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AN ASYMPTOTIC FRAMEWORK FOR FINITE HYDRAULIC
FRACTURES INCLUDING LEAK-OFF∗

S. L. MITCHELL† , R. KUSKE† , AND A. P. PEIRCE†

Abstract. The dynamics of hydraulic fracture, described by a system of nonlinear integro-
differential equations, is studied through the development and application of a multiparameter sin-
gular perturbation analysis. We present a new single expansion framework which describes the
interaction between several physical processes, namely viscosity, toughness, and leak-off. The prob-
lem has nonlocal and nonlinear effects which give a complex solution structure involving transitions
on small scales near the tip of the fracture. Detailed solutions obtained in the crack tip region vary
with the dominant physical processes. The parameters quantifying these processes can be identi-
fied from critical scaling relationships, which are then used to construct a smooth solution for the
fracture depending on all three processes. Our work focuses on plane strain hydraulic fractures
on long time scales, and this methodology shows promise for related models with additional time
scales, fluid lag, or different geometries, such as radial (penny-shaped) fractures and the classical
Perkins–Kern–Nordgren (PKN) model.
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1. Introduction. Hydraulic fractures are propagated in an elastic material due
to the pressure exerted by a viscous fluid on the fracture. These fractures occur nat-
urally in volcanic dikes where magma causes fracture propagation below the surface
of the earth [37, 38, 55]. In the oil and gas industry hydraulic fractures are deliber-
ately propagated in reservoirs to increase production. Hydraulic fracture models need
to account for the primary physical mechanisms involved: deformation of the rock,
fracturing of the rock, flow of viscous fluid within the fracture, and leak-off of the
fracturing fluid into the permeable rock. The parameters that characterize these pro-
cesses are, respectively, Young’s modulus E and Poisson’s ratio ν, the rock toughness
KIc, the fluid viscosity μ, and the leak-off coefficient Cl.

The challenges for analysis of these models originate from the nonlinearity of the
equation describing the flow of fluid in the fracture, the nonlocal character of the elas-
tic response of the fracture, and the history-dependence of the equation governing the
exchange of fluid between the fracture and the rock. The singular tip behavior, which
can be difficult to resolve numerically, dominates these solutions and is highly depen-
dent on the relative importance of the contributing physical processes. Therefore, the
objectives of analytic treatment of these models are as follows: to characterize the
structure of the near-tip solution that can be embedded in numerical algorithms, to
provide benchmark solutions to test numerical codes, and to determine the parameter
values and length scales that characterize the transitions between distinct combina-
tions of physical processes. In this paper we use a novel asymptotic framework that
enables us to characterize the different propagation regimes and provide asymptotic
solutions when more than two physical processes are competing simultaneously. This
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is distinct from previous analytic work on such models, which have been restricted to
considering at most two competing physical processes [6, 23, 24, 26].

There has been a significant amount of work in the last half century involving the
mathematical modeling of hydraulic fractures [1, 8, 14, 28, 30, 31, 32, 33, 45, 48, 55].
As discussed in [21] and the references therein, the aim of these models is to calculate
the fluid pressure, opening, and size of the fracture given the properties of the rock,
the injection rate, and the fluid characteristics. More recent work has been concerned
with developing numerical algorithms to simulate three-dimensional propagation of
hydraulic fractures in layered strata [5, 7, 12, 46, 47, 53]; this is in contrast to earlier
work where approximate solutions were found for simple fracture geometries [1, 8,
28, 33, 45, 48, 55]. A substantial difference between hydraulic fracturing and other
studies of fracture (see [22, 49, 52]) is the coupling with the equations for the fluid and
fracture geometry. Most models in hydraulic fracturing only consider planar fractures
rather than kinked or curved cracks [13, 41, 42].

The relevant fracture geometry that we consider in this paper, known as the KGD
(plane strain) model, was developed independently by Khristianovic and Zheltov [33]
and Geertsma and de Klerk [28]. The fracture is assumed to be an infinite vertical
strip so that horizontal cross-sections are in a state of plane strain. This model is
applicable to large aspect ratio rectangular planar fractures and was extended in [54]
to include toughness. A major contribution to this mathematical modeling was made
by Spence and Sharp [54], who initiated the work on self-similar solutions and scaling
for a KGD crack propagating in an elastic, impermeable medium with finite toughness.
This approach has been continued through asymptotic analyses of near-tip processes,
yielding the results from [15] for zero toughness in an impermeable rock, and from
[36] for zero toughness when leak-off is dominant. Several papers [16, 19, 27] have
extended this analysis to include toughness and fluid lag, where regions devoid of
fluid develop close to the crack tip, along with transitional regions. In this paper we
assume that fluid lag is negligible and so these effects can be ignored.

Certain phases of hydraulic fracture propagation are characterized within a di-
mensionless parametric space [21, 20], with boundaries controlled by the dominant
processes, namely, viscosity, toughness, or leak-off. This framework has been the ba-
sis for semianalytical solutions for simple geometries (KGD and penny-shaped) and
benchmarks for numerical simulators. These include the following asymptotic regimes:
impermeable with zero toughness [2, 10, 50], small toughness [24], finite toughness
[3, 54], and large toughness [26, 50]; and permeable with zero toughness [4].

Since much of our analysis is closely related and complementary to these most
recent studies, we outline the context here, with further discussion given in section
1.1 in terms of the specific model. Previous analyses [2, 9, 10, 24, 25, 26, 27] have
been limited to parameter regimes where one or two physical processes dominate
the dynamics, with the remainder of the related nondimensional quantities set to
unity. In each case there is a different set of scaling parameters defined, depending on
the dominant process(es), corresponding to the edges and corners of the parameter
space [6, 21]. These methods lead to asymptotic expansions for the tip behavior,
where the terms in the expansion involve powers of the distance from the tip. In the
case of vanishing leak-off, this method has also been used to describe the transition
in behavior between different power law expansions [2]. Recent preliminary studies
[23, 34, 35] have also used combinations of power law expansions in the context of
a semi-infinite approximation for the fracture, combined with numerical methods to
understand transitions between different scaling regimes.
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In this paper we present a unifying scaling framework based on singular per-
turbation techniques which analyzes how the physical processes, namely, viscosity,
toughness, and leak-off, all influence the KGD crack behavior. Avoiding semi-infinite
approximations, it involves the simultaneous scaling of all three processes relative to
the distance from the fracture tip: this means that the approach is applicable for
different combinations of the dominant physical processes. It has been used in [44]
for the impermeable case in which only the processes of viscous dissipation and en-
ergy release compete. Thus it provides a construction of the solution in the crucial
tip region, identifying the parameter combinations which quantify spatial transitions
in the behavior of the fracture. The scaling exponents of the physical processes are
determined as part of the method, so that it can be applied to construct approximate
solutions in intermediate parameter regimes where several processes are in balance.
The resulting asymptotic approximation provides verification of the conditions under
which self-similar solutions are appropriate, and indicates regimes in which a more
complicated time-dependence is involved, as discussed in section 4. We also briefly
outline how the technique can be generalized to regimes where there is more than one
transition in the behavior near the tip.

The fracture propagation is formulated as a system of coupled integrodifferential
equations, and our method proves to be very beneficial in understanding the nonlocal
and local effects that arise. It can be applied to different geometries, such as the
classical Perkins–Kern–Nordgren (PKN) model [43], and we expect that it can be
extended to model other effects such as stress jumps and fluid lag.

1.1. Problem formulation and dimensional results. The solution of the
KGD hydraulic fracture problem (shown in Figure 1.1) consists of determining the
fracture opening w and the net pressure p (the difference between the fluid pressure
pf and the far-field stress σo) as functions of space and time, as well as the fracture
half-length, l(t). These functions depend on the volumetric fluid injection rate Q0,
assumed constant in this paper, and on the four material parameters E′, μ′, K ′, and

Fig. 1.1. Diagrams showing the KGD crack and its cross-section.
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C ′, respectively, defined as

(1.1) E′ =
E

1 − ν2
, μ′ = 12μ, K ′ = 4

(
2

π

)1/2

KIc, C ′ = 2Cl,

which are combinations of the parameters quantifying the primary physical mecha-
nisms described at the beginning of this section. The rock toughness KIc is assumed
to be equal to the stress intensity factor KI which, for this geometry, can be expressed
as an integral of the pressure

(1.2) KIc = KI = 2

√
l

π

∫ l

0

p√
l2 − x2

dx.

