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C'! Interpolatory Subdivision with Shape
Constraints for Curves

Tom Lyche * Jean-Louis Merrien'
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Abstract

We derive two reformulations of the C' Hermite subdivision scheme intro-
duced in [12]. One where we separate computation of values and derivatives and
one based of refinement of a control polygon. We show that the latter leads to
a subdivision matrix which is totally positive. Based on this we give algorithms
for constructing subdivision curves that preserve positivity, monotonicity, and
convexity.

Math Subject Classification: 65D05, 65D17
Keywords: Interpolation, Subdivision, Corner Cutting, Total Positivity, Positiv-
ity, Monotonicity, Convexity.

1 Introduction

Subdivision is a technique for creating a smooth curve or surface out of a sequence of
successive refinements of polygons, or grids see [1]. Subdivision has found applications
in areas such as geometric design [6],[17], and in computer games and animation [4].
We consider here the two point Hermite scheme, the H(C'-algorithm, introduced in
[12]. We start with values and derivatives at the endpoint of an interval and then
compute values and derivatives at the midpoint. Repeating this on each subinterval
we obtain in the limit a function with a certain smoothness. The scheme depends
on two parameters o and 3 and it has been shown that the limit function is C*
for a range C' of these parameters. For more references to Hermite subdivision see
[5, 11, 13, 14].
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The strong locality of the HC'-algorithm was used in [14] to construct subdivision
curves with shape constraints like positivity, monotonicity, and convexity. A notion
of control points, control coefficients and a Bernstein basis for two subfamilies of the
HC-interpolant were introduced in [16].

In this paper we continue the study of subdivision with shape constraints initiated
in [14, 16]. Before detailing our results let us first describe the shape preserving
subdivision process and give an example. Suppose we have values yi,...,y, and
derivatives yi,...,y, at some abscissae t; < to < --- < t,,. With each subinterval
[t;,t;r1] we associate parameters (qy, 3;) € C chosen so that the HC-interpolant
using data (y;,¥i, Yi+1,¥i4,) has the required shape on [t;,t;11]. We then obtain a
Cl-function on [t1,t,]. As an illustration consider the function in Figure 1.

strictly increasing
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|
¢

o 1 2/ 3 4
constant

Figure 1: A given function.

This function is defined on the interval [0,4]. It is positive on [0, 1], strictly in-
creasing on [1, 2], constant on [2, 3] and concave on [3, 4]. Suppose we want to use sub-
division to construct a C'-approximation to this function with the same shape char-
acteristics and that all we know about the function are the function values 1, ..., y,
at some points t; < --- < t,. We can achieve this with the HC'-algorithm using
only crude estimates for the derivatives y/,...,y,, as long as the transition points
1,2, 3 are among the abscissae and the chosen derivatives are consistent with the re-
quired shapes. See Section 6 for details. For classical curve based shape preserving
algorithms we refer to [7, 9, 10] and references therein.

Our paper can be detailed as follows. In Section 2, we recall the HC*'-algorithm
and some properties which were proved in [14]. We give a new formulation of the
H(C*-algorithm were we separate the computation of function values and derivatives.
This formulation is useful for proving shape preserving properties and shows why
the one parameter family given by o = (/(4(1 — 3)) and 5 € [—1,0) considered
in [14, 16] really is an extension of the quadratic spline case. We will refer to this
family as the EQS-case. We also give a new domain C' for C'-convergence of the
algorithm. In Section 3 we use control points to reformulate the HC! algorithm as



a stationary subdivision algorithm called SC'. The control points depend on a third
parameter A > 2 and we show convergence of the stationary subdivision algorithm
for (o, 3) € C and A > 2. The SC! algorithm can also be used in the parametric
case, but a discussion of this will be deferred to a future paper. Starting in Section
4, we restrict our attention to the EQS-case. By formulating the SC!-algorithm as
a corner cutting scheme we show that the subdivision matrix S is totally positive.
We show this for an extended range of § and A and also prove the total positivity
of the HC'-Bernstein basis. With this last property, the interpolant inherits shape
properties of the control polygon such as nonnegativity, monotonicity or convexity.
In Section 5, we give algorithms for interpolation with any of the previous shape
constrains. An example based on Figure 1 is given in Section 6.

