
SIAM J. OPTIM. c© 2006 Society for Industrial and Applied Mathematics
Vol. 16, No. 4, pp. 1137–1154

A TRUNCATED PROJECTED NEWTON-TYPE ALGORITHM FOR
LARGE-SCALE SEMI-INFINITE PROGRAMMING∗

QIN NI† , CHEN LING‡ , LIQUN QI§ , AND KOK LAY TEO¶

Abstract. In this paper, a truncated projected Newton-type algorithm is presented for solving
large-scale semi-infinite programming problems. This is a hybrid method of a truncated projected
Newton direction and a modified projected gradient direction. The truncated projected Newton
method is used to solve the constrained nonlinear system. In order to guarantee global convergence,
a robust loss function is chosen as the merit function, and the projected gradient method inserted is
used to decrease the merit function. This algorithm is suitable for handling large-scale problems and
possesses superlinear convergence rate. The global convergence of this algorithm is proved and the
convergence rate is analyzed. The detailed implementation is discussed, and some numerical tests for
solving large-scale semi-infinite programming problems, with examples up to 2000 decision variables,
are reported.

Key words. semi-infinite programming, Karush–Kuhn–Tucker system, large-scale problem

AMS subject classifications. 90C34, 90C06, 90C90, 65K05, 49M05

DOI. 10.1137/040619867

1. Introduction. We consider the semi-infinite programming (SIP) problem

min{f(x), x ∈ X},(1.1)

where X = {x ∈ �n : g(x, v) ≤ 0 for all v ∈ Ω}, f(x) : �n → �, and g : �n×�m → �
are twice continuously differentiable functions. In this paper, we assume that Ω is a
nonempty compact box with

Ω = {v ∈ �m : a ≤ v ≤ b},

where a ∈ �m, b ∈ �m, and a < b.
Such an SIP problem has wide applications such as approximation theory, optimal

control, eigenvalue computation, mechanical stress of materials, and statistical design.
Many methods have been proposed for the SIP problem. We refer readers to [4, 6,
11, 12, 15, 17] for details.

Some large-scale SIP problems arise from the modeling of optimal control and
approximation (see [5, 16, 19]). In order to increase the control precision in an optimal
control problem, one should increase the number of switching points. That is, the
larger the number of switching points set, the higher the control precision. If one sets

∗Received by the editors November 30, 2004; accepted for publication (in revised form) Novem-
ber 7, 2005; published electronically February 15, 2006.

http://www.siam.org/journals/siopt/16-4/61986.html
†Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing

210016, People’s Republic of China (niqfs@nuaa.edu.cn). This author’s work was supported by
the National Natural Science Foundation of China (grant 10471062).

‡School of Information, Zhejiang University of Finance and Economics, Hangzhou, 310012, China
(linghz@hzcnc.com). Current address: Department of Applied Mathematics, The Hong Kong Poly-
technic University, Hung Hom, Kowloon, Hong Kong (01902146r@polyu.edu.hk).

§Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong (maqilq@polyu.edu.hk). This author’s work was supported by the Hong Kong
Research Grant Council.

¶Department of Mathematics and Statistics, Curtin University of Technology, Bentley, WA 6102,
Australia (K.L.Teo@curtin.edu.au).

1137

1138 QIN NI, CHEN LING, LIQUN QI, AND KOK LAY TEO

a large number of switching points, the discretization of the control space will lead to
large-scale SIP problems. In approximation theory, if a function f(v) is approximated
on the interval [a, b] by a polynomial

fN (v) =

N∑
j=1

xjv
j−1

and the approximation is in the Chebyshev norm, then we get a SIP problem. It is
clear that the larger the order of the polynomial, the higher the approximation preci-
sion. When a very high-order polynomial is used to approximate f on [a, b], a large-
scale SIP problem is generated. However, some efficient algorithms for small-scale
SIP problems do not directly translate into algorithms for large-scale SIP problems.

In this paper, we extend a smoothing projected Newton-type algorithm proposed
in [14] to solve large-scale SIP problems. The smoothing projected Newton-type
algorithm proposed in [14] enjoys global and locally superlinear convergence. How-
ever, it is not suitable for large-scale SIP problems. We modify this algorithm in two
aspects. First, a truncated solution of the system is determined by an iterative
method, in which the computation of the matrix-vector product, instead of the ma-
trix factorization, is used such that the implementation at each iteration is relatively
simple and time-economic. Second, in order to guarantee the global convergence, a
robust loss function [7] is chosen as the merit function and the projected gradient
method inserted is used to decrease the merit function. This loss function uses a mea-
sure which does not weigh very large components of the variable heavily. Numerical
results show that this loss function is a good merit function. This modified algorithm
is called a truncated projected Newton-type algorithm and is suitable for handling
large-scale problems. The global convergence of this algorithm is proved and the su-
perlinear convergence rate is analyzed. The detailed implementation is discussed, and
some numerical tests for solving large-scale SIP problems, with examples up to 2000
decision variables, are reported.

This paper is organized as follows. We present a truncated projected Newton-
type algorithm in section 2. The convergence of the algorithm is analyzed in section 3
and numerical tests are given in section 4. We propose some comments in section 5.

For convenience, we denote ∇T
x = (∂

∂x1
, . . . , ∂

∂xn
) and ∇x = (∂

∂x1
, . . . , ∂

∂xn
)T for

x ∈ �n. For a smoothing function Φ : �n → �m, we denote ∇T
x Φ = (∂Φ

∂x1
, . . . , ∂Φ

∂xn
)

and ∇xΦ ≡ ∇xΦT = (∇xΦ1, . . . ,∇xΦm). For u ∈ �n and v ∈ �m, we denote by
(u, v) the column vector (uT , vT)T in �n+m.

2. A truncated projected Newton-type algorithm. In order to describe
our algorithm, we recall some notation and definitions in [14].

Let

V (x) = {v ∈ Ω : g(x, v) = 0}.

If there exists a vector d ∈ �n such that

∇xg(x, v)
T d < 0

for all v ∈ V (x), then we say that an extended Mangasarian–Fromovitz constraint
qualification (EMFCQ) holds at x. It is well known that if x is a local minimizer

LARGE-SCALE SEMI-INFINITE PROGRAMMING 1139

of the SIP problem (1.1), and EMFCQ holds at x, then the KKT system of the SIP
problem (1.1) is as follows:

∇f(x) +

p∑
j=1

uj∇xg(x, v
j) = 0,

g(x, v) ≤ 0 ∀ v ∈ Ω,
uj > 0, g(x, vj) = 0, j = 1, . . . , p,

(2.1)

where vj ∈ V (x) for j = 1, . . . , p and p ≤ n.

