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GLOBAL SEARCH BASED ON EFFICIENT DIAGONAL

PARTITIONS AND A SET OF LIPSCHITZ CONSTANTS∗

YAROSLAV D. SERGEYEV† AND DMITRI E. KVASOV‡

Abstract. In the paper, the global optimization problem of a multidimensional “black-box”
function satisfying the Lipschitz condition over a hyperinterval with an unknown Lipschitz constant
is considered. A new efficient algorithm for solving this problem is presented. At each iteration of the
method a number of possible Lipschitz constants is chosen from a set of values varying from zero to
infinity. This idea is unified with an efficient diagonal partition strategy. A novel technique balancing
usage of local and global information during partitioning is proposed. A new procedure for finding
lower bounds of the objective function over hyperintervals is also considered. It is demonstrated by
extensive numerical experiments performed on more than 1600 multidimensional test functions that
the new algorithm shows a very promising performance.
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1. Introduction. Many decision-making problems arising in various fields of
human activity (technological processes, economic models, etc.) can be stated as
global optimization problems (see, e.g., [7, 26, 33]). Objective functions describing
real-life applications are very often multiextremal, non-differentiable, and hard to be
evaluated. Numerical techniques for finding solutions to such problems have been
widely discussed in literature (see, e.g., [5, 14, 15, 26, 33]).

In this paper, the Lipschitz global optimization problem is considered. This type
of optimization problems is sufficiently general both from theoretical and applied
points of view. In fact, it is based on a rather natural assumption that any limited
change in the parameters of the objective function yields some limited changes in
the characteristics of the object’s performance. The knowledge of a bound on the
rate of change of the objective function, expressed by the Lipschitz constant, allows
one to construct global optimization algorithms and to prove their convergence (see,
e.g., [14, 15, 26, 33]).

Mathematically, the global optimization problem considered in the paper can be
formulated as minimization of a multidimensional multiextremal “black-box” func-
tion that satisfies the Lipschitz condition over a domain D ⊂ R

N with an unknown
constant L, i.e., finding the value f∗ and points x∗ such that

f∗ = f(x∗) = min
x∈D

f(x),(1.1)

|f(x′)− f(x′′)| ≤ L‖x′ − x′′‖, x′, x′′ ∈ D, 0 < L < ∞,(1.2)

where

D = [a, b ] = {x ∈ R
N : a(j) ≤ x(j) ≤ b(j), 1 ≤ j ≤ N},(1.3)
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a, b are given vectors in R
N , and ‖ · ‖ denotes the Euclidean norm.

The function f(x) is supposed to be non-differentiable. Hence, optimization meth-
ods using derivatives cannot be used for solving problem (1.1)–(1.3). It is also assumed
that evaluation of the objective function at a point (also referred to as a ‘function
trial’) is a time-consuming operation.

Numerous algorithms have been proposed (see, e.g., [5, 14, 15, 18, 21, 23, 26,
27, 29, 32, 33]) for solving problem (1.1)–(1.3). One of the main questions to be
considered in this occasion is: How can the Lipschitz constant L be specified? There
are several approaches to specify the Lipschitz constant. First of all, it can be given a
priory (see, e.g., [14, 15, 23, 27, 32]). This case is very important from the theoretical
viewpoint but is not frequently encountered in practice. The more promising and
practical approaches are based on an adaptive estimation of L in the course of the
search. In such a way, algorithms can use either a global estimate of the Lipschitz
constant (see, e.g., [21, 26, 33]) valid for the whole region D from (1.3), or local
estimates Li valid only for some subregions Di ⊆ D (see, e.g., [20, 24, 29, 30, 33]).

Since the Lipschitz constant has a significant influence on the convergence speed
of the Lipschitz global optimization algorithms, the problem of its specifying is of
the great importance. In fact, accepting too high value of L for a concrete objective
function means assuming that the function has complicated structure with sharp peaks
and narrow attraction regions of minimizers within the whole admissible region. Thus,
too high value of L (if it does not correspond to the real behavior of the objective
function) leads to a slow convergence of the algorithm to the global minimizer.

Global optimization algorithms using in their work a global estimate of L (or some
value of L given a priori) do not take into account local information about behavior of
the objective function over every small subregion of D. As it has been demonstrated
in [29, 30, 33], estimating local Lipschitz constants allows us to accelerate significantly
the global search. Naturally, balancing between local and global information must be
performed in an appropriate way to avoid the missing of the global solution.

Recently, an interesting approach unifying usage of local and global information
during the global search has been proposed in [18]. At each iteration of this new
algorithm, called DIRECT, instead of only one estimate of the Lipschitz constant a
set of possible values of L is used.

As many Lipschitz global optimization algorithms, DIRECT tries to find the
global minimizer by partitioning the search hyperinterval D into smaller hyperinter-
vals Di using a particular partition scheme described in [18]. The objective function
is evaluated only at the central point of a hyperinterval. Each hyperinterval Di of
a current partition of D is characterized by a lower bound of the objective function
over this hyperinterval. It is calculated similarly to [27, 32] taking into account the
Lipschitz condition (1.2). A hyperinterval Di is selected for a further partitioning if
and only if for some value L̃ > 0 (which estimates the unknown constant L) it has the
smallest lower bound of f(x) with respect to the other hyperintervals. By changing L̃
from zero to infinity, at each iteration DIRECT selects several ‘potentially optimal’
hyperintervals (see [10, 13, 18]) in such a way that for a particular estimate of the
Lipschitz constant the objective function could have the smallest lower bound over
every potentially optimal hyperinterval.

Due to its simplicity and efficiency, DIRECT has been widely adopted in practical
applications (see, e.g., [1, 2, 3, 4, 10, 13, 22, 35]). In fact, DIRECT is a derivative-
free deterministic algorithm which does not require multiply runs. It has only one
parameter which is easy to set (see [18]). The center-sampling partition strategy of
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DIRECT reduces the computational complexity in high-dimensional spaces allowing
DIRECT to demonstrate good performance results (see [11, 18]).

However, some aspects which can limit the applications of DIRECT have been
pointed out by several authors (see, e.g., [4, 6, 13, 17]). First of all, it is difficult to
apply for DIRECT some meaningful stopping criterion, such as, for example, stopping
on achieving a desired accuracy in solution. This happens because DIRECT does not
use a single estimate of the Lipschitz constant but a set of possible values of L.
Although several attempts of introducing a reasonable criterion of arrest have been
done (see, e.g., [2, 4, 10, 13]), termination of the search process caused by exhaustion
of the available computing resources (such as maximal number of function trials)
remains the most interesting for practical engineering applications.

Another important observation regarding DIRECT is related to the partition and
sampling strategies adopted by the algorithm (see [18]) which simplicity turns into
some problems. As it has been outlined in [4, 6, 22], DIRECT is quick to locate
regions of local optima but slow to converge to the global one. This can happen for
several reasons. The first one is a redundant (especially in high dimensions, see [17])
partition of hyperintervals along all longest sides. The next cause of DIRECT’s slow
convergence can be excessive partition of many small hyperintervals located in the
vicinity of local minimizers which are not global ones. Finally, DIRECT — like
all center-sampling partitioning schemes — uses a relatively poor information about
behavior of the objective function f(x). This information is obtained by evaluating
f(x) only at one central point of each hyperinterval without considering the adjacent
hyperintervals. Due to this fact, DIRECT can manifest slow convergence (as it has
been highlighted in [16]) in cases when the global minimizer lies at the boundary of
the admissible region D from (1.3).

There are several modifications to the original DIRECT algorithm. For example,
in [17], partitioning along only one long side is suggested to accelerate convergence
in high dimensions. The problem of stagnation of DIRECT near local minimizers
(emphasized, e.g., in [6]) can be attacked by changing the parameter of the algorithm
(see [18]) preventing DIRECT from being too local in its orientation (see [6, 10, 13, 17,
18]). But in this case the algorithm becomes too sensitive to tuning such a parameter,
especially for difficult “black-box” global optimization problems (1.1)–(1.3). In [1, 35],
another modification to DIRECT, called ‘aggressive DIRECT’, has been proposed. It
subdivides all hyperintervals with the smallest function value for each hyperinterval
size. This results in more hyperintervals partitioned at every iteration, but the number
of hyperintervals to be subdivided grows up significantly. In [10, 11], the opposite idea
which is more biased toward local improvement of the objective function has been
studied. Results obtained in [10, 11] demonstrate that this modification seems to be
more suitable for low dimensional problems with a single global minimizer and a few
local minimizers.

The goal of this paper is to present a new algorithm which would be oriented (in
contrast with the algorithm from [10, 11]) on solving ‘difficult’ multidimensional mul-
tiextremal “black-box” problems (1.1)–(1.3). It uses a new technique for selection of
hyperintervals to be subdivided which is unified with a new diagonal partition strat-
egy. A new procedure for estimation of lower bounds of the objective function over
hyperintervals is combined with the idea (introduced in DIRECT) of usage of a set of
Lipschitz constants instead of a unique estimate. As demonstrated by extensive nu-
merical results, application of the new algorithm to minimizing hard multidimensional
“black-box” functions leads to significant improvements.
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The paper is organized as follows. In Section 2, a theoretical background of
the new algorithm — a new partition strategy, a new technique for lower bound-
ing of the objective function over hyperintervals, and a procedure for selection of
‘non-dominated’ hyperintervals for eventual partitioning — is presented. Section 3
is dedicated to description of the algorithm and to its convergence analysis. Finally,
Section 4 contains results of numerical experiments executed on more than 1600 test
functions.

