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ON WEAK PLANE COUETTE AND POISEUILLE FLOWS OF RIGID
ROD AND PLATELET ENSEMBLES∗

ZHENLU CUI† , M. GREGORY FOREST‡ , QI WANG§ , AND HONG ZHOU¶

Abstract. Films and molds of nematic polymer materials are notorious for heterogeneity in the
orientational distribution of the rigid rod or platelet macromolecules. Predictive tools for structure
length scales generated by shear-dominated processing are vitally important: both during processing
because of flow feedback phenomena such as shear thinning or thickening, and postprocessing since
gradients in the rod or platelet ensemble translate to nonuniform composite properties and to residual
stresses in the material. These issues motivate our analysis of two prototypes for planar shear
processing: drag-driven Couette and pressure-driven Poiseuille flows. Hydrodynamic theories for high
aspect ratio rod and platelet macromolecules in viscous solvents are well developed, which we apply
in this paper to model the coupling between short-range excluded volume interactions, anisotropic
distortional elasticity (unequal elasticity constants), wall anchoring conditions, and hydrodynamics.
The goal of this paper is to generalize scaling properties of steady flow molecular structures in slow
Couette flows with equal elasticity constants [M. G. Forest et al., J. Rheol., 48 (2004), pp. 175–192]
in several ways: to contrast isotropic and anisotropic elasticity; to compare Couette versus Poiseuille
flow; and to consider dynamics and stability of these steady states within the asymptotic model
equations.
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1. Introduction. Shear dominated flows of nematic liquid crystal polymers
(NLCPs) generate anisotropy and spatial heterogeneity in the orientational distri-
bution of the rigid rod or platelet ensemble. These phenomena are well documented
in light scattering textures [9, 1, 24, 25, 31]. A characterization of the lengthscales in
the molecular distribution responsible for the scattering patterns, and whether they
are due to changes in the direction of peak orientation (nematic elasticity) or due to
focusing and defocusing of the orientational distribution (molecular elasticity), are
the subject of numerous modeling and computational studies (cf. [32, 30, 21, 29]).
Molecular orientation features in different flow regimes are of extreme importance
for materials design, as they impart anisotropic and nonuniform material properties
[34, 18, 19]. Another issue typical of non-Newtonian fluids is flow feedback, where
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elastic stresses alter apparent viscosity. This paper is a continuation of our systematic
studies of mesostructures, both from free space elasticity patterns absent of external
fields and boundary anchoring conditions [11, 12], and from planar Couette cells mov-
ing at prescribed slow speeds [13, 14]. We defer to these articles, where a detailed
account of analytical results on continuum Leslie–Ericksen–Frank (LEF) models is
given, notably by [26, 4, 5, 7, 27, 23, 28].

In [14], the authors considered a Doi–Marrucci–Greco (DMG) mesoscopic orienta-
tion tensor model, allowing a full coupling between flow structure, director (nematic)
and order parameter (molecular) distortions, and with imposed plate motion and
molecular anchoring conditions. The model has been benchmarked in the longwave,
monodomain regime with resolved simulations of the Doi kinetic theory [15, 16]. In-
deed, the motivation for an analytical study of structure properties is to provide guid-
ance for structure simulations of mesoscopic [17] and kinetic [15, 16] models, where
the parameter space is too large to assimilate any kind of collapse of the numerical
data through scaling laws.

In this paper, we extend our previous asymptotic scaling analysis in several ways.
First, we consider a more general physical model to admit anisotropic distortional
elasticity (unequal bend, splay, twist elasticity constants). The second-moment orien-
tation model is derived from a recent generalization of the Doi–Hess–Marrucci–Greco
kinetic theory [33] and guides our numerical studies [15, 16], for which there are
no preceding numerical or analytical results. Second, the asymptotic analysis is ex-
tended from plate-driven Couette cell properties to pressure-driven Poiseuille flows.
The boundary conditions consist of molecular orientational anchoring conditions at
solid walls, where the degree of order is set by the concentration of the nematic liquid
and the principal orientation axis is a free parameter, together with no-slip conditions
for the velocity field. We further assume an in-plane orientation tensor (restricting
the principal orientation axes of the molecular distribution to the flow-flow gradient
plane), and posit that the velocity field varies only transverse to the primary flow di-
rection. These assumptions are not easily lifted, in that the fortuitous diagonalization
of the flow-nematic steady balance equations is apparently lost for higher dimensional
orientational and spatial degrees of freedom. Finally, we extend the asymptotic anal-
ysis to time-dependent model equations.

From this formulation, we develop a formal asymptotic analysis in the slow-plate
(so-called small Deborah number) and weak pressure gradient limits, which yield
exactly solvable, steady flow-nematic model equations. From the explicit solutions,
lengthscale selection criteria and scaling properties become explicit, parameterized
in terms of molecular parameters (nematic concentration N , molecule aspect ratio r,
persistence length L of distortional elasticity, persistence length L of the anisotropic
distortional elasticity) [33], and experimental conditions (gap width (2h), plate speeds
±v0 for plane Couette flows and pressure gradient ∂p

∂x for the plane Poiseuille flow,
and plate anchoring conditions on the molecular field). From the time-dependence in
the asymptotic equations, we explore transient solutions at the first and second order
in the asymptotic scheme to infer stability of the steady states within the asymptotic
balance equations. We first consider plane Couette flow, followed in the next section
by plane Poiseuille flow.

2. Spatial structures and their stability in plane Couette flows. We
consider plane Couette flow between two parallel plates located at y = ±h and moving
with velocity v = (±v0, 0, 0), respectively, in Cartesian coordinates (x, y, z). Figure 1
depicts the cross section of the flow geometry on the (x, y) plane.

Here we consider flow-orientation interactions in weak plane Couette flow, char-
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Fig. 1. Geometry of plane Couette flow. The gap width in the shear cell is 2h. The LCP in
the cell is sheared by moving the upper plate with a constant speed v0 and the lower one with the
same speed in the opposite direction. At the bounding surfaces, the orientation tensor is equal to its
equilibrium value.

acterized by a small effective or averaged shear rate. We nondimensionalize using
the gap half-width (h) between the shearing plates and the nematic polymer mean
relaxation time t0 = 1

D0
r
, where D0

r is the rotary diffusivity for the rigid rod or platelet

[33]. We denote the position vector by x, the velocity by v, the extra stress tensor
by τ , and the pressure by p, respectively. The dimensionless flow and stress variables
are defined by:

ṽ =
t0
h

v, x̃ =
1

h
x, t̃ =

t

t0
, τ̃ =

h2

f0
τ, p̃ =

h2

f0
p,(1)

where f0 = ρh4/t20 is a mesophase bulk force and ρ is the nematic polymer (NLCP)
density. Let c be the NLCP number density, k the Boltzmann constant, T absolute
temperature, N a dimensionless concentration, ηs the solvent viscosity, and ζi, i =
1, 2, 3 three friction coefficients related to NLCP-solvent interactions. L measures
the range of isotropic elastic interaction while L does so for the anisotropic elastic
interaction [33]. The following eight dimensionless parameters arise:

Re = ρh2

t0ηs
, α =

3ckTt20
h2ρ , Er = 8h2

NL2 , μi = 3ckTζit0
h2ρ , i = 1, 2, 3, θ = L2

L2 .(2)

α measures the strength of elastic energy relative to kinetic energy; Re is the solvent
Reynolds number; Er is the Ericksen number which measures the relative strength of
the short-range nematic potential and the isotropic distortional elasticity potential; θ
measures the degree of anisotropy in the distortional elasticity, with values limited to
[−1,∞); 1/μi, i = 1, 2, 3 are three nematic Reynolds numbers. We drop the tilde˜ on
all variables from now on so that all equations and figures in the following correspond
to normalized variables, length, and time scales.

The dimensionless forms of the balance of linear momentum, stress constitutive
equation, and the continuity equation (dimensional forms are in [33]) take the follow-
ing form.

Linear momentum balance:

d
dtv = ∇ · (−pI + τ),(3)

where external forces are neglected.
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Continuity equation:

∇ · v = 0.(4)

Constitutive equation for the extra stress:

τ = 2ηD + aα[M − I
3 − N

2 ((I + 1
3NErΔ)M · M + M · (I + 1

3NErΔ)M

−2(I + 1
3NErΔ)M : M4)] − α

6Er (ΔM · M − M · ΔM) − α
12Er [∇M : ∇M

−(∇∇M) : M] + aαθ
12Er [4M6 :: ∇∇M + 2M4∇∇ :: M4 −∇∇M

...M4 − (∇∇M
...M4)

T

−M4

...∇∇M − (M4

...∇∇M)T − (M∇∇
...M4)

T − M∇∇
...M4] − αθ

12Er [∇∇M
...M4

−(∇∇M
...M4)

T − M4

...∇∇M + (M4

...∇∇M)T − M∇∇
...M4 + (M∇∇

...M4)
T ]

+[μ1(a)(DM + MD) + μ2(a)D : M4],

(5)

where M is the second moment of the orientational probability density function of
the kinetic theory (called the structure tensor), M4 and M6 are the fourth and sixth
moment of the probability density function, respectively, η = 1/Re + 1

2μ3(a) and

a = r2+1
r2−1 parameterizes the aspect ratio r of the spheroidal molecules, where 0 < a ≤ 1

corresponds to a rod-like molecule and −1 ≤ a < 0 for platelets [33].
The boundary conditions on velocity v are scaled to

v|y=±1 = (±De, 0, 0),(6)

where

De =
t0v0

h
,(7)

the Deborah number, is the ratio of the relaxation time relative to the time scale set
by the moving plates in the shear experiment. Weak shear is defined by a small value
of De indicating the time scale set by the shear experiment is much larger than the
molecular relaxation time scale. Following previous studies [8, 11, 12], we assume
strong molecular anchoring at the plates given by the quiescent nematic equilibrium
of the orientation tensor (the deviatoric part of the structure tensor) Q0 = M0 − I

3 =

s0(nn − I
3 ). The rest state equilibrium of Q at sufficiently high concentrations is a

uniaxial nematic phase, with unique order parameter,

s0 =
1

4

[
1 + 3

√
1 − 8

3N

]
.(8)

The uniaxial director n is arbitrary for quiescent phases; this degeneracy is bro-
ken experimentally by mechanical or chemical plate preparations. We model a uni-
form plate anchoring condition, either parallel to the flow direction, called tangential
anchoring, or perpendicular to the shearing plates, called normal (or homeotropic)
anchoring.
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The time evolution equation of M (in dimensionless form) is given by [33]:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d
dtM − Ω · M + M · Ω − a[D · M + M · D] = −2aD : M4

−6[Q −N(M · M − M : M4)] + 1
Er [ΔM · M + M · ΔM − 2ΔM : M4]

+ θ
2Er [(∇∇M)

...M4 + ((∇∇M)
...M4)

T + M4

...∇∇M + (M4

...∇∇M)T

+M∇∇
...M4 + (M∇∇

...M4)
T − 4M6 :: ∇∇M − 2M4∇∇ :: M4].