The equations for the KGD fracture are as follows:

(1.3) Reynolds’ (lubrication) equation:
∂w

∂t
+ g =

1

μ′
∂

∂x

[
w3 ∂p

∂x

]
+ Q0δ(x),

which describes the conservation of fluid mass for an incompressible fluid. Note that
g is the leak-off term which describes the fluid infiltration into the surrounding rock.

Elasticity equation: p(x, t) = −E′

4π

∫ l

−l

∂w

∂s

ds

s− x
,(1.4)

which describes the balance of forces and is a nonlocal equation relating the fracture
opening w and net pressure p for a state of plane strain.

(1.5) Propagation condition: w =
K ′

E′

√
l − x + O

[
(l − x)3/2

]
, x −→ ±l,

which accounts for the energy required to break the rock and is the condition that
the fracture is in mobile equilibrium.

(1.6) Boundary conditions: w = 0, w3 ∂p

∂x
= 0, at x = ±l.

(1.7) Global volume balance condition: Q0t =

∫ l

−l

w(s, t) ds +

∫ t

0

∫ l

−l

g(s, τ) dsdτ,

which equates the crack volume to the volume of injected fluid and amount lost to
the surrounding rock mass, obtained by integrating (1.3) and applying (1.6). If t0(x)
is the time at which the crack tip arrived at the point x, and t is the current time,
then the leak-off function g is defined as

Carter’s leak-off model: g(x, t) =
C ′H(t− t0)√

t− t0(x)
.(1.8)

The memory term t0(x) implies that the leak-off function g(x, t) depends on the entire
history of the fracture front locations, which significantly complicates the analysis.

Since its introduction in 1957, Carter’s leak-off model [11] has been widely ac-
cepted and successfully used in the oil and gas industry to design hydraulic fracturing
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treatments and has been referred to as “the standard model of fracturing fluid loss”
(see [36]). We briefly summarize the steps involved in the derivation of the model and
discuss its applicability for high confinement geological situations, which are becoming
more important as deeper reserves are being exploited.

The first assumption made in the derivation of Carter’s leak-off model is that the
hydraulic load Δp = pf − p0 driving the leak-off process is approximately constant,
where p0 is the reservoir pore pressure. This assumption can be justified in high
confinement reservoirs where pf ≈ σ0 � p0. In this case the hydraulic load is much
larger than the net pressure p = pf − σ0 and is approximately constant, i.e., Δp ≈
σ0 − p0. The second assumption made in the derivation of (1.8) is in approximating
the leak-off process by a one-dimensional flow perpendicular to the crack propagation
axis that does not account for any lateral interaction. Modeling this gradient-driven
flow involves incorporating the growth of an impermeable filter cake layer via the
deposition of polymer molecules by the leaking fluid, the growth of an invaded zone of
fluid that penetrates the filter cake, and a pressure diffusion zone within the reservoir.
Combining these three physical processes in series yields (1.8), in which the lumped
coefficient C ′ is known as the Carter leak-off coefficient (see [6, 11, 39, 51] and the
references therein).

Assuming that l(t) = at1/2, Gordeyev and Entov [29] derived a similarity solution
to the two-dimensional pressure diffusion equation, which yields a leak-off velocity
of the same form as (1.8). In this case the fracture is growing sufficiently rapidly
for the leak-off process to be one-dimensional, a situation that is likely to persist
for power laws in which the fracture evolves more rapidly: l(t) = atλ, where λ ≥
1
2 . Carter’s model (1.8), which is based on the pressure diffusion equation, ignores
feedback coupling between the reservoir pressure field and the elastic strain in the
rock. This pure diffusion approximation can be justified using poroelasticity theory
[17, 18] in which the elastic strain feedback due to the hydraulic load Δp is shown
to vanish identically. Moreover, for high confinement reservoirs the mechanical load
effect (due to the net pressure p which forces the crack to open) on the reservoir
pressure is insignificant compared to that of the hydraulic load, since Δp � p.

There may be a question as to the validity of Carter’s model right at the crack tip.
However, the analysis presented in this paper is based on the fact that the dominant
physical process governing the behavior of the fracture at the tip, which we refer to as
the near-tip region, is the energy released in the breaking of the rock as characterized
by the fracture toughness. Since the leak-off process is subdominant to this and only
manifests itself a distance away from the tip in the intermediate-tip region, we make
use of the model only in a region where it is still valid. We could include other higher
order effects to model the leak-off more carefully in the near-tip region, but this is
neglected in our analysis since it is not the dominant process.

The method presented in this paper involves an iterative construction of the
asymptotic solution: the lubrication and elasticity equations (1.3)–(1.4) alternatively
give the form of the solution. The volume balance equation (1.7) is applied to com-
plete the solution: it verifies the balance of physical processes, determines unknown
constants, and provides a consistency check on the temporal behavior of the solution.
The propagation condition (1.5) manifests itself in the asymptotic behavior of the tip
when the influence of the toughness is dominant; this depends on the relative scalings
of the parameters and the distance from the tip.

We give the main results for w in terms of the dimensional variables; the expan-
sions for p can then be determined from (1.4). For Pckm � (�) (1−ξ)1/2, respectively,
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we find that

w ∼ K ′

E′ l
1/2

{(
1 − x

l

)1/2

+

[
8π

3
γ3/2P−1

km + 4
√

2πγP−1
ckm

](
1 − x

l

)}
,(1.9)

w ∼
(
C ′μ′

E′

)1/4
l3/4

t1/8
γ−3/4

{
C̃01

(
1 − x

l

)5/8

+ B1

(
1 − x

l

)1/8

+ B2P−1/4
cm

(
1 − x

l

)3/4

+ B3

(
1 − x

l

)r
}
,(1.10)

where C̃01, B1, B2, B3, and r are constants determined in the solution process, and
γ is an O(1) quantity introduced in the rescaling below. The three key parameter
combinations

(1.11) Pkm :=
K ′3

μ′E′2
γ3/2t

l3/2
, Pcm :=

C ′3E′

μ′
γ3t5/2

l3
, Pckm :=

K ′4

C ′μ′E′3
γt1/2

l

characterize the different behavior regimes, as shown in the analysis. The leading
order term in (1.10) was established by [36] for the stationary solution and then
confirmed in [6] for zero toughness. In a preliminary study [9], which considers the
infinite limit of a nondimensional parameter for the volume of injected fluid (2.2),
the first and last terms in both (1.9) and (1.10) are also determined. However, the
other terms are not found there, since certain parameter combinations are fixed (see
section 3.2 for further discussion.) These additional terms allow us to analytically
construct a uniform solution near the tip, instead of numerically as in [24] for zero
leak-off. Near and far-field solutions for semi-infinite approximations of the fracture
[23, 35, 34] also use expansions in powers of (1− ξ), which include some of the powers
from (1.9)–(1.10) in addition to other terms related to the semi-infinite limit. Power
law expansions similar to (1.9)–(1.10) for the zero leak-off case are derived in [44].
Some of these terms are also determined in [6, 24], but the additional terms found in
[44] allow the uniform tip behavior to be constructed analytically.

The asymptotic expansions (1.9)–(1.10) explicitly identify the critical parameter
combinations (1.11) that dictate transitions between (1.9) and (1.10) in the tip vicin-
ity. These quantities are combinations of the dimensionless parameters that arise in
the rescaling below, which quantify the physical processes viscosity, toughness, and
leak-off. From the construction of expansions (1.9)–(1.10) we can understand the
changes in tip behavior as we scale the quantities (1.11) with a parameter related to
the distance from the tip ξ = 1. Our method does not use a semi-infinite approxima-
tion, and therefore can be extended to study additional time dependencies, transients,
and other types of hydraulic fractures, such as finger-like geometries, known as the
PKN fracture [45, 48].