2. Theoretical background. This section consists of the following three parts.
First, a new partition strategy developed in the framework of diagonal approach is
described. The second part presents a new procedure for estimation of lower bounds of
the objective function over hyperintervals. The third part is dedicated to description
of a procedure for determining non-dominated hyperintervals — hyperintervals that
have the smallest lower bound for some particular estimate of the Lipschitz constant.

2.1. Partition strategy. In global optimization algorithms, various techniques
for adaptive partition of the admissible region D into a set of hyperintervals Di are
used (see, e.g., [14, 18, 26, 31]) for solving (1.1)–(1.3). A current partition {Dk} of D
in the course of an iteration k ≥ 1 of an algorithm can be represented as

D = ∪m(k)+∆m(k)
i=1 Di, Di ∩Dj = δ(Di) ∩ δ(Dj), i 6= j.(2.1)

Here, δ(Di) denotes the boundary of Di, m(k) is the number of hyperintervals at the
beginning of the iteration k, and ∆m(k) is the current number of new hyperintervals
produced during the k-th iteration. For example, if only one new hyperinterval is
generated at every iteration then ∆m(k) = 1.

Over each hyperinterval Di ∈ {Dk}, approximation of f(x) is based on results
obtained by evaluating f(x) at some points x ∈ D. For example, DIRECT [18]
involves partitioning with evaluation of f(x) at the central points of hyperintervals
(note that for DIRECT the number ∆m(k) in (2.1) can be greater than 1).

In this paper, the diagonal approach proposed in [25, 26] is considered. In this
approach, the function f(x) is evaluated only at two vertices ai and bi of the main
diagonals of each hyperinterval Di independently of the problem dimension (recall
that each evaluation of f(x) is a time-consuming operation).

Among attractions of the diagonal approach there are the following two. First,
the objective function is evaluated at two points at each hyperinterval. Thus, di-
agonal algorithms obtain a more complete information about the objective function
than central-sampling methods. Second, many efficient one-dimensional global opti-
mization algorithms can be easily extended to the multivariate case by means of the
diagonal scheme (see, e.g, [20, 21, 24, 25, 26]).

As shown in [21, 31], diagonal global optimization algorithms based on widely
used partition strategies (such as bisection or partition 2N used in [25, 26]) produce
many redundant trials of the objective function. This redundancy slows down the
algorithm execution because of high time required for the evaluations of f(x). It also
increases the computer memory allocated for storing the redundant information.

The new partition strategy proposed in [31] (see also [21]) overcomes these draw-
backs of conventional diagonal partition strategies. We start its description by a
two-dimensional example in Fig. 1. In this figure, partitions of the admissible re-
gion D produced by the algorithm at the initial iterations are presented. We suppose
just for simplicity that at each iteration only one hyperinterval can be subdivided.
Trial points of f(x) are represented by black dots. The numbers around these dots
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Fig. 1. An example of subdivisions by a new partition strategy.

indicate iterations at which the objective function is evaluated at the corresponding
points. The terms ‘interval’ and ‘subinterval’ will be used to denote two-dimensional
rectangular domains.

In Fig. 1a, situation after the first two iterations is presented. At the first iteration,
the objective function f(x) is evaluated at the vertices a and b of the search domain
D = [a, b]. At the next iteration, the interval D is subdivided into three subintervals
of equal area (equal volume in general case). This subdivision is performed by two
lines (hyperplanes) orthogonal to the longest edge of D and passing through points u
and v (see Fig. 1a). The objective function is evaluated at both points u and v.

Suppose that the interval shown in grey in Fig. 1a is chosen for the further parti-
tioning. Thus, at the third iteration, three smaller subintervals appear (see Fig. 1b).
It seems that a trial point of the third iteration is redundant for the interval (shown
in grey in Fig. 1b) selected for the next splitting. But in reality, Fig. 1c demonstrates
that one of the two points of the fourth iteration coincides with the point 3 at which
f(x) has already been evaluated. Therefore, there is no need to evaluate f(x) at this
point again, since the function value obtained at the previous iteration can be used.
This value can be stored in a special vertex database and is simply retrieved when
it is necessary without reevaluation of the function. For example, Fig. 1d illustrates
situation after 11 iterations. Among 22 points at which the objective function is to be
evaluated, there are 5 repeated points. That is, f(x) is evaluated 17 rather than 22
times. Note also that the number of generated intervals (equal to 21) is greater than
the number of trial points (equal to 17). Such a difference becomes more pronounced
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in the course of further subdivisions (see [21]).
Let us now describe the general procedure of hyperinterval subdivision. Without

loss of generality, hereafter we assume that the admissible region D in (1.3) is an
N -dimensional hypercube. Suppose that at the beginning of an iteration k ≥ 1 of
the algorithm the current partition {Dk} of D = [a, b] consists of m(k) hyperintervals
and ∆m(k) ≥ 0 new hyperintervals have been already obtained. Let a hyperinterval
Dt = [at, bt] be chosen for partitioning too. The operation of partitioning the selected
hyperinterval Dt is performed as follows (we omit the iteration index in the formulae).

Step 1. Determine points u and v by the following formulae

u = (a(1), . . . , a(i− 1), a(i) +
2

3
(b(i)− a(i)), a(i+ 1), . . . , a(N)),(2.2)

v = (b(1), . . . , b(i− 1), b(i) +
2

3
(a(i)− b(i)), b(i+ 1), . . . , b(N)),(2.3)

where a(j) = at(j), b(j) = bt(j), 1 ≤ j ≤ N , and i is given by the equation

i = argmin max
1≤j≤N

|b(j)− a(j)|.(2.4)

Get (evaluate or read from the vertex database) the values of the objective
function f(x) at the points u and v.

Step 2. Divide the hyperinterval Dt into three hyperintervals of equal volume by two
parallel hyperplanes that are perpendicular to the longest edge i of Dt and
pass through the points u and v.
The hyperintervals Dt is so substituted by three new hyperintervals with

indices t′ = t, m + ∆m + 1, and m +∆m + 2 determined by the vertices of
their main diagonals

at′ = am+∆m+2 = u, bt′ = bm+∆m+1 = v,(2.5)

am+∆m+1 = at, bm+∆m+1 = v,(2.6)

am+∆m+2 = u, bm+∆m+2 = bt.(2.7)

Step 3. Augment the number of hyperintervals generated during the iteration k:

∆m = ∆m(k) := ∆m(k) + 2.(2.8)

The existence of a special indexing of hyperintervals establishing links between
hyperintervals generated at different iterations has been theoretically demonstrated
in [31]. It allows one to store information about vertices and the corresponding val-
ues of f(x) in a special database avoiding in such a manner redundant evaluations
of f(x). The objective function value at a vertex is calculated only once, stored in the
database, and read when required. The new partition strategy generates trial points
in such a way that one vertex where f(x) is evaluated can belong to several (up
to 2N) hyperintervals (see, for example, a trial point at the 8-th iteration in Fig. 1d).
Since the time-consuming operation of evaluation of the function is replaced by a
significantly faster operation of reading (up to 2N times) the function values from the
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database, the new partition strategy considerably speeds up the search and also leads
to saving computer memory. It is particularly important that the advantage of the
new scheme increases with the growth of the problem dimension (see [21, 31]).

The new strategy can be viewed also as a procedure generating a new type of
space-filling curve — adaptive diagonal curve. This curve is constructed on the main
diagonals of hyperintervals obtained during subdivision of D. The objective function
is approximated over the multidimensional region D by evaluating f(x) at the points
of one-dimensional adaptive diagonal curve. The order of partition of this curve is
different within different subintervals of D. If selection of hyperintervals for parti-
tioning is realized appropriately in an algorithm, the curve condenses in the vicinity
of the global minimizers of f(x) (see [21, 31]).

2.2. Lower bounds. Let us suppose that at some iteration k > 1 of the global
optimization algorithm the admissible region D has been partitioned into hyperin-
tervals Di ∈ {Dk} defined by their main diagonals [ai, bi]. At least one of these
hyperintervals should be selected for further partitioning. In order to make this se-
lection, the algorithm estimates the goodness (or, in other words, characteristics) of
the generated hyperintervals with respect to the global search. The best (in some
predefined sense) characteristic obtained over some hyperinterval Dt corresponds to
a higher possibility to find the global minimizer within Dt. This hyperinterval is sub-
divided at the next iteration of the algorithm. Naturally, more than one ‘promising’
hyperinterval can be partitioned at every iteration.

One of the possible characteristics of a hyperinterval can be an estimate of the
lower bound of f(x) over this hyperinterval. Once all lower bounds for all hyperinter-
vals of the current partition {Dk} have been calculated, the hyperinterval with the
smallest lower bound can be selected for the further partitioning.

Different approaches to finding lower bounds of f(x) have been proposed in lit-
erature (see, e.g., [14, 18, 23, 26, 27, 32, 33]) for solving problem (1.1)–(1.3). For
example, given the Lipschitz constant L, in [14, 23, 27] a support function for f(x)
is constructed as the upper envelope of a set of N -dimensional circular cones of the
slope L. Trial points of f(x) are coordinates of the vertices of the cones. At each
iteration, the global minimizer of the support function is determined and chosen as a
new trial point. Finding such a point requires analyzing the intersections of all cones
and, generally, is a difficult and time-consuming task, especially in high dimensions.