(9)

In order to arrive at a closed system of governing equations at the level of second
order tensors, we approximate fourth (M4)and sixth (M6) order tensors in the above
governing system of equations using the following simple closure rules:

M4 ≈ MM, M6 ≈ MMM.(10)

These simple closure approximations respect the traceless property of the orientational
dynamic equation, and have been shown to yield a good approximation of kinetic
theory in the dynamics of monodomains at the nematic concentrations of interest
here [10, 15, 16]. These closures are exact when the molecules are aligned perfectly.

We remark that the distortional elastic free energy reduces to the Oseen–Frank
energy after the closure approximation, in which the three Frank elastic constants are
given by

k1 = k2 = 2kT
Er s2(1 + θ

3 (1 − s)), k3 = 2kT
Er s2(1 + θ

6 (1 + 4s)).(11)

For rod-like NLCPs,

0 < k1 = k2 < k3;(12)

whereas for discotic NLCPs (platelets),

0 < k3 < k1 = k2.(13)

2.1. Asymptotic solutions in weak plane Couette flows. We seek asymp-
totic solutions of the governing system of equations with the boundary conditions
given by (6) and (8). We employ a biaxial representation of the orientation tensor
[11]

Q = s

(
nn − 1

3
I

)
+ β

(
n⊥n⊥ − 1

3
I

)
,(14)

where (s, β) are two order parameters measuring the birefringence relative to the
optical axes (also called directors) n and n⊥ confined to the shearing plane (x, y) and
parameterized by a director angle ψ,

n = (cosψ, sinψ, 0), n⊥ = (− sinψ, cosψ, 0),(15)

and I is the 3 × 3 identity matrix. We propose the solution ansatz

vx =

∞∑
k=1

Dekv(k)
x , (•) =

∞∑
k=0

(•)kDek, ψ = ψ0 +

∞∑
k=1

ψ(k)Dek,(16)

where (•) represents the order parameters s, β, respectively. The solution is sensitive
to the choice of boundary conditions, so we present tangential (ψ0 = 0) and normal
(ψ0 = π

2 ) anchoring conditions separately.
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2.2. Tangential anchoring (ψ0 = 0). First, we note that

v(2k)
x = ψ(2k) = s2k−1 = β2k−1 = 0, k = 1, . . . ,∞,(17)

demanded by the boundary conditions and the governing equations at the respective
orders. This also applies to the case of normal anchoring, but not to tilted anchoring
(ψ0 �= 0, π

2 ) [14]. The governing equations at order O(1) give the equilibrium solution
of Q consistent with the boundary anchoring condition; the equations at order O(De)

are obtained by solving the following equations for ψ(1) and v
(1)
x :

∂ψ(1)

∂t
= A

∂2ψ(1)

∂y2
+ B

∂v
(1)
x

∂y
,

∂v
(1)
x

∂t
=

∂τxy
∂y

,

τxy = C
∂2ψ(1)

∂y2
+ D

∂v
(1)
x

∂y
,

(18)

where

A = 1
9Er (s0 + 2)(3 + θ(1 − s0)), B = 1

2 (λL − 1),

C = − αs20
18Er [θ(1 − s0)λL + 3(λL − 1)], D = 1

3 (μ1s0 + 3η),

(19)

where the “tumbling parameter” λL is defined by

λL =
a(2 + s0)

3s0
;(20)

|λL| > 1 corresponds to flow aligning and |λL| < 1 yields director tumbling in mono-
domain shear flows (Er → ∞) [14].

2.2.1. Steady state features of the major director ψ(1) and primary flow
v(1)

x . The nonzero leading order steady solution for the velocity, order parameters s
and β, and the director angle ψ can be solved explicitly:

v
(1)
x (y) = y, s0 = s0, β0 = 0, ψ(1)(y) = MEr(y2 − 1),(21)

M = 9
4(s0+2)(3+(1−s0)θ)

(1 − λL).(22)

Note that, as in the isotropic elasticity limit [14], these solvability conditions imply
simple shear flow at leading order in De, and yield that the orientational distribution
is dominated by nematic (director) distortions. The prefactor (22) yields that the
winding number of the major director between the plates is proportional to the Er-
icksen number, as with the isotropic elasticity limit [14]. The formula (22) yields the
scaling law for elastic distortions which are nonuniform across the gap with length-
scale proportional to M−1, which in turn is proscribed by three material parameters:
(a,N, θ). For fixed (a,N), |M | decreases as θ increases (θ ∈ [−1,∞)). We summarize
the dependence of M on θ for given material parameters (a,N) as follows:

• The sign of M governs the “chirality” of nematic distortion, or direction of
director rotation from the plates. M is negative for flow-aligning rods (a >
0, λL > 1) and positive for tumbling rods (a > 0, 0 < λL < 1) and discs or
platelets (a < 0). |M | decreases with respect to all θ ∈ [−1,∞).



COUETTE AND POISEUILLE FLOWS OF RODS AND PLATELETS 1233

Fig. 2. M as a function of N and θ with tangentially anchored boundary conditions in weak
Couette flow: The top left panel is for rods, with a = 0.8, whereas the top right panel is for platelets,
with a = −0.8. The bottom panels show M for two distinct concentrations of rods (left) and platelets
(right).

• Physically, the director angle winds counterclockwise for rods in the flow-
aligning regime λL > 1 from the lower plate to the midplane, then unwinds
from the midplane to the upper plane; the orientation reverses for rods in the
tumbling regime and for platelets in all regimes.

• At fixed Ericksen number, anisotropic elasticity tends to reduce the magnitude
of the director winding for rods while enhancing director distortion for platelets.

Figure 2 depicts M as a function of (N, θ) two values of a corresponding to rods
(a = 0.8) and platelets (a = −0.8). Next, we consider a limited notion of stability of
this steady-state structure, by studying transients of the first order governing system
of equations in the presence of superimposed spatial disturbances.

2.2.2. Transient behavior of (v(1)
x , ψ(1)) near steady states. The transient

solution for v
(1)
x and ψ(1) (the difference between the time-dependent solution and the

steady state) obeys the same homogeneous linear partial differential equations but
satisfies a zero boundary condition. Its behavior dictates the stability of the steady
state within the asymptotic balance model: the steady state is asymptotically stable
if the transient solution vanishes as t → ∞.

Proposition 1. The steady solution (21, 22) of system (18) is stable for AD −
BC > 0 and unstable for AD − BC < 0 with respect to zero boundary conditions on

v
(1)
x and φ(1).
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Proof. We first consider the case of BC �= 0 and prove the steady solution is
stable provided AD−BC > 0. In the following proof, we drop the superscripts on ψ
and vx. Extending (18)1 to the boundary and accounting for the boundary condition
ψ(−1, t) = ψ(1, t) = 0, we have

(A∂2ψ
∂y2 + B ∂vx

∂y )|y=±1 = 0.(23)

We introduce a nonnegative functional

I(t) =

∫ 1

−1

[δ1ψ
2
y + δ2v

2
x]dy(24)

with δ1 > 0 and δ2 > 0. We note that A > 0 and D > 0 from (19).
Case 1. BC < 0. Choosing δ1 = |C| and δ2 = |B| and integrating by parts, the

time derivative of the nonnegative functional can be estimated:

dI(t)

dt
= −2

∫ 1

−1

[δ1Aψ2
yy + (δ1B + δ2C)ψyyvx,y + δ2Dv2

x,y]dy

= −2

∫ 1

−1

[|C|Aψ2
yy + |B|Dv2

x,y]dy < 0.

(25)

This shows that the steady solution of the system is stable.

Case 2. Choose δ1 = max( C2

AD , 1) ≥ 1, δ2 = max( B2

AD , 1) ≥ 1. We have

dI(t)

dt
= 2

∫ 1

−1

[δ1ψyψty + δ2vxvxt]dy

= −2

∫ 1

−1

[δ1Aψ2
yy + (δ1B + δ2C)ψyyvx,y + δ2Dv2

x,y]dy.

(26)

The integrand is quadratic and the discriminant is

(δ1B + δ2C)2 − 4δ1Aδ2D

= δ1AD

(
B2

AD
δ1 − δ2

)
+ δ2AD

(
C2

AD
δ2 − δ1

)
− 2δ1δ2(AD −BC)

= δ1AD

[
B2

AD
max

(
C2

AD
, 1

)
− max

(
B2

AD
, 1

)]

+δ2AD

[
C2

AD
max

(
B2

AD
, 1

)
− max

(
C2

AD
, 1

)]

−2δ1δ2(AD −BC) < −2δ1δ2(AD −BC) < 0.

(27)

The first inequality is based on B2C2

(AD)2 < 1 because of AD − BC > 0 and BC > 0.

Since δ1A > 0, the integrand is always positive; thus dI(t)
dt < 0. Hence the steady

solution of the system is stable.
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The proof for BC = 0 is far simpler and omitted. To prove instability when
AD − BC < 0, we only need to find one unstable mode. Let φ(y, t) = ψy(y, t); the
system (18) with the boundary condition becomes

φt = Aφyy + Bvx,yy,

vx,t = Cφyy + Dvx,yy,

(Aφy + Bvx,y)|y=±1 = 0, vx(1, t) = 1, vx(−1, t) = −1.

(28)

To find an unstable mode, we seek normal modes of the form

(
φ
vx

)
= eγt

(
φ̃(y)
ṽx(y)

)
(29)

and consider the resultant eigenvalue problem

P

(
φ̃
ṽx

)
yy

= γ

(
φ̃
ṽx

)
, P =

(
A B
C D

)
,(30)

where γ is the growth rate. The steady solution is unstable if γ > 0.
The matrix P has two distinct eigenvalues given by

r1 =
A+D−

√
(A+D)2−4(AD−BC)

2 < 0, r2 =
A+D+

√
(A+D)2−4(AD−BC)

2 > 0.(31)

Let ξ = arctan A−r1
B , then

(
φ̃
ṽx

)
=

(
cos ξ sin ξ
− sin ξ cos ξ

)⎛
⎜⎜⎝

cos ξ
sin

√
γ

−r1
y

sin
√

γ
−r1

sin ξ
sinh

√
γ
r2

y

sinh
√

γ
r2

⎞
⎟⎟⎠(32)

is a solution of (28) satisfying vx(1, t) = vx(−1, t) = 0 and γ is determined by (Aφy +
Bvx,y)|y=±1 = 0, which yields

(A− r1)(1 + A(A−r1)
B2 ) coth

√
γ
r2

−
√
−r1r2 cot

√
γ

−r1
= 0.(33)

As γ → +∞ , the first term goes to a finite value while the second one is periodic
and varies between −∞ and +∞ within one period. Consequently, the equation has
infinitely many positive solutions for γ, which completes the proof, and indicates that
the diagnostic AD −BC signals catastrophic instability when it is negative.