In section 2 we describe the new approach and in section 3 obtain expansions
when all three processes play a role, in the case that leak-off dictates the leading
order behavior. The construction leads to the identification of the parameter combi-
nations (1.11) which are necessary for describing the transition between the near- and
intermediate-tip solutions (1.9)–(1.10). Section 4 summarizes our results and briefly
outlines extensions of our methodology to situations where time-dependence must be
scaled explicitly, or cases where there is more than one transition in the dominant
shape of the fracture.



370 S. L. MITCHELL, R. KUSKE, AND A. P. PEIRCE

2. Approach of the new method. We introduce the nondimensional quanti-
ties, following [6, 26, 24] and others:

(2.1) ξ = x/l, l = Lγ, w = εLΩ, p = εE′Π.

It is convenient to work with the dimensionless quantities Ω (the opening), Π (the
net pressure), and γ (a fracture length), which are all O(1). The parameter ε is used
in [6, 26, 24] to relate w/l to p/E′, so for comparison purposes we include it in our
analysis; however, it plays no role here and so could be set to unity. Also, L denotes
a length scale and is of the same order as the fracture length l.

We also define four nondimensional quantities,

(2.2) Gv =
Q0t

εL2
, Gm =

μ′

ε3E′t
, Gk =

K ′

εE′L1/2
, Gc =

C ′t1/2

εL
,

and determine different solutions depending on the size of combinations of these pa-
rameters (1.11) without setting any to unity. The governing equations (1.3)–(1.7) are
now

t
(
εL

)
t

εL
Ω + Ω̇t− ξ

t
(
Lγ

)
t

Lγ

∂Ω

∂ξ
+ GcΓl =

1

Gm

1

γ2

∂

∂ξ

[
Ω3 ∂Π

∂ξ

]
,(2.3)

Π = − 1

4πγ

∫ 1

−1

∂Ω

∂χ

dχ

χ− ξ
,(2.4)

Ω = Gkγ
1/2(1 ∓ ξ)1/2, ξ −→ ±1; Ω = 0, Ω3 ∂Π

∂ξ
= 0, at ξ = 1±,(2.5)

Gv = γ

∫ 1

−1

Ω dχ + Gc
1

L

∫ 1

0

l(θt)θ−1/2

∫ 1

−1

Γl dχdθ,(2.6)

where Γl is the dimensionless leak-off function discussed below.
The new approach relies on two main ingredients: (i) a scaling parameter δ � 1

that relates distance from the tip to the key dimensionless quantities in (2.2), and (ii)
a flexible asymptotic expansion which can handle behavior dominated by different
physical quantities. Thus we define

1 − δz = ξ,(2.7)

Gv = δβv Ĝv, Gk = δβk Ĝk, Gm = δβm Ĝm, Gc = δβc Ĝc,(2.8)

where the Ĝ()’s are O(1) quantities. The different regimes are then characterized by
inequalities between the values of the exponents βv, βk, βm, βc. Here δ is introduced
as a bookkeeping parameter that disappears from the expansion in the end. We
assume that z is O(1) and so δ � 1 essentially describes the distance from the tip
ξ = 1. Through this scaling we can explore the dominant behavior of the propagating
fracture in a very general way: we have not yet specified the distance from the tip
and we do not make a semi-infinite approximation, as used in previous studies such
as [6, 26, 24], amongst others.

Because of the symmetry of the solution about ξ = 0 (see Figure 1.1), we can
restrict our attention to the interval 0 < ξ < 1 and write the equations in terms of z.
The integral in (2.4) is then written as

(2.9) Π = − 1

4πγ

∫ 1

−1

dΩ

dχ

dχ

χ− ξ
= − 1

2πγ

∫ 1

0

dΩ

dχ

χdχ

χ2 − ξ2
,
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and similarly for the integrals in (2.6).
Then applying (2.7) and (2.8) in the governing equations (2.3)–(2.6) yields

t
(
εL

)
t

εL
Ω + (1 − δz)

t
(
Lγ

)
t

Lγ
δ−1 dΩ

dz
+ Ĝcδ

βcΓl =
1

Ĝmγ2
δ−βm−2 d

dz

[
Ω3 dΠ

dz

]
,(2.10)

Π = − 1

2πγ
δ−1

∫ 1/δ

0

dΩ

dr

(1 − δr)

r(2 − δr) − z(2 − δz)
dr,(2.11)

Ω = Ĝkγ
1/2δβk+1/2z1/2, z −→ 0; Ω = 0, Ω3 dΠ

dz
= 0, at z = 0,(2.12)

δβv Ĝv = 2γδ

∫ 1/δ

0

Ω dr + 2
Ĝc

L
δβc+1

∫ 1

0

l(θt)θ−1/2

∫ 1/δ

0

Γl dr dθ.(2.13)

Here we look for self-similar solutions Ω = Ω(z) and Π = Π(z). We justify the use
of these types of solutions in section 3.3. In (2.10)–(2.13) the powers of δ appear
explicitly, and they play a central role in understanding the spatial behavior of the
solution relative to the key dimensionless quantities.

For δ � 1, we expand the solution Ω and Π as follows:

Ω = δβk+1/2
(
Ω00 + δα1Ω01 + δα2Ω2 + · · ·

)
,(2.14)

Π = δβkΠ00 + δσ1Π01 + δσ2Π2 + · · · ,(2.15)

where the exponents αi and σi are determined in terms of the exponents β() in (2.8)

as part of the method. The prefactor δβk corresponds to the dimensionless parameter
Gk, and its inclusion in the leading terms is discussed below.

We substitute Ω and Π into the lubrication and elasticity equations (2.10) and
(2.11), so that they become, respectively,

(2.16)
t
(
εL

)
t

εL
δβk+1/2

(
Ω00 + δα1Ω01 + · · ·

)

+ (1 − δz)
t
(
Lγ

)
t

Lγ
δβk−1/2

(
dΩ00

dz
+ δα1

dΩ01

dz
+ · · ·

)
+ Ĝcδ

βcΓl

=
1

Ĝmγ2
δ−βm−1/2+3βk

d

dz

[(
Ω00 + δα1Ω01 +

)3 (
δβk

dΠ00

dz
+ δσ1

dΠ01

dz
+ · · ·

)]
,

δβkΠ00 + δσ1Π01 + · · ·(2.17)

= − 1

2πγ
δβk−1/2

∫ 1/δ

0

(
dΩ00

dr
+ δα1

dΩ01

dr
+ · · ·

)
(1 − δr)

r(2 − δr) − z(2 − δz)
dr.

The nondimensionalized leak-off function Γl is defined as

(2.18) Γl =
1√

1 − t0(ξl)/t
=

1√
1 − ξ1/λ

=
1√

1 − (1 − δz)1/λ
,

where t0(·) is defined following (1.8), and we have written it in the rescaled co-
ordinates (2.7). This follows from the definition of t0(x), the time lapsed between
the current time t and the time at which the crack tip arrived at the point x, so that
x(t0(x)) = l(t0). Using l = γL, L = CLt

λ, and ξ = x/l, we find

(2.19) l(t0) = CLγ

(
t0
t

)λ

tλ and
t0
t

= ξ1/λ.
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To motivate the equations which are solved below to leading order in the different
regions, we briefly consider the lubrication equation in the form of (2.10). The leading
order terms for δ � 1 satisfy

λδ−1 dΩ

dz
+

Ĝcδ
βc−1/2√

1 − (1 − δz)1/λ
=

1

Ĝmγ2
δ−βm−2 d

dz

[
Ω3 dΠ

dz

]
.(2.20)

The form of the expansions (2.14) and (2.15) distinguish where toughness dominates,
with the sign of α1 playing a significant role. We consider three cases:

(i) The right-hand side of (2.20) is dominant and set equal to zero. This gives
Π = constant to leading order (see Appendix A.1). Then Ω is found using the
propagation condition (2.12), giving the leading order square root behavior
for Ω00 and Π00 = constant. This case is described by α1 > 0, where tough-
ness dominates the leading order behavior, and thus justifies the use of the
prefactor δβk in expansions (2.14) and (2.15). The details of this near-tip case
are given in section 3.1 below.