If a partition of D into hyperintervals is used, each cone can be considered over
the corresponding hyperinterval, independently from the other cones. This allows one
(see, e.g., [14, 18, 20, 26]) to avoid the necessity of establishing the intersections of
the cones and to simplify the lower bound estimation. For example, multidimensional
DIRECT algorithm [18] uses one cone with symmetry axis passed through a central
point of a hyperinterval for lower bounding f(x) over this hyperinterval. The lower
bound is obtained on the boundary of the hyperinterval. This approach is simple, but
it gives a too rough estimate of the minimum function value over the hyperinterval.

The more accurate estimate is achieved when two trial points over a hyperinterval
are used for constructing a support function for f(x). These points can be, for ex-
ample, the vertices ai and bi of the main diagonal of a hyperinterval Di ∈ {Dk} (see,
e.g., [20, 21, 25, 26, 31]). In this case, the objective function (due to the Lipschitz
condition (1.2)) must lie above the intersection of the N -dimensional cones C1(x, L)
and C2(x, L) (see the two-dimensional example in Fig. 2a). These cones have the
slope L and are limited by the boundaries of the hyperinterval Di. The vertices of the
cones (in (N + 1)-dimensional space) are defined by the coordinates (ai, f(ai)) and
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Fig. 2. Estimation of the lower bound of f(x) over an interval Di = [ai, bi].

(bi, f(bi)), respectively. In such a way, the lower bound of f(x) is more precise with
respect to the central-sampling strategy. Algorithms using this approach are called
diagonal (see, e.g., [20, 21, 25, 26, 31]).

In the new diagonal algorithm proposed in this paper, the objective function is
also evaluated at two points of a hyperinterval Di = [ai, bi]. Instead of constructing a
support function for f(x) over the whole hyperinterval Di, we use a support function
for f(x) only over the one-dimensional segment [ai, bi]. This support function is the
maximum of two linear functions K1(x, L̂) and K2(x, L̂) passing with the slopes ±L̂
through the vertices ai and bi (see Fig. 2b). The lower bound of f(x) over the
diagonal [ai, bi] of Di is calculated similarly to [27, 32] at the intersection of the lines
K1(x, L̂) and K2(x, L̂) and is given by the following formula (see [20, 25, 26])

Ri = Ri(L̂) =
1

2
(f(ai) + f(bi)− L̂‖bi − ai‖), 0 < L ≤ L̂ < ∞.(2.9)

A valid estimate of the lower bound of f(x) over Di can be obtained from (2.9)
if an overestimate L̂ of the Lipschitz constant L is used. As it has been proved in
[25, 26], inequality

L̂ ≥ 2L(2.10)

guarantees that the value Ri from (2.9) is the lower bound of f(x) over the whole
hyperinterval Di. Thus, the lower bound of the objective function over the whole
hyperinterval Di ⊆ D can be estimated considering f(x) only along the main diagonal
[ai, bi] of Di.

A more precise than (2.10) condition ensuring that

Ri(L̂) ≤ f(x), x ∈ Di,

is proved in the following theorem.
Theorem 2.1. Let L be the known Lipschitz constant for f(x) from (1.2), Di =

[ai, bi] be a hyperinterval of a current partition {Dk}, and f∗
i be the minimum function

value over Di, i.e.,

f∗
i = f(x∗

i ), x∗
i = arg min

x∈Di

f(x).(2.11)
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If an overestimate L̂ in (2.9) satisfies inequality

L̂ ≥
√
2L,(2.12)

then Ri(L̂) from (2.9) is the lower bound of f(x) over Di, i.e., Ri(L̂) ≤ f∗
i .

Proof. Since x∗
i from (2.11) belongs to Di and f(x) satisfies the Lipschitz condi-

tion (1.2) over Di, then the following inequalities hold

f(ai)− f∗
i ≤ L‖ai − x∗

i ‖,

f(bi)− f∗
i ≤ L‖bi − x∗

i ‖.

By summarizing these inequalities and using the following result from [24, Lemma 2]

max
x∈Di

(‖ai − x‖+ ‖bi − x‖) ≤
√
2‖bi − ai‖,

we obtain

f(ai) + f(bi) ≤ 2f∗
i + L(‖ai − x∗

i ‖+ ‖bi − x∗
i ‖) ≤

≤ 2f∗
i + Lmax

x∈Di

(‖ai − x‖ + ‖bi − x‖) ≤ 2f∗
i +

√
2L‖bi − ai‖.

Then, from the last inequality and (2.12) we can deduce that the following estimate
holds for the value Ri from (2.9)

Ri(L̂) ≤
1

2
(2f∗

i +
√
2L‖bi − ai‖ − L̂‖bi − ai‖) =

= f∗
i +

1

2
(
√
2L− L̂)

︸ ︷︷ ︸

≤0

‖bi − ai‖ ≤ f∗
i .

Theorem 2.1 allows us to obtain a more precise lower bound Ri with respect to
[25, 26] where estimate (2.10) is considered.

2.3. Finding non-dominated hyperintervals. Let us now consider a diag-
onal partition {Dk} of the admissible region D, generated by the new subdivision
strategy from Section 2.1. Let a positive value L̃ be chosen as an estimate of the
Lipschitz constant L from (1.2) and lower bounds Ri(L̃) of the objective function
over hyperintervals Di ∈ {Dk} be calculated by formula (2.9). Using the obtained
lower bounds of f(x), the relation of domination can be established between every
two hyperintervals of a current partition {Dk} of D.

Definition 2.1. Given an estimate L̃ > 0 of the Lipschitz constant L from (1.2),
a hyperinterval Di ∈ {Dk} dominates a hyperinterval Dj ∈ {Dk} with respect to L̃ if

Ri(L̃) < Rj(L̃).

A hyperinterval Dt ∈ {Dk} is said non-dominated with respect to L̃ > 0 if for
the chosen value L̃ there is no other hyperinterval in {Dk} which dominates Dt.

Each hyperinterval Di = [ai, bi] ∈ {Dk} can be represented by a dot in a two-
dimensional diagram (see Fig. 3) similar to that used in DIRECT for representing
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Fig. 3. Graphical interpretation of lower bounds of f(x) over hyperintervals.

hyperintervals with f(x) evaluated only at one point. The horizontal coordinate di
and the vertical coordinate Fi of the dot are defined as follows

di =
‖bi − ai‖

2
, Fi =

f(ai) + f(bi)

2
, ai 6= bi.(2.13)

Note that a point (di, Fi) in the diagram can correspond to several hyperintervals
with the same length of the main diagonals and the same sum of the function values
at their vertices.

For the sake of illustration, let us consider a hyperinterval DA with the main
diagonal [aA, bA]. This hyperinterval is represented by the dot A in Fig. 3. Assuming
an estimate of the Lipschitz constant equal to L̃ (such that condition (2.12) is satis-
fied), a lower bound of f(x) over the hyperinterval DA is given by the value RA(L̃)
from (2.9). This value is the vertical coordinate of the intersection point of the line
passed through the point A with the slope L̃ and the vertical coordinate axis (see
Fig. 3). In fact, as it can be seen from (2.9), intersection of the line with the slope L̃
passed through any dot representing a hyperinterval in the diagram of Fig. 3 and the
vertical coordinate axis gives us the lower bound (2.9) of f(x) over the corresponding
hyperinterval.

Note that the points on the vertical axis (di = 0) do not represent any hyperin-
terval. The axis is used to express such values as lower bounds, the current minimum
value of the function, etc. It should be highlighted that the current best value fmin

is always smaller than or equal to the vertical coordinate of the lowest dot (dot A in
Fig. 3). Note also that the vertex at which this value has been obtained can belong
to a hyperinterval, different from that represented by the lowest dot in the diagram.
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By using this graphical representation, it is easy to determine whether a hy-
perinterval dominates (with respect to a given estimate of the Lipschitz constant)
some other hyperinterval from a partition {Dk}. For example, for the estimate L̃ the
following inequalities are satisfied (see Fig. 3)

RA(L̃) < RC(L̃) < RB(L̃).

Therefore, with respect to L̃ the hyperinterval DA (dot A in Fig. 3) dominates both
hyperintervals DB (dot B) and DC (dot C), while DC dominates DB. If our parti-
tion {Dk} consists only of these three hyperintervals, the hyperinterval DA is non-
dominated with respect to L̃.

If a higher estimate L̂ > L̃ of the Lipschitz constant is considered (see Fig. 3),
the hyperinterval DA still dominates the hyperinterval DB with respect to L̂, since
RA(L̂) < RB(L̂). But DA in its turn is dominated by the hyperinterval DC with
respect to L̂, because RA(L̂) > RC(L̂) (see Fig. 3). Thus, for the chosen estimate L̂
the unique non-dominated hyperinterval with respect to L̂ is DC , and not DA as
previously.

As we can see from this simple example, some hyperintervals (as the hyperinter-
val DB in Fig. 3) are always dominated by another hyperintervals, independently on
the chosen estimate of the Lipschitz constant L. The following result formalizing this
fact takes place.

Lemma 2.1. Given a partition {Dk} of D and the subset {Dk}d of hyperintervals
having the main diagonals equal to d > 0, for any estimate L̃ > 0 of the Lipschitz
constant a hyperinterval Dt ∈ {Dk}d dominates a hyperinterval Dj ∈ {Dk}d if and
only if

Ft = min{Fi : Di ∈ {Dk}d } < Fj ,(2.14)

where Fi and Fj are from (2.13).
Proof. The lemma follows immediately from (2.9) since all hyperintervals under

consideration have the same length of their main diagonals, i.e., ‖bi − ai‖ = d.
There also exist hyperintervals (for example, the hyperintervals DA and DC rep-

resented in Fig. 3 by the dots A and C, respectively) that are non-dominated with
respect to one estimate of the Lipschitz constant L and dominated with respect to
another estimate of L. Since in practical applications the exact Lipschitz constant (or
its valid overestimate) is often unknown, the following idea inspired by DIRECT [18]
is adopted.