We note that for discs (a < 0) and flow-aligning rods (a > 0, λL > 1),

AD −BC = 1
27Er [3(2 + s0)(μ1s0 + 3η) + α

4 ((λL − 1)3s0)
2

+θ(1 − s0)(2 + s0)(
α
12a((λL − 1)3s0) + μ1s0 + 3η)] > 0.

(34)

Hence, the steady state is always stable for discotic LCPs and flow-aligning rods, and
may be unstable only for tumbling rods (0 < a, 0 < λL < 1).
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Fig. 3. The neutral stability curves defined by A1B2 − A2B1 = 0 and AD − BC = 0 with
tangentially anchored boundary conditions in weak shear. The arrows point to the positive directions

of the discriminant. The systems for (s2, β2) and (ψ(1), v
(1)
x ) are stable when the discriminant is

positive, respectively, unstable otherwise. The parameter values are Er = 100, α = 1, μ1 = 0.001
and η = 0.002.

The neutral stability curve (AD−BC = 0) depends on the values of the param-
eters (θ, a,N, α, μ1, η). From (34), AD−BC > 0 can be translated into two separate
constraints on the energy parameter α and θ,

α ≤ αc = 4(μ1s0+3η)
a(1−λL)s0

; or

α > αc and θ < θc =
3(2+s0)(μ1s0+3η)+α

4 ((λL−1)3s0)
2

(1−s0)(2+s0)(
α
12a((1−λL)3s0)−μ1s0+3η) .

(35)

Figure 3 depicts the stability transition curve in the parameter space (N, θ) at a
few selected values of other parameters. We observe that the values of N, θ that
yield instability tend to be large and out of the practical range for nematic polymer
materials. We also note that the flow-aligning region and the stable region versus
(N, θ) both grow significantly as the shape parameter a increases, i.e., as the aspect
ratio becomes more extreme. The instability region vanishes as a → 3s0

2+s0
. The stable

region also grows as μ1/α, η/α increase.
We summarize this more precise statement of Proposition 1 in the following corol-

lary.
Corollary 1. The steady asymptotic solution (21, 22) is asymptotically stable

within the leading order balance equations if either of conditions (35) is satisfied. If
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α > αc and θ > θc, where αc, θc are defined in (35), the steady solution is unstable
and the leading order system of equations is ill-posed.

2.2.3. Steady state features of the order parameters s2 and β2 at O(De2).
The order parameters (s, β) vanish at leading order in De, with order O(De2) behavior
governed by the equations

∂s2
∂t = −1

9Er (A1
∂2s2
∂y2 + B1

∂2β2

∂y2 + C1s2 + D1β2 + E1(
∂ψ(1)

∂y )2+

F1ψ1
∂2ψ(1)

∂y2 + G1ψ
(1) ∂v

(1)
x

∂y ) + 2s0ψ
(1) ∂ψ

(1)

∂t ,

∂β2

∂t = −1
9Er (A2

∂2s2
∂y2 + B2

∂2β2

∂y2 + C2s2 + D2β2 + E2(
∂ψ(1)

∂y )2+

F2ψ
(1) ∂

2ψ(1)

∂y2 + G2ψ
(1) ∂v

(1)
x

∂y ) − 2s0ψ
(1) ∂ψ

(1)

∂t ,

(36)

where the coefficients are lengthy and provided in Appendix A. This system of equa-

tions is linear in (s2, β2) but driven by nonlinear functions of v
(1)
x and ψ(1).

The steady solution, with Λ and Γ defined in the appendix, is

β2(y) = K1(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1) + K2(
cosh(

√
ErΓy)

cosh(
√
ErΓ)

− 1) + R1Er(y2 − 1),

s2(y) = K3(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1) + K4(
cosh(

√
ErΓy)

cosh(
√
ErΓ)

− 1) + S1Er(y2 − 1),

(37)

where the coefficients are given in Appendix B.
We denote λ2 = 1/(ErΛ) and μ2 = 1/(ErΓ); λ2 is always positive and concave up

as a function of θ, whereas μ2 is monotonically decreasing and may change sign as θ
varies. For example, μ2 goes through zero at a critical degree of anisotropy θc = 2.93
for N = 6. For θ > θc, the steady state becomes highly oscillatory; we show in the
study of transient solutions that this behavior coincides with the onset of ill-posedness
in the governing system of equations. The behavior of θc versus concentration N can
be gleaned from Figure 3.

Since the dominating terms in the order parameters near y = ±1 are

e
√
ErΛy

e
√
ErΛ

,
e
√
ErΓy

e
√
ErΓ

,(38)

the order parameters have a boundary layer near the wall, whose width is proportional
to

1√
ErΛ

,
1√
ErΓ

,(39)

respectively. These are the penetration depths of the wall layer for tangential anchor-
ing, which agrees with the asymptotic analysis of the DMG model [14] in the single
elastic constant limit. One finds the order parameters are coupled with anisotropic
elasticity, i.e., the orientational distribution is strongly biaxial (birefringent in any
plane). For both rods and discs, by comparing the two exponential terms in β2 and
s2, we notice that the boundary layer in s2 is governed by 1√

ErΛ
, whereas in β2 by

1√
ErΓ

, so that their scaling behavior is incommensurate with the leading order wall

layer scaling.
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Table 1

Steady state features of the order parameter morphology for Couette flow with tangential an-
choring (BL denotes boundary layer).

FA/rods FA/discs T/rods T/discs
s− s0 Concave down Concave up Concave up Concave down

& Concave up in BL
β Concave up Concave up Concave down Concave down

& Concave down in BL

Fig. 4. The steady-state asymptotic solutions β (left column) and s − s0 (right column) in
the tumbling regime as functions of (θ, y) with tangentially anchored boundary conditions in weak
Couette flows. (a) and (b) depict the solution for rods with parameter values a = 0.8, N = 6, De =
0.01, Er = 100. (c) and (d) depict the solution for discs with parameter values a = −0.8, N =
6, De = 0.01, Er = 100.

Table 1 tabulates the general behavior of the steady states in the regime of flow-
aligning and tumbling for both rods and discs, in which FA stands for flow-aligning,
T denotes tumbling, and BL denotes a boundary layer. The concavity switching
phenomenon between tumbling and flow-aligning materials, noted in [14], is observed
in both rods and discs. The steady states are in general insensitive to changes in θ. In
addition, the order parameter correction s2 goes through a similar transition for rods
versus discs, whereas β has the same concavity; this is another indication of strong
biaxiality for anisotropic elasticity. Figure 4 depicts a typical steady state asymptotic
solution of (s2, β2) for tumbling rods (a = 0.8) and tumbling discs (a = −0.8).
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2.2.4. Transient behavior of (s2, β2) near steady states. The transient
behavior of the order parameters s2 and β2 obey:

∂s̃2

∂t
=

−1

9Er

(
A1

∂2s̃2

∂y2
+ B1

∂2β̃2

∂y2
+ C1s̃2 + D1β̃2

)
,

∂β̃2

∂t
=

−1

9Er

(
A2

∂2s̃2

∂y2
+ B2

∂2β̃2

∂y2
+ C2s̃2 + D2β̃2

)
,

(40)

with zero boundary conditions.
After tedious but straightforward Fourier analysis, the growth (σ′ > 0) or decay

(σ′ < 0) of solutions s̃2(y, t) and β̃2(y, t), due to the time-dependent factor eσ
′t, is

determined by sgn(σ′)

σ′
± = − 1

2 [C1 + D2 −A1k
2 −B2k

2±
√

(C1 + D2 −A1k2 −B2k2)2 − 4((A2k2 − C2)(D1 −B1k2) + (C1 −A1k2)(D2 −B2k2))].
(41)

We now analyze sgn(σ′
±) to deduce stability. For long waves (|k| << 1), asymp-

totic formulae can be derived:

σ′
± ∼ −1

2
[C1 + D2 ±

√
(C1 + D2)2 + 4(C2D1 − C1D2)].(42)

Using the formulae in Appendix B, C1, D2 > 0, C2 = 0, which implies σ′
± < 0. On

the other hand, the growth rate for short waves (|k| >> 1) is dominated by

σ′
± ∼ 1

2
[A1 + B2 ±

√
(A1 + B2)2 + 4(A2B1 −A1B2)]k

2.(43)

We find σ′
± < 0 only for sufficiently small |θ|. Otherwise, A1B2 − A2B1 may be

negative, leading to a positive growth rate proportional to k2, an ill-posed behavior.
The transition to ill-posedness, A1B2 − A2B1 = 0, simplifies dramatically to the
condition θ = 6

5s0−2 , where s0 is given in (8). This neutral stability curve is plotted
in Figure 3.