(ii) The first term on the left-hand side balances with the right-hand side, thus
neglecting the term with coefficient Gc to leading order. This case is described
by α1 < 0, where viscosity, not leak-off, dictates the leading order behavior
of z2/3 [6, 15, 24]. When α1 < 0, the ordering of the terms in (2.14) and
(2.15) changes; then Ω01 and Π01 become leading order and so Ω00 and Π00

are zero in regions where the toughness is not dominant.
(iii) The second term on the left-hand side matches the right-hand side. We obtain

the solution z5/8 to leading order, as in [6, 36]. This situation also holds for
α1 < 0, with both leak-off and viscosity dictating the leading order behavior.
Again, Ω00 and Π00 are zero, and Ω01 and Π01 are the leading order terms.
The details of this intermediate-tip case are given in section 3.1 below. In
section 3.3 we show that λ = 1/2 for sufficiently large time, as in [6], and so
we use Γl = 1/

√
δz(2 − δz) in (2.18) for this case.

3. The expansion including toughness, leak-off, and viscosity. We con-
sider the case with nonzero leak-off Gc 
= 0 in addition to nonzero toughness and vis-
cosity (Gk 
= 0 and Gm 
= 0.) The expansions (2.14) and (2.15) are used to determine
exponents by balancing terms, leading to important combinations of the parameters
in (1.11) which characterize the different cases. We focus on scenarios with significant
leak-off, leading to the study of transitions between regimes where toughness and
leak-off dominate the behavior, namely, cases (i) and (iii). The analysis identifies a
critical scaling involving all three processes and gives a parametric characterization for
significant leak-off as G3

c /Gm = O(1) or larger. In contrast, case (ii) occurs in regimes
where leak-off plays a secondary role, G3

c /Gm � 1 and Gc < Gk, and corresponds to
the purely viscosity-dominated case with z2/3 power law to leading order away from
the tip. A straightforward extension of the analysis in [44] of the impermeable case
can be used to include higher order corrections involving leak-off in this parameter
region, so we do not consider it here. The intermediate case where G3

c /Gm � 1 and
Gc < Gk has two transition regions, from the z1/2 to z5/8 to z2/3 behavior. The anal-
yses presented below and in [44] can be extended easily to treat these two transitions,
and we outline this situation in section 4.
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3.1. Local expansions. Near-tip behavior (α1 > 0): The leading order terms
in (2.16) and (2.17) for δ � 1 satisfy

0 = δ−βm−1/2+4βk
d

dz

[
Ω3

00

dΠ00

dz

]
,(3.1)

δβkΠ00 = − 1

2πγ
δβk−1/2

∫ 1/δ

0

dΩ00

dr

(1 − δr)

r(2 − δr) − z(2 − δz)
dr.(3.2)

From these two equations we deduce that the solution of Ω00 is

(3.3) Ω00(z) = C00

√
z(2 − δz),

where C00 = 4πΠ00, and Π00 = constant, as discussed in Appendix A.1. The expres-
sion (3.3) is the eigenfunction solution which, when substituted into (3.2), gives Π00 =
constant exactly; its leading order behavior matches the tip condition (2.12) and it is
symmetric about ξ = 0. We use the tip condition (2.12) to find C00 = Ĝk

√
γ/2. Note

that for α1 > 0, the leading order term in the expansion for Ω involves the rescaled
toughness parameter Gk.

The next order terms for δ � 1 in (2.16) and (2.17) satisfy

λδβk−1/2 dΩ00

dz
+ Ĝc

√
λδβc−1/2z−1/2 =

1

Ĝmγ2
δ−βm+3βk−1/2+σ1

d

dz

[
Ω3

00

dΠ01

dz

]
,(3.4)

δσ1Π01 = − 1

2πγ
δβk−1/2+α1

∫ 1/δ

0

dΩ01

dr

(1 − δr)

r(2 − δr) − z(2 − δz)
dr.(3.5)

For the moment we do not balance exponents of δ, but leave them in the expression.
Solving (3.4) and (3.5) gives Ω01 and Π01: we find Ω01(z) = C01z and Π01 satisfies

(3.6) Π01 = −C01

4πγ
ln

(
1 − 1

2 − δz

)
− C01

4πγ

[
ln (1 − δz) − ln(δz)

]
for z = O(1). The constant of integration in (3.4) is zero; otherwise the solution
for Π01 yields an infinite stress intensity factor, as shown in Appendix A.2. The
details of the calculation of Π01 are similar to the analysis in Appendix B. We now
determine C01 by substituting Π01 into (3.4), and considering the leading order terms
only. Hence

(3.7) δσ1C01 = Ĝmγ2

[
δβm−2βkλ

2πγ

C2
00

+ δβc+βm−3βk
4πγ

√
λĜc√

2C3
00

]
.

Notice that the terms on the right-hand side of (3.7) change order depending on the
relative magnitude of Gk and Gc (i.e., δβk and δβc .) If Gc � Gk, then the first term
on the right-hand side is dominant and we obtain

(3.8) α1 = 1/2 + βm − 3βk, σ1 = βm − 2βk, C01 = 2πλ
Ĝmγ3

C2
00

.

However, if Gc � Gk, then the second term on the right-hand side of (3.7) is
dominant. The exponents α1 and σ1 and coefficient C01 are now

(3.9) α1 = 1/2 + βc + βm − 4βk, σ1 = βc + βm − 3βk, C01 =
4π

√
λĜcĜmγ3

√
2C3

00

.
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Since both of these cases represent particular solutions to the linear equations (3.4)–
(3.5), we can treat them simultaneously. Thus if α1 > 0, the first three terms in the
expansion (2.14) for Ω are

(3.10) Ω ∼ δβk+1/2
[
C00

√
z(2 − δz) + δ1/2+βm−3βkC01z + δ1/2+βc+βm−4βkC02z

]
,

where C02 is the redefined C01 coefficient from (3.9). Then the second term dominates
over the third term when Gc � Gk, and vice versa when Gc � Gk.

Intermediate-tip behavior (α1 < 0): The leading order terms in (2.16) are

(3.11) λδβk−1/2+α1
dΩ01

dz
+

Ĝcδ
βc−1/2√

z(2 − δz)
=

δ−βm+3βk−1/2+3α1+σ1

Ĝmγ2

d

dz

[
Ω3

01

dΠ01

dz

]
,

coupled with the elasticity equation (3.5). Note that we now use the form of Γl with
λ = 1/2, as mentioned in case (iii) above, since we are in the leak-off–dominated
regime. In the case that G3

c /Gm � (1− ξ)1/2, the second term on the left-hand side of
(3.11) is dominant over the term with Ω′

01(z). Then balancing powers of δ in (3.11)
and the elasticity equation (3.5) gives

(3.12) α1 = 1/8 + (βc + βm)/4 − βk, σ1 = −3/8 + (βc + βm)/4.

Note that if the first term in (3.11) is dominant, then the leading order terms for Ω01

are the same as in the case of zero leak-off studied in [6, 15, 24, 44]. This corresponds
to the case δ1/8+(βm+βc)/4 > δβc or, equivalently, G3

c /Gm � (1 − ξ)1/2. Ignoring
this term to leading order is consistent with the fact that leak-off is dominant, i.e.,
G3
c /Gm = O(1) or larger, as discussed in section 3.

The form of Ω01 is written as a combination of powers in z, namely,

(3.13) Ω01 = C̃01z
q + B̂1z

g + B̂2z
p + B̂3z

r.

