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Abstract. In this paper we develop tools to analyse a recently proposed random matrix model of communication networks
that employ AIMD congestion control algorithms. We analyse properties of the Markov process describing the evolution of
the window sizes of network users. Using paracontractivity properties of the matrices involved in the model, it is shown that
the process has a unique invariant probability and the support of this probability is characterized. Based on these results we
obtain a weak law of large numbers for the average distribution of resources between the users of a network. This shows that
under reasonable assumptions such networks have a well defined stochastic equilibrium. NS-simulation1 results are given to
demonstrate the efficacy of the obtained formulae.
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1. Introduction. Recent years have witnessed increased attention in the dynamics of communication
networks. Networks of devices that employ Additive-Increase Multiplicative Decrease (AIMD) congestion
control algorithms, such as the widely deployed Transmission control protocol (TCP), have become the focus
of much of this activity. Typically, the approach adopted by the community is to model such networks
by means of a fluid analogy and to employ techniques from control theory and convex optimization in
their analysis; see the recent book by Srikant [26] and the references therein for an overview of this work.
Recently, several authors have proposed an alternative model of TCP dynamics using products of random
matrices [3, 2, 25]. The basic approach followed in these papers is to use ideas from hybrid systems theory
to model the dynamics of AIMD networks as a switched, or time-varying, discrete time linear system. The
approach adopted in [25] is particularly useful as it enables techniques from the theory of nonnegative
matrices and Markov chains to be employed in the analysis of these networks. The application of these
techniques to the study of such networks is the principal contribution of this paper.

In Section 2 we begin our discussion by giving an overview of AIMD congestion control and by briefly
reviewing the random matrix model of AIMD network dynamic first derived in [25]. In Section 3 a number
of basic results are presented relating to the set of matrices used in the model. It is shown that on a jointly
invariant subspace the matrices are paracontractive, which is used to show that with probability one, left
products of the matrices approach the set of rank one column stochastic matrices. This ergodicity property
plays a vital role in all the subsequent considerations. Section 4 is devoted to the analysis of the Markov
cain model of the AIMD process. It is shown that the chain in question is an e-chain. Using the results
of Section 3 we obtain that this chain has positive and aperiodic states. From this we obtain the unique
existence of an invariant probability and weak law of large number statements. Finally, the support of the
invariant probability is characterized. In Section 5 we give the main results of this paper; here we collect
and derive a number of results that are useful in characterising the stochastic equilibria of various types
of communication networks that employ AIMD congestion control mechanisms. Finally, in Section 6 we
apply these results to the study of networks employing TCP congestion control. It is shown that the model
is able to predict the average behaviour of TCP flows very accurately.
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2. Column stochastic matrices and AIMD congestion control. A communication network
consists of a number of sources and sinks connected together via links and routers. In this paper we assume
that these links can be modelled as a constant propagation delay together with a queue, that the queue is
operating according to a drop-tail discipline, and that all of the sources are operating a Additive-Increase
Multiplicative Decrease (AIMD) -like congestion control algorithm. AIMD congestion control operates a
window based congestion control strategy. More specifically, each source maintains an internal variable wi

(the window size) which tracks the number of sent unacknowledged packets that can be in transit at any
time. When the window size is exhausted, the source must wait for an acknowledgement before sending
a new packet. Congestion control is achieved by dynamically adapting the window size according to an
additive-increase multiplicative-decrease law. Roughly speaking, the basic idea is for a source to gently
probe the network for spare capacity by increasing the rate at which packets are inserted into the network,
and to rapidly back-off the number of packets transmitted through the network when congestion is detected
through the loss of packets of date. More specifically, an individual source sends packets of data through
the network to a destination, and the transmission is deemed complete, if an acknowledgement issued by
the destination upon receipt of the packet is received by the source. As long as transmission is successful,
that is as long as all acknowledgements are received, the source increments wi(t), by a fixed amount αi

upon receipt of an acknowledgement. If an acknowledgement for a certain packet does not arrive at the
sender, it is assumed, that there has been a packet loss due to congestion in the network. As a consequence,
the variable wi(t) is reduced in multiplicative fashion to βiwi(t).

2.1. A model for AIMD dynamics. Networks of synchronised sources and drop-tail queues have
also been the subject of several other studies [16, 3, 5, 1, 12]. The novelty of our approach lies in the fact
that we use positive matrices to model their behaviour. We shall see that this fact will enable results for
such matrices to be employed to make predictions concerning the behaviour of AIMD networks.

In [24] a model has been presented which assumes that (i) at congestion every source experiences a packet
drop; and (ii) each source has the same round-trip-time (RTT)2.

Fig. 2.1. Evolution of window size

We now describe an augmented model without the assumption of synchronisation, i.e at a congestion
event not all sources are necessarily informed of this congestion. For the moment uniform RTT is still
assumed, we will weaken this assumption later on. Let wi(k) denote the congestion window size of source i
immediately before the k’th network congestion event is detected by the source. Over the k’th congestion
epoch three important events can be discerned: ta(k), tb(k) and tc(k); as depicted in Figure 2.1. The time
ta(k) denotes the instant at which the number of unacknowledged packets in flight equals βiwi(k); tb(k) is
the time at which the bottleneck queue is full; and tc(k) is the time at which packet drop is detected by

2One RTT is the time between sending a packet and receiving the corresponding acknowledgement when there are no
packet drops.
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some of the sources, where time is measured in units of RTT3. It follows from the definition of the AIMD
algorithm that the window evolution is completely defined over all time instants by knowledge of the wi(k)
and the event times ta(k), tb(k) and tc(k) of each congestion epoch. We therefore only need to investigate
the behaviour of these quantities.