Proposition 2. The steady state solution (s2, β2) of (36) is catastrophically
unstable if and only if the degree of anisotropic elasticity satisfies

θ >
6

5s0 − 2
.(44)

2.2.5. Rheological features of steady structures. The shear viscosity (shear
stress divided by local shear rate) at the plates is identical to the averaged shear
viscosity over the shear cell; it is a nonzero constant at O(De), given by

ηwall =
τxy

dv
(1)
x

dy

=
αa2(1− 1

λL
)[θ(1−s0)+3(1− 1

λL
)]

36(3+θ(1−s0))
+ 1

3 (μ1s0 + 3η).(45)

It can be readily shown that ηwall is a slowly varying, decreasing function of the
degree of anisotropic elasticity θ for tumbling rods and all platelet nematic liquids;
however, ηwall increases versus θ for flow-aligning rods. Nonzero first normal stress
difference N1 and second normal stress difference N2 show up at order O(De2) and



1240 Z. CUI, M. G. FOREST, Q. WANG, AND H. ZHOU

are given in Appendix C. These non-Newtonian effects are measurable physically,
e.g., N1 > 0 corresponds to pushing the parallel plates apart and N1 < 0 corresponds
to pulling the plates together. N1 is a linear combination of α and μ2 and N2 is a
linear combination of α and μ1 + μ2. At walls, the terms containing μ1,2 drop out so
that N1 and N2 are proportional to α:

N1 = [ G
54Er (K3λ

2 + K4μ
2 + 2S)

+
(−4aθ+3s0+16aθs30−12a+12as20−12aθs0)

108Er

(
K1λ

2 + K2μ
2 + 2R

)
+ 4K2s0

27Er (−4aθs0
2 − 4aθ + 24aθs0

3 − 6as0 + 9s0 + 18as0
2 − 12a− 16aθs0)]α,

N2 = [− G
54Er (K3λ

2 + K4μ
2 + 2S)

+
(8aθ+12a−3+8as0−16as20−12s0)s0

108Er

(
K1λ

2 + K2μ
2 + 2R

)
+ 4K2as0

27Er (8θs0
2 + 2θ − 24θs0

3 + 12s0 − 9s0 − 18as0
2 + 6 + 14θs0)]α,

(46)

where G,K,R, S, λ, μ and Ki(i = 1, 2, 3, 4) are given in Appendix C.
Figure 5 depicts N1 and N2 for tumbling rods as well as discs as functions of y at

some parameter values; Figure 6 shows N1 and N2 for flow-aligning rods and discs.
Table 3 lists the averaged normal stress differences calculated in four representative
cases. We summarize the noticeable features in the stress differences below.

• For flow-aligning rods, N1 < 0 and N2 > 0 across the gap; their signs change
in plate boundary layers for small degree θ of elastic anisotropy.

• These properties reverse for flow-aligning or tumbling discs, which may ex-
perience sign changes in N1 and N2 in the middle of the plate gap for small
|θ|.

• For tumbling rods and all discotic NLCPs, N1 > 0 and N2 < 0, with sign
changes for rods in the wall boundary layer for large θ, and sign changes for
platelets in the midgap at small |θ|.

• The averages across the gap yield N1 > 0 and N2 < 0 for flow-aligning rods,
and N1 < 0 and N2 > 0 in all other cases.

2.3. Homeotropic anchoring (ψ0 = π
2
). The boundary anchoring condition

affects only the coefficients of the governing system of partial differential equations at

each order. The structure of the equations at O(De) for (v
(1)
x , ψ(1)) are identical to

(18) with the following new coefficients:

A = 1
9Er (s0 + 2)(3 + θ(2s0 + 1)), B = − 1

2 (1 + λL),

C = αs0
18Er [θ(2s0 + 1)λL + 3(λL + 1)], D = 1

3 (μ1s0 + 3η).
(47)

The nonzero leading order solution for the order parameters, primary velocity
component, and major director angle are

s0 = s0, β0 = 0, v(1)
x (y) = y, ψ(1)(y) = MEr(y2 − 1),(48)

M =
9

2(s0 + 2)(3 + θ(2s0 + 1))
(1 + λL).(49)
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Fig. 5. The normal stress differences N1 and N2 in tumbling regimes as functions of y at
selected values of θ with tangentially anchored boundary conditions in weak shear. (a) Rods: a =
0.8, N = 6, De = 0.01, Er = 100, α = 10, μ1 = 0.01, η = 0.02. (b) Discs: a = −0.8, N = 6, De =
0.01, Er = 100, α = 10, μ1 = −0.01, η = 0.02.

It is easy to see that |M | decreases with respect to θ; M is negative for flow-aligning
discs (a < 0, λL < −1) and positive for all other cases. Thus, directors wind coun-
terclockwise from the lower shearing plate to the midplane, and unwind from the
midplane to the upper plate for flow-aligning discs. The winding reverses direction in
the other cases.

Analogous to tangential anchoring, steady states may be catastrophically unstable
for discs in the flow-aligning regime a < 0, λL < −1 if AD − BC < 0, yet are stable
in the other cases, where

AD −BC = 1
27Er [(s + 2)(μ1s0 + 3η)(θ(2s0 + 1) + 3)

+αs0
4 (1 + λL)(aθ(2s0 + 1)(s0 + 2) + 9s0(1 + λL))].

(50)

Proposition 3. The steady-state solution is stable so long as

θ > θc = − 12(s0 + 2)(μ1s0 + 3η) + 9αs2
0(1 + λL)2

4(s0 + 2)(2s0 + 1)(μ1s0 + 3η) + aαs0(1 + λL)(1 + 2s0)(2 + s0)
.(51)

The governing system of equations for the order parameters (s, β) at order O(De2)
is of the same form as tangential anchoring, with different coefficients given in Ap-
pendix C.



1242 Z. CUI, M. G. FOREST, Q. WANG, AND H. ZHOU

–1 –0.5 0 0.5 1
–4

–2

0

2

4

6

8
x 10

–5

y

N
or

m
al

 S
tr

es
s 

D
iff

er
en

ce
s

N
1
,θ=0.1

N
2
, θ=0.1

N
1
, θ=1,

N
2
, θ=1

N
1
, θ=2.9

N
2
, θ=2.9

–1 –0.5 0 0.5 1
–0.03

–0.02

–0.01

0

0.01

0.02

0.03

y

N
or

m
al

 S
tr

es
s 

D
iff

er
en

ce
s

N
1
,θ= 0.1

N
2
,θ= 0.1

N
1
, θ= 0.5

N
2
, θ= 0.5

N
1
, θ= 1.0

N
2
, θ= 1.0

a= –0.9 
a=0.9 

(a) (b)

Fig. 6. The normal stress differences N1 and N2 in flowing-aligning regimes as functions of
y at selected values of θ with tangentially anchored boundary conditions in weak shear. (a) Rods:
a = 0.9, N = 6, De = 0.01, Er = 100, α = 10, μ1 = 0.01, η = 0.02. (b) Discs: a = −0.9, N = 6, De =
0.01, Er = 100, α = 10, μ1 = −0.01, η = 0.02.

The steady solutions are

β2(y) = K11(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1) + R2Er(y2 − 1),

s2(y) = K21(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1) + K22(
cosh(

√
ErΓy)

cosh(
√
ErΓ)

− 1) + S2Er(y2 − 1).

(52)

In this solution, μ2 (defined earlier) changes sign only as θ varies below a threshold
value θd for platelets. Again, the change of sign in μ2 coincides with ill-posedness in
the governing system of equations.

Notice that in s2, there are two cosh terms, whereas there is only one in β2. For
rods, the second term in s2 dominates in the boundary layer while the first term
dominates for discs. Table 2 tabulates features of the steady states. Compared with
results above for tangential anchoring, the steady states with normal anchoring are
more sensitive to the degree θ of elastic anisotropy. The order parameter variation
versus θ decreases for rods and increases for platelets. The solution profiles switch
concavity in the boundary layer for flow-aligning versus tumbling discotics, whereas
the concavity remains the same for rods. Figure 7 depicts typical steady solutions for
tumbling rods and discs.
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Table 2

Steady-state features of the order parameter morphology for Couette flow with normal anchoring.

FA/rods FA/discs T/rods T/discs
s− s0 Concave down Concave down Concave down Concave up

& Concave up in BL & Concave up in BL & Concave down in BL
β Concave up Concave up Concave up Concave down

& Concave down in BL

Fig. 7. The steady-state asymptotic solution as functions of (θ, y) in tumbling regime with
normally anchored boundary condition in weak shear. (a) and (b) depict the solution for rods with
parameter values a = 0.8, N = 6, De = 0.01, Er = 100. (c) and (d) depict the solution for discs with
parameter values a = −0.8, N = 6, De = 0.01, Er = 100.

Again the governing system can become ill-posed. The growth rate formulae for
the steady states are identical to (41), but with new coefficients. Notice that the
discriminant A1B2 − A2B1 = 4(1 − s0)

2(1 + 2s0)[3 + θ(1 + 2s0)][3 + θ(1 + 4s0)]. For
rods, θ > 0 and A1B2 −A2B1 > 0 indicating stability. For discs and θ < − 3

1+4s0
, the

discriminant is negative so that the steady state is unstable.
Proposition 4. The system for the two order parameters (s2, β2) is locally ill-

posed if and only if θ < θd, where

θd = − 3

1 + 4s0
.(53)

The shear viscosity at the walls in this case is given by

ηwall =
τxy

dv
(1)
x

dy

=
αa2(1+ 1

λL
)(2θ(2s0+1)+3(1+ 1

λL
))

36(θ(2s0+1)+3) + 1
3 (μ1s0 + 3η).(54)
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Fig. 8. The normal stress differences N1 and N2 as functions of y in tumbling regime at
selected values of θ with normally anchored boundary conditions in weak shear. The parameter
values are a = ±0.8, N = 6, De = 0.01, Er = 100, α = 10, μ1 = ±0.01, μ2 = 0.02 for rods and discs,
respectively.

Similar to the case of tangential anchoring, the viscosity decreases with respect to θ
for rods and flow-aligning discs, but increases with respect to θ for tumbling discs.
The leading order normal stress differences again show up at O(De2) and are given
in Appendix D.

Figures 8 and 9 depict representative plots of the first and second normal stress
differences in tumbling and flow-aligning regimes, respectively, and demonstrate the
following properties:

• Rods are more sensitive to the variation in degree θ of elastic anisotropy than
discs.

• For tumbling rods, N1 > 0 and N2 < 0 except there may be a sign change in
a boundary layer near the wall at large θ. For tumbling discs, N1 and N2 are
both negative except that N1 is positive in a boundary layer near the wall.

• The behavior of the normal stress differences does not change much for flow-
aligning rods compared with tumbling rods. For flow-aligning discs, N1 > 0
and N2 > 0 except that N2 is negative in boundary layer near the wall.

• The average values across the gap obey N1 > 0 and N2 < 0 for rods, but they
may change signs for discs.

The averaged normal stress differences are tabulated in Table 3.
In summary, the salient predictions from this analysis are:
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Fig. 9. The normal stress differences N1 and N2 as functions of y in flowing-aligning regime
at selected values of θ with normally anchored boundary conditions in weak shear. The parameter
values are a = ±0.9, N = 6, De = 0.01, Er = 100, α = 10, μ1 = ±0.01, μ2 = 0.02 for rods and discs,
respectively.

Table 3

The averaged normal stress differences (Couette).