This is equivalent to a perturbation expansion for the solution of (3.11) when B̂i � 1,
which we verify below. The elasticity equation (3.5) is then solved to give

Π01 = cotπq
C̃01q

4γ
zq−1 + cotπg

B̂1g

4γ
zg−1 + cotπp

B̂2p

4γ
zp−1 + cotπr

B̂3r

4γ
zr−1

+
C̃01qδ

1−q(2 − δz)−1

4πγ
+

B̂1gδ
1−g(2 − δz)−1

4πγ
+

B̂2pδ
1−p(2 − δz)−1

4πγ

+
B̂3rδ

1−r(2 − δz)−1

4πγ
+ O(δ1−q, δ1−g, δ1−p, δ1−r).(3.14)

By using the definitions of α1 and σ1 from (3.12) we integrate (3.11) to obtain

(3.15) λδ1/8+βm/4−3βc/4Ω01 + Ĝc

√
2

(
z1/2 +

1

12
δz3/2

)
+ k =

1

Ĝmγ2
Ω3

01

dΠ01

dz
,

where k is an arbitrary constant. We then have four expressions enabling us to
determine q, g, p, and r. The leading order terms are

(3.16)
√

2Ĝcz
1/2 = cotπq

C̃4
01q(q − 1)

4Ĝmγ3
z4q−2,
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which yields q = 5/8 and gives the coefficient C̃01,

(3.17) C̃01 =

{
4
√

2ĜcĜmγ3

q(q − 1) cotπq

}1/4

.

Then the next order terms satisfy

k =
C̃3

01B̂1

4Ĝmγ3

[
g(g − 1) cotπg + 3q(q − 1) cotπq

]
z3q+g−2,(3.18)

λδ1/8+(βm−3βc)/4C̃01z
q =

C̃3
01B̂2

4Ĝmγ3

[
p(p− 1) cotπp + 3q(q − 1) cotπq

]
z3q+p−2,(3.19)

λδ1/8+(βm−3βc)/4B̂1z
g =

C̃3
01B̂3

4Ĝmγ3

[
r(r − 1) cotπr + 3q(q − 1) cotπq

]
z3q+r−2.(3.20)

For simplicity of presentation we assume δ1/8+(βm−3βc)/4 > δ, which means we can
neglect the z3/2 term in (3.15). This corresponds to the case G3

c /Gm � (1 − ξ)−7/2.
Including this term results in an additional contribution to Ω01 in (3.13) with power
law z13/8. This term can be shown to be higher order in the matching below and
could be included in a straightforward manner if G3

c /Gm = O((1 − ξ)−7/2) or larger.
Matching exponents of z in (3.18)–(3.19) gives g = 1/8 and p = 3/4, respectively.

Since B̂1 is assumed small, the left-hand side of (3.20) is of higher order; r must be
approximated by solving the following nonlinear algebraic equation corresponding to
the right-hand side of (3.20) vanishing:

(3.21) r(r − 1) cotπr + 3q(q − 1) cotπq = 0,

and we find that r ≈ 0.0699928. Then

B̂2 = δ1/8+(βm−3βc)/4B2, B2 = λ
4Ĝmγ3

C̃2
01

[
p(p− 1)cotπp + 3q(q − 1)cotπq

] ,(3.22)

and the coefficients B̂1 and B̂3 are determined by matching with the near-tip expansion
(3.10) in the next section. Since q, g, p, r 
= 1/2, the solution (3.13) cannot satisfy
the

√
z behavior from the propagation condition (2.12) for Ĝk > 0. Observe that for

α1 < 0, toughness does not dominate the leading order behavior in this regime and
the terms Ω00 = Π00 = 0. Then the first term in the expansion (2.14) for Ω is

(3.23) Ω ∼ δ(βc+βm)/4

[
C̃01(δz)

5/8+B1(δz)
1/8+B2δ

(βm−3βc)/4
Ĝ1/4
m

Ĝ3/4
c

(δz)3/4+B3(δz)
r

]

for α1 < 0. Note that we have redefined C̃01 and B2 without the Ĝ() terms, which
allows us to highlight explicitly the dependence of Ω on the key dimensionless quan-
tities G() in (2.2). The coefficients B̂1 and B̂3 are redefined as B1 and B3 and they are
found in the following section.

3.2. Transition in spatial behavior and matching. Now we compare the
two local expansions, (3.10) and (3.23), in terms of the parameter combinations

(3.24) Pkm =
G3
k

Gm
, Pcm =

G3
c

Gm
, Pckm =

G4
k

GcGm
,
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which appear explicitly in both expansions and were introduced in (1.11). We consider
the range of parameters for which either Pcm � (1 − ξ)1/2 or Pkm � (1 − ξ)1/2, i.e.,
parameter values away from the viscosity-dominated regime. For Gc = O(1) this
corresponds to Gm � 1 or βm > 1. Other situations are discussed in the next section.

Then the expansions for Ω in terms of Pkm, Pcm, and Pckm are

Ω ∼ Gk

[
C00

√
1 − ξ2 + C01P−1

km(1 − ξ) + C02P−1
ckm(1 − ξ)

]
for α1 > 0,(3.25)

Ω ∼ (GcGm)1/4
[
C̃01(1 − ξ)5/8 + B1(Pckm)(1 − ξ)1/8

+P−1/4
cm B2(1 − ξ)3/4 + B3(Pckm)(1 − ξ)r

]
for α1 < 0.(3.26)

We have redefined C00, C01, and C02 in (3.25) without the Ĝ() terms which are incor-
porated into the dimensionless G() terms. Also, observe that the δ’s have disappeared
from the expressions. The expansions (3.25)–(3.26) give a transition in behavior of
Ω for 1 − ξ = O(P2

ckm): the unknown coefficients B1(Pckm) and B3(Pckm) are deter-
mined by matching the expansions in this transition region. The leading order term
in (3.26) was given in [36] and later in [6] for vanishing toughness. In a preliminary
study [9] some of the terms in (3.26) are obtained. There, both the global balance
and lubrication equations are scaled by Gv

−1, and they consider the limit of small
toughness, with Gv → ∞, for fixed nondimensional parameters Gc/Gv = GmGv = 1.
Then some of the terms in (3.26) are excluded for large Gv.

The motivation for defining the parameter Pckm follows directly from the expres-
sion for α1 in both cases, i.e., (3.9) and (3.12). Since the Ĝ() quantities are O(1), the

condition α1 > (<) 0 can be rewritten as Pckm � (�) (1 − ξ)1/2. The solution for
α1 > 0 is physically significant in the toughness dominated regime (Gk � Gc), which
is close to the tip and corresponds to Pckm � (1 − ξ)1/2. As (1 − ξ)7/2 approaches
Pckm, the first and third terms in (3.25) and the first term in (3.26) are the same order

of magnitude. A transition occurs in the region (1−ξ) = O(P1/2
ckm) and the solution in

the intermediate-tip region is found by considering α1 < 0 in (3.26). This corresponds
to the leak-off dominated regime, which is away from the tip for Pckm � (1 − ξ)1/2.
Hence the expansion in (3.25) holds for 1 − ξ < P2

ckm and the expansion in (3.26)
holds for 1 − ξ = O(Ps

ckm) (see Figure 3.1), with 0 < s < 2, and Pckm � 1.
To construct a uniform asymptotic approximation by matching (3.25) and (3.26),

we note that they are obtained by solving (2.20) in different asymptotic limits. The
matching is therefore straightforward in the transition region where G4

k/(GcGm) =
O((1 − ξ)1/2); to leading order the solution satisfies (2.20) together with the propa-
gation condition (2.12). While there is no closed form solution in this region, it can
be constructed numerically where 1 − ξ = O(P2

ckm) for 0 < Pckm � 1.
Alternatively, one can give an analytical expression for the matching of (3.25) and

(3.26), obtained from solving for the remaining unknown coefficients B1(Pckm) and
B3(Pckm). Writing these expressions in terms of the critical scaling 1− ξ = P2

ckmζ for
ζ = 0(1), (3.25) and (3.26) are, respectively,

Ω ∼ Gk

[
C00Pckmζ1/2

√
2 − P2

ckmζ +
(
C01P−1

km + C02P−1
ckm

)
P2
ckmζ

]
,(3.27)

Ω ∼ (GcGm)1/4
[
C̃01P5/4

ckmζ5/8 + B1(Pckm)P1/4
ckmζ1/8 + P−1/4

cm B2P3/2
ckmζ3/4

+B3(Pckm)P2r
ckmζr

]
.(3.28)
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Fig. 3.1. The left plot shows log Ω vs. log(1− ξ) with Gc = 1, Gm = 0.2, and Gk = 0.35 (and so
Pckm = 0.075.) The solid lines denote the leading order power law solutions, as indicated above. The
right plot shows a diagram of the solution Ω vs. ξ near the fracture tip for the leak-off–dominated
regime. The transition region is 1 − ξ = O(P2

ckm).