By the definition of V (x) and the first inequality of (2.1), vj ∈ V (x) (j = 1, . . . , p)
imply that vj (j = 1, . . . , p) are global minimizers of the following minimization
problem:

min − g(x, v)

subject to v ∈ Ω.(2.2)

The KKT system of (2.2) can be written as

(v′ − v)T (−∇vg(x, v)) ≥ 0 ∀ v′ ∈ Ω,

and it can be reformulated as a system of nonsmooth equations as follows:

v − mid(a, b, v + ∇vg(x, v)) = 0,(2.3)

where the mid function is defined for all i = 1, . . . ,m as

(mid(c, d, w))i =

⎧⎨
⎩

ci if wi < ci,
wi if ci ≤ wi ≤ di,
di if di < wi.

The system of nonsmooth equations (2.3) can be approximated by

(φ(t, x, v))i = vi − ϕ(t, ai, bi, vi + (∇vg(x, v))i), i = 1, . . . ,m,(2.4)

where

ϕ(t, c, d, w) =
c +

√
(c− w)2 + 4t2

2
+

d−
√

(d− w)2 + 4t2

2

is the Chen–Harker–Kanzow–Smale smoothing function for mid(c, d, w). It is clear
that φ is smooth for t
= 0. In order to handle the first constrained condition of (2.1),
Teo, Rehbock, and Jennings [20] used a nonsmooth function

G(x) =

∫
V

[g(x, v)]+dv,(2.5)

where [x]+ = max{0, x}. This is approximated by the smoothing function

G(t, x) =

∫
Ω

√
g2(x, v) + 4t2 + g(x, v)

2
dv,(2.6)

1140 QIN NI, CHEN LING, LIQUN QI, AND KOK LAY TEO

which is defined in [14]. Hence (2.1) can be approximated by

∇f(x) +

p∑
j=1

ui∇xg(x, v
j) = 0,

uj > 0, g(x, vj) = 0, j = 1, . . . , p,
φ(t, x, vj) = 0, j = 1, . . . , p,
G(t, x) = 0.

(2.7)

Now we define

L(x, u, V) = f(x) +

p∑
j=1

ujg(x, v
j),(2.8)

where V = (v1, v2, . . . , vp) ∈ �mp and u = (u1, . . . , up)
T ∈ �p, and denote

g(x, V) =

⎡
⎢⎢⎣

g(x, v1)
g(x, v2)

. . .
g(x, vp)

⎤
⎥⎥⎦ , φ̄(t, x, V) =

⎡
⎢⎢⎣

φ(t, x, v1)
φ(t, x, v2)

. . .
φ(t, x, vp)

⎤
⎥⎥⎦ .(2.9)

In order to balance the number between equations and variables, we add an
artificial variable y. By simple analysis, we can know that the KKT system of the
SIP problem (1.1) can be reformulated as a equivalent system of constrained equations
in the following:

Φ(w) = 0,

u ≥ 0, y ≥ 0,(2.10)

where w = (t, z) = (t, x, u, V, y) ∈ � × �n ×�p ×�mp ×�, and

Φ(w) =

[
t

H(w)

]
, H(w) =

⎡
⎢⎢⎣

∇xL(x, u, V)
g(x, V)
φ̄(t, x, V)
G(t, x) + y

⎤
⎥⎥⎦ .(2.11)

For convenience, we denote w = (t, x, u, V, y) ∈ �ñ, ñ = n+2+(m+1)p. The function
Φ(w) has the following property.

Lemma 2.1 (see [14]). Φ(w) = Φ(t, z) is smooth at (t, z) with t
= 0 and semi-
smooth at (0, z).

For the meaning of semismoothness we refer readers to [10, 13].

The problem (2.10) was established and a smoothing projected Newton-type al-
gorithm was proposed for solving this problem in [14]. In the smoothing projected
Newton-type algorithm in [14], the Newton direction is obtained by solving the fol-
lowing linear system:

Φ(wk) + ∇TΦ(wk)Δwk = βkw̄,(2.12)

LARGE-SCALE SEMI-INFINITE PROGRAMMING 1141

where Δwk = (Δtk,Δxk,Δuk,ΔVk,Δyk) ∈ �ñ, w̄ = (t̄, 0), t̄ > 0, and

∇T Φ(wk)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 01×n 01×p 01×m . . . 01×m 0

0n×1 ∇2
xL(x, u, V) ∇xgT (x, V) u1∇T

v1(∇xg(x, v
1)) · · · up∇T

vp(∇xg(x, v
p)) 0n×1

0 ∇T
x g(x, v1) 01×p ∇T

v1g(x, v
1) . . . 01×m 0

0 ∇T
x g(x, v2) 01×p 01×m · · · 01×m 0

...
...

...
...

. . .
...

...
0 ∇T

x g(x, vp) 01×p 01×m · · · ∇T
vpg(x, v

p) 0

∇tφ(t, x, v1) ∇T
x φ(t, x, v1) 0p×p ∇T

v1φ(t, x, v1) · · · 01×m 0p×1

∇tφ(t, x, v2) ∇T
x φ(t, x, v2) 0p×p 01×m · · · 01×m 0p×1

...
...

...
...

. . .
...

...
∇tφ(t, x, vp) ∇T

x φ(t, x, vp) 0p×p 01×m · · · ∇T
vpφ(t, x, vp) 0p×1

∇tG(t, x) ∇T
x G(t, x) 01×p 01×m · · · 01×m 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.13)

We remark that from (2.13) we see that the last row of the matrix ∇TΦ(wk) is
independent of other rows, so the introduction of artificial variable y can reduce the
possible degeneration generated by the function G(t, x). In order to solve large-scale
problems, we determine an inexact solution of (2.12) by using a restarted generalized
minimum residual algorithm (GMRES(m̃)) [3]. Here we use m̃ other than usual m
because there is an another meaning for m in this paper. The vector Δwk is called a
truncated solution of (2.12) if

‖Φ(wk) + ∇TΦ(wk)Δwk − βkw̄‖ ≤ rk(2.14)

for rk > 0.
In [14], a simple merit function

Ψ(w) =
1

2

ñ∑
j=1

Φ2
j (w)(2.15)

is chosen and its gradient is

∇Ψ(w) = ∇Φ(w)Φ(w).(2.16)

In order to solve the large-scale SIP problem, we consider the following function:

Ψh(w) =

ñ∑
j=1

ρhj (Φj(w)),(2.17)

where

ρhj (ξ) =

{
ξ2/2 if |ξ| ≤ hj

hj |ξ| − h2
j/2 otherwise,

hj , j = 1, . . . , ñ, are positive constants, and ρhj (ξ) is linear in ξ for |ξ| > hj . This func-
tion was proposed by Huber and Dutter (see [7] and [2]) for solving the least squares
problem. The measure ρ(ξ) in this function does not weigh very large components of
ξ heavily.