We assume that source that loose a package at congestion are informed of this loss one RTT after the
queue at the bottleneck link becomes full; that is tc(k)− tb(k) = 1. Also,

wi(k) ≥ 0, and
n∑

i=1

wi(k) = P +
n∑

i=1

αi, ∀k > 0, (2.1)

where P is the maximum number of packets which can be in transit in the network at any time; P is
usually equal to qmax + BTd where qmax is the maximum queue length of the congested link, B is the
service rate of the congested link in packets per second and Td is the round-trip time when the queue is
empty. At the (k + 1)th congestion event

wi(k + 1) =

{
βs

i wi(k) + αi[tc(k)− ta(k)] if the source i experiences congestion,

wi(k) + αi[tc(k)− ta(k)] else.
(2.2)

and we set

βi(k) ∈ {βs
i , 1} , (2.3)

corresponding to whether the source experiences a packet loss or not. Then summing the equations in (2.2)
and using (2.1) we obtain

tc(k)− ta(k) =
1∑n

i=1 αi

[
P −

n∑
i=1

βi(k)wi(k)

]
+ 1. (2.4)

and using (2.2)–(2.4), it follows that

wi(k + 1) = βi(k)wi(k) +
αi∑n

j=1 αj

[
n∑

i=1

(1− βi(k))wi(k)

]
. (2.5)

Thus the dynamics of an entire network of such sources is given by

W (k + 1) = A(k)W (k), (2.6)

where WT (k) = [w1(k), · · · , wn(k)], and

A(k) =


β1(k) 0 · · · 0

0 β2(k) 0 0
... 0

. . . 0
0 0 · · · βn(k)

+
1∑n

j=1 αj


α1

α2

· · ·
αn

 [ 1− β1(k) · · · 1− βn(k)
]
. (2.7)

As the entries of W (k) are nonnegative for all k ≥ 0 the equations (2.6) defines a positive linear system [4].
Using bi(s) ∈ (0, 1], i = 1, . . . , n, we also see that all possible matrices that appear are column stochastic.
In the sequel we will call column stochastic matrices of the form (2.7) AIMD matrices.

3Note that measuring time in units of RTT results in a linear rate of increase for each of the congestion window variables
between congestion events.
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So far we have worked with the assumption of uniform RTT, which is quite restrictive (although it may,
for example, be valid in some long-distance networks [29]). It is therefore of great interest to extend
our approach to more general network conditions. As we will see the model that we obtain shares many
structural and qualitative properties of the model described above. To distinguish variables, we will from
now on denote the nominal parameters of the sources used in the previous section by αs

i , β
s
i , i = 1, . . . , n.

Here the index s may remind the reader that these are the parameters that are chosen by each source.

Consider the general case of a number of sources competing for shared bandwidth in a generic dumbbell
topology (where sources may have different round-trip times and drops need not be synchronised). The
evolution of the window size wi of a typical source as a function of time, over the k′th congestion epoch, is
depicted in Figure 2.2. As before a number of important events may be discerned, where we now measure

Fig. 2.2. Evolution of window size over a congestion epoch. T (k) is the length of the congestion epoch in seconds.

time in seconds, rather than units of RTT . Denote by tai(k) the time at which the number of packets
in flight belonging to source i is equal to βs

i wi(k); tq(k) is the time at which the bottleneck queue begins
to fill; tb(k) is the time at which the bottleneck queue is full; and tci(k) is the time at which the i’th
source is informed of congestion. In this case the evolution of the i’th congestion window variable does not
evolve linearly with time after tq seconds due to the effect of the bottleneck queue filling and the resulting
variation in RTT; namely, the RTT of the i’th source increases according to RTTi(t) = Tdi + q(t)/B after
tq, where Tdi is the RTT of source i when the bottleneck queue is empty and 0 ≤ q(t) ≤ qmax denotes
the number of packets in the queue. Note also that we do not assume that every source experiences a
drop when congestion occurs. For example, a situation is depicted in Figure 2.2 where the i’th source
experiences congestion at the end of the epoch whereas the j’th source does not.

Given these general features it is clear that the modelling task is more involved than in the synchronised
case. Nonetheless, it is possible to relate wi(k) and wi(k + 1) using a similar approach to the synchronised
case by accounting for the effect of non-uniform RTT’s and unsynchronised packet drops as follows.

Due to the variation in round trip time, the congestion window of a flow does not evolve linearly with time
over a congestion epoch. Nevertheless, we may relate wi(k) and wi(k + 1) linearly by defining an average
rate αi(k) depending on the k’th congestion epoch:

αi(k) :=
wi(k + 1)− βi(k)w(k)

T (k)
, (2.8)

where T (k) is the duration of the k’th epoch measured in seconds. Equivalently we have

wi(k + 1) = βi(k)wi(k) + αi(k)T (k) . (2.9)

In the case when qmax << BTdi
, i = 1, . . . , n, the average αi are (almost) independent of k and given by
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αi(k) ≈ αs
i /Tdi

for all k ∈ N, i = 1, . . . , n. The situation when

αi ≈
αs

i

Tdi

, i = 1, . . . , n (2.10)

is of considerable practical importance and such networks are the principal concern of this paper. This
corresponds to the case of a network whose bottleneck buffer is small compared with the delay-bandwidth
product for all sources utilising the congested link. Such conditions prevail on a variety of networks; for
example networks with large delay-bandwidth products, and networks where large jitter and/or latency
cannot be tolerated.

In view of (2.3) and (2.9) a convenient representation of the network dynamics is obtained as follows. At
congestion the bottleneck link is operating at its capacity B, i.e.,

n∑
i=1

wi(k)− αi

RTTi,max
= B, (2.11)

where RTTi,max is the RTT experienced by the i’th flow when the bottleneck queue is full. Note, that
RTTi,max is independent of k. Setting γi := (RTTi,max)−1 we have that

n∑
i=1

γiwi(k) = B +
n∑

i=1

γiαi . (2.12)

Using steps similar to the ones performed in (2.2)–(2.4) we obtain the model

wi(k + 1) = βi(k)wi(k) +
αi∑n

j=1 γjαj

 n∑
j=1

γj(1− βj(k))wj(k)

 (2.13)

and the dynamics of the entire network of sources at the k-th congestion event are again described by
W (k + 1) = A(k)W (k), where

A(k) =


β1(k) 0 · · · 0

0 β2(k) 0 0
... 0

. . . 0
0 0 · · · βn(k)

+
1∑n

j=1 γjαj


α1

α2

· · ·
αn

 [γ1(1− β1(k)), . . . , γn(1− βn(k))](2.14)

and where βi(k) is either 1 or βs
i . The non-negative matrices A2, .., Am are constructed by taking the

matrix A1,

A1 =


βs

1 0 · · · 0
0 βs

2 0 0
... 0

. . . 0
0 0 · · · βs

n

+
1∑n

j=1 γjαj


α1

α2

· · ·
αn

 [ γ1(1− βs
1), . . . , γn(1− βs

n)
]

and setting some, but not all, of the βi to 1. This gives rise to m = 2n − 1 matrices associated with
the system (2.13) that correspond to the different combinations of source drops that are possible. These
matrices are not AIMD matrices in the sense we have defined above. However, by a small transformation
we come back to our original situation.
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By considering the evolution of WT
γ (k) = [γ1w1(k), γ2w2(k), . . . , γnwn(k)] we obtain the following descrip-

tion of the network dynamics:

Wγ(k + 1) = Ā(k)Wγ(k) (2.15)

with Ā(k) ∈ Ā = {Ā1, ..., Ām}, m = 2n − 1 and where the Āi are obtained by the diagonal similarity
transformation associated with the change of variables. As before the non-negative matrices Ā2, .., Ām are
constructed by taking the matrix Ā1 and setting some, but not all, of the βs

i to 1. It is easy to see, that
all of the matrices in the set Ā are now AIMD matrices; for convenience we use this representation of the
network dynamics to prove the main mathematical results presented in this paper. Note furthermore, that
the similarity transformation used to bring the matrices in AIMD form only depends on the round trip
times RTTi and not on the αi, βi.