Equating (3.27) and (3.28) and their first derivatives yields B1(Pckm) and B3(Pckm),
which is equivalent to matching the first two terms in a Taylor series expansion about
1− ξ = O(P2

ckm) where Ω is regular. Figure 3.2 shows solution profiles of Ω, matched
at 1 − ξ = P2

ckm. In these parameter regimes all three processes contribute to the
transition between the near- and intermediate-tip behavior, described by (3.25) and
(3.26). There the coefficients B1(Pckm) and B3(Pckm) are

B1(Pckm) =
Pckm

8r − 1

[
(8r − 4)

√
2C00 + (8r − 8)

(
C01P−1

kmPckm + C02

)
− (8r − 5)C̃01

− (8r − 6)B2P−1/4
cm P1/4

ckm

]
,(3.29)

B3(Pckm) =
P−2r+5/4
ckm

8r − 1

[
3
√

2C00 + 7C01P−1
kmPckm + 7C02 − 4C̃01 − 5B2P−1/4

cm P1/4
ckm

]
,

(3.30)

which are small since Pckm � 1. As Pckm increases we observe that the transition
region moves away from the tip. Figure 3.2 also shows two solution profiles when (3.25)
holds to leading order for both near- and intermediate-tip behavior for Pckm < Pkm

and Pckm > Pkm. The shape of Ω depends on whether the second or third term
in (3.25) plays a larger role in the correction to the leading order behavior. Also,
Figure 3.1 shows a log-log plot of Ω for both the leak-off and toughness-dominated
regimes. In the near- and intermediate-tip regions we obtain the asymptotic 1/2
and 5/8 power law solutions, respectively, but in the transition region the correction
terms are important, so that the behavior cannot be described by a purely power law
solution, also observed in [6, 24] for zero leak-off.

For completeness we write down the near- and intermediate-tip expansions for
Π, which are determined using the elasticity equation (2.11). Hence we obtain, for
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Fig. 3.2. Solution profiles of Ω vs. ξ. On the left, Gc = 1, Gm = 0.2, and Gk = 0.45, 0.35, 0.25
(and Pckm = 0.205, 0.075, 0.020, respectively). The transition region is 1− ξ = O(P2

ckm), indicated
by ∗’s at ξ = 1 − P2

ckm on the graphs. On the right, Gm = 0.1; then, for the toughness dominated
regime (solid line), Pckm = 8.192 and Pkm = 5.12, and for the leak-off dominated regime (dashed
line), Pckm = 1.296 and Pkm = 2.16.

Pckm � (�) (1 − ξ)1/2, respectively,

Π ∼ Gk

[
Π00 −

1

4πγ

(
C01P−1

km + C02P−1
ckm

){
ln

∣∣∣∣1 − 1

1 + ξ

∣∣∣∣ + ln

∣∣∣∣ 1

1 − ξ

∣∣∣∣ + ln ξ

}]
,(3.31)

Π ∼ (GcGm)1/4

[
q cotπq

C̃01

4γ
(1 − ξ)−3/8 + g cotπg

B1(Pckm)

4γ
(1 − ξ)−7/8

+ p cotπp
P−1/4
cm B2

4γ
(1 − ξ)−1/4 + r cotπr

B3(Pckm)

4γ
(1 − ξ)r−1

]
.(3.32)

The details of this calculation are given in Appendix B. In Figure 3.3 we graph Π
for different values of Gk � 1 with Gm = 0.2 and Gc = 1. We observe that as Pckm

increases, which in this case corresponds to increasing the toughness parameter Gk

since Gm and Gc are fixed, the transition point between the two regimes moves away
from the tip and Π drops off at a faster rate. This is due to the power law behavior
in (3.32) being matched with the near-tip behavior in (3.31), which becomes more
dominant through the logarithmic correction for increasing Gk.

3.3. The global volume balance condition. The constants (i.e., the coef-
ficients C00, C01, C02, C̃01, and γ) are determined by applying the global volume
balance condition (2.13) and balancing terms according to the size of the parameters.
This condition also checks the consistency of the expansion and shows when we need
to consider additional time-dependencies which we discuss below.

The global volume balance equation in terms of the ξ scaling is given by (2.6).
Since l = γL and L = CLt

λ, where CL is an undetermined constant, we use Γl defined
in (2.18) to simplify the double integral. Hence (2.6) reduces to

(3.33) Gv = 2γ

∫ 1

0

Ω dχ +
2λ

√
πγΓ(λ)Gc

(λ + 1/2)Γ(λ + 1/2)
,

where Γ(·) represents the Gamma function. We must analyze the different situations
that arise for Pckm � 1 and Pckm � 1. The former case corresponds to toughness
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Fig. 3.3. Solution profiles of Π against ξ with fixed Gc = 1, Gm = 0.2, and Gk = 0.45, 0.35, 0.25
(and Pckm = 0.205, 0.075, 0.020, respectively).

dominating the behavior over the whole fracture, with α1 > 0, and is discussed in
detail in [44]. Then the left-hand side balances with the integral on the right-hand side
to leading order; it follows that λ = 2/3, that is, L = CLt

2/3. Substitution of (3.25)
then leads to an expression for γ in terms of Gv and Gk. The integral is evaluated
using the asymptotic expansion near the tip and using numerical evaluation away
from the tip where the behavior is regular [6, 24].

In contrast, for the case of Pckm � 1, the expansion (3.26) with α1 < 0 must
be used for G4

k/(GcGm) < (1 − ξ)1/2. For this range of ξ the leading order terms in
the lubrication equation are those with coefficients Gc and G−1

m . Together with the
elasticity equation, these terms indicate that Ω and Π must scale with (GcGm)1/4, as
in (3.26). Then the global balance condition has the form

(3.34) Gv/Gc = const · P−1/4
cm + const.

As discussed in section 3.1 following (3.11), Pcm � 1 in this case, and so the leading
order terms are the first and third, and the contribution from the integral is higher
order. Then we equate the leading order terms to obtain γ analytically. The global
balance equation verifies that the self-similar solution is appropriate for sufficiently
large Pcm. Writing the t dependence explicitly in (3.34) and using the definitions in
(2.2) with L = CLt

λ gives

(3.35)
Q0

εC2
L

t1−2λ = const ·
(

C ′μ′

ε4CLE′

)1/4

t−(2λ+1)/8 + const · C ′

εCL
t1/2−λ.

Comparing exponents and balancing the first and third terms gives λ = 1/2 and
the expression for γ simplifies to γ = Gv/πGc. Balancing the first and second terms
leads to a contradiction unless t < 1. The second term in (3.35) can be neglected

for t−1/4 � 1, corresponding to P−1/4
cm � 1 as in (3.34). This verifies that it is

appropriate to use λ = 1/2 for the leak-off–dominated intermediate-tip behavior in
section 3.1 for sufficiently large t. If this condition is violated, for example, for short
times, we can no longer conclude that γ is constant, and additional time-dependence
must be included in the expansion.
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4. Discussion and future work. In conclusion, we have introduced a new
approach for studying the system of integrodifferential equations that are found in
hydraulic fracturing problems. Our method enables us to simultaneously consider
the three primary physical mechanisms, namely, viscosity, toughness, and leak-off,
and we have obtained a continuous solution for the fracture opening w when one or
more of these processes are in balance. The technique determines critical relationships
between the nondimensional distance from the tip 1 − ξ and the key nondimensional
quantities Gk, Gc, Gm, and Gv, representing toughness, leak-off, viscosity, and injected
fluid volume, respectively.