1142 QIN NI, CHEN LING, LIQUN QI, AND KOK LAY TEO

We use the function (2.17) as the merit function. The gradient of this function
Ψh(w) is

∇Ψh(w) = ∇Φ(w)Φh(w),(2.18)

where

Φh(w) =
∑
j∈Jh

Φj(w)ej +
∑
j∈Kh

sign(Φj(w))hjej ,(2.19)

Jh = {j : 1 ≤ j ≤ ñ, |Φj(w)| ≤ hj}, Kh = {1, . . . , ñ}/Jh.(2.20)

The problem (2.10) is equivalent to finding a global solution of the following
minimization problem:

min Ψh(w)

subject to u ≥ 0, y ≥ 0.(2.21)

We call w a stationary point of (2.21) if it satisfies

‖d̄G(1)‖ = 0,(2.22)

where

d̄G(1) = ΠW (w − γ∇Ψh(w)) − w =

[
−γ∇tΨh(w)

ΠZ(z − γ∇zΨh(w)) − z

]
,(2.23)

γ > 0 is a constant, and ΠW (·) is an orthogonal projection operator onto W ,

W = {w = (t, x, u, V, y) ∈ �ñ : u ≥ 0, y ≥ 0},
Z = {z = (x, u, V, y) ∈ �ñ−1 : u ≥ 0, y ≥ 0}.

Let α ∈ (0, 1) be a constant. For a sequence {wk}∞k=0, we define

β0 = β(w0) = αmin{1, ‖d̄0
G(1)‖2},

and

βk = β(wk) :=

{
βk−1 if αmin{1, ‖d̄kG(1)‖2} > βk−1,
αmin{1, ‖d̄kG(1)‖2} otherwise.

(2.24)

Now we state our truncated projected Newton-type algorithm for solving (2.10)
below.

Algorithm 2.1.

Step 0. (Initialization)
Choose constants η, ρ, σ ∈ (0, 1) with ση < 1, p1 > 0, p2 > 2 and α ∈ (0, 1),
t̄ > 0 with αt̄ < 1, hj ≥ 1, j = 1, . . . , ñ. Let w̄ = (t̄, 0, 0, 0, 0), t0 = t̄, and
w0 = (t0, x

0, u0, V 0, y0) with u0
i ≥ 0 (i = 1, . . . , p), y0 ≥ 0. Set k = 0.

Step 1. (Termination Test)
Compute

ξk = min

{
1,

tk
|tk + ∇tH(wk)Hh(wk)|

,
η‖Φ(wk)‖
‖∇Ψh(wk)‖

}
,(2.25)

LARGE-SCALE SEMI-INFINITE PROGRAMMING 1143

where Hh(wk) is obtained by removing just the first element of Φh(w) (see
(2.19)).

γk =

{
min

{
ξk,

ηΨh(wk)
‖∇Ψh(wk)‖2

}
if |Φj(wk)| ≤ hj , j = 1, 2, . . . , ñ,

ξk otherwise.
(2.26)

If d̄kG(1) = 0, then stop; otherwise compute βk by (2.24) and go to Step 2.
Step 2. (Search Directions)

2.1. Compute the negative gradient direction. Compute

dkG = −γk∇Ψh(wk) + βkw̄.(2.27)

If

|Φj(wk)| ≤ hj , j = 1, 2, . . . , ñ,(2.28)

then go to Step 2.2; otherwise set dktN = dkG and go to Step 3.
2.2. Compute the truncated Newton direction. Determine Δwk, which satis-
fies

‖Φ(wk) + ∇TΦ(wk)Δwk − βkw̄‖ = o(Ψh(wk)),(2.29)

and set dktN = Δwk.
Step 3. (Line Search)

Let mk be the smallest nonnegative integer m satisfying

Ψh(wk + d̄k((ρ)m)) ≤ Ψh(wk) + σ∇Ψh(wk)T d̃kG((ρ)m),(2.30)

where for any λ ∈ [0, 1],

d̄k(λ) = τ∗(λ)d̃kG(λ) + (1 − τ∗(λ))d̃ktN (λ).(2.31)

Here

d̃kG(λ) := ΠW (wk + λdkG) − wk, d̃ktN (λ) := ΠW (wk + λdktN) − wk,(2.32)

and τ∗(λ) is a solution of the following minimization problem:

min
τ∈[0,1]

1

2
‖Φ(wk) + Φ′(wk)[τ d̃

k
G(λ) + (1 − τ)d̃ktN (λ)]‖2.

Let λk = (ρ)mk and wk+1 = wk + d̄k(λk).
Step 4. Set k = k + 1 and go to Step 1.

Remarks. (1) Algorithm 2.1 is able to handle sparse large-scale SIP problems. In
Step 2.2, a truncated solution of the problem (2.12) is determined by using GMRES(m̃)
method. Hence, the matrix factorizations are avoided, because this iterative algorithm
requires computing only matrix-vector products. If the SIP problem possesses the
sparse data structure, the computation of the matrix, ∇TΦ(wk), can take advantage
of the sparsity of ∇2

xL(xk, uk, Vk). Therefore Algorithm 2.1 is applicable to the sparse
large-scale SIP problem.

(2) If the condition (2.28) is not satisfied, then only the projected negative gra-
dient direction is generated in the iteration; otherwise Step 2.2 is carried out and

1144 QIN NI, CHEN LING, LIQUN QI, AND KOK LAY TEO

mixed projected directions are generated. In addition, if (2.28) is satisfied, then
Ψh(w) = Ψ(w) holds.

(3) The condition (2.29) guarantees the convergence of Algorithm 2.1, which is
discussed in the next section. In the implementation of the algorithm, one kind of
choice of the right side in (2.29) is 1

k+1 min{1,Ψh(wk)}.
(4) τ∗(λ) is easily obtained, and we refer readers to [14].

(5) Another line search technique in Step 3 can be used if only the projected
negative gradient is the search direction. Although it does not affect the convergence
and its proof, it can decrease the number of inner iterations. In section 4 we give a
detailed description.