2.2. Networks of flows whose parameters vary in time. Before proceeding with our analysis
we note that for some applications it is convenient to allow the parameters of the matrix A(k) to vary
in more general a manner than that described in the previous two sections. Our model may be extended
trivially to model networks whose AIMD parameters vary with time: αi(k); βi(k). Such situations may
arise in applications where the protocol adapts its parameters to reflect prevailing network conditions or
in applications where variations in network delays lead to a consequent variation in the AIMD parameters
(for example due to routing changes or in wireless networks) [22]; in fact a number of AIMD networks of
this type have recently been proposed by a number of authors in the context of high-speed long-distance
networks [8, 29]. We account for such behaviour in this paper by defining the set M to be the union of a
finite number of matrix sets Āj each of which are defined as above but which correspond to fixed AIMD
parameters {αj

1, ...., α
j
n} and {βj

1, ...., β
j
n}, 1 ≤ j ≤ h, with M =

⋃h
j=1 Āj , where h is some fixed integer.

Comment 2.1. Before proceeding we note that networks of unsynchronised sources have also been the
subject of wide study in the TCP community: see [18, 20, 21, 19, 22, 13, 27, 17, 6, 14, 15, 14] and
the accompanying references for further details. While most of this work has concentrated on developing
and analysing TCP models that are based upon fluid analogies, several authors have recently developed
hybrid systems models of networks with a single bottleneck link which employ AIMD congestion control
mechanisms: most notably by Hespanha [11] and Baccelli and Hong [2]. We note that the model derived
in [2] is similar to the model presented here. However, whereas the model derived by Baccelli and Hong is
also a random matrix model, their model is both affine and the homogeneous (linear) part is characterised
by general matrices (namely, not by non-negative matrices).

3. Preliminaries. The principal objective of this paper it to collect and develop analytic tools to
analyse models of the form derived in Section 2. We will see in Section 5 that it is possible to characterise
the stochastic behaviour of the random variable W (k) under certain assumptions. The derivation of these
results is somewhat technical and to ease exposition we introduce here a number of definitions and technical
results.

3.1. Basic notation. The following results are based on the theory of nonnegative matrices. A
matrix A or a vector x is said to be nonnegative if each of its entries is a nonnegative real number and
matrices or vectors are called positive if all their entries are positive. We write A � B or A � B if A−B
is positive, respectively nonnegative. The set of nonnegative matrices in Rn×n is denoted by Rn×n

+ . The
componentwise absolute value of A = (aij) ∈ Rn×m is defined by |A| := (|aij |) ∈ Rn×m

+ .

A special subset of Rn×n
+ are the column stochastic matrices. A matrix A ∈ Rn×n

+ is called column stochastic
if for each of its columns the sum of the corresponding elements is equal to 1. Denoting y := [1, 1, . . . , 1]T ,
it follows that yT is a left eigenvector of a column stochastic matrix corresponding to the eigenvalue 1. We
denote by R ⊂ Rn×n the set of all column stochastic matrices of rank 1 and the distance between a matrix
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P ∈ Rn×n and the set R by dist (P,R) = inf{‖P −C‖ : C ∈ R}. Finally, the j-th standard unit vector is
denoted by ej .

3.2. Basic assumptions. Our basic objective is to model the evolution of the vector W (k) for
networks of AIMD flows. We consider a set of AIMD matrices M = {M1, ..,Mµ}. Associated to this set
we consider the deterministic system

x(k + 1) ∈ {Mx(k) | M ∈M} , (3.1)

and a Markov chain model

W (k + 1) = A(k)W (k) , (3.2)

where for each k the A(k) is a random variable with values in M. We recall that by (2.1) the sum
∑

i wi(k)
is a constant. We may thus restrict our attention to the simplex

Σ :=

{
x ∈ Rn

+ |
n∑

i=1

xi = 1

}
,

and we will study the evolution of (3.2) on Σ. We assume that the random variables A(k), k = 0, 1, . . . are
independent and identically distributed (i.i.d.) and denote

P (A(k) = Mi) = ρi , i = 1, . . . , µ .

As we are dealing with probabilities, necessarily, we assume
∑

i ρi = 1. With this setup the sequence
{W (k)}k∈N is a Markov process.

The random variable of a product of length k is denoted by Π(k) = A(k)A(k − 1) . . . A(0).

Clearly, W (k) = Π(k)W (0), and consequently that the behaviour of W (k), as well as the network fairness
and convergence properties, are governed by the asymptotic properties of the matrix product Π(k) as
k →∞.

It has been documented by many authors that networks of many AIMD flows exhibit extremely complex
behaviour. Consequently, it is convenient to analyse such networks for a probabilistic viewpoint. In this
paper we take a first step in this direction and analyse networks for which the following assumptions hold.
We shall see in Section 6 that these assumptions seem to capture essential characteristics of some real
networks and therefore are somewhat less restrictive that they might appear.

Assumption 3.1. Let M = {M1, ..,Mµ} be a set of matrices of the form (2.7). We assume that the
probability that A(k) = Mi in (3.2), is independent of k and equals ρi > 0.

Comment 3.2. In other words Assumption 3.1 says that the probability that the network dynamics are
described by W (k + 1) = A(k)W (k), A(k) = Mi over the k-th congestion epoch is ρi and that the random
variables A(k), k ∈ N are i.i.d. Furthermore, we assume that we only have matrices in the set M which
occur with positive probability. The reason for this assumption is, that without it, there is little insight to
be gained into the dynamics of the Markov chain (3.2) by studying the deterministic system (3.1). The
assumption is of course easy to guarantee this assumption by simply removing matrices with 0 probability
from the set M.

Given the probabilities ρi for Mi ∈M, one may then define the probability λj that source j experiences a
backoff at the k-th congestion event as follows:

λj =
∑

ρi ,
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where the summation is taken over those i which correspond to a matrix in which the j-th source sees a
drop. Or to put it another way, the summation is over those indices i for which the matrix Mi is defined
with a value of βj 6= 1.