At each iteration k > 1 of the new algorithm, various estimates of the Lipschitz
constant L from zero to infinity are chosen for lower bounding f(x) over hyperin-
tervals. The lower bound of f(x) over a particular hyperinterval is calculated by
formula (2.9). Note that since all possible values of the Lipschitz constant are con-
sidered, condition (2.12) is automatically satisfied and no additional multipliers are
required for an estimate of the Lipschitz constant in (2.9). Examination of the set of
possible estimates of the Lipschitz constant leads us to the following definition.

Definition 2.2. A hyperinterval Dt ∈ {Dk} is called non-dominated if there
exists an estimate 0 < L̃ < ∞ of the Lipschitz constant L such that Dt is non-
dominated with respect to L̃.

In other words, non-dominated hyperintervals are hyperintervals over which f(x)
has the smallest lower bound for some particular estimate of the Lipschitz constant.
For example, in Fig. 3 the hyperintervals DA and DC are non-dominated.
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Fig. 4. Dominated hyperintervals are represented by white dots and non-dominated hyperinter-
vals are represented by black dots.

Let us now make some observations that allow us to identify the set of non-
dominated hyperintervals. First of all, only hyperintervals Dt satisfying condition
(2.14) can be non-dominated. In two-dimensional diagram (di, Fi), where di and Fi

are from (2.13), such hyperintervals are located at the bottom of each group of points
with the same horizontal coordinate, i.e., with the same length of the main diagonals.
For example, in Fig. 4 these points are designated as A (the largest interval), B, C,
E, F , G, and H (the smallest interval).

It is important to notice that not all hyperintervals satisfying (2.14) are non-
dominated. For example (see Fig. 4), the hyperintervalDH is dominated (with respect
to any positive estimate of the Lipschitz constant L) by any of the hyperintervals
DG, DF , or DE . The hyperinterval DG is dominated by DF . In fact, as it follows
from (2.9), among several hyperintervals with the same sum of the function values
at their vertices, larger hyperintervals dominate smaller ones with respect to any
positive estimate of L. Finally, the hyperinterval DB is dominated either by the
hyperinterval DA (for example, with respect to L̃1 ≥ L̃AC , where L̃AC corresponds
to the slope of the line passed through the points A and C in Fig. 4), or by the
hyperinterval DC (with respect to L̃2 < L̃AC).

Note that if an estimate L̃ of the Lipschitz constant is chosen, it is easy to indi-
cate the hyperinterval with the smallest lower bound of f(x), that is, non-dominated
hyperinterval with respect to L̃. To do this, it is sufficient to position a line with the
slope L̃ below the set of dots in two-dimensional diagram representing hyperintervals
of {Dk}, and then to shift it upwards. The first dot touched by the line indicates
the desirable hyperinterval. For example, in Fig. 4 the hyperinterval DF represented
by the point F is non-dominated hyperinterval with respect to L̃0, since over this
hyperinterval f(x) has the smallest lower bound RF (L̃0) for the given estimate L̃0 of
the Lipschitz constant.

Let us now examine various estimates of the Lipschitz constant L from zero to
infinity. When a small (close to zero) positive estimate of L is chosen, an almost hor-
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izontal line is considered in two-dimensional diagram representing hyperintervals of a
partition {Dk}. The dot with the smallest vertical coordinate Fmin (and the biggest
horizontal coordinate if there are several such dots) is the first to be touched by this
line (the case of the dot F in Fig. 4). Therefore, hyperinterval (or hyperintervals)
represented by this dot is non-dominated with respect to the chosen estimate of L,
and, consequently, non-dominated in sense of Def. 2.2. Repeating such a procedure
with higher estimates of the Lipschitz constant (that is, considering lines with higher
slopes), all non-dominated hyperintervals can be identified. In Fig. 4 the hyperinter-
vals represented by the dots F , E, C, and A are non-dominated hyperintervals.

This procedure can be formalized in terms of the algorithm known as Jarvis march
(or gift wrapping; see, e.g., [28]), which is an algorithm for identifying the convex
hull of the dots. Thus, the following result identifying the set of non-dominated
hyperintervals for a given partition {Dk} has been proved.

Theorem 2.2. Let each hyperinterval Di = [ai, bi] ∈ {Dk} be represented by a
dot with horizontal coordinate di and vertical coordinate Fi defined in (2.13). Then,
non-dominated in sense of Def. 2.2 hyperintervals are located on the lower-right convex
hull of the set of dots representing the hyperintervals.

We conclude this theoretical consideration by the following remark. As it has been
shown in [31], the lengths of the main diagonals of hyperintervals generated by the
new subdivision strategy from Section 2.1 are not arbitrary, contrarily to traditional
diagonal schemes (see, e.g., [20, 24, 25, 26]). They are members of a sequence of values
depending both on the size of the initial hypercube D = [a, b] and on the number of
executed subdivisions. In such a way, the hyperintervals of a current partition {Dk}
form several groups. Each group is characterized by the length of the main diagonals
of hyperintervals within the group. In two-dimensional diagram (di, Fi), where di
and Fi are from (2.13), the hyperintervals from a group are represented by dots with
the same horizontal coordinate di. For example, in Fig. 4 there are seven different
groups of hyperintervals with the horizontal coordinates equal to dA, dB, dC , dE , dF ,
dG, and dH . Note that some groups of a current partition can be empty (see, e.g., the
group with the horizontal coordinate between dH and dG in Fig. 4). These groups
correspond to diagonals which are not present in the current partition, but can be
created (or were created) at the successive (previous) iterations of the algorithm.

It is possible to demonstrate (see [31]) that there exists a correspondence between
the length of the main diagonal of a hyperinterval Di ∈ {Dk} and a non-negative inte-
ger number. This number indicates how many partitions have been performed starting
from the initial hypercube D to obtain the hyperinterval Di. At each iteration k ≥ 1
it can be considered as an index l = l(k) of the corresponding group of hyperintervals
having the same length of their main diagonals, where

0 ≤ q(k) ≤ l(k) ≤ Q(k) < +∞(2.15)

and q(k) = q and Q(k) = Q are indices corresponding to the groups of the largest
and smallest hyperintervals of {Dk}, respectively. When the algorithm starts, there
exists only one hyperinterval — the admissible regionD — which belongs to the group
with the index l = 0. In this case, both indices q and Q are equal to zero. When a
hyperinterval Di ∈ {Dk} from a group l′ = l′(k) is subdivided, all three generated
hyperintervals are placed into the group with the index l′ +1. Thus, during the work
of the algorithm, diagonals of hyperintervals become smaller and smaller, while the
corresponding indices of groups of hyperintervals grow consecutively starting from
zero.
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For example, in Fig. 4 there are seven non-empty groups of hyperintervals of a
partition {Dk} and one empty group. The index q(k) (index Q(k)) corresponds to
the group of the largest (smallest) hyperintervals represented in Fig. 4 by dots with
the horizontal coordinate equal to dA (dH). For Fig. 4 we have Q(k) = q(k) + 7. The
empty group has the index l(k) = Q(k) − 1. Suppose that the hyperintervals DA,
DH and DG (represented in Fig. 4 by the dots A, H , and G, respectively) will be
subdivided at the k-th iteration. In this case, the smallest index will remain the same,
i.e., q(k + 1) = q(k), since the group of the largest hyperintervals will not be empty,
while the biggest index will increase, i.e., Q(k + 1) = Q(k) + 1, since a new group of
the smallest hyperintervals will be created. The previously empty group Q(k)−1 will
be filled up by the new hyperintervals generated by partitioning the hyperinterval DG

and will have the index l(k + 1) = Q(k + 1)− 2.

3. New algorithm. In this section, a new algorithm for solving problem (1.1)–
(1.3) is described. First, the new algorithm is presented and briefly commented. Then
its convergence properties are analyzed.

The new algorithm is oriented on solving difficult multidimensional multiextremal
problems. To accomplish this task, a two-phase approach consisting of explicitly
defined global and local phases is proposed. It is well known that DIRECT also
balances global and local information during its work. However, the local phase is
too pronounced in this balancing. As has been already mentioned in Introduction,
DIRECT executes too many function trials in regions of local optima and, therefore,
manifests too slow convergence to the global minimizers when the objective function
has many local minimizers.

In the new algorithm, when a sufficient number of subdivisions of hyperintervals
near the current best point has been performed, the two-phase approach forces the
new algorithm to switch to the exploration of large hyperintervals that could contain
better solutions. Since many subdivisions have been executed around the current
best point, its neighborhood contains only small hyperintervals and large ones can be
located only far from it. Thus, the new algorithm balances global and local search in a
more sophisticated way trying to provide a faster convergence to the global minimizers
of difficult multiextremal functions.

Thus, the new algorithm consists of the following two phases: local improvement
of the current best function value (local phase) and examination of large unexplored
hyperintervals in pursuit of new attraction regions of deeper local minimizers (global
phase). Each of these phases can consist of several iterations. During the local phase
the algorithm tries to explore better the subregion around the current best point. This
phase finishes when the following two conditions are verified: (i) an improvement on
at least 1% of the minimal function value is not more reached and (ii) a hyperinterval
containing the current best point becomes the smallest one. After the end of the local
phase the algorithm is switched to the global phase.