(6) We remark that G(t, x) in (2.11) and its derivative are not evaluated exactly.
We use Newton–Cotes formulas (Simpson’s rule) for approximating the integral and
choose ni equally spaced points in the interval [ai, bi] such that (bi − ai)/ni ≤ 0.05 is
satisfied, where i = 1, . . . ,m. Numerical results show that this choice is proper.

3. Convergence analysis. In this section we discuss the convergence property
of Algorithm 2.1. From the definition of βk, the following lemma is obvious.

Lemma 3.1. {βk} defined in (2.24) has the following properties:

(i) {βk} is a nonincreasing sequence.

(ii) For all k, βk satisfies

βk ≤ αmin{1, ‖d̄kG(1)‖2}.

In the following we give the descent property of d̃kG(λ) in Algorithm 2.1.

Lemma 3.2. Suppose that wk = (tk, zk) ∈ W with tk > 0 is not a stationary
point of (2.21). Then for any λ ∈ (0, 1], it holds that

∇Ψh(wk)
T d̃kG(λ) ≤ − λ

ξk
(1 − αt̄)‖d̄kG(1)‖2 < 0.(3.1)

Proof. In this proof, for simplicity, we drop the superscript k. For any w =
(t, z) ∈ W with t > 0, suppose that w is not a stationary point of (2.21). Then

∇Ψh(w) = ∇Φ(w)Φh(w) =

[
t̃ + ∇tH

T (w)Hh(w)
∇zH(w)Hh(w)

]
≡

[
∇tΨh(w)
∇zΨh(w)

]
,

where t̃ = min(t, h1), ∇tH
T (w) is the first row of ∇H(w), ∇zH(w) is the submatrix of

∇H(w) obtained by removing just the first row of ∇H(w), and Hh(w) is obtained by
removing just the first element of Φh(w) (see (2.19)). From (2.32) and the definition
of projection in (2.23), d̃G(λ) can be written as

d̃G(λ) ≡
[

(d̃G(λ))t
(d̃G(λ))z

]
= ΠW (w − λγ∇Ψh(w) + λβw̄) − w

=

[
−λγ(t̃ + ∇tH

T (w)Hh(w)) + λβt̄
ΠZ(z − λγ∇zΨh(w)) − z

]
.

LARGE-SCALE SEMI-INFINITE PROGRAMMING 1145

Then we have

(t̃ + ∇tH
T (w)Hh(w))[−λγ(t̃ + ∇tH(w)Hh(w)) + λβt̄]

= −λγ‖t̃ + ∇tH(w)Hh(w)‖2 + λ(t̃ + ∇tH(w)Hh(w))βt̄

≤ −λ

γ
‖γ∇tΨh(w)‖2 +

λ

γ
‖γ∇tΨh(w)‖βt̄(3.2)

≤ −λ

γ
‖γ∇tΨh(w)‖2 +

λ

γ
‖γ∇tΨh(w)‖(αt̄)‖d̄G(1)‖

≤ −λ

γ
‖γ∇tΨh(w)‖2 + αt̄

λ

γ
‖d̄G(1)‖2,

where the second inequality comes from Lemma 3.1(ii) and the fact that β ≤ α‖d̄G(1)‖,
the last inequality, is due to ‖γ∇tΨh(w)‖ ≤ ‖d̄G(1)‖ (see (2.23)). In addition,

∇zΨh(w)T [ΠZ(z − λγ∇zΨh(w)) − z]

= − 1

λγ
[z − λγ∇zΨh(w) − z]T [ΠZ(z − λγ∇zΨh(w)) − z]

=
1

λγ
[ΠZ(z − λγ∇zΨh(w)) − (z − λγ∇zΨh(w))]T [ΠZ(z − λγ∇zΨh(w)) − z]

− 1

λγ
‖ΠZ(z − λγ∇zΨh(w)) − z‖2(3.3)

≤ − 1

λγ
‖ΠZ(z − λγ∇zΨh(w)) − z‖2

≤ −λ

γ
‖ΠZ(z − γ∇zΨh(w)) − z‖2,

where the first and second inequalities come from the property of projector (see [1]).
It follows from (3.2) and (3.3) that

∇Ψh(w)T d̃G(λ)

= (t̃ + ∇tH
T (w)Hh(w))[−λγ(t̃ + ∇tH(w)Hh(w)) + λβt̄]

+∇zΨ(w)T [ΠZ(z − λγ∇zΨh(w)) − z]

≤ −λ

γ

[
‖γ∇tΨh(w)‖2 + ‖Πz(z − γ∇zΨh(w)) − z‖2

]
+ αt̄

λ

γ
‖d̄G(1)‖2

= −λ

γ
(1 − αt̄)‖d̄G(1)‖2 < 0.

The proof is complete.
Remark. If (2.28) is not satisfied and d̄ k

G(1)
= 0, then from Step 2.1 of Algo-
rithm 2.1 we know that only the projected negative gradient is chosen as the search
direction. Hence, Lemma 3.2 shows that this is a descent direction, which implies
that after a finite number of iterations, (2.28) will be satisfied.

In order to establish the global convergence of Algorithm 2.1, we need the follow-
ing lemma, which shows that Algorithm 2.1 can keep tk > 0 at each iteration.

Lemma 3.3. Let {wk} be a sequence generated by Algorithm 2.1. Then for each
k, k = 0, 1, . . . , wk = (tk, zk) satisfies

tk ≥ βk t̄.(3.4)

1146 QIN NI, CHEN LING, LIQUN QI, AND KOK LAY TEO

Furthermore, if wk is not a stationary point of (2.21), then

tk > 0.

Proof. We prove this lemma by induction. From the choices of t0 and β0 in
Algorithm 2.1, it is obvious that (3.4) holds for k = 0. Suppose that for any integer
l, wl = (tl, zl) satisfies (3.4). Now we prove that wl+1 = (tl+1, zl+1) satisfies (3.4) as
well.

If the condition (2.28) is not satisfied for k = l, we have

d̄l(λl) = d̃lG(λl) = ΠW (wl + λld
l
G) − wl, dlG = −ξl∇Ψh(wl) + βlw̄,

where λl is the accepted steplength at the lth iteration. It follows from Algorithm 2.1
that

(d̄l(λl))t = λl[−ξl(t
l + ∇tH(w)Hh(w)) + β(wl)t̄]

≥ −λlt
l + λlβ(wl)t̄ (see (2.25)),

where (d̄l(λl))t is the first element of d̄l(λl). Then we have

tl+1 − β(wl+1)t̄ = tl + (d̄l(λl))t − β(wl+1)t̄

≥ (1 − λl)t
l + λlβ(wl)t̄− β(wl+1)t̄

≥ (1 − λl)t
l + λlβ(wl)t̄− β(wl)t̄

= (1 − λl)(t
l − β(wl)t̄) ≥ 0,

where the second and third inequalities are due to the monotonicity property of β(wl)
in Lemma 3.1 and tl ≥ β(wl)t̄.