Assumption 3.3. Let M = {M1, ..,Mµ} be the set of AIMD matrices defining (3.2) and assume that
P (A(k) = Mi) = ρi, i = 1, . . . , µ. We assume that λj > 0 for all j ∈ {1, ..., n}.

Simply stated, Assumption 3.3 states that almost surely all flows must see a drop at some time (provided
that they live for a long enough time).

3.3. Column Stochastic Matrices. Column stochastic matrices will play a central role in the
discussion in Section 5. We begin by collecting some results. The following two are immediate consequences
of the definition of a column stochastic matrix.

Lemma 3.4. A matrix A ∈ Rn×n
+ is column stochastic if and only if yT A = yT . Any product of a finite

number of column stochastic matrices is a column stochastic matrix (i.e., the set of column stochastic
matrices is a semigroup).

It is sometimes convenient to consider the subspace orthogonal to y, which we denote by

S := {z ∈ Rn | yT z = 0} .

The subspace S is an invariant subspace for all column stochastic matrices. Given a column stochastic
matrix A we denote by Ã : S → S the linear operator obtained by restricting A to S. Furthermore, we
denote by ‖ · ‖ the 1-norm and the corresponding induced matrix norm.

Lemma 3.5. For any column stochastic matrix A it holds that ‖A‖ ≤ 1 and that ‖Ã‖ ≤ 1. If A is positive,
then ‖Ã‖ < 1 .

Proof. The first claim is immediate from the standard characterization of the induced 1-norm as the
column-sum norm. The second claim follows as ‖Ã‖ ≤ ‖A‖ using the definition of induced norms. Finally,
if A is positive, then for a vector z ∈ S, ‖z‖ = 1 it holds that −A|z| ≺ |Az| ≺ A|z| as z has positive and
negative entries due to yT z = 0. This implies for z ∈ S, ‖z‖ = 1 that

‖Ãz‖ = ‖Az‖ = ‖ |Az| ‖ < ‖A|z| ‖ = 1 .

This shows the assertion.

A feature in the proof of our main results is the observation that products of column stochastic matrices
converge in a certain sense to a subset of the rank-1 idempotent matrices. We use the following lemma to
estimate the distance of a matrix product from the set R defined at the beginning of this section.

Lemma 3.6. Let A ∈ Rn×n
+ be column stochastic, then dist (A,R) ≤ 2‖Ã‖.

Proof. Let A1 = A − 1/nAyyT . Note that 1/nAyyT is a rank-1 column stochastic matrix. Then
dist (A,R) = inf{‖A − C‖ : C ∈ R} ≤ ‖A − 1/nAyyT ‖ = ‖A1‖. We are proving that ‖A1‖ ≤ 2‖Ã‖.
So let x = z + ty, where z ∈ S, t ∈ R are arbitrary. Then

A1x = (A− 1/nAyyT )(z + ty) = Az = Ãz ,

so

‖A1x‖ ≤ ‖Ãz‖ ≤ ‖Ã‖‖z‖ .

To complete the proof we show that ‖z‖ ≤ 2‖z + ty‖. Indeed, if z1, z2, . . . , zn are the components of z
ordered such that: z1 ≥ z2 ≥ · · · ≥ zr ≥ 0 > zr+1 ≥ · · · ≥ zn. Then ‖z‖ = |z1| + |z2| + · · · + |zn| =
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2(|z1|+ |z2|+ · · ·+ |zr|). On the other hand for t ≥ 0,

‖z + ty‖ =
n∑

j=1

|zj + t| ≥
r∑

j=1

|zj + t| ≥
r∑

j=1

|zj | =
1
2
‖z‖ ,

thus ‖z‖ ≤ 2‖z + ty‖. For t < 0 a similar argument applies.

Recall also that the matrix set M is defined in Section 2. We note that each matrix M ∈M can be written
in form

M = diag(β1, β2, ..., βn) +
1∑n

j=1 αjγj
[α1γ1, . . . , αnγn]T [(1− β1), . . . , (1− βn)] (3.3)

where αj are positive, and all βj are positive and not greater than 1. The parameters γj are also positive and
fixed for each matrix in M. Thus the matrices in M are column stochastic, and properties of W (k + 1) =
A(k)A(k − 1) · · ·A(0)W (0) are determined by product A(k)A(k − 1) · · ·A(0) and that the j-th column of
P ∈M is nonpositive then that column is equal to ej . Given these facts, and using the assumptions given
in 3.2, we now aim to prove certain convergence results for the restriction of A(k)A(k − 1) · · ·A(1) to S.
To this end we employ the notion of paracontractivity [10] from the theory of nonhomogeneous matrix
products. A linear operator A on Rn is called paracontractive with respect to the norm ‖ · ‖, if

Ax 6= x ⇒ ‖Ax‖ < ‖x‖. (3.4)

We will employ the following three results to show that almost surely products of matrices fromM converge
to the set R. The following result is proved in [7].

Theorem 3.7. Let ‖ · ‖ be a norm on Rn and let F ⊂ Rn×n be a finite set of linear operators which are
paracontractive with respect to ‖ · ‖. Then for any sequence {Ak}k∈N ⊂ FN, the sequence of left products
{AkAk−1 . . . A1}k∈N converges.

The second result shows that all matrices from M are paracontractive with respect to the 1-norm on S.

Lemma 3.8. Let A ∈M. Then Ã is paracontractive on S with respect to the 1-norm.

Proof. As before, let ‖ · ‖ denote the 1-norm. For x ∈ S we want to show (3.4). We know that any
matrix from M can be written in form (3.3), where βi ∈ (0, 1], i = 1, . . . , n and not all of them are equal
to 1. Also αi > 0 and γi > 0 for i = 1, 2, . . . , n. Now we can, without loss of generality, suppose that
β1 = β2 = · · · = βq = 1 for q < n and βi < 1, i = q + 1, . . . , n. In this case our matrix A is of the form

A =
[
Iq A12

0 A22

]
,

where Iq is the identity matrix of order q and where A12, A22 � 0 are such that the elements of each column
sums to 1. If we partition x =

[
xT

1 xT
2

]T accordingly, we have

Ax =
[
x1 + A21x2

A22x2

]
.