The global phase consists of subdividing mainly large hyperintervals, located pos-
sibly far from the current best point. It is performed until a function value improving
the current minimal value on at least 1% is obtained. When this happens, the algo-
rithm switches to the local phase during which the obtained new solution is improved
locally. During its work the algorithm can switch many times from the local phase
to the global one. The algorithm stops when the number of generated trial points
reaches the maximal allowed number.

We assume without loss of generality that the admissible region D = [a, b] in (1.3)
is an N -dimensional hypercube. Suppose that at the iteration k ≥ 1 of the algo-
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rithm a partition {Dk} of D = [a, b] has been obtained by the partitioning procedure
from (2.1)–(2.8). Suppose also that each hyperinterval Di ∈ {Dk} is represented by a
dot in the two-dimensional diagram (di, Fi), where di and Fi are from (2.13), and the
groups of hyperintervals with the same length of their main diagonals are numerated
by indices within a range from q(k) up to Q(k) from (2.15).

To describe the algorithm formally, we need the following additional designations:
fmin(k) – the best function value (the term ‘record’ will be also used) found

after k − 1 iterations.
xmin(k) – coordinates of fmin(k).
Dmin(k) – the hyperinterval containing the point xmin(k) (if xmin(k) is a common

vertex of several — up to 2N — hyperintervals, then the smallest hyperinterval is
considered).

fprec
min – the old record. It serves to memorize the record fmin(k) at the start of the

current phase (local or global). The value of fprec
min is updated when an improvement

of the current record on at least 1% is obtained.
ξ – the parameter of the algorithm, ξ ≥ 0. It prevents the algorithm from subdi-

viding already well-explored small hyperintervals. If Dt ∈ {Dk} is a non-dominated
hyperinterval with respect to an estimate L̃ of the Lipschitz constant L, then this
hyperinterval can be subdivided at the k-th iteration only if the following condition
is satisfied

Rt(L̃) ≤ fmin(k)− ξ,(3.1)

where the lower bound Rt(L̃) is calculated by formula (2.9). The value of ξ can be
set in different ways (see Section 4).

Tmax – the maximal allowed number of trial points that the algorithm may gen-
erate. The algorithm stops when the number of generated trial points reaches Tmax.
During the course of the algorithm the satisfaction of this termination criterion is
verified after every subdivision of a hyperinterval.

Lcounter, Gcounter – the counters of iterations executed during the current local
and global phases, respectively.

p(k) – the index of the group the hyperinterval Dmin(k) belongs to. Notice that
the inequality q(k) ≤ p(k) ≤ Q(k) is satisfied for any iteration number k. Since both
local and global phases can embrace more than one iteration, the index p(k) (as well
as the indices q(k) and Q(k)) can change (namely, increase) during these phases. Note
also that the group p(k) can be different from the groups containing hyperintervals
with the smallest sum of the objective function values at their vertices (see two groups
of hyperintervals represented in Fig. 4 by the horizontal coordinates equal to dG
and dF ). Moreover, the hyperinterval Dmin(k) is not represented necessarily by the
‘lowest’ point from the group p(k) in the two-dimensional diagram (di, Fi) – even if
the current best function value is obtained at a vertex of Dmin(k), the function value
at the other vertex can be too high and the sum of these two values can be greater
than the corresponding value of another hyperinterval from the group p(k).

p′ – the index of the group containing the hyperinterval Dmin(k) at the start
of the current phase (local or global). Hyperintervals from the groups with indices
greater than p′ are not considered when non-dominated hyperintervals are looked for.
Whereas the index p(k) can assume different values during the current phase, the
index p′ remains, as a rule, invariable. It is changed only when it violates the left part
of condition (2.15). This can happen when groups with the largest hyperintervals
disappear and, therefore, the index q(k) increases and becomes equal to p′. In this
case, the index p′ increases jointly with q(k).
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p′′ – the index of the group immediately preceding the group p′, i.e., p′′ = p′ − 1.
This index is used within the local phase and can increase if q(k) increases during this
phase.

r′ – the index of the middle group of hyperintervals between the groups p′

and q(k), i.e., r′ = ⌈(q(k) + p′)/2⌉. This index is used within the global phase as
a separator between the groups of large and small hyperintervals. It can increase
if q(k) increases during this phase.

To clarify the introduced group indices, let us consider an example of a parti-
tion {Dk} represented by the two-dimensional diagram in Fig. 4. Let us suppose
that the index q(k) of the group of the largest hyperintervals corresponding to the
points with the horizontal coordinate dA in Fig. 4 is equal to 10. The index Q(k)
of the group of the smallest hyperintervals with the main diagonals equal to dH (see
Fig. 4) is equal to Q(k) = q(k) + 7 = 17. Let us also assume that the hyperinter-
val Dmin(k) belongs to the group of hyperintervals with the main diagonals equal
to dG (see Fig. 4). In this case, the index p(k) is equal to 15 and the index p′ is
equal to 15 too. The index p′′ = 15 − 1 = 14 and it corresponds to the group of
hyperintervals represented in Fig. 4 by the dots with the horizontal coordinate dF .
Finally, the index r′ = ⌈(10 + 15)/2⌉ = 13 and it corresponds to hyperintervals with
the main diagonals equal to dE . The indices p′, p′′, and r′ can change only if the
index q(k) increases. Otherwise, they remain invariable during the iterations of the
current phase (local or global). At the same time, the index p(k) can change at every
iteration, as soon as a new best function value belonging to a hyperinterval of a group
different from p(k) is obtained.

Now we are ready to present a formal scheme of the new algorithm.

Step 1: Initialization. Set the current iteration number k := 1, the current record
fmin(k) := min{f(a), f(b)} where a and b are from (1.3). Set group indices
q(k) := Q(k) := p(k) := 0.

Step 2: Local Phase. Memorize the current record fprec
min := fmin(k) and perform

the following steps:
Step 2.1. Set Lcounter := 1 and fix the group index p′ := p(k).
Step 2.2. Set p′′ := max{p′ − 1, q(k)}.
Step 2.3. Determine non-dominated hyperintervals considering only groups

of hyperintervals with the indices from q(k) up to p′′. Subdivide those
non-dominated hyperintervals which satisfy inequality (3.1). Set k :=
k + 1.

Step 2.4. Set Lcounter := Lcounter+ 1 and check whether Lcounter ≤ N .
If this is the case, then go to Step 2.2. Otherwise, go to Step 2.5.

Step 2.5. Set p′ = max{p′, q(k)}. Determine non-dominated hyperintervals
considering only groups of hyperintervals with the indices from q(k)
up to p′. Subdivide those non-dominated hyperintervals which satisfy
inequality (3.1). Set k := k + 1.

Step 3: Switch. If condition

fmin(k) ≤ fprec
min − 0.01|fprec

min |(3.2)

is satisfied, then go to Step 2 and repeat the local phase with the new obtained
value of the record fmin(k). Otherwise, if the hyperinterval Dmin(k) is not
the smallest one, or the current partition of D consists only of hyperintervals
with equal diagonals (i.e., p(k) < Q(k) or q(k) = Q(k)), then go to Step 2.1
and repeat the local phase with the old record fprec

min .
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If the obtained improvement of the best function value is not sufficient to
satisfy (3.2) and Dmin(k) is the smallest hyperinterval of the current partition
(i.e., all the following inequalities – (3.2), p(k) < Q(k), and q(k) = Q(k) —
fail), then go to Step 4 and perform the global phase.

Step 4: Global Phase. Memorize the current record fprec
min := fmin(k) and perform

the following steps:
Step 4.1. Set Gcounter := 1 and fix the group index p′ := p(k).
Step 4.2. Set p′ = max{p′, q(k)} and calculate the ‘middle’ group index

r′ = ⌈(q(k) + p′)/2⌉.
Step 4.3. Determine non-dominated hyperintervals considering only groups

of hyperintervals with the indices from q(k) up to r′. Subdivide those
non-dominated hyperintervals which satisfy inequality (3.1). Set k :=
k + 1.

Step 4.4. If condition (3.2) is satisfied, then go to Step 2 and perform the lo-
cal phase with the new obtained value of the record fmin(k). Otherwise,
go to Step 4.5.

Step 4.5. Set Gcounter := Gcounter+ 1; check whether Gcounter ≤ 2N+1.
If this is the case, then go to Step 4.2. Otherwise, go to Step 4.6.

Step 4.6. Set p′ = max{p′, q(k)}. Determine non-dominated hyperintervals
considering only groups of hyperintervals with the indices from q(k)
up to p′. Subdivide those non-dominated hyperintervals which satisfy
inequality (3.1). Set k := k + 1.

Step 4.7. If condition (3.2) is satisfied, then go to Step 2 and perform the
local phase with the new obtained value of the record fmin(k). Other-
wise, go to Step 4.1: update the value of the group index p′ and repeat
the global phase with the old record fprec

min .

Let us give a few comments on the introduced algorithm. It starts from the
local phase. In the course of this phase, it subdivides non-dominated hyperintervals
with the main diagonals greater than the main diagonal of Dmin(k) (i.e., from the
groups with the indices from q(k) up to p′; see Steps 2.1 – 2.4). This operation
is repeated N times, where N is the problem dimension from (1.3). Remind that
during each subdivision of a hyperinterval by the scheme (2.1) – (2.8) only one side
of the hyperinterval (namely, the longest side given by formula (2.4)) is partitioned.
Thus, performing N iterations of the local phase eventually subdivides all N sides of
hyperintervals around the current best point. At the last, (N +1)-th, iteration of the
local phase (see Step 2.5) hyperintervals with the main diagonal equal to Dmin(k) are
considered too. In such a way, the hyperinterval containing the current best point
can be partitioned too.