FA/rods FA/discs T/rods T/discs
Tangential N1 < 0, N2 > 0 N1 > 0, N2 < 0 N1 > 0, N2 < 0 N1 > 0, N2 < 0

Normal N1 > 0, N2 < 0 N1 > 0 N1 > 0, N2 < 0 N1 < 0, N2 < 0

• The major director winds counterclockwise from the bottom to top plates,
for both flow-aligning rods in tangential anchoring and flow-aligning discs in
homeotropic anchoring. Remarkably, the principal orientation axis rotates
clockwise if the nematic polymer tumbles in weak shear rather than flow
aligns. The magnitude of winding of the orientation axis, which sets the
number of bands of nematic distortion, reduces with the degree of elastic
anisotropy θ.

• The order parameters are relatively insensitive to the degree of elastic anis-
otropy in tangential anchoring, and more sensitive in normal anchoring.

• Ill-posedness may occur within each order of asymptotic equations depending
on the values of the parameters, although the full equations are well posed.
This transition implies a breakdown in the asymptotic ordering which allows
explicit solution and scaling properties, and suggests a physical transition
away from these asymptotic structures.
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v=0, Q=Q0

v=0, Q=Q0

Fig. 10. The geometry of the plane Poiseuille flow. A pressure gradient ∂p
∂x

= −De2 is
imposed across the channel. At the bounding surfaces, the orientation tensor is assumed to equal to
its equilibrium value.

• The averaged shear viscosity varies weakly with respect to the strength of
anisotropic elasticity.

• The averaged normal stress differences may take on all possible signs depend-
ing on the parameter regime.

3. Spatial structures in weak Poiseuille flows. In this section, we study
steady structures in the direction of the velocity gradient under an imposed, small
pressure gradient ∂p

∂x in plane Poiseuille flow. Figure 10 depicts the cross section of the
plane Poiseuille flow on the (x, y) plane. The boundary condition for the orientation
tensor is identical to that used for shear flows while the velocity boundary condition is
no-slip v(±1) = 0. As before, we use h and t0 = tn = 1

Dr
as the characteristic length

and time scale, respectively. We adopt the same dimensionless symbols used in weak
plane Couette and assume ∂p

∂x = −ε = −De2 in the dimensionless form, where the
Deborah number is defined by

De =

√
−∂p

∂x

t20
ρh

, ε = De2.(55)

We seek asymptotic solutions in powers of ε. The momentum equation yields at order
O(ε):

∂v(1)
x

∂t = −1 +
∂τ(1)

xy

∂y .(56)

The other governing equations are identical to those derived for plane Couette flows.
Hence, the transient solution and the stability of steady states are identical to the
corresponding problems in plane Couette flows. We will not repeat them here; in-
stead, we only present the asymptotic steady states with respect to the two anchoring
conditions.

3.1. Tangential anchoring (ψ0 = 0). The steady solutions up to order O(ε)
are

s0 = s0, β0 = 0, v(1)
x (y) = H1(1 − y2), ψ(1)(y) = H2Ery(1 − y2),(57)
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where H1 and H2 are given in Appendix E. The positivity of H1 coincides with the
stability of the steady state, giving rise to a parabolic velocity profile. H2 is positive
for flow aligning rods and negative otherwise in stable steady states. H2 behaves more
or less like the diagnostic M in the plane Couette flow. Notice that ψ(1) is an odd
function of y leading to an asymmetric major director pattern, known as a chevron
pattern, with respect to the midplane [6, 2, 3].

For flow-aligning rods in stable steady states, H1 (H2) decreases (increases) with
respect to θ, and increases (decreases) with respect to θ in all other cases. The
rotational pattern of the major director (a function of ψ(1)) is dictated by λL. For
flow-aligning rods, λL > 1, the major director rotates counterclockwise from the lower

plate to the
√

3
6 of the shear cell and then reverses its rotation to the midplane. The

orientation pattern in the top half of the cell is the mirror image of that in the lower
half. The rotation reverses for the other cases where λL < 1.

The steady solutions of the order parameters at order O(ε2) are given by

β2(y) = K11(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1) + K12(
cosh(

√
ErΓy)

cosh(
√
ErΓ)

− 1) + R11(y
4 − 1) + R12(y

2 − 1),

s2(y) = K21(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1) + K22(
cosh(

√
ErΓy)

cosh(
√
ErΓ)

− 1) + R21(y
4 − 1) + R22(y

2 − 1),

(58)

where the coefficients are given in Appendix E. The order parameters behave like a
quartic polynomial with respect to y in most part of the cell except at the boundary

layers near the plates. The velocity v
(1)
x , angle variable ψ(1) and the order parameter

β2 are insensitive to the variation of θ. The sensitivity of the order parameter cor-
rection s2 is the most pronounced at θ = 0, i.e., in the one-constant approximation.
Figure 11 depicts typical steady solutions for tumbling rods. Table 4 tabulates all the
steady state behavior:

• The thickness of the boundary layers in this flow are narrower than those
in the weak plane Couette flows, suggesting a mollifying effect of stronger
velocity gradients near the walls.

• The two order parameter corrections (at small |θ|) and the angle variable
change their signs and concavity in the tumbling versus flow-aligning regime,
but only for rods; this predicts a profile concavity flip in the focusing and
defocusing of the orientation distribution occurs as rods pass through the
flow-aligning to tumbling transition; the profile of β2 is either W-shaped or
M-shaped.

• The velocity profile is concave down.
• The parameter s− s0 is very sensitive around θ = 0 for both rods and discs.
• The angle profile is a rotated-S shape.

Figure 11 depicts typical steady solutions for tumbling discs as functions of (θ, y).
The shear viscosity is given by

ηapp =
τxy

dv
(1)
x

dy

= −αH2s0
18H1

[a(s0 + 2)(θ(1 − s0) + 3(1 − 1
λL

))] + 1
3 (μ1s0 + 3η),(59)

a decreasing function with respect to θ for discs and tumbling rods but an increasing
function for flow-aligning rods.

The normal stress differences in this case are given in Appendix E. Unlike
weak Couette flows, they are rational functions of μ1, μ2 and α. Figures 12 and 13
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Fig. 11. Steady solutions of β, s−s0, v and ψ−ψ0 as functions of (θ, y) in the regime of tumbling
rods with tangentially anchored boundary conditions in plane Poiseuille flow. The parameter values
are N = 6, a = 0.8, De = 0.01, Er = 100, μ1 = 0.1, η = 0.2, α = 10.

depict some representative plots of the normal stress differences for tumbling and
flow-aligning nematics, respectively. In summary, they have the following properties:

• For flow-aligning rods, N1 is positive and N2 is negative. The signs are
reversed for flow-aligning discs.

• For tumbling rods and discs, N1 is negative, but N2 is positive.
• In both stable tumbling and flow-aligning regimes, for rods and discs, the ab-

solute values of N1 and N2 increase and decrease, respectively, as α increases.
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Table 4

Steady states (Poiseuille) in tangential anchoring.

FA/rods FA/discs T/rods T/discs
s− s0 Concave up Concave up Concave down at small θ Concave up

& Concave up at large θ
β W-shape M-shape M-shape M-shape

ψ − ψ0 S Rotated-S Rotated-S Rotated-S
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Fig. 12. The normal stress differences N1 and N2 as functions of y in tumbling regime at
selected values of θ with tangentially anchored boundary conditions in plane Poiseuille flows. The
other parameter values are N = 6, De = 0.01, Er = 100, α = 10, μ2 = 0.02, for rods a = 0.8, μ1 =
0.01, and for discs, a = −0.8, μ1 = −0.01.

• The gap averages satisfy N1 > 0 and N2 < 0 for flow-aligning rods while
N1 < 0, N2 > 0 in all other regimes.

The behavior of the averaged normal stress differences is tabulated in Table 6.

3.2. Homeotropic anchoring (ψ = π
2
). The steady solutions up to order O(ε)

are given by (57) with new H1 and H2 given in Appendix F. As in the tangential
anchoring case, H1 is positive in all stable steady states. H2 is negative for flow-
aligning discs and positive otherwise for other stable steady states. For flow-aligning
discs in stable steady states, H1 (H2) decreases (increases) with respect to θ for flow-
aligning discs, yet increases (decreases) with respect to θ for all other stable steady
states.
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Fig. 13. The normal stress differences N1 and N2 as functions of y in flow-aligning regime at
some values of θ with tangentially anchored boundary conditions in plane Poiseuille flows. The other
parameter values are N = 6, De = 0.01, Er = 100, α = 10, μ2 = 0.02, for rods a = 0.9, μ1 = 0.01,
and for discs, a = −0.9, μ1 = −0.01.

Table 5

Steady states (Poiseuille) in homeotropic anchoring.

FA/rods FA/discs T/rods T/discs
s− s0 W-shape M-shape W-shape W-shape

β W-shape M-shape W-shape W-shape
ψ − ψ0 Rotated-S S Rotated-S Rotated-S

The steady solutions of the order parameters at O(ε2) are

β2(y) = K11(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1) + R1(y
4 − 1) + S1(y

2 − 1),

s2(y) = K21(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1)

+K22(
cosh(

√
ErΓy)

cosh(
√
ErΓ)

− 1) + R2(y
4 − 1) + S2(y

2 − 1).

(60)

We summarize the features of stable steady states in Table 5:
• The two order parameters and the angle parameter change their signs and

shapes in tumbling and flow-aligning regime for discs but not for rods, indi-
cating the solutions are more sensitive for platelet molecules than for rods.
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Fig. 14. Steady solutions β, s − s0, v and ψ − ψ0 for tumbling rods as functions of (θ, y)
with normally anchored boundary conditions in plane Poiseuille flows. The parameter values are
a = 0.8, N = 6, De = 0.01, Er = 100, μ1 = 0.01, η = 0.02, α = 1.

• As the anisotropic elasticity enhances, the order parameter variations and the
angle variation reduces for rods yet amplifies for discs.

• The velocity profile has fixed concavity in all regimes. As the anisotropic
elasticity increases, the velocity increases for rods.

• The orientational variables decrease with respect to θ while the flow variable
v increases.

• Again, the thickness of the boundary layers are smaller compared to weak
plane Couette flows.

Figure 14 depicts a typical steady solution for tumbling discs as functions of (θ, y).
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Fig. 15. The normal stress differences N1 and N2 as functions of y in tumbling regime at
selected values of θ with normal anchoring boundary conditions in plane Poiseuille flows. The
parameter values are N = 6, De = 0.01, Er = 100, α = 10,, a = 0.8, μ1 = 0.01, μ2 = 0.02 for rods,
and a = −0.8, μ1 = −0.01, μ2 = 0.02 for discs.