By Lemma 3.5 we have ‖Ax‖ ≤ ‖x‖. If ‖Ax‖ = ‖x‖, then in each entry of Ax the summands have the same
sign, because otherwise ‖Ax‖ < ‖A|x|‖ ≤ ‖|x|‖ = ‖x‖, a contradiction. For 1 ≤ j ≤ q, this implies that
for (Ax)j = xj + ajq+1xq+1 + . . . + ajnxn the signs of the summands coincide. Similarly for q + 1 ≤ j ≤ n
the signs of the summands of (Ax)j = ajq+1xq+1 + . . . + ajnxn coincide. This implies xixj ≥ 0 for all
i = 1, 2, . . . , n and all j = q + 1, q + 2, . . . , n. If we fix j ≥ q + 1 we have

0 = xj(x1 + · · ·+ xn) ≥ x2
j , (3.5)
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as x ∈ S, i.e. yT x = 0. From (3.5) we conclude that xj = 0 for all j ∈ {q + 1, q + 2, . . . , n} which also
means that Ax = x. Thus for x ∈ S, we have ‖Ax‖ ≤ ‖x‖ with equality if and only if Ax = x, as desired.

Our third result is purely technical and is stated a separate lemma to aid exposition of Theorem 3.10.

Corollary 3.9. If A ∈ M is such that its nonpositive columns are indexed by i1, i2, . . . , iq and x ∈ S is
such that Ax = x, then x lies in the subspace spanned by the vectors ei1 , ei2 , . . . , eiq .

Proof. This follows from the previous proof, as we have seen that Ax = x implies that xj = 0 for
j = q + 1, . . . , n. In other words, x ∈ span{e1, . . . , eq}. The general statement follows by permutation.

Given the three previous result it is now possible to show that almost all products of matrices from M
approach the set R.

Theorem 3.10. Let {Ak}k∈N be a sequence of matrices from M. Assume that for all i ∈ {1, 2, . . . , n}
there is a matrix Ti ∈M with positive i-th column which occurs infinitely often in {Ak}k∈N. Then

lim
k→∞

{ÃkÃk−1 · · · Ã1} = 0 .

In particular under Assumption 3.3, we have for the stochastic process {A(k)}k∈N that limk→∞ Ã(k)Ã(k−
1) · · · Ã(0) = 0 almost surely.

Proof. By Lemma 3.8, the matrices Ãk, k ∈ N are paracontractive with respect to ‖ · ‖. Using Theorem 3.7
it follows that {ÃkÃk−1 · · · Ã1}k∈N is convergent. To prove that the limit is 0 let s ∈ S. Then there exist
y ∈ S such that y = limk→∞AkAk−1 · · ·A1s. We will prove that y = 0 from which the first assertion
follows. For fixed i let {Ank

}k∈N be a subsequence of {Ak}k∈N with Ank
= Ti. Then

y = lim
k→∞

Ank
Ank−1 · · ·A1s = Ti lim

k→∞
Ank−1 · · ·A1s = Tiy.

Thus Tiy = y ∈ S since s ∈ S. By Corollary 3.9 the i-th coordinate of y is zero. Since i is arbitrary, it
follows that y = 0.

By Assumption 3.3 for each j ∈ {1, . . . , n} the probability that matrices with positive j-th column occur
infinitely often in a realization of the process is equal to 1. Thus limk→∞ Ã(k)Ã(k − 1) · · · Ã(0) = 0 with
probability 1.

The next result shows that the expected distance between A(k)A(k−1) · · ·A(1) and R decreases exponen-
tially; a fact of independent interest.

Proposition 3.11. Let {A(k)}k∈N be a sequence of random variables satisfying Assumptions 3.1 and 3.3.
Let d(k) := E(dist (A(k)A(k − 1) · · ·A(1),R)). Then there exist η < 1 and C ≥ 1 such that for all k it
holds that

d(k) ≤ Cηk. (3.6)

Proof. Let µ = 1−minj=1,nλj < 1 and let l be an integer such that 1 > nµl.

At first, note that the j-th column of the product of several matrices from M is positive if and only if one
of these matrices has positive j-th column, otherwise it is equal to ej . Consider the products of length l:
Π(l) = A(l)A(l−1)·A(1). The probability that the j-th column of Π(l) is nonpositive is oj = (1−λj)l ≤ µl.
For the probability ql that at least one column of Π(l) is nonpositive we have that ql ≤ o1+o2+· · ·+on ≤ nµl.
Thus the probability pl that Π(l) is positive satisfies pl = 1 − ql ≥ 1 − nµl > 0. Let k = dl + r
where 0 ≤ r < l. We can split the product Π(k) = A(k)A(k − 1) · · ·A(1) into product of first r terms
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D0 = A(k)A(k−1) · · ·A(k−r+1) and product of d blocks of length l: Di = A(il)A(il−1) · · ·A(l(i−1)+1),
for, i = 1, 2, . . . , d. So Π(k) = D0Dd · · ·D1. Note, that, for all i = 0, 1, . . . , d, Di, as product of column
stochastic matrices is column stochastic, and therefore, ‖Di‖ ≤ 1, and ‖D̃i‖ ≤ 1. With this notation we
have

dist (Π(k),R) ≤ 2‖Π̃(k)‖ = 2‖D̃0D̃d · · · D̃1‖ ≤ 2‖D̃d · · · D̃1‖ .

Define

δ := max{‖T̃‖ : T = AlAl−1 . . . A1 > 0, A1, A2, . . . , Al ∈M} < 1 . (3.7)

Since the set in (3.7) is finite, the maximum exist and is strictly less then 1 by Lemma 3.5. For any
j ∈ {0, 1, 2, . . . , d} the probability that exactly j of the matrices D1, D2, . . . , Dd are positive is equal to zj =(
d
j

)
pj

l (1−pl)d−j . We also know that if j of matrices D1, D2, . . . , Dd are positive then ‖(DdDd−1 · · ·D1) ˜ ‖ =
‖D̃d · · · D̃1‖ ≤ ‖D̃d‖ · · · ‖D̃1‖ ≤ δj . Thus we obtain

d(k) ≤ 2E(‖D̃d‖ · · · ‖D̃1‖) ≤ 2
d∑

j=0

zjδ
j =

= 2
d∑

j=0

(
d

j

)
(plδ)j(1− pl)d−j = 2(1 + plδ − pl)d ≤ Cηk ,

where for the last inequality we choose

η = (1− pl + plδ)1/l < 1 and C = 2/ηl . (3.8)

This shows the assertion.

4. Invariant measures. In this section we study the existence of invariant measures of the Markov
process {W (k)}k∈N. Throughout we assume that Assumptions 3.1 and 3.3 are satisfied. Our considerations
are based on the results presented in [23] to which we refer the reader for further background material.
We briefly present some basic properties for the Markov chain {W (k)}k∈N on the simplex Σ. By B(Σ) we
denote the Borel σ-algebra of Σ.