Thus, either the current record is improved, or the hyperinterval providing this
record becomes smaller. If the conditions of switching to the global phase (see Step 3)
are not satisfied, the local phase is repeated. Otherwise, the algorithm switches to the
global phase, avoiding unnecessary evaluations of f(x) within already well explored
subregions.

During the global phase the algorithm searches for better new minimizers. It
performs series of loops (see Steps 4.1 – 4.7) while a non-trivial improvement of the
best function value is not obtained, i.e., condition (3.2) is not satisfied. Within a loop
of the global phase the algorithm performs a substantial number of subdivisions of
large hyperintervals located far from the current best point, namely, hyperintervals
from the groups with the indices from q(k) up to r′ (see Steps 4.2 – 4.5). Since each
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trial point can belong up to 2N hyperintervals, the number of subdivisions should not
be smaller than 2N . The value of this number equal to 2N+1 has been chosen because
it provided a good performance of the algorithm in our numerical experiments.

Note that the situation when the current best function value is improved but the
amount of this improvement is not sufficient to satisfy (3.2), can be verified at the end
of a loop of the global phase (see Step 4.7). In this case, the algorithm is not switched
to the local phase. It proceeds with the next loop of the global phase, eventually
updating the index p′ (see Step 4.1) but non updating the old record fprec

min .
Let us now study convergence properties of the new algorithm during minimiza-

tion of the function f(x) from (1.1)–(1.3) when the maximal allowed number of gen-
erated trial points Tmax is equal to infinity. In this case, the algorithm does not
stop (the number of iterations k goes to infinity) and an infinite sequence of trial
points {xj(k)} is generated. The following theorem establishes the so-called ‘every-
where dense’ convergence of the new algorithm.

Theorem 3.1. For any point x ∈ D and any δ > 0 there exist an iteration
number k(δ) ≥ 1 and a point x′ ∈ {xj(k)}, k > k(δ), such that ‖x− x′‖ < δ.

Proof. Trial points generated by the new algorithm are vertices of the main di-
agonals of hyperintervals. Due to (2.1)–(2.8), every subdivision of a hyperinterval
produces three new hyperintervals with the volume equal to a third of the volume of
the subdivided hyperinterval and the proportionally smaller main diagonals. Thus,
fixed a positive value of δ, it is sufficient to prove that after a finite number of itera-
tions k(δ) the largest hyperinterval of the current partition of D will have the main
diagonal smaller than δ. In such a case, in δ-neighborhood of any point of D there
will exist at least one trial point generated by the algorithm.

To see this, let us fix an iteration number k′ and consider the group q(k′) of the
largest hyperintervals of a partition {Dk′}. As it can be seen from the scheme of
the algorithm, for any k′ ≥ 1 this group is taken into account when non-dominated
hyperintervals are looked for. Moreover, a hyperinterval Dt ∈ {Dk′} from this group
having the smallest sum of the objective function values at its vertices is partitioned
at each iteration k ≥ 1 of the algorithm. This happens because there always exists a
sufficiently large estimate L∞ of the Lipschitz constant L such that the hyperinter-
val Dt is a non-dominated hyperinterval with respect to L∞ and condition (3.1) is
satisfied for the lower bound Rt(L∞) (see Fig. 4). Three new hyperintervals generated
during the subdivision of Dt by using the strategy (2.1)–(2.8) are inserted into the
group with the index q(k′)+1. Hyperintervals of the group q(k′)+1 have the volume
equal to a third of the volume of hyperintervals of the group q(k′).

Since each group contains only finite number of hyperintervals, after a sufficiently
large number of iterations k > k′ all hyperintervals of the group q(k′) will be subdi-
vided. The group q(k′) will become empty and the index of the group of the largest
hyperintervals will increase, i.e., q(k) = q(k′) + 1. Such a procedure will be repeated
with a new group of the largest hyperintervals. So, when the number of iterations
grows, the index q(k) increases and due to (2.15) the index Q(k) increases too. This
means, that there exists a finite number of iterations k(δ) such that after perform-
ing k(δ) iterations of the algorithm the largest hyperinterval of the current partition
{Dk(δ)} will have the main diagonal smaller than δ.

4. Numerical results. In this section, we present results performed to com-
pare the new algorithm with two methods belonging to the same class: the origi-
nal DIRECT algorithm from [18] and its locally-biased modification DIRECTl from
[10, 11]. The implementation of these two methods described in [8, 10] and down-
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loadable from [9] has been used in all the experiments.
To execute a numerical comparison, we need to define the parameter ξ of the

algorithm from (3.1). This parameter can be set either independently from the current
record fmin(k), or in a relation with it. Since the objective function f(x) is supposed
to be “black-box”, it is not possible to know a priori which of these two ways is better.

In DIRECT [18], where a similar parameter is used, a value ξ related to the
current minimal function value fmin(k) is fixed as follows

ξ = ε|fmin(k)|, ε ≥ 0.(4.1)

The choice of ε between 10−3 and 10−7 has demonstrated good results for DI-
RECT on a set of test functions (see [18]). Later formula (4.1) has been used by many
authors (see, e.g., [3, 6, 10, 11, 13]) and also has been realized in the implementation
of DIRECT (see [8, 10]) taken for numerical comparison with the new algorithm.
Since the value of ε = 10−4 recommended in [18] has produced the most robust re-
sults for DIRECT (see, e.g., [10, 11, 13, 18]), exactly this value was used in (4.1)
for DIRECT in our numerical experiments. In order to have comparable results, the
same formula (4.1) and ε = 10−4 were used in the new algorithm too.

The global minimizer x∗ ∈ D was considered to be found when an algorithm gen-
erated a trial point x′ inside a hyperinterval with a vertex x∗ and the volume smaller
than the volume of the initial hyperinterval D = [a, b] multiplied by an accuracy
coefficient ∆, 0 < ∆ ≤ 1, i.e.,

|x′(i)− x∗(i)| ≤ N
√
∆(b(i)− a(i)), 1 ≤ i ≤ N,(4.2)

where N is from (1.3). This condition means that, given ∆, a point x′ satisfies (4.2) if
the hyperinterval with the main diagonal [x′, x∗] and the sides proportional to the sides
of the initial hyperintervalD = [a, b] has a volume at least ∆−1 times smaller than the
volume of D. Note that if in (4.2) the value of ∆ is fixed and the problem dimension N
increases, the length of the diagonal of the hyperinterval [x′, x∗] increases too. In order
to avoid this undesirable growth, the value of ∆ was progressively decreased when the
problem dimension increased.

We stopped the algorithm either when the maximal number of trials Tmax was
reached, or when condition (4.2) was satisfied. Note that such a type of stopping
criterion is acceptable only when the global minimizer x∗ is known, i.e., for the case
of test functions. When a real “black-box” objective function is minimized and global
minimization algorithms have an internal stopping criterion, they execute a number
of iterations (that can be very high) after a ‘good’ estimate of f∗ has been obtained
in order to demonstrate a ‘goodness’ of the found solution (see, e.g., [14, 26, 33]).

In the first series of experiments, test functions from [5] and [36] were used because
in [10, 11, 18] DIRECT and DIRECTl have been tested on these functions. It can
be seen from Table 1 that both methods DIRECT and DIRECTl have executed a
very small amount of trials until they generated a point in a neighborhood (4.2) of a
global minimizer. For example, condition (4.2) was satisfied for the six-dimensional
Hartman’s function after 78 (144) trials performed by DIRECTl (DIRECT). Such a
small number of trials is explained by a simple structure of the function. We observe,
in accordance with [34], that the test functions from [5] used in [18] are not suitable
for testing global optimization methods. These functions are characterized by a small
chance to miss the region of attraction of the global minimizer (see [34]). Usually,
when a real difficult “black-box” function of high dimension is minimized, the number
of trials that it is necessary to execute to place a trial point in the neighborhood of
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Table 1

Number of trial points for test functions used in [18].

Function N D = [a, b] ∆ DIRECT DIRECTl New
Shekel 5 4 [0, 10]4 10−6 57 53 208
Shekel 7 4 [0, 10]4 10−6 53 45 1465
Shekel 10 4 [0, 10]4 10−6 53 45 1449
Hartman 3 3 [0, 1]3 10−6 113 79 137
Hartman 6 6 [0, 1]6 10−7 144 78 4169

Branin RCOS 2 [−5, 10]× [0, 15] 10−4 41 31 76
Goldstein and Price 2 [−2, 2]2 10−4 37 29 99
Six-Hump Camel 2 [−3, 3]× [−2, 2] 10−4 105 127 128

Shubert 2 [−8, 10]2 10−4 19 15 59

the global minimizer is significantly higher. The algorithm proposed in this paper is
oriented on such a type of functions. It tries to perform a good examination of the
admissible region in order to reduce the risk of missing the global solution. Therefore,
for simple test functions of Table 1 and the stopping rule (4.2) it generated more trial
points than DIRECT or DIRECTl.

Hence, more sophisticated test problems are required for carrying out numerical
comparison among global optimization algorithms (see also the related discussion
in [19]).

Many difficult global optimization tests can be taken from real-life applications
(see, e.g., [7] and bibliographic references within it). But the lack of comprehensive
information (such as number of local minima, their locations, attraction regions, lo-
cal and global values, ecc.) describing these tests creates an obstacle in verifying
efficiency of the algorithms. Very frequently it is also difficult to fix properly many
correlated parameters determining some test functions because often the sense of these
parameters is not intuitive, especially in high dimensions. Moreover, tests may dif-
fer too much one from another and as a result it is not possible to have many test
functions with similar properties. Therefore, the use of randomly-generated classes of
test functions having similar properties can be a reasonable solution for a satisfactory
comparison.