The wall shear viscosity is given by

ηwall =
τxy

dv
(1)
x

dy

= αH2

18ErH1
(a(2 + s0)(θ(2s0 + 1) + 3(1 + 1

λL
))) + 1

3 (μ1s0 + 3η),(61)

which decays with respect to θ for all rods and flow-aligning discs, but increases for
tumbling discs. The first and second normal stress differences in this case are given in
Appendix F. Figures 15 and 16 depict the normal stress differences for flow-aligning
and tumbling nematics, respectively. In summary, they exhibit the following features:

• For flow-aligning rods and disks, N1 and N2 are negative except for a small
region at the midplane, where some of the first normal stress difference may
be positive.

• For tumbling rods, N1 and N2 are negative. For tumbling discs (−1 < λL <
0), N1 and N2 are negative except for a tiny region at the midplane at small
θ. For tumbling discs, the behavior reverses completely, i.e., the normal stress
differences are positive except for a small region at the midplane.

• In both stable tumbling and flow-aligning regimes, for rods and discs, the
absolute values of N1 and N2 will decrease and increase as α increases, re-
spectively.

• The gap averages obey N1 > 0 and N2 > 0 for tumbling rods and both
become negative in all other regimes.

The behavior of averaged normal stress differences is tabulated in Table 6.
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Fig. 16. The normal stress differences N1 and N2 as functions of y in flow-aligning regime
at selected values of θ with normal anchoring boundary conditions in plane Poiseuille flows. The
parameter values are N = 6, De = 0.01, Er = 100, α = 10, a = 0.9, μ1 = 0.01, μ2 = 0.02 for rods,
and N = 6, De = 0.01, Er = 100, α = 1, a = −0.9, μ1 = −0.01, μ2 = 0.02 for discs.

Table 6

The normal stress differences (Poiseuille).

FA/rods FA/discs T/rods T/discs
Tangential N1 > 0, N2 > 0 N1 < 0, N2 > 0 N1 < 0, N2 > 0 N1 < 0, N2 > 0

Normal N1 < 0, N2 < 0 N1 < 0, N2 < 0 N1 < 0, N2 < 0 N1 > 0, N2 > 0

4. Conclusion. We have derived explicit asymptotic structures for weakly
sheared nematic polymers in both plate-driven and pressure-driven experimental con-
ditions. The goal of this analysis is to predict scaling properties in the orienta-
tional distribution of the rigid rod ensemble from the strong elasticity, weak flow
regime, which then guide numerical continuation studies of heterogeneous films and
molds across a multi-parameter space of material properties and processing conditions.
We have explored the effect of anisotropic elasticity for both flow conditions, using
a second-moment model for the orientational distribution derived from Doi–Hess–
Marrucci–Greco kinetic theory. These results extend previous work of the authors for
steady structures with equal elasticity constants in plate-driven flow in several ways:
anisotropic elasticity, pressure-driven flows, and transient asymptotic equations fol-
lowed by stability predictions within the asymptotic ordering of the flow-nematic sys-
tem. The leading order flow structure is simple linear shear versus Poiseuille profiles
for the respective driving conditions, with elastic hydrodynamic feedback contribu-
tions characterized at next order. These results confirm the consistency of imposing
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the kinematics (and thereby suppressing flow feedback) in special asymptotic parame-
ter regimes, yet also predict breakdown of this decoupling of the momentum equation
when either of several conditions is relaxed: weak flow, strong elasticity, or sufficiently
isotropic elasticity.

The orientational structures for both flow conditions convey scaling properties of
nematic (director dominated) elastic distortions as well as molecular elasticity (domi-
nated by focusing or defocusing of the orientational distribution). The structure scal-
ing laws are similar for plane Couette and Poiseuille flows, with plate boundary layer
thicknesses proportional to 1/

√
Er and nonuniform structures spanning the plates

with mean lengthscale proportional to 1/Er. The prefactors of the structures capture
the roles of material properties: flow-aligning versus tumbling nematics, degree of
anisotropy in the elasticity potential, strength of the short-range nematic potential,
and molecular aspect ratio. These subtleties are detailed in the body of the paper,
where the amplitude of structure variations, convexity of profiles, and stability of the
steady structures all depend strongly on these molecular parameters as well as plate
anchoring conditions.

The particular results are less important than the overall insight into the sen-
sitivity, flow-nematic feedback and processing-generated structures on material and
device properties. The instability within the asymptotic equations is catastrophic,
similar to backward heat flow instabilities, so there is no mistaking the breakdown of
these steady profiles in the weak flow model system. The role of anisotropic elastic-
ity is shown to be greater for normal versus tangential plate anchoring, and greater
in pressure-driven than plate-driven flows. In Poiseuille flow, the transition to catas-
trophic instability coincides with a rapidly growing midplane axial velocity, confirming
a breakdown in the asymptotic analysis. Finally, anisotropic elasticity is shown to
contribute to either shear thinning or shear thickening behavior as other parameters
are modified, and signs of normal stress differences (which determine whether the
plates are pushed or pulled by the stresses generated between) are likewise sensitive
to various material parameters.

Appendix A. The coefficients in the second-order equations in tangen-
tial anchoring.

A1 = (1 − s0)[−6(1 + 2s0) + (8s2
0 − s0 − 2)θ], B1 = (1 − s0)s0(6 − 7s0θ),

C1 = 18ErNs0(−1 + 4s0), D1 = 36ErNs0(1 − s0),
E1 = 2s0(1 − s0)(1 + 3s0)[6 + (2 − 5s0)θ],
F1 = 2s0[3(2 + s0) + 2(3s2

0 + s0 − 1)θ], G1 = 9Ers0(−1 − a + 2as0),
A2 = −2s0θ(1 − s0), B2 = (1 − s0)[−6 + (3s0 − 2)θ], C2 = 0,
D2 = 54ErNs0, E2 = 2s0(s0 − 1)[6 + (2 − 5θ)],
F2 = 2s0[3(2 − s0) + (s0 + 2)(s0 − 1)θ], G2 = 9Ers0(1 − a).

(62)

Appendix B. The coefficients in the second-order equations in normal
anchoring.

A1 = −2(1 − s0)(2s0 + 1)[3 + (4s0 + 1)θ],
B1 = 2s0(1 − s0)[3 + 2(2s0 + 1)θ],
C1 = 18ErNs0(−1 + 4s0), D1 = 36ErNs0(1 − s0),
E1 = 4s0(1 − s0)[3(1 + 3s0) − (2s0 + 1)(6s0 + 1)θ)],
F1 = 2s0[3(2 + s0) − (6s3

0 − 5s2
0 − 8s0 − 2)θ], G1 = 9Ers0(−1 + a− 2as0),

A2 = 0, B2 = 2(s0 − 1)[3 + (2s0 + 1)θ], C2 = 0, D2 = 54ErNs0,
E2 = 4s0[3(−1 + s0) + (2s2

0 + 3s0 − 1)θ],
F2 = 2s0[−3(2 + s0) + (2s0 + 1)(s0 − 2)θ], G2 = 9Ers0(1 + a).

(63)
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Appendix C. The coefficients of the steady solutions for tangential
anchoring in weak plane Couette flows.

λ, μ =
√
Er{18[Ns0(s0 − 1)((16s0

2 − 5s0 − 2)θ − 6(5s0 + 1))∓
√

2((68s0
4 + 49s0

3 − 24s0
2 − 20s0 + 8)θ2 − 6(8s0

3 + 21s0
2 + 6s0 − 8)θ+

18(s0 + 2)2)1/2s0(1 − s0)N ]/[(s0 − 1)2(2s0 + 1)(5θs0 − 2θ − 6)(θs0 − 2θ − 6)]} 1
2 ,

R1 =
(as0−3s0+2a)(s0−1)[(−5s20+2as20+3as0+2s0−2a)θ−3(as0−2s0+2a)]

4Ns20(s0+2)2(θs0−θ−3)2
,

S1 = (1 − s0)[(−88s3
0 + 34as0 + 77as2

0 − 31s2
0 + 8as0 + 20s0 − 20a)θ − 6(7as2

0 − 14s2
0

−10s0 + 19as0 + 10a)](as0 − 3s0 + 2a)/[8s2
0N(−1 + 4s0)(s0 + 2)2(θs0 − θ − 3)2],

Λ = λ√
Er

,Γ = μ√
Er

, R = R1Er, S = S1Er,K = 3(as0−3s0+2a)Er
4s0(s0+2)[(s0−1)θ−3] ,

A = −(s0 − 1)2(2s0 + 1)(5θs0 − 2θ − 6)(θs0 − 2θ − 6),

B = 36ErNs0(s0 − 1)[(16s2
0 − 5s0 − 2)θ − 6(5s0 + 1)], C = 972(ErNs0)

2(1 − 4s0),

T = 2A1(4K
2E2+2K2F2+KG2)−2A2(4K

2E1+2K2F1+KG1)−C1(2K
2F2+KG2)−2BR

C ,

K1 = 1
λ2−μ2 [ 4K

2A1E2−4K2A2E1

A + μ2(R + T ) − 2R], K3 = −B2λ
2+D2

A2λ2 K1,

K2 = 1
−λ2+μ2 [ 4K

2A1E2−4K2A24E1

A + λ2(R + T ) − 2R], K4 = −B2μ
2+D2

A2μ2 K2,

N1 = Gα
54Er

(
K3λ

2 cosh(λ y)
cosh(λ) + K4μ

2 cosh(μ y)
coshμ + 2S

)
+aNs0(1−4 s0)α

3

[
K3

(
cosh(λ y)
cosh(λ) − 1

)
+ K4

(
cosh(μ y)
cosh(μ) − 1

)
+ S

(
y2 − 1

)]
+

(−4aθ+3s0+16aθs30−12a+12as20−12aθs0)α
108Er

(
K1λ

2 cosh(λ y)
cosh(λ) + K2μ

2 cosh(μ y)
cosh(μ) + 2R

)
+Ns0(1+2 s0) aα

3

[
K1

(
cosh(λ y)
cosh(λ) − 1

)
+ K2

(
cosh(μ y)
cosh(μ) − 1

)
+ R

(
y2 − 1

)]
+ 4K2s0α

27Er [4a(s0 − 1)(2s0 + 1)(3s0 + 1)θ − 3(2as0 − 3s0 − 6as0
2 + 4a]y2

+ 2as0K
2α

27Er [(2s0 + 1)(3s0
2 − 5s0 − 4))θ − 6(s0 + 2)](y2 − 1) + 2μ2 Ks0

2
(
y2 − 1

)
,

N2 = − Gα
54Er

(
K3λ

2 cosh(λ y)
cosh(λ) + K4μ

2 cosh(μ y)
coshμ + 2S

)
+aNs0(−1+4 s0)α

3

[
K3

(
cosh(λ y)
cosh(λ) − 1

)
+ K4

(
cosh(μ y)
cosh(μ) − 1

)
+ S

(
y2 − 1

)]
+

(8aθ+12a−3+8as0−16as20−12s0)s0α
108Er

(
K1λ

2 cosh(λ y)
cosh(λ) + K2μ

2 cosh(μ y)
cosh(μ) + 2R

)
+ 2Ns0(1−s0)aα

3

[
K1

(
cosh(λ y)
cosh(λ) − 1

)
+ K2

(
cosh(μ y)
cosh(μ) − 1

)
+ R

(
y2 − 1

)]
+ 4K2s0α

27Er [−2a(s0 − 1)(2s0 + 1)(6s0 + 1)θ + 3(4as0 − 3s0 − 6as0
2 + 2a)]y2

+ 2as0K
2α

27Er [−(2s0 + 1)(3s0
2 − 4s0 − 2))θ + 3(s0 + 2)](y2 − 1)

−2 (μ1 + μ2)Ks0
2
(
y2 − 1

)
,

G = 2aθ + 4aθs2
0 + 6as0 − 3s0 − 12as2

0 − 16aθs3
0 + 10aθs0 + 6a.