Associated to our Markov chain there is a transition kernel P (x, X) for x ∈ Σ, X ∈ B(Σ), which gives
the probability to reach the set X from the point x. This transition kernel acts on continuous functions
h : Σ → R through

Ph(x) =
∫

Σ

h(y)P (x, dy) =
µ∑

i=1

ρih(Mix) . (4.1)

It is obvious that Ph is continuous for continuous h, so that P is (weak) Feller. Furthermore we have
‖Ai‖ ≤ 1, i = 1, . . . , µ, so that ‖Ai(x− y)‖ ≤ ‖x− y‖. Using the uniform continuity of h it follows that for
any continuous function h : Σ → R, the sequence

P kh , k ∈ N ,

defined inductively through repeated application of (4.1), is equicontinuous. Markov chains whose transi-
tion kernel have this property are called e-chains, see [23].
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An important notion in the study of Markov chains are invariant probabilities. Recall, that a probability
measure π is called invariant for a Markov process, if

π(X) =
∫

Σ

P (x, X)dπ(x) , ∀X ∈ B(Σ)

that is, intuitively, the distribution of mass on Σ given by the probability measure π is not changed if it is
rearranged according to the evolution of the Markov process.

As we are considering an e-chain we obtain from [23, Theorem 12.0.1] that an invariant probability exists
in our case. We aim to show its uniqueness. To this end we first study the possible support of invariant
measures. We introduce the set of sequences

L := {{Ak}k∈N ∈MN | {Ak}k∈N satisfies the conditions of Theorem 3.10}

By Theorem 3.10 we know that the left products of a sequence {Ak}k∈N ∈ L approach the set of rank one,
column stochastic matrices. We define the set of limit points of such sequences by

RL := {R ∈ R | ∃{Ak}k∈N ∈ L, kl →∞ : lim
l→∞

Π(kl) = R} .

As the matrices R ∈ R are column stochastic and of rank 1 they can be represented in the form R = zyT ,
where z � 0 and ‖z‖ = 1. Thus the set RL naturally defines a subset of the simplex Σ by

C := {z ∈ Σ | zyT ∈ RL} . (4.2)

We note the following properties of C.

Proposition 4.1. Consider a finite set of AIMD matrices M and the associated deterministic system
(3.1) and the Markov chain (3.2). Let C be defined by (4.2), then

(i) C is compact,
(ii) C is forward invariant under (3.1),
(iii) for any solution {x(k)}k∈N, x(0) ∈ Σ of (3.1) the distance

dist (x(k), C)

is nonincreasing,
(iv) for any z ∈ C and any open neighborhood U ⊂ Σ of z there is a k0 > 0 such that P k(x, U) > δ > 0,

for all k ≥ k0 and all x ∈ Σ,
(v) For any initial condition W0 ∈ Σ we have almost surely

lim
k→∞

dist (W (k), C) = 0 .

Proof. (i) This is clear.

(ii) Let x ∈ C, B ∈M. By definition there exists a sequence {Ak}k∈N ∈ L and kl →∞ such that

Π(kl) = Akl
Akl−1 . . . A1 → zyT .

We write Π(kl) = zyT +∆k, where ‖∆k‖ → 0. Now define a new sequence by repeating our initial sequence
sequence and inserting B, i.e. we consider the sequence

{A1, A2, . . . , Ak1 , B, A1, A2, . . . , Ak2 , B,A1, . . . , Ak3 , B, A1, . . .} .
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Denoting products of length l of this sequence by Ψ(l) we have

Ψ(l +
l∑

j=1

kj) = BΠ(kl)Ψ((l − 1) +
l−1∑
j=1

kj) = B(zyT + ∆k)Ψ((l − 1) +
l−1∑
j=1

kj)

= BzyT + B∆kΨ((l − 1) +
l−1∑
j=1

kj) ,

where we have used that all matrices are column stochastic in the last step. As ‖∆k‖ → 0, this implies
that Ψ(l +

∑l
j=1 kj) → BzyT as l →∞. The constructed sequence clearly lies in L so that Bz ∈ C, which

we wanted to show.

(iii) Let x ∈ Σ. By (i) there is a z ∈ C such that dist (x, C) = ‖x− z‖. Then for A ∈M it follows using (ii)
that

dist (Ax, C) ≤ ‖Ax−Az‖ ≤ ‖x− z‖ = dist (x, C) .

This shows the assertion.

(iv) Fix z ∈ C and let U ⊂ Σ be an open neighborhood of z. Then we may choose ε > 0 such that
x ∈ Σ, ‖x − z‖ < ε implies x ∈ U . By definition of C there exists a k0 and a product Π(k0) such that
‖Π(k0)− zyT ‖ < ε. This implies for any x ∈ Σ that

‖Π(k0)x− z‖ = ‖(Π(k0)− zyT )x‖ < ε ,

so that Π(k0)x ∈ U and consequently, P k0(x,U) > δ > 0 for all x ∈ Σ. As this probability is independent
of x we see in particular, that P k(z, U) > δ > 0 for all k ≥ k0, by considering the transition from k − k0

to k.

(v) This is an immediate consequence of Theorem 3.10.

In the terminology of Markov chains, we have proved in Proposition 4.1 (iv) that each z ∈ C is positive
and aperiodic for the Markov chain {W (k)}k∈N. For a general definition of positive and aperiodic states
of an e-chain, see [23, p. 456, p. 459]. Using the existence of positive and aperiodic states we obtain the
following fundamental statement from [23, Theorem 18.0.2].

Theorem 4.2. Consider a finite set of AIMD matrices M and the associated Markov chain (3.2). Then

(i) there exists a unique invariant probability π,
(ii) for every x ∈ Σ and every continuous function h : Σ → R we have that if W (0) = x, then

lim
k→∞

1
k

k−1∑
j=0

h(W (j)) =
∫

Σ

h(y)dπ(y) , in probability,

(iii) for every x ∈ Σ and every continuous function h : Σ → R we have∫
Σ

h(y)P k(x, dy) →
∫

Σ

h(y)dπ(y) , as k →∞ .

The previous result can be sharpened by using the special structure of the set of AIMD matrices M.

Theorem 4.3. Consider a finite set of AIMD matrices M and the associated Markov chain (3.2) with its
unique invariant probability π. Then

suppπ = C .
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Proof. We first show that C ⊂ suppπ. Assume to the contrary that x ∈ C \ suppπ. Then there exists an
open neighborhood V of x. By Proposition 4.1 (iv) it follows that P k(x, V ) > 0 for some k large enough,
this contradicts x /∈ supp π.

To show the converse let ε > 0 and consider the set

Uε := {x ∈ Σ | dist (x, C) > ε} .

As the distance of W (k) to C is nonincreasing for every sample path by Proposition 4.1 (iii), this shows
that P (x,Uε) > 0 implies x ∈ Uε. Thus

π(Uε) =
∫

Σ

P (x,Uε)dπ(x) =
∫

Uε

P (x,Uε)dπ(x) .