Thus, in our numerical experiments we used the GKLS-generator described in [12]
(and free-downloadable from http://wwwinfo.deis.unical.it/ ỹaro/GKLS.html). It gen-
erates classes of multidimensional and multiextremal test functions with known lo-
cal and global minima. The procedure of generation consists of defining a convex
quadratic function (paraboloid) systematically distorted by polynomials. Each test
class provided by the generator includes 100 functions and is defined only by the
following five parameters:

N – problem dimension;

M – number of local minima;

f∗ – value of the global minimum;

ρ∗ – radius of the attraction region of the global minimizer;

r∗ – distance from the global minimizer to the vertex of the paraboloid.

The other necessary parameters are chosen randomly by the generator for each
test function of the class. Note, that the generator produces always the same test
classes for a given set of the user-defined parameters allowing one to perform repeat-
able numerical experiments.

By changing the user-defined parameters, classes with different properties can be
created. For example, fixed dimension of the functions and number of local minima,

http://wwwinfo.deis.unical.it/
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Fig. 5. An example of the two-dimensional function from the GKLS test class.

a more difficult class can be created either by shrinking the attraction region of the
global minimizer, or by moving the global minimizer far away from the paraboloid
vertex.

For conducting numerical experiments, we used eight GKLS classes of continu-
ously differentiable test functions of dimensions N = 2, 3, 4, and 5. The number of
local minima M was equal to 10 and the global minimum value f∗ was equal to −1.0
for all classes (these values are default settings of the generator). For each particular
problem dimension N we considered two test classes: a simple class and a difficult
one. The difficulty of a class was increased either by decreasing the radius ρ∗ of the
attraction region of the global minimizer (as for two- and five-dimensional classes), or
by increasing the distance r∗ from the global minimizer x∗ to the paraboloid vertex P
(three- and four-dimensional classes).

In Fig. 5, an example of a test function from the following continuously dif-
ferentiable GKLS class is given: N = 2, M = 10, f∗ = −1, ρ∗ = 0.10, and
r∗ = 0.90. This function is defined over the region D = [−1, 1]2 and its number
is 87 in the given test class. The randomly generated global minimizer of this func-
tion is x∗ = (−0.767,−0.076) and the coordinates of P are (−0.489, 0.780). Results
for the whole class to which the function from Fig. 5 belongs to are given in Tables 2
and 3 on the second line.

We stopped algorithms either when the maximal number of trials Tmax equal
to 1 000 000 was reached, or when condition (4.2) was satisfied. To describe experi-
ments, we introduce the following designations:

Ts – the number of trials performed by the method under consideration to solve
the problem number s, 1 ≤ s ≤ 100, of a fixed test class. If the method was not able
to solve a problem j in less than Tmax function evaluations, Tj equal to Tmax was



22 Ya.D. Sergeyev, D.E. Kvasov

taken.
ms – the number of hyperintervals generated to solve the problem s.
The following four criteria were used to compare the methods.

Criterion C1. Number of trials Ts∗ required for a method to satisfy condi-
tion (4.2) for all 100 functions of a particular test class, i.e.,

Ts∗ = max
1≤s≤100

Ts, s∗ = arg max
1≤s≤100

Ts.(4.3)

Criterion C2. The corresponding number of hyperintervals, ms∗ , generated by
the method, where s∗ is from (4.3).

Criterion C3. Average number of trials Tavg performed by the method during
minimization of all 100 functions from a particular test class, i.e.,

Tavg =
1

100

100∑

s=1

Ts.(4.4)

Criterion C4. Number p (number q) of functions from a class for which DIRECT
or DIRECTl executed less (more) function evaluations than the new algorithm. If Ts

is the number of trials performed by the new algorithm and T ′
s is the corresponding

number of trials performed by a competing method, p and q are evaluated as follows

p =

100∑

s=1

δ′s, δ′s =

{
1, T ′

s < Ts,
0, otherwise.

(4.5)

q =
100∑

s=1

δs, δs =

{
1, Ts < T ′

s,
0, otherwise.

(4.6)

If p+ q < 100 then both the methods under consideration solve the remaining (100−
p− q) problems with the same number of function evaluations.

Note that results based on Criteria C1 and C2 are mainly influenced by minimiza-
tion of the most difficult functions of a class. Criteria C3 and C4 deal with average
data of a class.

Criterion C1 is of the fundamental importance for the methods comparison on
the whole test class because it shows how many trials it is necessary to execute to
solve all the problems of a class. Thus, it represents the worst case results of the given
method on the fixed class.

At the same time, the number of generated hyperintervals (Criterion C2) pro-
vides an important characteristic of any partition algorithm for solving (1.1)–(1.3).
It reflects indirectly the degree of qualitative examination of D during the search
for a global minimum. The greater is this number, the more information about the
admissible domain is available and, therefore, the smaller should be the risk to miss
the global minimizer. However, algorithms should not generate many redundant hy-
perintervals since this slows down the search and is therefore a disadvantage of the
method.

Let us first compare the three methods on Criteria C1 and C2. Results of nu-
merical experiments with eight GKLS tests classes are shown in Tables 2 and 3. The
accuracy coefficient ∆ from (4.2) is given in the second column of the tables. Ta-
ble 2 reports the maximal number of trials required for satisfying condition (4.2) for
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Table 2

Number of trial points for GKLS test functions (Criterion C1).

N ∆ Class 50% 100%
r∗ ρ∗ DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 .90 .20 111 152 166 1159 2318 403

2 10−4 .90 .10 1062 1328 613 3201 3414 1809

3 10−6 .66 .20 386 591 615 12507 13309 2506

3 10−6 .90 .20 1749 1967 1743 >1000000 (4) 29233 6006

4 10−6 .66 .20 4805 7194 4098 >1000000 (4) 118744 14520
4 10−6 .90 .20 16114 33147 15064 >1000000 (7) 287857 42649

5 10−7 .66 .30 1660 9246 3854 >1000000 (1) 178217 33533

5 10−7 .66 .20 55092 126304 24616 >1000000 (16) >1000000 (4) 93745

Table 3

Number of hyperintervals for GKLS test functions (Criterion C2).

N ∆ Class 50% 100%
r∗ ρ∗ DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 .90 .20 111 152 269 1159 2318 685
2 10−4 .90 .10 1062 1328 1075 3201 3414 3307

3 10−6 .66 .20 386 591 1545 12507 13309 6815

3 10−6 .90 .20 1749 1967 5005 >1000000 29233 17555

4 10−6 .66 .20 4805 7194 15145 >1000000 118744 73037

4 10−6 .90 .20 16114 33147 68111 >1000000 287857 211973

5 10−7 .66 .30 1660 9246 21377 >1000000 178217 206323
5 10−7 .66 .20 55092 126304 177927 >1000000 >1000000 735945

a half of the functions of a particular class (columns “50%”) and for all 100 func-
tion of the class (columns “100%”). The notation ‘> 1 000 000 (j)’ means that after
1 000 000 function evaluations the method under consideration was not able to solve j
problems. The corresponding numbers of generated hyperintervals are indicated in
Table 3. Since DIRECT and DIRECTl use during their work the central-sampling
partition strategy, the number of generated trial points and the number of generated
hyperintervals coincide for these methods.

Note that on a half of test functions from each class (which were the most simple
for each method with respect to the other functions of the class) the new algorithm
manifested a good performance with respect to DIRECT and DIRECTl in terms of
the number of generated trial points (see columns “50%” in Table 2). When all the
functions were taken in consideration (and, consequently, difficult functions of the
class were considered too), the number of trials produced by the new algorithm was
much fewer in comparison with two other methods (see columns “100%” in Table 2),
ensuring at the same time a substantial examination of the admissible domain (see
Table 3).

In our opinion, the impossibility of DIRECT to determine global minimizers of
several test functions is related to the following fact. DIRECT found quickly the
vertex of the paraboloid (at which the function value is set by default equal to 0)
used for determining GKLS test functions. Hence, the parameter ξ was very close
to zero (due to (4.1)) and condition similar to (3.1) was satisfied for almost all small
hyperintervals. Moreover, many small hyperintervals around the paraboloid vertex
with function values close one to another and to the current minimal value were
created. In such a situation, DIRECT subdivided many of these hyperintervals. Thus,
at each iteration DIRECT partitioned a large amount of small hyperintervals and,
therefore, was not able to go out from the attraction region of the paraboloid vertex.

Since DIRECTl at each iteration subdivides only one hyperinterval among all
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Table 4

Number of trial points for shifted GKLS test functions (Criterion C1).

N ∆ Class 50% 100%
r∗ ρ∗ DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 .90 .20 111 146 165 1087 1567 403

2 10−4 .90 .10 911 1140 508 2973 2547 1767

3 10−6 .66 .20 364 458 606 6292 10202 1912

3 10−6 .90 .20 1485 1268 1515 14807 28759 4190

4 10−6 .66 .20 4193 4197 3462 37036 95887 14514
4 10−6 .90 .20 14042 24948 11357 251801 281013 32822

5 10−7 .66 .30 1568 3818 3011 102869 170709 15343

5 10−7 .66 .20 32926 116025 15071 454925 > 1000000(1) 77981

Table 5

Number of hyperintervals for shifted GKLS test functions (Criterion C2).