(64)
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Appendix D. The coefficients of the steady solutions in normal anchor-
ing in weak plane Couette flows.

λ =
√
Er[ 3Ns0

(1−s0)(2θs0+3+θ) ]
1/2, μ =

√
Er[ 9Ns0(−1+4s0)

(1−s0)(2s0+1)(4θs0+3+θ) ]
1/2,Λ = λ√

Er
,Γ = μ√

Er
,

R = 9(1−s0)(2s0+as0+2a)(as0+3s0+2a)
4N(s0+2)2(2θs0+3+θ)s20

Er, R2 = R
Er , K = 3(as0+3s0+2a)

4s0(s0+2)(2θs0+θ+3)Er,

T = 3(−1 + s0)[2(2s0 + 1)(s0 − 1)(as0 + 2s0 + 2a)θ + ErNs0a(s0 + 2)

+6(−1 + s0)(2s0 + as0 + 2a))](as0 + 3s0 + 2a)/[4N2(s0 + 2)2(2θs0 + 3 + θ)s3
0],

S = {3(as0 + 3s0 + 2a)(1 − s0)[(2s0 + 1)(−3s2
0 + as2

0 − 4as0 − 12s0 − 12a)θ

+18(s0 − 1)(as0 + 2s0 + 2a)]/[8Ns2
0(s0 + 2)2(2θs0 + 3 + θ)2(−1 + 4s0)]}Er,

S2 = S
Er , T1 = −A1S+2B1R+D1T+(−2K2F1−G1K)

C1
,

K11 = −R− T, K21 = B1λ
2+D1

A1λ2+C1
K11, K22 = −K21 − S − T1,

N1 = Gα
54Er

(
K21λ

2 cosh(λ y)
cosh(λ) + K22μ

2 cosh(μ y)
coshμ + 2S

)
+aNs0(1−4 s0)α

3

[
K21

(
cosh(λ y)
cosh(λ) − 1

)
+ K22

(
cosh(μ y)
cosh(μ) − 1

)
+ S

(
y2 − 1

)]
+

(−4aθ+3s0+16aθs30−12a+12as20−12aθs0)α
108Er

(
K11λ

2 cosh(λ y)
cosh(λ) + 2R

)
+Ns0(1+2 s0) aα

3

[
K11

(
cosh(λ y)
cosh(λ) − 1

)
+ R

(
y2 − 1

)]
+ 4K2s0α

27Er [4a(s0 − 1)(2s0 + 1)(3s0 + 1)θ + 3(−2as0 + 3s0 + 6as0
2 − 4a)]y2

+ 2as0K
2α

27Er [(2s0 + 1)(3s2
0 − 5s0 − 4)θ − 6(s0 + 2)](y2 − 1) + 2μ2 Ks0

2
(
y2 − 1

)
,

N2 = − Gα
54Er (K21λ

2 coshλ y
cosh(λ) + K22μ

2 coshμ y
coshμ + 2S)

+aNs0(−1+4 s0)α
3

[
K21

(
cosh(λ y)
cosh(λ) − 1

)
+ K22

(
cosh(μ y)
cosh(μ) − 1

)
+ S

(
y2 − 1

)]
+

(8aθ+12a−3+8as0−16as20−12s0)s0α
108Er

(
K11λ

2 cosh(λ y)
cosh(λ) + 2R

)
+ 2Ns0(1−s0)aα

3

[
K11

(
cosh(λ y)
cosh(λ) − 1

)
+ R

(
y2 − 1

)]
+ 4K2s0α

27Er [2a(1 − s0)(2s0 + 1)2)θ + 3(4as0 − 9s0 − 6as0
2 + 2a)y2

+ 2as0K
2α

27Er [−(2s0 + 1)(3s2
0 − 4s0 − 2)θ + 3(s0 + 2)](y2 − 1)

−2 (μ1 + μ2)Ks0
2
(
y2 − 1

)
,

G = 2aθ + 4aθs2
0 + 6as0 − 3s0 − 12as2

0 − 16aθs3
0 + 10aθs0 + 6a.

(65)
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Appendix E. The coefficients of the steady solutions for tangential an-
choring in Poiseuille flows.

H1 = 6(s0+2)(3+θ(1−s0))
4(μ1s0+3η)(s0+2)(3+θ(1−s0))+αs0(1−λL)(−aθ(1−s0)(s0+2)+9s0(1−λL)) ,

H2 = 9(λL−1)
4(μ1s0+3η)(s0+2)(3+θ(1−s0))+αs0(1−λL)(−aθ(1−s0)(s0+2)+9s0(1−λL)) ,

D = −C1(9H
2
2E2 + 6H2

2F2 + 2G2H1H2),

E = −12A1(9H
2
2E2 + 6H2

2F2 + 2G2H1H2) + C1(6H
2
2E2 + 6H2

2F2 + 2G2H1H2)

+12A2(9H
2
2E1 + 6H2

2F1 + 2G2H1H2),

F = 2A1(6H
2
2E2 + 6H2

2F2 + 2G2H1H2) − C1H
2
2E2 + 6H2

2E2

−2A2(6H
2
2E1 + 6H2

2F1 + 2G2H1H2),

R11 = −D
C , R12 = − 12BR11+E

C , R13 = − 24AR11+2BR12+F
C ,

K11 = 1
(λ2−μ2) [

4H2
2 (E2A1−E1A2)

A − 12.R11 − 2R12 + (R11 + R12 + R13)μ
2],

K12 = 1
(−λ2+μ2) [

4H2
2 (E2A1−E1A2)

A − 12.R11 − 2R12 + (R11 + R12 + R13)λ
2],

K21 = −K11(B2λ
2+D2)

A2λ2 , K22 = −K12(B2μ
2+D2)

A2μ2 ,

R21 = −D2R12−6H2
2E2−6H2

2F2−2G2H1H2

12A2
, R22 = − 2.B2R12+D2R13+E2H

2
2

2.A2
,

N1 = Gα
54Er

(
K21λ

2 cosh(λ y)
cosh(λ) + K22μ

2 cosh(μ y)
coshμ + 12R21y

2 + 2S22

)
+aNs0(1−4 s0)α

3

[
K21

(
cosh(λ y)
cosh(λ) − 1

)
+ K22

(
cosh(μ y)
cosh(μ) − 1

)
+ R21

(
y4 − 1

)
+ S22

(
y2 − 1

)]
+

(−4aθ+3s0+16aθs30−12a+12as20−12aθs0)α
108Er

(
K11λ

2 cosh(λ y)
cosh(λ) + K12μ

2 cosh(μ y)
cosh(μ)

+12R11y
2 + 2R12

)
+Ns0(1+2 s0) aα

3

[
K11

(
cosh(λ y)
cosh(λ) − 1

)
+K12

(
cosh(μ y)
cosh(μ) − 1

)
+R11

(
y4 − 1

)
+R12

(
y2 − 1

)]
+H2

2s0α
27 [4a(s0 − 1)(2s0 + 1)(3s0 + 1)θ + 3(−2as0 + 3s0 + 6as0

2 − 4a)](3y2 − 1)2

− 2as0α
9 H2

2[(2s0 +1)(3s2
0 − 5s0 − 4)θ− 6(s0 +2)]y2(y2 − 1)+ 4μ2 H1H2s0

2y2
(
y2 − 1

)
,

N2 = − Gα
54Er

(
K21λ

2 coshλ y
cosh(λ) + K22μ

2 coshμ y
coshμ + 12R21y

2 + 2S22

)
+aNs0(−1+4 s0)α

3

[
K21

(
cosh(λ y)
cosh(λ) − 1

)
+ K22

(
cosh(μ y)
cosh(μ) − 1

)
+R21

(
y4 − 1

)
+ S22

(
y2 − 1

) ]
+

(8aθ+12a−3+8as0−16as20−12s0)s0α
108Er

(
K11λ

2 cosh(λ y)
cosh(λ) + K12μ

2 cosh(μ y)
cosh(μ) + 12R11y

2 + 2R11

)
+ 2Ns0(1−s0)aα

3

[
K11

(
cosh(λ y)
cosh(λ) − 1

)
+ K12

(
cosh(μ y)
cosh(μ) − 1

)
+ R11

(
y4 − 1

)
+ R11

(
y2 − 1

)]
+

H2
2s0α

27Er [−2a(s0 − 1)(2s0 + 1)(6s0 + 1)θ + 3(4as0 − 3s0 − 6as0
2 + 2a)](3y2 − 1)2

− 2as0H2
2α

9Er [−(2s0 + 1)(3s2
0 − 4s0 − 2)θ + 3(s0 + 2)]y2(y2 − 1)

+4 (μ1 + μ2)H1s0y
2
(
y2 − 1

)
,

G = 2aθ + 4aθs2
0 + 6as0 − 3s0 − 12as2

0 − 16aθs3
0 + 10aθs0 + 6a.

(66)
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Appendix F. The coefficients of the steady solutions in normal anchor-
ing in Poiseuille flows.