If π(Uε) > 0 this shows that with probability 1 any evolution starting in Uε stays in Uε. This is a
contradiction to dist (W (k), C) → 0 with probability 1, which we know by Proposition 4.1 (v). This shows
π(Uε) = 0 and as ε > 0 was arbitrary we obtain the assertion.

The interesting point of the previous result is that the support of the invariant probability π is determined
by the set of matrices M and only the distribution of mass on that set changes under variation of the
probabilities ρi. In the next section we show that the expected values of the average can be elegantly
expressed in terms of the data, without the knowledge of the invariant probability π.

5. Main Results. We now present the main results of the paper. For the system defined in Section
3.2 we show that following statements are true.

(i) The expectation of Π(k) converges to a fixed rank-1 matrix. A consequence of this result is that
the random variable W (k) always converges in expectation to a well defined stochastic equilibrium.

(ii) The stochastic process {W (k)} satisfies the weak law of large numbers. A important consequence
of this result is that the vector of window sizes W (k), averaged over time, converges in probability
to a well defined stochastic equilibrium.

It is prudent at this point to note that it follows from the discussion that the expectation of the random
variable A(k) is independent of k, and is equal to:

E(A(k)) = E(A(1)) =
µ∑

i=1

ρiMi. (5.1)

Given Assumption 3.3, this immediately implies that matrix E(A(1)) is a positive column stochastic
matrix and consequently has a unique Perron eigenvector xp given by E(A(1))xp = xp, xT

p y = 14. Using
the independence of the random variables A(k), this shows the following statement.

Theorem 5.1. Consider a finite set of AIMD matrices M and let {A(k)}k∈N be an i.i.d. stochastic process
satisfying Assumptions 3.1 and 3.3. Let Π(k) be the random variable defined by

Π(k) = A(k − 1)A(k − 2)....A(0).

Then, the expectation of Π(k) is given by

E(Π(k)) = (
µ∑

i=1

ρiMi)k; (5.2)

4Recall that for any positive column stochastic matrix V with Perron eigenvector xp, it follows that limk→∞ V k = xpyT

[4]
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and the asymptotic behaviour of E(Π(k)) satisfies

lim
k→∞

E(Π(k)) = xpy
T , (5.3)

where the vector xp � 0 is uniquely determined by

(
µ∑

i=1

ρiMi)xp = xp , xT
p y = 1 . (5.4)

We are now interested in the random variable W (k) defined by

W (k) :=
1

k + 1

k∑
i=0

W (i) =

(
1

k + 1

k∑
i=0

Π(i)

)
W (0) = Π(k)W (0),

where

Π(k) = A(k − 1)A(k − 2) . . . A(0) and Π(k) =
1

k + 1

k∑
i=0

Π(i).

Corollary 5.2. Consider a finite set of AIMD matrices M, let {A(k)}k∈N be an i.i.d. stochastic process
satisfying Assumptions 3.1 and 3.3. Then the expectation of W (k) is given by

E(W (k)) =
1

k + 1
(I + E(A(1)) + E(A(1))2 + · · ·+ E(A(1))k)W (0)

and

lim
k→∞

E(W (k)) = xpy
T W (0) ,

with xp defined by (5.4).

Proof. This follows since E(A(1))k → xpy
T as k →∞.

The following theorem shows how the average distribution of network capacities can be characterized in
probability.

Theorem 5.3. Consider a finite set of AIMD matrices M and the associated Markov chain (3.2). Let
Assumptions 3.1 and 3.3 be satisfied. Then, for every ε > 0,

lim
k→∞

P (‖W (k)− xpy
T W (0)‖ > ε) = 0, (5.5)

where the vector xp is defined by (5.4).

Proof. This is a consequence of Theorem 4.2 and Corollary 5.2. To be precise by Theorem 4.2 (ii) we have
that if W (0) ∈ Σ then

W (k) →
∫

Σ

Wdπ(W ) =: Eπ(W ) ,

in probability. (To obtain the desired result for vectors from the scalar results presented in Theorem 4.2,
it suffices to consider the projections onto each coordinate.) If W (0) � 0 is not in Σ this equation scales
by yT W (0) by linearity. Thus in particular E(W (k)) → Eπ(W )yT W (0). As by Corollary 5.2 we have
E(W (k)) → xpy

T W (0), this implies (5.5).

Summarizing, the previous result says that the average distribution of the resources of the network is given
by the vector xp which can be simply obtained by finding the dominant eigenvalue of

∑
ρiMi � 0.
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5.1. Stochastic equilibria of AIMD networks. Theorems 5.1 and 5.3 provide remarkable insights
into the behaviour of communication networks employing AIMD congestion control. In principle, they
relate the asymptotic properties of such networks to the Perron eigenvector of E(A(1)). Since E(A(1))
is easily computable, it is not only possible to predict, but also to control, the asymptotic properties of
such networks through judiciously manipulating the AIMD parameters and/or the probabilities ρi. In this
context it is natural to ask whether the Perron eigenvector of E(A(1)) can be directly related to the AIMD
parameters of the network.

(i) Time-invariant networks : Here M = Ā1 and the set of AIMD parameters has one element:
((α1, . . . , αn), (β1, . . . , βn)). In this case it is readily shown that

E(A(1)) = diag(δ1, . . . , δn) +
1∑n

i=1 αiγi
[α1γ1, . . . , αnγn]T [1− δ1, . . . , 1− δn], (5.6)

where δi = 1− λi(1− βi). Further, it follows directly by inspection that the Perron eigenvector of
E(A(1)) is given by

xp = [
α1γ1

λ1(1− β1)
, . . . ,

αnγn

λn(1− βn)
].

Consequently, the network convergence properties and the rates of convergence of E(W (k)) can
be controlled directly by manipulating the network parameters (αi, βi, ρi). Clearly, such networks
are of great interest since most practical wireline networks (including those employing TCP) fall
into this category. A more detailed discussion of such network types can be found in [25].