N ∆ Class 50% 100%
r∗ ρ∗ DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 .90 .20 111 146 281 1087 1567 685

2 10−4 .90 .10 911 1140 905 2973 2547 3227

3 10−6 .66 .20 364 458 1585 6292 10202 5337
3 10−6 .90 .20 1485 1268 4431 14807 28759 12949

4 10−6 .66 .20 4193 4197 14961 37036 95887 73049

4 10−6 .90 .20 14042 24948 57111 251801 281013 181631

5 10−7 .66 .30 1568 3818 17541 102869 170709 106359
5 10−7 .66 .20 32926 116025 108939 454925 > 1000000 685173

Table 6

Improvement obtained by the new algorithm in terms of Criterion C1.

N ∆ Class GKLS Shifted GKLS
r∗ ρ∗ DIRECT/New DIRECTl/New DIRECT/New DIRECTl/New

2 10−4 .90 .20 2.88 5.75 2.70 3.89
2 10−4 .90 .10 1.77 1.89 1.68 1.44

3 10−6 .66 .20 4.99 5.31 3.29 5.34

3 10−6 .90 .20 >166.50 4.87 3.53 6.86

4 10−6 .66 .20 >68.87 8.18 2.55 6.61

4 10−6 .90 .20 >23.45 6.75 7.67 8.56

5 10−7 .66 .30 >29.82 5.31 6.70 11.13
5 10−7 .66 .20 >10.67 >10.67 5.83 >12.82

hyperintervals with the same function value, it was able to determine some other local
minimizers (and the global minimizer too) in the given maximal number of trials Tmax.
So, DIRECTl overcame the stagnation of the search around the paraboloid vertex.
But due to the locally-biased character of DIRECTl, it spent too much trials exploring
various local minimizers which were not global. For this reason, DIRECTl was unable
to find the global minimizers of four difficult five-dimensional functions.

In order to avoid stagnation of DIRECT near the paraboloid vertex and to put
DIRECT and DIRECTl in a more advantageous situation, we shifted all generated
functions, adding to their values the constant 2. In such a way the value of each
function at the paraboloid vertex became equal to 2 (and the global minimum value f∗

was increased by 2, i.e., became equal to 1). Results of numerical experiments with
shifted GKLS classes (defined in the rest by the same parameters) are reported in
Tables 4 and 5. Note that in this case DIRECT has found the global solutions of
all problems. DIRECTl has not found the global minimizer of one five-dimensional
function. It can be seen from Tables 4 and 5 that also on these tests classes the new
algorithm has manifested its superiority with respect to DIRECT and DIRECTl in
terms of the number of generated trial points (Criterion C1).
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Table 7

Average number of trial points for GKLS test functions (Criterion C3).

N ∆ Class DIRECT DIRECTl New Improvement
r∗ ρ∗ DIRECT/New DIRECTl/New

2 10−4 .90 .20 198.89 292.79 176.25 1.13 1.66

2 10−4 .90 .10 1063.78 1267.07 675.74 1.57 1.88

3 10−6 .66 .20 1117.70 1785.73 735.76 1.52 2.43

3 10−6 .90 .20 >42322.65 4858.93 2006.82 >21.09 2.42

4 10−6 .66 .20 >47282.89 18983.55 5014.13 >9.43 3.79
4 10−6 .90 .20 >95708.25 68754.02 16473.02 >5.81 4.17

5 10−7 .66 .30 >16057.46 16758.44 5129.85 >3.13 3.27

5 10−7 .66 .20 >217215.58 >269064.35 30471.83 >7.13 >8.83

Table 8

Average number of trial points for shifted GKLS test functions (Criterion C3).

N ∆ Class DIRECT DIRECTl New Improvement
r∗ ρ∗ DIRECT/New DIRECTl/New

2 10−4 .90 .20 185.83 249.25 173.43 1.07 1.44

2 10−4 .90 .10 953.34 1088.13 609.36 1.56 1.79

3 10−6 .66 .20 951.04 1434.33 683.73 1.39 2.10

3 10−6 .90 .20 2226.36 3707.85 1729.55 1.29 2.14

4 10−6 .66 .20 7110.72 14523.45 4388.22 1.62 3.31
4 10−6 .90 .20 24443.60 56689.06 12336.56 1.98 4.60

5 10−7 .66 .30 5876.99 10487.80 4048.31 1.45 2.59

5 10−7 .66 .20 59834.38 >182385.59 19109.20 3.13 >9.54

Table 6 summarizes (based on the data from Tables 2 – 5) results (in terms of
Criterion C1) of numerical experiments performed on 1600 test functions from GKLS
and shifted GKLS continuously differentiable classes. It represents the ratio between
the maximal number of trials performed by DIRECT and DIRECTl with respect to
the corresponding number of trials performed by the new algorithm. It can be seen
from Table 6 that the new method outperforms both competitors significantly on the
given test classes when Criteria C1 and C2 are considered.

Let us now compare the three methods using Criteria C3 and C4. Tables 7 and 8
report the average numbers of trials performed during minimization of all 100 func-
tions from the same GKLS and shifted GKLS classes, respectively (Criterion C3).
The columns “Improvement” of these tables represent the ratios between the average
numbers of trials performed by DIRECT and DIRECTl with respect to the corre-
sponding numbers of trials performed by the new algorithm. The symbol ‘>’ reflects
the situation when not all functions of a class were successfully minimized by the
method under consideration in sense of condition (4.2). This means that the method
stopped when Tmax trials have been executed during minimization of several func-
tions of this particular test class. In these cases, the value of Tmax equal to 1 000 000
was used in calculations of the average value in (4.4), providing in such a way a lower
estimate of the average. As it can be seen from Tables 7 and 8, the new method
outperforms DIRECT and DIRECTl also on Criterion C3.

Finally, results of comparison between the new algorithm and its two competitors
in terms of Criterion C4 are reported in Table 9. This table shows how often the
new algorithm was able to minimize each of 100 functions of a class with a smaller
number of trials with respect to DIRECT or DIRECTl. The notation ‘p : q’ means that
among 100 functions of a particular test class there are p functions for which DIRECT
(or DIRECTl) spent less function trials than the new algorithm and q functions for
which the new algorithm generated fewer trial points with respect to DIRECT (or
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Table 9

Comparison between the new algorithm and DIRECT and DIRECTl in terms of Criterion C4.

N ∆ Class GKLS Shifted GKLS
r∗ ρ∗ DIRECT :New DIRECTl : New DIRECT :New DIRECTl : New

2 10−4 .90 .20 61 : 39 52 : 47 61 : 38 54 : 46
2 10−4 .90 .10 36 : 64 23 : 77 37 : 63 23 : 77

3 10−6 .66 .20 66 : 34 54 : 46 65 : 35 62 : 38

3 10−6 .90 .20 58 : 42 51 : 49 56 : 44 54 : 46

4 10−6 .66 .20 51 : 49 37 : 63 50 : 50 44 : 56

4 10−6 .90 .20 47 : 53 42 : 58 46 : 54 43 : 57

5 10−7 .66 .30 66 : 34 26 : 74 67 : 33 42 : 58
5 10−7 .66 .20 34 : 66 27 : 73 32 : 68 32 : 68

DIRECTl) (p and q are from (4.5) and (4.6), respectively). For example, let us
compare the new method with DIRECTl on the GKLS two-dimensional class with
parameters r∗ = 0.90, ρ∗ = 0.20 (see Table 9, the cell ‘52 : 47’ of the first line). We can
see that DIRECTl was better (was worse) than the new method on p = 52 (q = 47)
functions of this class, and one problem was solved by the two methods with the same
number of trials.

It can be seen from Table 9 that DIRECT and DIRECTl behave better than the
new algorithm with respect to Criterion C4 when simple functions are minimized (we
remind that for each problem dimension the first class is simpler than the second
one). For example, for the difficult GKLS two-dimensional class and DIRECTl we
have ‘23 : 77’ instead of ‘52 : 47’ for the simple class. If a more difficult test class is
taken, the new method outperforms its two competitors (see the second – difficult –
classes of the dimensions N = 2, 4, and 5 in Table 9). For the three-dimensional
classes DIRECT and DIRECTl were better than the new method (see Table 9). This
happens because the second three-dimensional class (even being more difficult than
the first one because the number q has increased in all the cases) continues to be too
simple. Thus, since the new method is oriented on solving difficult multidimensional
multiextremal problems, more hard objective functions are presented in a test class,
more pronounced is advantage of the new algorithm.

5. A brief conclusion. The problem of global minimization of a multidimen-
sional “black-box” function satisfying the Lipschitz condition over a hyperinterval
with an unknown Lipschitz constant has been considered in this paper. A new al-
gorithm developed in the framework of diagonal approach for solving the Lipschitz
global optimization problems has been presented. In the algorithm, the partition of
the admissible region into a set of smaller hyperintervals is performed by a new effi-
cient diagonal partition strategy. This strategy allows one to accelerate significantly
the search procedure in terms of function evaluations with respect to the traditional
diagonal partition strategies. A new technique balancing usage of the local and global
information has been also incorporated in the new method.

In order to calculate the lower bounds of f(x) over hyperintervals, possible esti-
mates of the Lipschitz constant varying from zero to infinity are considered at each
iteration of the algorithm. The procedure of estimating the Lipschitz constant evolves
the ideas of the popular method DIRECT from [18] to the case of diagonal algo-
rithms. The ‘everywhere dense’ convergence of the new algorithm has been estab-
lished. Extensive numerical experiments executed on more than 1600 test functions
have demonstrated a quite satisfactory performance of the new algorithm with re-
spect to DIRECT [18] and DIRECTl [10, 11] when hard multidimensional functions
are minimized.
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