If the condition (2.28) is satisfied for k = l, then we have

(d̄l(λl))t = (τ∗(λl)d̄
l
G(λl) + (1 − τ∗(λl))d̃

l
tN (λl))t.

By a similar way, we can obtain that tl+1 − β(wl+1)t̄ ≥ 0.
Therefore (3.4) holds for any nonnegative integer k. Furthermore, from (3.4) and

the fact that wk is not a stationary point of (2.21), tk > 0 holds. We complete the
proof.

Lemma 3.4. Let {wk} be a sequence generated by Algorithm 2.1. Then any
accumulation point of {wk} is a stationary point of (2.21).

Proof. Lemma 3.3 shows that if Algorithm 2.1 does not stop at a stationary
point of (2.21), then tk > 0 for any k. This implies that Ψ and Ψh are continuously
differentiable at wk. The remark after the proof of Lemma 3.2 implies that for k
sufficiently large, the condition (2.28) is always satisfied and Ψh(w) = Ψ(w) (see
Remark (2) after Algorithm 2.1). Hence, by using a similar way to the proof of
Theorem 4.1 in [18], we can prove that this theorem holds.

In order to analyze the local convergence of Algorithm 2.1, we make the following
standard assumption.

(A1) Let w∗ = (t∗, z∗) = (0, z∗) be an accumulation point of the sequence {wk}
generated by Algorithm 2.1. Suppose limk∈K wk = w∗ for some subset K ⊂ {1, 2, . . . },
w∗ is a solution of the system of equations (2.10), and Φ is BD-regular at w∗ where
the definition of BD-regularity refers to [13].

BD-regularity can be satisfied without special difficulty. Before giving a sufficient
condition for BD-regularity to hold, we need the following assumptions:

LARGE-SCALE SEMI-INFINITE PROGRAMMING 1147

(A2) The vectors ∇xg(x, v
j), j = 1, . . . , p, are linearly independent.

(A3) The matrix ∇2
xL(x, u, V) is positive definite, and for every j = 1, 2, . . . , p,

the matrix (∇2
vg(x, v

j))M is negative definite whenever JM (x, vj)
= ∅, where

JM (x, v) = {i | ai < vi + (∇vg(x, v))i < bi},

and (∇2
vg(x, v

j))M is a principal square submatrix of ∇2
vg(x, v), which is determined

by the columns and rows with the index i ∈ JM (x, v).
(A4) For every j = 1, 2, . . . , p, {i | vi+(∇vg(x, v))i = ai or vi+(∇vg(x, v))i = bi}

is an empty set.
In addition, for any (x, v) ∈ �n ×�m, we denote

JL(x, v) = {i | vi + (∇vg(x, v))i < ai}, JR(x, v) = {i | bi < vi + (∇vg(x, v))i}

and state a simple lemma without proof in the following.
Lemma 3.5. Let

T =

⎡
⎣ A B DC

BT 0 0
DT 0 F

⎤
⎦ ,

where A ∈ �p×p, B ∈ �p×q, C ∈ �r×r, D ∈ �p×r, and F ∈ �r×r. Suppose that A
and CTF are positive definite and negative semidefinite, respectively. If the column
rank of B and F are q and r, respectively, then T is nonsingular.

Proof. Let Td = 0, where d = (d1, d2, d3) is a suitable partitioned vector. Then

Ad1 + Bd2 + DCd3 = 0,(3.5)

BT d1 = 0,(3.6)

DT d1 + Fd3 = 0.(3.7)

Multiplication (3.5) with dT1 yields

dT1 Ad1 + dT1 Bd2 + dT1 DCd3 = 0,

which, together with (3.6) and (3.7), implies

dT1 Ad1 + dT3 (−CTF)d3 = 0.

From the property of A and CTF , we have that d1 = 0. Then it follows from (3.7)
and the property of F that d3 = 0. Because of (3.5) and the property of B, d2 = 0
holds. The proof is complete.

Theorem 3.6. Suppose that w∗ = (t∗, z∗) = (t∗, x∗, u∗, V ∗, y∗) is a solution of
(2.10) and satisfies (A2)–(A4). Then Φ is BD-regular at w∗.

Proof. Without loss of generality, by (A4), we assume that

JL(x∗, vj∗) = {1, 2, . . . , kj1},
JM (x∗, vj∗) = {kj1 + 1, . . . , kj2},
JR(x∗, vj∗) = {kj2 + 1, . . . ,m},

where 1 ≤ kj1 ≤ kj2 ≤ m. Because w∗ = (t∗, z∗) is a solution of (2.10), t∗ = 0.
Moreover, we have, by φ(0, x∗, vj∗) = 0, that

vj∗ − mid(a, b, vj∗ + ∇vg(x
∗, vj∗)) = 0, j = 1, . . . , p.(3.8)

1148 QIN NI, CHEN LING, LIQUN QI, AND KOK LAY TEO

By (3.8) and the definition of the mid function, we have that for j = 1, . . . , p and
i ∈ JM (x∗, vj∗),

(∇vjg(x∗, vj∗))i = 0.(3.9)

By direct computation, we obtain that for any Q ∈ ∂BΦ(w∗),

Q

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 01×n 01×p 01×m · · · 01×m 0

0n×1 ∇2
xL(x∗, u∗, V ∗) ∇xgT (x∗, V ∗) u∗

1D1 · · · u∗
pDp 0n×1

0 ∇T
x g(x∗, v1∗) 01×p ∇T

v1g(x
∗, v1∗) · · · 01×m 0

0 ∇T
x g(x∗, v2∗) 01×p 01×m · · · 01×m 0

...
...

...
...

. . .
...

...
0 ∇T

x g(x∗, vp∗) 01×p 01×m · · · ∇T
vpg(x∗, vp∗) 0

Q1 C1DT
1 0m×p E1 + C1F1 · · · 0m×m 0p×1

Q2 C2DT
2 0m×p 0m×m · · · 0m×m 0p×1

...
...

...
...

. . .
...