(ii) Time-varying networks : In this case it is convenient to consider two cases: (a) networks where
the the αi are fixed in time and the βi vary; and (b) networks where both αi and βi vary in time.
In the first case it is again readily shown that

E(A(1)) = diag(δ1, . . . , δn) +
1∑n

i=1 αiγi
[α1γ1, . . . , αnγn]T [1− δ1, . . . , 1− δn], (5.7)

where δi = E(βi) < 1. As before xp can be found by inspection and is given by

xp = [
α1γ1

1− δ1
, . . . ,

αnγn

1− δn
]. (5.8)

In the more general case it appears to be difficult to derive explicit formulae for xp. One simplifi-
cation occurs when the following situation prevails. The matrix E(A(1)) can be written

E(A(1)) =
h∑

j=1

∑
Mi∈Āj

ρiMi =
h∑

j=1

Zj . (5.9)

In the case when the Zj are positive matrices with a common perron eigenvector xp it follows that
xp is also the Perron eigenvector of E(A(1)) and the stochastic equilibria of the corresponding
communication network is defined by xp. Hence, it follows that time-varying networks constructed
by switching between networks with a common equilibrium results in a constituent network with
the same equilibrium state (although the rate of convergence to this equilibrium is difficult to
bound).

6. Experimental results. The mathematical results derived in Section 5 are surprisingly simple
when one considers the potential mathematical complexity of the unsynchronised network model (2.6).
The simplicity of these results is a direct consequence of Assumptions 3.1 and 3.3. The objective of this
section is therefore twofold; (i) to validate the unsynchronised model (2.6) in a general context; and (ii) to
validate the analytical predictions of the model and thereby confirm that the aforementioned assumptions
are appropriate in practical situations.
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Fig. 6.1. Dumbbell topology.

Fig. 6.2. Predictions of the network model compared with packet-level NS simulation results. Key: ◦ flow 1 (model),
♦ flow 2 (model), - flow 1 (NS), – flow 2 (NS). Network parameters: B=100Mb, qmax=80 packets, T̄=20ms, T0=102ms;
T1=42ms; no background web traffic.

6.1. Networks of two Unsynchronised Flows: Ensemble averages. We first consider the be-
haviour of two TCP flows in the dumbbell topology shown in Figure 6.1. Our analytic results are based
upon two fundamental assumptions: (i) that the dynamics of the evolution of the source congestion win-
dows can be accurately modelled by equation (2.6); and (ii) the allocation of packet drops amongst the
sources at congestion can be described by random variables. We consider each of these assumptions in
turn.

(i) Accuracy of dynamic model. A comparison of the predictions the model (2.6) against the output
of a packet-level NS simulation is depicted in Figure 6.2. Here, the pattern of packet drops
observed in the simulation is used to select the appropriate matrix A(k) from the set M at each
congestion event when evaluating (2.6). As can be seen, the model output is very accurate. Also
plotted in Figure 6.3 is the evolution of the linear combination

∑n
i=1 γiwi where the γi are defined

in Equation (2.12). It can be seen that
∑n

i=1 γiwi has the same value at each congestion event
thereby validating the constraint (2.12) used in the model.

(ii) Validity of random drop model. It is well known that networks of TCP flows with drop-tail queues
can exhibit a rich variety of deterministic drop-behaviours [9]. However, most real networks carry
at least a small amount web traffic. In Figure 6.4 we plot NS simulation results where the mean
congestion window of long-lived flows as the level of background web traffic is varied (background
information on the web traffic generator in NS is described in [28]). To illustrate the impact of
small amounts of web traffic, these results are given for a network condition where phase effects are
particularly pronounced: the congestion window time histories with no web traffic are shown in
Figure 6.5. It can be seen that the time histories appear to jump between two persistent regimes.
In the first regime flow 1, which has a propagation delay of 122ms, achieves a larger congestion
window than flow 2, which has a propagation time of only 62ms, see Figure 6.5(b). The reverse
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Fig. 6.3. Evolution of
Pn

i=1 γiwi. Network parameters: B=100Mb, qmax=80 packets, T̄=20ms, T0=102ms; T1=42ms;
no background web traffic.

Fig. 6.4. Variation of mean wi(k) with level of background web traffic in dumbbell topology of Figure 6.1. Key: +NS
simulation result; · mathematical model (2.6); ◦ Theorem 5.1. Network parameters: B=100Mb, qmax=80 packets, T̄=20ms,
T0=102ms; T1=42ms.

reverse is true in the second regime, see Figure 6.5(c). The impact of background web traffic is
evident from Figure 6.6: despite its small volume, the effect of this traffic is enough to disrupt
the coherent structure associated with phase effects and other complex phenomena previously
observed in simulations of unsynchronised networks [9]. This is confirmed by statistical tests of
this measured data, which confirm the validity of Assumptions 3.1 and 3.3. Space considerations,
however, prevent the inclusion of detailed test results in the present paper.
By performing repeated packet-level simulations with different random seed values for the web
traffic generator, the ensemble average congestion window can be estimated. We can also deter-
mine from the simulation results the proportion of congestion events corresponding to both flows
simultaneously seeing a packet drop, flow 1 seeing a drop only, and flow 2 seeing a drop only.
Using these estimates of the probabilities ρi, the ensemble average congestion window can also be
estimated from Theorem 5.1. An example of the resulting estimates are shown in Figure 6.7. Here,
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(a) (b) t = 3000s to t = 3750s

(c) t = 4200s to t = 4900s

Fig. 6.5. Congestion window time history corresponding to results in Figure 6.4 with no web traffic. Network parameters:
B=100Mb, qmax=80 packets, T̄=20ms, T0=102ms; T1=42ms.

we run simulations for 250s with one flow started at 0 seconds and a second TCP flow started after
50 seconds (giving the first flow the opportunity to reach its steady state). A small amount of
bi-directional background web traffic is also included and slow-start is switched off to allow us to
focus on the congestion avoidance behaviour. The average congestion window evolution, estimated
from 200 runs of the simulation, is plotted in Figure 6.7 together with the predictions of Theorem
5.1. It can be seen that the agreement is remarkably good. Not only is the long-term average
accurately captured, but also the manner in which the flows converge to this long-term average.
That is, the model accurately describes the dynamic evolution over time, on average, of the TCP
flows and thereby is useful for the analysis of both short and long-lived flows. The results shown in
Figure 6.7 are for a single choice of network conditions, but the model remains accurate for other
conditions, see for example Figures 6.8-6.9. As can be seen from the figures, the predictions of
Theorem 5.1 and the NS-simulations are consistently in close agreement.
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(a) (b) t = 3000s to t = 3750s

Fig. 6.6. Congestion window time history corresponding to results in Figure 6.4 with 0.4% web traffic. Network
parameters: B=100Mb, qmax=80 packets, T̄=20ms, T0=102ms; T1=42ms.

Fig. 6.7. Variation of ensemble mean wi(k) with congestion epoch in dumbbell topology of Figure 6.1. Key: +NS sim-
ulation result (average over 200 runs); solid line Theorem 5.1. Network parameters: B=50Mb, qmax=50 packets, T̄=20ms,
T0=102ms, T1=2ms; approximately 0.5% bidirectional background web traffic.
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