because all these
eigenfunctions concentrate at the interface rj by (3.31), (3.33), (4.47), (4.55) and
(4.60), the dynamics along the directions of the critical eigenvalues is seen as the
motion of the interfaces.

However (5.62) is only one dynamical law that we can associate to (2.2). A more
realistic one is the forth-order partial differential equation [2]

ut = ∆(−ǫ2∆ + f(u)) − ǫγ(u − a), ∂νu = ∂ν∆u = 0 on ∂D.. (5.63)

Equation (5.63) generalizes the well-known Cahn-Hilliard equation [5]. Based on a
spectral comparison argument [4], one shows that a steady state is stable under (5.62)
if and only if it is stable under (5.63) [27]. Hence our results on the stability of the
various steady states in this paper remain valid in the dynamics (5.63). An even more
complex dynamical law considers a diblock copolymer melt as a fluid. It adds the
velocity field and couples (5.63) to the Navier-Stokes equation of the velocity field [2].

We are mainly interested in stable solutions of (2.9). They are local minimizers
of (2.2). We do not know whether or not any of the solutions found in this paper
is a global minimizer. There also exist unstable spherical lamellar solutions even for
γ ∈ (γK,e, γK,s). In Figures 6 and 7 when γ > γ2,e in addition to the minimum of J
there exists a local maximum of J . This maximum point corresponds to a unstable
spherical lamellar solution. This unstable solution exists for γ ≥ γ2,s as well. The
instability of this solution is caused by the m = 0 mode.

In the functional (2.2) the key ingredient is the nonlocal term. It describes a
long range interaction. Many other important physical systems that exhibit self-
organization and pattern formation share the same phenomenon [42]. Examples in-
clude charged Langmuir monolayers [1], and smectic liquid crystal films [41]. Many of
the singular perturbation techniques presented here may be applied to these problems
[29, 34, 37, 36].

The nonlocal interaction in (2.2) is of Coulomb type [25]. Some of the above
mentioned problems have different nonlocal interactions. In the charged monolayer
problem the nonlocal term is written as

∫

D

∫

D
(u(x) − a)Gc(x, y)(u(y) − a) dxdy (5.64)
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which assumes the same form as (2.8) does. However the kernel Gc is different. If D
is a square, i.e. (0, 1)2, with the periodic boundary condition, then Gc is translation
invariant so that Gc(x, y) = Gc(x − y). The Fourier series of Gc is

Ĝc(ξ) =
1

|ξ| . (5.65)

Note that for the diblock copolymer problem the corresponding G on a square is

Ĝ(ξ) =
1

|ξ|2 . (5.66)

Hence as |ξ| → ∞, (5.66) has a faster decay rate than (5.65) does. Many properties,
such as the optimal size discussed in Section 3.2, are sensitive to these decay rates.
In general with a slower decay rate, one finds smaller micro-domains [34].

In the smectic liquid crystal film problem, the nonlocal interaction comes from
a coupling effect with the director field. In this case, because of the unit length
constraint on the director field, the nonlocal interaction is no longer quadratic [36].

6 Conclusion

We used asymptotic analysis to study the Ohta-Kawasaki density functional theory
for diblock copolymers. We constructed a single sphere pattern in a unit ball. Such a
pattern is a cell in the spherical morphology. We showed the existence of the sphere
pattern as a solution of the Euler-Lagrange equation of the free energy. We identified
the optimal size of such a cell with the least free energy. We also found a stability
threshold. The sphere is stable if it is less than the threshold value, and unstable if
it is greater than the threshold value. The stability threshold value is greater than
the optimal size. At the stability threshold, there is another solution, a bifurcating
branch. It has an interface of a wriggled sphere. This solution has lower free energy
than that of the first solution.

Next we studied a spherical lamellar pattern, which we view as a defective lamel-
lar pattern. Singular perturbation analysis allowed us to reduce the existence and
stability problems in infinite dimensions to existence and matrix problems in finite
dimensions. We found two thresholds: an existence threshold and a larger, stability
threshold. There is a spherical lamellar pattern only when the size of the sample is
larger than the existence threshold value. This patten is stable only when the seize
of the sample is between the existence threshold and the stability threshold. At the
stability threshold, there is a bifurcating branch with a pattern of wriggled spherical
interfaces. The bifurcating branch again has lower free energy.
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