...
Qp CpDT

p 0m×p 0m×m · · · Ep + CpFp 0p×1

U1 U2 01×p 01×m · · · 01×m 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.10)

where U1 ∈ ∂tG(0, x∗), U2 ∈ ∂xG(0, x∗), and for j = 1, . . . , p,

Qj ∈ ∂tφ(0, x∗, vj∗), Dj = ∇T
vj (∇xg(x

∗, vj∗)), Fj = ∇T
vj (∇vjg(x∗, vj∗)),

Cj = diag(0j1 ,−Ij2 , 0j3), Ej = diag(Ij1 , 0j2 , Ij3),(3.11)

where 0j1 , 0j2 , and 0j3 are zero square matrices with kj1, (kj2−kj1), and (m−kj2) order,

respectively, and Ij1 , Ij2 , and Ij3 are identity matrices with kj1, (kj2−kj1), and (m−kj2)
order, respectively. By (3.10), it is easy to see that the matrix Q is also nonsingular
as the matrix

Q̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇2
xL(x∗, u∗, V ∗) ∇xg

T (x∗, V ∗) u∗
1D1 · · · u∗

pDp

∇T
x g(x

∗, v1∗) 01×p ∇T
v1g(x∗, v1∗) · · · 01×m

∇T
x g(x

∗, v2∗) 01×p 01×m · · · 01×m

...
...

...
. . .

...
∇T

x g(x
∗, vp∗) 01×p 01×m · · · ∇T

vpg(x∗, vp∗)
C1D

T
1 0m×p E1 + C1F1 · · · 0m×m

C2D
T
2 0m×p 0m×m · · · 0m×m

...
...

...
. . .

...
CpD

T
p 0m×p 0m×m · · · Ep + CpFp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We denote by (Dj)ML a submatrix of Dj constituted by the columns with the index
i ∈ JM (x, vj) and by (Fj)M a principal square submatrix of Fj , which is determined
by the columns and rows with the index i ∈ JM (x, vj). Then from special forms of
Cj and Ej we have

CjD
T
j =

⎡
⎣ 0

−(Dj)
T
ML

0

⎤
⎦ , Ej + CjFj =

⎡
⎣ Ij1 0 0

∗ −(Fj)M ∗
0 0 Ij2

⎤
⎦ ,

LARGE-SCALE SEMI-INFINITE PROGRAMMING 1149

where two ∗ are some proper partitioned matrices. Hence the nonzero elements of
∇T

vjg(x∗, vj∗) and the matrix ∗ are deleted by the some proper row transformations.

Hence it is not difficult to know that the matrix Q̃ is also nonsingular as the matrix

Q∗ =

⎡
⎣ ∇2

xL(x∗, u∗, V ∗) ∇xg
T (x∗, V ∗) DU

∇T
x g(x∗, V ∗) 0 0

DT 0 F

⎤
⎦ ,(3.12)

where D = ((D1)ML, . . . , (Dp)ML), F = diag((F1)M , . . . , (Fp)M), U = diag(u∗
1I1, . . . ,

u∗
pIp), and Ij , j = 1, . . . , p, are some proper identity matrices. It is clear that UTF

is negative definite, and from (A2) and (A3) it follows that all other conditions in
Lemma 3.5 are satisfied. Hence from Lemma 3.5 we know that Q∗ is nonsingular and
we complete the proof.

The following lemma is the same as Lemma 4.1 in [14]; its proof is omitted.
Lemma 3.7. There exist positive constants κ and ε such that for every wk satis-

fying ‖wk − w∗‖ ≤ ε,
(i) ∇TΦ(wk) is nonsingular and satisfies

‖∇TΦ(wk)‖ ≤ κ,

(ii)

‖Φ(wk)‖ =
√

2Ψ(wk)
1
2 = O(‖wk − w∗‖).

Lemma 3.8. Let {wk} be a sequence generated by Algorithm 2.1. Then for all
k ∈ K sufficiently large, we have

β(wk) = O(Ψ(wk)) = O(‖wk − w∗‖2);(3.13)

and

wk + λdktN = (1 − λ)wk + λw∗ + λo(Ψ(wk)
1
2)(3.14)

for any λ ∈ (0, 1].
Proof. From the definition of β(wk) (see (2.24)), the choice of γk (see (2.26)), the

projection property, and Lemma 3.7, it follows that for wk sufficiently close to w∗,
Ψh(wk) = Ψ(wk),

β(wk) ≤ α‖d̄kG(1)‖2 ≤ αγ2
k‖∇Ψ(wk)‖2 ≤ αηΨ(wk) =

αη

2
‖Φ(wk)‖2 = O(‖wk − w∗‖2).

This shows that (i) holds. Let

θk = Φ(wk) − βkw̄ + ∇TΦ(wk)d
k
tN .

Then from (2.29), we have that for wk sufficiently close to w∗,

‖θk‖ = o(Ψh(wk)) = o(Ψ(wk)),(3.15)

which implies that

wk + λdktN = wk + λ∇TΦ(wk)−1[−Φ(wk) + β(wk)w̄ + θk]

= wk − λ∇TΦ(wk)−1[Φ(wk) − Φ(w∗) −∇TΦ(wk)(wk − w∗)]

−λ(wk − w∗) + λ∇TΦ(wk)−1(β(wk)w̄ + θk)

= (1 − λ)wk + λw∗ + λo(‖wk − w∗‖) + λo(Ψ(wk))

= (1 − λ)wk + λw∗ + λo(Ψ(wk)
1
2),

1150 QIN NI, CHEN LING, LIQUN QI, AND KOK LAY TEO

where the third equality is due to the semismoothness of Φ, (i), and (3.15). The proof
is complete.

Now we obtain the following convergence theorem.
Theorem 3.9. Suppose that {wk} is a sequence generated by Algorithm 2.1 and

w∗ is a point satisfying (A1). Then the whole sequence {wk} superlinearly converges
to w∗.