H1 = 6(s0+2)(θ(2s0+1)+3)
4(μ1s0+3η)(s0+2)(θ(2s0+1)+3)+αs0(1+λL)(aθ(s0+2)(2s0+1)+9s0(1+λL)) ,

H2 = 9(1+λL)
4(μ1s0+3η)(s0+2)(θ(2s0+1)+3)+αs0(1+λL)(aθ(s0+2)(2s0+1)+9s0(1+λL)) ,

R1 = − 2(9H2
2E1+6H2

2F1+2G1H1H2)+(9H2
2E2+6H2

2F2+2G2H1H2)
2D1+D2

,

S1 =
2(6H2

2E1+6H2
2F1+2G1H1H2)+(6H2

2E2+6H2
2F2+2G2H1H2)−12(2B1+B2)R1

2D1+D2
,

T1 = − 2H2
2E1+2H2

2E2+2(2B1+B2)S1

2D1+D2
, K11 = −(R1 + S1 + T1),

K21 = −B1λ
2+D1

A1λ2+C1
K11, R2 = −D1R1+(9H2

2E1+6H2
2F1+2G1H1H2)

C1
,

S2 =
(6H2

2E1+6H2
2F1+2G1H1H2)−12A1R2−12R1B1−D1S1

C1
,

T2 =
H2

2E1+2A1S2+2S1B1+D1T1

C1
, K22 = −(K21 + R2 + S2 + T2),

N1 = Gα
54Er

(
K21λ

2 cosh(λ y)
cosh(λ) + K22μ

2 cosh(μ y)
coshμ + 12R2y

2 + 2S2

)
+aNs0(1−4 s0)α

3

[
K21

(
cosh(λ y)
cosh(λ) − 1

)
+ K22

(
cosh(μ y)
cosh(μ) − 1

)
+R2

(
y4 − 1

)
+ S2

(
y2 − 1

) ]
+

(−4aθ+3s0+16aθs30−12a+12as20−12aθs0)α
108Er

(
K11λ

2 cosh(λ y)
cosh(λ) + 12R1y

2 + 2S1

)
+Ns0(1+2 s0) aα

3

[
K11

(
cosh(λ y)
cosh(λ) − 1

)
+ R1

(
y4 − 1

)
+ S1

(
y2 − 1

)]
+H2

2s0α
27 [4a(s0 − 1)(2s0 + 1)(3s0 + 1)θ + 3(−2as0 + 3s0 + 6as0

2 − 4a)](3y2 − 1)2

− 2as0α
9 H2

2[(2s0 + 1)(3s2
0 − 5s0 − 4)θ − 6(s0 + 2)]y2(y2−1)+4μ2 H1H2s0

2y2
(
y2−1

)
,

N2 = − Gα
54Er

(
K21λ

2 coshλ y
cosh(λ) + K22μ

2 coshμ y
coshμ + 12R2y

2 + 2S2

)
+aNs0(−1+4 s0)α

3

[
K21

(
cosh(λ y)
cosh(λ) − 1

)
+ K22

(
cosh(μ y)
cosh(μ) − 1

)
+R2

(
y4 − 1

)
+ S2

(
y2 − 1

) ]
+

(8aθ+12a−3+8as0−16as20−12s0)s0α
108Er

(
K11λ

2 cosh(λ y)
cosh(λ) + 12R1y

2 + 2S1

)
+ 2Ns0(1−s0)aα

3

[
K11

(
cosh(λ y)
cosh(λ) − 1

)
+ R1

(
y4 − 1

)
+ S1

(
y2 − 1

)]
+

H2
2as0α
27Er [−2a(s0 − 1)(2s0 + 1)(6s0 + 1)θ + 3(4as0 − 3s0 − 6as0

2 + 2a)](3y2 − 1)2

− 2as0H2
2α

9Er [−(2s0 + 1)(3s2
0 − 4s0 − 2)θ + 3(s0 + 2)]y2(y2 − 1)

+4 (μ1 + μ2)H1s0y
2
(
y2 − 1

)
,

G = 2aθ + 4aθs2
0 + 6as0 − 3s0 − 12as2

0 − 16aθs3
0 + 10aθs0 + 6a.

(67)



COUETTE AND POISEUILLE FLOWS OF RODS AND PLATELETS 1259

REFERENCES

[1] W. R. Burghardt, Molecular orientation and rheology in sheared lyotropic liquid crys-
talline polymers, Macromol. Chem. Phys., 199 (1998), pp. 471–488.

[2] M. C. Calderer and B. Mukherjee, Chevron patterns in liquid crystal flows, Phys. D,
98 (1996), pp. 201–224.

[3] M. C. Calderer and B. Mukherjee, On Poiseuille flow of polymeric liquid crystals, Liq.
Cryst., 22 (1997), pp. 121–136.

[4] T. Carlsson, Theoretical investigation of the shear flow of nematic liquid crystals with
the Leslie viscosity α > 0: Hydrodynamic analogue of first order phase transitions,
Mol. Cryst. Liq. Cryst., 104 (1984), pp. 307–334.

[5] T. Carlsson, Unit-sphere description of nematic flows, Phys. Rev. A, 34 (1986), pp. 3393–
3404.

[6] S. Chandrasekhar, Liquid Crystals, 2nd ed., Cambridge University Press, Cambridge,
1992.

[7] P. E. Cladis, S. Torza, in Colloid and Interface Science, vol. 4, M. Kerker, ed., Academic
Press, New York, 1976.

[8] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford University Press,
London, 1993.

[9] A. M. Donald and A. H. Windle, Liquid Crystalline Polymers, Cambridge Solid State
Sci. Ser., Cambridge University Press, Cambridge, 1992.

[10] M. G. Forest and Q. Wang, Monodomain response of finite-aspect-ratio macromolecules
in shear and related linear flows, Rheol. Acta, 42 (2003), pp. 20–46.

[11] M. G. Forest, Q. Wang, and H. Zhou, Exact banded patterns from a Doi-Marrucci-
Greco model of nematic liquid crystal polymers, Phys. Rev. E, 61 (2000), pp. 6655–
6662.

[12] M. G. Forest, Q. Wang, and H. Zhou, Methods for the exact construction of mesoscale
spatial structures in liquid crystal polymers, Phys. D, 152–153 (2001), pp. 288–309.

[13] M. G. Forest, R. Zhou, and Q. Wang, Full-tensor alignment criteria for sheared nematic
polymers, J. Rheol., 47 (2003), pp. 105–127.

[14] M. G. Forest, Q. Wang, H. Zhou, and R. Zhou, Structure scaling properties of confined
nematic polymers in plane Couette cells: The weak flow limit, J. Rheol., 48 (2004),
pp. 175–192.

[15] M. G. Forest, Q. Wang, and R. Zhou, The weak shear phase diagram for nematic
polymers, Rheol. Acta, 43 (2004), pp. 17–37.

[16] M. G. Forest, Q. Wang, and R. Zhou, The flow-phase diagram of Doi-Hess theory for
sheared nematic polymers II: Finite shear rates, Rheol. Acta, 44 (2004), pp. 80–93.

[17] M. G. Forest, Q. Wang, and H. Zhou, Structure formation in sheared tumbling nematic
liquid crystal polymers, University of North Carolina, Chapel Hill, NC, preprint, 2004.

[18] M. G. Forest, R. Zhou, Q. Wang, X. Zheng, and R. Lipton, Anisotropy and het-
erogeneity of nematic polymer nano-composite film properties, in Modeling of Soft
Matter, IMA Math. Appl., Vol. 141, M.-C. T. Calderer and E. M. Terentjev, eds.,
Springer-Verlag, New York, 2005, pp. 85–98.

[19] M. G. Forest, X. Zheng, R. Zhou, Q. Wang, and R. Lipton, Anisotropy and dynamic
ranges in effective properties of of nematic polymer nano-composites. Adv. Func.
Mat., 15 (2005), pp. 2029–2035.

[20] D. D. Joseph, Fluid Dynamics of Viscoelastic Liquids, Applied Math (N.Y.) 84, Springer-
Verlag, New York, 1990.

[21] R. Kupferman, M. Kawaguchi, and M. M. Denn, Emergence of structure in a model of
liquid crystalline polymers with elastic coupling, J. Non-Newtonian Fluid Mech., 91
(2000), pp. 255–271.

[22] R. G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press,
London, 1999.

[23] R. G. Larson, Roll-cell instabilities in shearing flows of nematic polymers, J. Rheol., 37
(1993), page 175.

[24] R. G. Larson and D. W. Mead, Development of orientation and texture during shearing
of liquid-crystalline polymers, Liq. Cryst., 12 (1993), pp. 751–768.

[25] R. G. Larson and D. W. Mead, The Ericksen number and Deborah number cascade in
sheared polymeric nematics, Liq. Cryst., 15 (1993), pp. 151–169.

[26] P. Manneville, The transition to turbulence in nematic liquid crystals: Part 1, general
review. Part 2, on the transition via tumbling, Mol. Cryst. Liq. Cryst., 70 (1981),
pp. 223–250.



1260 Z. CUI, M. G. FOREST, Q. WANG, AND H. ZHOU

[27] G. Marrucci, Tumbling regime of liquid-crystalline polymers, Macromol., 24 (1991),
pp. 4176–4182.

[28] G. Marrucci and F. Greco, Flow behavior of liquid crystalline polymers, Adv. Chem.
Phys., 86 (1993), pp. 331–404.

[29] A. D. Rey and M. M. Denn, Dynamical phenomena in liquid-crystalline materials, An-
nual Rev. Fluid Mech., 34 (2002), pp. 233–266.

[30] G. Sgalari, G. L. Leal, and J. Feng, The shear flow behavior of LCPs based on a
generalized Doi model with distortional elasticity, J. Non-Newtonian Fluid Mech.,
102 (2002), pp. 361–382.

[31] Z. Tan and G. C. Berry, Studies on the texture of nematic solutions of rodlike polymers,
3. Rheo-optical and rheological behavior in shear, J. Rheol., 47 (2003), pp. 73–104.

[32] T. Tsuji and A. D. Rey, Effect of long range order on sheared liquid crystalline poly-
mers, Part 1: Compatibility between tumbling behavior and fixed anchoring, J. Non-
Newtonian Fluid Mech., 73 (1997), pp. 127–152.

[33] Q. Wang, A hydrodynamic theory of nematic liquid crystalline polymers of different con-
figurations, J. Chem. Phys., 116 (2002), pp. 9120–9136.

[34] X. Zheng, M. G. Forest, R. Lipton, R. Zhou, and Q. Wang, Exact scaling laws for
electrical conductivity properties of nematic polymer nano-composite monodomains,
Adv. Func. Mat., 15 (2005), pp. 627–638.