For small toughness and O(1) leak-off, the behavior of Ω follows from combining
(3.25) for values of ξ in the near-tip region, and (3.26) for ξ in the intermediate-tip
region. The critical parameter combination in this case is Pckm = G4

k/GcGm, with
the transition layer occurring for values of Pckm = O((1 − ξ)1/2). Additional higher
order corrections depend on the relative magnitude of extra parameter combinations,
Pkm and G3

c /Gm = Pcm. These results are obtained by simultaneously solving the
elasticity and lubrication equations (2.10)–(2.11). The physical process of leak-off
has often been ignored in previous studies, and the new terms in expansions (3.25)
and (3.26) allow us to match expansions in different regions analytically, in contrast
to previous work [24] for zero leak-off. This analysis is new and the flexibility is
invaluable in extending the technique to other fracture geometries, namely, the PKN
fracture [43], and adding different effects, such as stress-jumps and fluid lag. It is
important to determine analytic solutions such as those derived in this paper, which
can be used to test the validity of the model against more complete numerical models
as well as data from laboratory and field experiments.

The application of the global volume balance equation is used to determine the
remaining constants in the solution, and it also provides valuable information related
to time dependence. In the regimes considered in this paper, we find that it provides a
consistency check for the use of a self-similar solution (2.14)–(2.15) with the coefficient
γ constant to leading order. We also determine the time-dependence of L, which gives
the power law scaling in time of the length of the fracture.

The global volume balance equation can also be used to determine regimes where
additional time-dependence must be included in the solution. For example, using this
equation, for finite leak-off we can deduce that for large but finite time the coefficient

γ varies on a slow time scale, T = P−1/4
cm t for Pcm � 1. For small time this analysis

is not sufficient: then a multiple-scale analysis of the resulting equations is necessary
to describe additional time dependence and transient behavior.

As noted in section 1.1 of the introduction, the results presented here rely on the
use of Carter’s leak-off model (1.8). However, our framework does not depend on a
specific form for the leak-off term, so its implementation is not restricted to the use
of (1.8). These results are valid for the balance of physical processes corresponding
to O(1) (or smaller) leak-off, which is typical of many fracturing treatments due to
the cake-building properties of the fracturing fluid [51]. Specifically, we require that
the combined parameter Pcm := G3

c /Gm � 1. In situations where Gc � 1, such as in
waterflood fractures, the leak-off term is not a higher order correction at the tip, and
therefore it would require a different modeling approach in that region.

Typical values of Carter’s leak-off coefficient C ′ range from 4–64×10−5 m/s−1/2,
as discussed in [6] and the references therein. Suppose we consider the case Pckm � 1
and set Gv = Gc = 1. Then the expression for γ, as found in section 3.3, is simply
γ = 1/π. Typical values of the other parameters are found in [6, 19, 27]: Q0 = 4–
40 × 10−4 m2/s, E = 10000–25000 MPa, ν = 0.15, μ = 1 × 10−7 MPa · s, and
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KIc = 1 MPa · m1/2. For example, using Q0 = 4 × 10−4 m2/s, C ′ = 16 × 10−5, and
E = 10000 MPa, the combined parameters can be shown to satisfy Pcm ≈ 0.0022t,
Pckm ≈ 0.20, and Pkm ≈ 0.066t1/4. Then the transition region is at ξ = O(1−P2

ckm) ≈
0.96, which supports the values used in the figures in section 3. This also shows that
our analysis is applicable for large time, since we require Pcm � 1. If we increase E
and Q0, say to 14000 MPa and 7 × 10−4 m2/s, respectively, then Pcm ≈ 0.00058t,
Pckm ≈ 0.042, Pkm ≈ 0.014t1/4, and the transition region is at ξ ≈ 0.998, which is
now much closer to the tip.

For the situation when the rock is impermeable, that is, for zero leak-off with
Gc = 0, we have used the same procedure to obtain an analytically matched asymptotic
solution in the tip region [44]. The expansions for Ω in terms of the key parameter
Pkm := G3

k/Gm are, for Pkm � (�) (1 − ξ)1/2, respectively,

Ω ∼ Gk

[
C00

√
1 − ξ2 + C01P−1

km(1 − ξ)
]
,(4.1)

Ω ∼ G1/3
m

[
C̄01(1 − ξ)2/3 + A1(Pkm)(1 − ξ)h + A2(Pkm)

]
.(4.2)

Hence the expansion (4.1) holds for values of ξ in the near-tip region, the expansion
(4.2) holds for ξ in the intermediate-tip region, and the analysis yields

(4.3) C00 = Ĝk

√
γ

2
, C01 = 2πλ

Ĝmγ3

C2
00

, C̄01 =

{
4Ĝmλγ3

m(m− 1) cotπm

}1/3

,

where m = 2/3. The motivation for defining the parameter Pkm again follows directly
from the dominant behavior expressed by balancing the exponents of δ, which becomes
Pkm � (�) (1 − ξ)1/2. The expansion (4.1) is physically significant in the toughness
dominated regime or valid close to the tip when G3

k/Gm � (1−ξ)1/2, and the expansion
(4.2) corresponds to the viscosity dominated regime in which G3

k/Gm � (1 − ξ)1/2.
Previous work [24] give some of the terms in (4.1)–(4.2), but the matching is done
numerically. The additional terms allow us to give an analytical expression for the
matching of (4.1) and (4.2), obtained by solving for the remaining unknown coefficients
A1(Pkm) and A2(Pkm), as shown in [44].

In other asymptotic limits, for example, for Pcm � (1 − ξ)1/2 and Gc > Gk, one
can obtain solutions which involve more than one transition region, as discussed at
the start of section 3. In particular, for sufficiently large leak-off and viscosity, the
solution for Ω consists of a leading order behavior with power law (1−ξ)1/2 for ξ in the
near-tip region, (1− ξ)5/8 for an intermediate-tip region, and (1− ξ)2/3 for values of ξ
farther from the tip. In the case Gc > Gk, a transition must occur at 1− ξ = O(P2

ckm)
between the near-tip square root behavior and the (1−ξ)5/8 behavior. If, in addition,
Pcm is such that Pcm � (1 − ξ)1/2, then there is another transition farther from the
tip at 1−ξ = O(P2

cm) between the (1−ξ)5/8 and (1−ξ)2/3 behavior. The construction
of the nondimensionalized width Ω proceeds as in the previous sections by identifying
the appropriate balance of (1 − ξ) with combinations of the parameters Gc, Gk, and
Gm. Finally, in the same way as the analysis described here in section 3.2 and in [44],
we can match across the two regions to determine the unknown coefficients which are
now in terms of both Pcm and Pckm.

Appendix A. Results on Π in the toughness-dominated regime.

A.1. Π00 is constant. Consider (3.1). We integrate to obtain

(A.1) Ω3
00

dΠ00

dz
= k1
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for some constant k1 
= 0. Using the propagation condition (2.12) for Ω00 in (A.1)
and integrating with respect to z yields

(A.2) Π00 = − 2k1

Ĝ3
kγ

3/2
z−1/2 + const

for z � 1. Now we compare this with the result from the elasticity equation (3.2),
again using the propagation condition (2.12) for Ω00, to get

δβkΠ00 = const ∗
∫ 1/δ

0

dΩ00

dr

(1 − δr)

r(2 − δr) − z(2 − δz)
dr = const

to leading order. This contradicts (A.2) so that k1 = 0. Thus, from (A.1) it follows
that Π00 is constant.

A.2. Integration constant from the lubrication equation is zero. Inte-
grating (3.4) with respect to z, using the leading order behavior (2z)−1/2 for the
leak-off term, gives

(A.3) λδβk−1/2Ω00 + Ĝcδ
βc−1/2

√
2z1/2 + k2 =

1

Ĝmγ2
Ω3

00

dΠ01

dz

for some constant k2 
= 0. Using the propagation condition (2.12) for Ω00 in (A.3)
and integrating with respect to z yields

(A.4) δσ1Π01 =
Ĝm

Ĝ3
k

δβm−3βk

[
λγĜkδ

βk ln z +
√

2γĜcδ
βc ln z − 2

√
γk2δ

1/2z−1/2
]
+k3.