Proof. At first we know that for wk sufficiently close to w∗, Ψh(wk) = Ψ(wk).
In a similar way to the proof of Theorem 3.2 in [18] and Lemma 3.8, we have that

for sufficiently large k ∈ K,

‖wk + d̄k(1) − w∗‖ = o(Ψ(wk)
1
2) = o(‖Φ(wk)‖) = o(‖wk − w∗‖),(3.16)

and

Ψ(wk + d̄k(1)) =
1

2
‖Φ(wk + d̄k(1))‖2

=
1

2
‖Φ(wk + d̄k(1)) − Φ(w∗)‖2(3.17)

= O(‖wk + d̄k(1) − w∗‖2)

= o(Ψ(wk)),

where the last equality is due to (3.16). Thus,

−∇Ψ(wk)T d̃kG(1) ≤ ‖∇Ψ(wk)‖‖d̃kG(1)‖(3.18)

= ‖∇Ψ(wk)‖‖ΠW (wk − γk∇Ψ(wk) + β(wk)w̄) − wk‖
≤ ‖∇Ψ(wk)‖[‖γk∇Ψ(wk)‖ + O(Ψ(wk))]

≤ ηΨ(wk) + o(Ψ(wk)),

where the second inequality is due to the property of β(wk) and the projection prop-
erty, and the last inequality comes from the choice of γk. It follows from (3.17) and
(3.18) that

Ψ(wk) + σ∇Ψ(wk)T d̃kG(1) ≥ (1 − ση)Ψ(wk) + o(Ψ(wk))(3.19)

≥ o(Ψ(wk)) = Ψ(wk + d̄k(1)),

which implies that

wk+1 = wk + d̄k(1),

for k sufficiently large. Moreover, from (3.16) we conclude that wk converges to w∗

superlinearly. We complete the proof.

4. Implementation and numerical tests. In this section, we discuss some
detailed implementation of Algorithm 2.1 and give some numerical results for medium-
sized and large-scale SIP problems.

4.1. Implementation of Algorithm 2.1. In order to decrease the number of
inner iterations, we use another line search technique if only the projected gradient
direction is the search direction. In this case, the initial value of λ is set to

min

{
1,

1

‖dkG‖
,

0.2Ψh(wk)

−∇Ψh(wk)T dkG
,

tk
|tk + ∇tH(wk)Hh(wk)|

}
,

and λ is updated by quadratic interpolation technique.

LARGE-SCALE SEMI-INFINITE PROGRAMMING 1151

In Algorithm 2.1, we choose the values of parameters (see Step 0) as

η = 0.9, ρ = 0.5, σ = 0.0005, α = 0.5, t̄ = 0.9, p1 = 10−10, p2 = 2.1,

and

hj = max{2.5, 10−3 ∗ |Ψ(w0)|, j = 1, 2, . . . , ñ},

where the choice of hj , j = 1, 2, . . . , ñ, is similar to that in [9]. The starting points u0

and y0 for all problems are set to t0 = t̄, u0 = 0.05e, y0 = 0.5, where e is the vector of
ones. For GMRES(m̃), we choose m̃ = 10 when n < 100 and m̃ = 20 when n ≥ 100.

In some test problems, we have tried using a simple left preconditioning matrix

M = diag(1, Lssor, I(m+1)p+1),

where Lssor is an SSOR preconditioning matrix defined by

Lssor = (D − ωE)D−1(D − ωF),

D is the diagonal part of ∇2
xxL(x, u, V), and −F and −E are the strict upper and lower

parts of ∇2
xxL(x, u, V). Numerical results show that GMRES without preconditioning

is better than that with preconditioning for ω = 1 and ω = 0.5. Hence we give the
numerical results without preconditioning in the following.

4.2. Numerical results. Now we discuss the implementation of Algorithm 2.1,
which has been implemented in FORTRAN 77. All calculation within the driving
programs, test problems, and optimization code are carried out in double precision.
The problem is solved on a personal computer (Pentium III 1133 MHz, 256 MB
memory).

Although a lot of large SIP-type problems arise from optimal control and approx-
imation theory, it is difficult to find large-scale SIP problems in the literature suitable
for using as test problems. In order to evaluate Algorithm 2.1 for large-scale SIP
problems, we enlarge three test problems, where two problems are from [14] and [8]
and another is generated from an optimal control problem. We list the three SIP
problems in the following.

Problem I.

f(x) =
1

2
xTx, g(x, v) = 3 + 4.5 sin

(
4.7π(v − 1.23)

8

)
−

n∑
i=1

xiv
i−1,

V = [1, b], p = 1 if n ≤ 60, b = 100; otherwise b = 1.

Problem II.

f(x) =

∫ 1

0

(
n∑

i=1

xit
i−1 − tan t

)2

dt, g(x, v) = tan v −
n∑

i=1

xiv
i−1, V = [0, 1], p = 1.

Problem III.

min p(g)hTh

subject to gTA(v1, v2)h ≤ r(v1, v2),

1152 QIN NI, CHEN LING, LIQUN QI, AND KOK LAY TEO

Table 1

Test results of Problem I.

n ITK iITK ‖d̄kG(1)‖ Ψ(wk) f(xk)

10 8 65 5.52E-12 1.60E-19 0.07412
20 8 50 4.96E-12 4.29E-19 0.08319
40 67 393 9.86E-7 2.06E-11 3.1788
60 98 489 8.84E-7 2.91E-11 4.8860
100 60 286 9.66E-7 5.10E-8 2.3862
400 67 580 2.70E-7 3.58E-13 4.580
1000 78 630 8.29E-6 2.97E-10 8.519
2000 52 603 6.96E-6 6.69E-7 18.07

where v1 ∈ [−π, π], v2 ∈ [0, 2π], p(g) = gTBg, h ∈ �n1 , g ∈ �n2 , B ∈ �n2×n2 ;
A(v1, v2) ∈ �n2×n1 , n2 = n1, and

B =

⎡
⎢⎢⎢⎢⎢⎣

4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4

⎤
⎥⎥⎥⎥⎥⎦ ,

A(v1, v2)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 sin(bv2) cos(cv1)

sin(av1) 1 sin(bv2) cos(cv1)

cos(dv2) sin(av1) 1 sin(bv2) cos(cv1)

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

cos(dv2) sin(av1) 1 sin(bv2) cos(cv1)

cos(dv2) sin(av1) 1 sin(bv2)

cos(dv2) sin(av1) 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We use Algorithm 2.1 to solve these problems. The dimensions (n) of these
problems are chosen by 10, 20, 40, 60, 80, 100, 200, 400, 1000, and 2000. The
termination condition is that the l2 norm of the projected gradient, ‖d̄kG(1)‖, is reduced
below 10−6 when n < 100 (10−5 when n ≥ 100). The results of the test are given in
Tables 1, 2, and 3. The number of outer iterations (ITK), the total number of inner
iterations for solving subproblems (iITK), the norm of projected gradient (‖d̄kG(1)‖),
the merit function value Ψ(wk), and the objective function value f(xk) are shown in
these tables.

Table 1 shows that Algorithm 2.1 performs very well for solving Problem I with
the different dimensions. There is some difference among different dimensions. When
n ≥ 40, there is a slight increase in the iteration number.