Without loss of generality, we set the integrating constant k3 = 0, as it can be
incorporated into Π00. We now consider the stress intensity factor KI given in (1.2).
This can be rewritten in the ξ scaling as

(A.5) Gk =
8
√

2

π
γ1/2

∫ 1

0

Π√
1 − ξ2

dξ.

For ξ = 1− δz, we consider the contribution to (A.5) obtained from the term in (A.4)
with coefficient k2, namely,

(A.6) const ∗ 8
√

2

π
γ1/2δ1/2

∫ 1/δ

0

k2

z
√

2 − δz
dz.

For k2 
= 0, this term is infinite at z = 0. So k2 = 0 to maintain a finite energy.

Appendix B. Calculation of the expression for Π. We summarize the cal-
culation of the asymptotic behavior of Π from (2.9) to find the leading order behavior.
We introduce a parameter ξ∗ which is in the transition region 1−ξ = O(P2

ckm). Then
the expansion (3.25) holds near the tip and (3.26) holds away from the tip, i.e.,

(B.1) Ω ∼ Gk

[
C00

√
1 − ξ2 + C01P−1

km(1 − ξ) + C02P−1
ckm(1 − ξ)

]
for ξ∗ < ξ < 1, and

Ω ∼ (GcGm)1/4
[
C̃01(1 − ξ)5/8 + B1(Pckm)(1 − ξ)1/8

+P−1/4
cm B2(1 − ξ)3/4 + B3(Pckm)(1 − ξ)r

]
(B.2)
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for ξ < ξ∗, and (2.9) becomes
(B.3)

Π = −GkC00

4πγ

∫ 1

ξ∗

[√
1 − χ2

]′
2χdχ

χ2 − ξ2
−

Gk

[
C01P−1

km + C02P−1
ckm

]
4πγ

∫ 1

ξ∗

[
(1 − χ)

]′
2χdχ

χ2 − ξ2

− (GcGm)1/4

{
C̃01

4πγ

∫ ξ∗

0

[
(1 − χ)5/8

]′
2χdχ

χ2 − ξ2
+

B1(Pckm)

4πγ

∫ ξ∗

0

[
(1 − χ)1/8

]′
2χdχ

χ2 − ξ2

}

− (GcGm)1/4

{
P−1/4
cm B2

4πγ

∫ ξ∗

0

[
(1 − χ)3/4

]′
2χdχ

χ2 − ξ2
+

B3(Pckm)

4πγ

∫ ξ∗

0

[
(1 − χ)r

]′
2χdχ

χ2 − ξ2

}

=: I1 + I2 + I3 + I4 + I5 + I6.

In the intermediate region 1− ξ = O(Ps
ckm) for 0 < s < 2, the integrals I1 and I2 can

be evaluated to give

I1 =
GkC00

4πγ
(1 + ξ)−1

√
2(1 − ξ∗)1/2

{(
1 + O

(
1 − ξ∗)

)
+ O

(
1 − ξ∗

1 + ξ

)}

+
GkC00

4πγ
(1 − ξ)−1

√
2(1 − ξ∗)1/2

{(
1 + O

(
1 − ξ∗)

)
+ O

(
1 − ξ∗

1 − ξ

)}
,

I2 = −
Gk

[
C01P−1

km + C02P−1
ckm

]
4πγ

{
ln

∣∣∣∣1 − 1 − ξ∗

1 + ξ

∣∣∣∣ + ln

∣∣∣∣1 − 1 − ξ∗

1 − ξ

∣∣∣∣
}
,(B.4)

while in the near-tip region 1 − ξ = O(Ps
ckm) for s > 2 the integrals are of the form

(B.5)

I1 =
GkC00

4πγ
(1 + ξ)−1

√
2(1 − ξ∗)1/2

{(
1 + O

(
1 − ξ∗)

)
+ O

(
1 − ξ∗

1 + ξ

)}

+
GkC00

4πγ

{
π − arctan

(
ξ∗√

1 − ξ∗2

)
+

ξ√
1 − ξ2

ln

∣∣∣∣∣1 − ξ∗ξ +
√

1 − ξ2
√

1 − ξ∗2

ξ − ξ∗

∣∣∣∣∣
}
,

I2 = −
Gk

[
C01P−1

km + C02P−1
ckm

]
4πγ

{
ln

∣∣∣∣1 − 1 − ξ∗

1 + ξ

∣∣∣∣ + ln

∣∣∣∣1 − ξ∗

1 − ξ

∣∣∣∣ + ln

∣∣∣∣1 − 1 − ξ

1 − ξ∗

∣∣∣∣
}
.

We briefly outline the calculation of I3, I4, I5, and I6 for a general integral of
that form with parameter 0 < a < 1: then the results follow from setting a =
5/8, 1/8, 3/4, r, respectively. Thus the integral is

(B.6) J3 =

∫ ξ∗

0

(1 − χ)a−1 2χdχ

χ2 − ξ2
,

which is now split as

(B.7) J3 =

∫ ξ∗

0

(1 − χ)a−1

χ− ξ
dχ−

∫ 0

−ξ∗

(1 + χ′)a−1

χ′ − ξ
dχ′ =: JA

3 + JB
3 .

Note that ξ can vary over the whole interval, i.e., −1 < ξ < 1. Then asymptotic
expansions for the integrals are used, depending on whether ξ is inside or outside the
interval of integration. It is convenient to use a change of variables which captures the
asymptotic behavior of Π near the tip. It is also convenient to use different variables
on different intervals, such as δZ = 1 − ξ, δR = 1 − χ in JA

3 and, δZ = 1 + ξ,
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δR = 1 + χ in JB
3 . We describe the procedure for the integral JA

3 (then JB
3 follows

from an analogous calculation). This is split into three parts as

(B.8) JA
3 = −δa−1

(∫ ∞

0

−
∫ ∞

1/δ

−
∫ (1−ξ∗)/δ

0

)
Ra−1

R− Z
dR.

In the intermediate region 1− ξ = O(Ps
ckm) for 0 < s < 2, the leading order behavior

is determined by the first integral for δ = P2
ckm � 1 (as given in [40]), and so

JA
3 = (δZ)a−1π cotπa + O(1).

Then, for intermediate values of ξ < ξ∗, the integrals I1, I2, and JB
3 all give O(1)

contributions, which are lower order compared to the leading order term in JA
3 . The

integral for J4 is calculated in the same way. Hence the expression for Π in (B.3) is

Π = (GcGm)1/4

{
qC̃01

4πγ
(1 − ξ)q−1π cotπq +

gB1(Pckm)

4πγ
(1 − ξ)g−1π cotπg

}

+(GcGm)1/4

{
pP−1/4

cm B2

4πγ
(1 − ξ)p−1π cotπp

+
rB3(Pckm)

4πγ
(1 − ξ)r−1π cotπr

}
+ O(1),

where q = 5/8, g = 1/8, p = 3/4 and the O(1) terms are higher order with respect to
1 − ξ � 1.

Similarly, for values of ξ in the near-tip region 1 − ξ = O(Ps
ckm) for s > 2, the

integral I3 gives O(1) contributions, and the leading order term is the singularity in
I2 defined in (B.5). Hence the expression for Π is now

Π = Gk

[
C00

4γ
− C01P−1

km + C02P−1
ckm

4πγ

{
ln

∣∣∣∣1 − 1 − ξ∗

1 + ξ

∣∣∣∣ + ln

∣∣∣∣1 − ξ∗

1 − ξ

∣∣∣∣ + ln

∣∣∣∣1 − 1 − ξ

1 − ξ∗

∣∣∣∣
}]

+O(1).

Here we have explicitly included the leading order term from I1 for comparison with
(3.31). Additional error terms not shown here also result from the fact that higher
order derivatives for Ω(ξ) are not matched in the transition region: these can be shown
to be higher order for Pckm � 1.
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