Problem II is dense; i.e., its Hessian of Lagrangian function ∇2
xL(x, u, V) is not

sparse. Although the Hessian can be stored according to its special structure, the
computation in each iteration cannot be decreased. Here Algorithm 2.1 is used for
solving Problem II, whose dimensions range from 10 to 200. Table 2 shows that
Algorithm 2.1 performs well for solving some medium dense SIP problems.

LARGE-SCALE SEMI-INFINITE PROGRAMMING 1153

Table 2

Test results of Problem II.

n ITK iITK ‖d̄kG(1)‖ Ψ(wk) f(xk)

10 31 140 1.14E-7 4.86E-12 0.3147
20 46 235 9.68E-7 7.98E-10 0.6717
40 50 306 1.48E-7 3.48E-12 0. 5803
80 65 476 4.48E-7 3.93E-11 1.424
100 58 528 2.87E-7 1.86E-11 1.069
200 71 768 2.86E-6 1.46E-9 1.323

Table 3

Test results of Problem III.

n ITK iITK ‖d̄kG(1)‖ Ψ(wk) f(xk)

20 26 694 9.04E-7 7.80E-12 18.23
60 28 973 5.72E-7 3.03E-12 21.82
100 27 963 9.63E-6 8.98E-12 20.36
200 24 605 6.97E-6 4.56E-10 16.84
600 20 509 9.21E-6 7.75E-10 13.72
1000 25 494 9.32E-6 7.59E-10 13.82
2000 22 488 8.39E-6 8.06E-10 13.81

Problem III is a somewhat complicated SIP problem which often arises from the
optimal control field. In this problem, Ω ⊂ �2, while in Problems I and II, Ω ⊂ �. Its
Hessian of the Lagrangian function is sparse; however, the computation of elements
is not simple due to some trigonometric functions. Numerical results of this problem
are given in Table 3, which shows that Algorithm 2.1 can solve some large-scale sparse
SIP problems. It is interesting that the outer iteration number does not increase and
inner iteration numbers decrease as the dimensions increase.

5. Comments. Although the development of the code for Algorithm 2.1 is still
at its primary stage, the numerical results have indicated that Algorithm 2.1 is capable
of processing large-scale SIP problems. However, there are some issues which may be
addressed in further research.

Because “large scale” here refers only to the decision variables, it is hoped that an
improved version of Algorithm 2.1 may also be capable of handling high-dimensional
index sets. In addition, our method works on the KKT system of SIP; i.e., it does not
minimize the original objective function f . Sometimes this may limit the applicability
of this method to a special class of SIP problems.

By Algorithm 2.1 we can obtain stationary points of (2.21). It is possible that
some of them may not be stationary points of (1.1). If Ω in (1.1) is a nonpolyhedral
index set, then our method cannot be used directly.

We hope that with further research more efficient methods can be obtained for
solving general SIP problem with many decision variables and high-dimensional index
sets.

Acknowledgments. We are grateful to Professor Fukushima and two anony-
mous referees for their detailed comments. The approach for solving nonsymmetric
linear system suggested by a referee improved our method.

1154 QIN NI, CHEN LING, LIQUN QI, AND KOK LAY TEO

REFERENCES

[1] P. H. Calamai and J. J. Moré, Projected gradient methods for linear constrained problems,
Math. Programming, 39 (1987), pp. 93–116.

[2] J. E. Dennis, Nonlinear least squares and equations, in The State of the Art in Numerical
Analysis, D. A. H. Jacobs, ed., Academic Press, New York, 1975, pp. 269–312.

[3] V. Fraysse, L. Giraud, S. Gratton, and J. Langou, A Set of GMRES Routines for Real
and Complex Arithmetics on High Performance Computers, CERFACS Technical report
TR/PA/03/3, Toulouse Cedex, France, 2003.

[4] M. A. Goberna and M. A. López, Semi-infinite Programming: Recent Advances, Kluwer
Academic Publishers, Boston, 2001.

[5] P. R. Gribik, Selected applications of semi-infinite programming, in Constructive Approaches
to Mathematical Models, Academic Press, New York, 1979, pp. 171–187.

[6] R. Hettich and K. O. Kortanek, Semi-infinite programming: Theory, methods, and appli-
cations, SIAM Rev., 35 (1993), pp. 380–429.

[7] P. J. Huber, Robust regression: Asympotics, conjectures, and Monte Carlo, Ann. Statist., 1
(1973), pp. 799–821.

[8] S. Ito, Y. Liu, and K. L. Teo, A dual parametrization method for convex semi-infinite pro-
gramming, Ann. Oper. Res., 98 (2000), pp. 189–214.

[9] Q. Ni, Global convergence and implementation of NGTN method for solving large scale non-
linear sparse nonlinear programming problems, J. Comput. Math., 19 (2001), pp. 337–346.

[10] J.-S. Pang and L. Qi, Nonsmooth equations: Motivation and algorithms, SIAM J. Optim., 3
(1993), pp. 443–465.

[11] E. Polak, On the mathematical foundations of nondifferentiable optimization in engineering
design, SIAM Rev., 29 (1987), pp. 21–89.

[12] E. Polak, Optimization: Algorithms and Consistent Approximation, Springer-Verlag, New
York, 1997.

[13] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper.
Res., 18 (1993), pp. 227–244.

[14] L. Qi, C. Ling, X. J. Tong, and G. L. Zhou, A Smoothing Projected Newton-Type Algorithm
for Semi-infinite Programming, Technical report, Department of Applied Mathematics,
The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong, 2004.

[15] R. Reemtsen and S. Görner, Numerical methods for semi-infinite programming: A survey,
in Semi-infinite Programming, R. Reemtsen and J. Rükmann, eds., Kluwer Academic Pub-
lishers, Boston, 1998, pp. 195–275.

[16] E. W. Sachs, Semi-infinite programming in control, in Semi-infinite Programming, R. Reemt-
sen and J. Rükmann, eds., Kluwer Academic Publishers, Boston, 1998, pp. 389–411.

[17] G. Still, Discretization in semi-infinite programming: The rate of convergence, Math. Pro-
gram., 91 (2001), pp. 53–69.

[18] D. Sun, R. S. Womersley, and H. Qi, A feasible semismooth asymptotically Newton method
for mixed complementarity problems, Math. Program., 94 (2002), pp. 167–187.

[19] K. L. Teo, C. J. Goh, and K. H. Wong, A Unified Computational Approach to Optimal
Control Problems, Longman Scientific and Technical, New York, 1991.

[20] K. L. Teo, V. Rehbock, and L. S. Jennings, A new computational algorithm for functional
inequality constrained optimization problems, Automatica, 29 (1993), pp. 789–792.