2 The HC! Algorithm

We recall the univariate version of the Hermite subdivision scheme for C'* interpola-
tion, given by Merrien [12] which we call here HC'. We start with values (f(a),p(a))
and (f(b),p(b)) of a function f and of its first derivative p = f” at the endpoints a, b
of a bounded interval I := [a, b] of R. To build f and p on I, we proceed recursively.
At step n (n > 0), let us denote by P, the regular partition of / in 2" subintervals
and let us write h, := (b—a)/2". If c and d are two consecutive points of P,, then we
compute f and p at the midpoint (¢ + d)/2 according to the following scheme, which
depends on two parameters a and /3

ct+d,  f(d)+ f(c)

fl——) = . + ahy[p(d) — ple)], y
p(cj;d) - _mf(d)};f(c) +ﬂp(d) —QFp(c)'

By applying these formulae on ever finer partitions, we define f and p on P = UP,
which is a dense subset of . We say that the scheme is C'-convergent if, for any
initial data, f and p can be extended from P to continuous functions on I with p = f.
We call f defined either on I or on P the HC'-interpolant to the data.

The HC'-algorithm can also be formulated as follows. We start with Hermite
data fo, po, f1, p1 at the endpoints of a finite interval [a, b] and set f{ = fo, p) = po,
L= fi,and p{ =p;. Forn=0,1,2,..., h,=2""(b—a),and k=0,1,...,2" — 1

H =fi, J k:trll = k+12 4 + ah”(karl _pk)v (2)
n 0 om AT § S T o
pQI;H = D pQI:—Jil =(1-p) th by 5} kH k (3)

and f;‘ntll = fan, p;‘,ﬁl := p%,. If the scheme is C'-convergent with limit functions f

and p then
f@&) =18, f'@) =p@) =g, t :=a+kh,, k=0,1,...,2" (4)



2.1 The Vector Space of HC'-interpolants

To each choice of (a, 3) there is a vector space
VC 5(P):={f:P —R: f,pcomputed by (2) — (4)}
of HC'-interpolants. If the scheme is C'-convergent we define
VO, () :={f:1—R: flp e VC, 4(P)}.

The HC'-Hermite basis functions {dg, Yo, ¢1,11} are defined by taking as initial
data the four unit vectors e; = (4, ;)i_;, respectively. They are always defined on P
and the HC'interpolant corresponding to initial data (fy, po, f1,p1) can be written
f = fodo + potbo + fid1 + p11)1. Since the Hermite basis functions are clearly linearly
independent on P they form a basis for VC 5(P). Thus VC, 45(P) and VC} 5(1) are
vector spaces of dimension 4.

Let us denote the HC-interpolant to initial data sampled from a function g by
f = Hg. By induction it is easy to see that for any (o, 3) we have g = Hg for all
polynomials g of degree at most one, while g = Hg for all quadratic polynomials if
and only if « = —1/8. We also have g = Hg for all cubic polynomials if and only
if « = —1/8 and 8 = —1/2 and it can be shown that 2* # Ha* for any integer
k > 4. The fact that the scheme reproduces polynomials up to a certain degree can
be used to give error bounds, see [14]. Assume («, (3) are chosen so that the scheme is
C'-convergent. Then there is a constant C(a, 3) such that for all intervals I = [a, b]
and all g € C*(I) we have

g = Hollein) < Clas D19 1) 8

where h := b — a and k = 2 for most choices of o and (3.
Notice some important choices of (a, 3):

1. If « = —1/8, B = —1/2, then f is the cubic polynomial known as the Hermite
cubic interpolant. For these parameters (5) holds with k& = 4 and C(a, ) =
1/384.

2. If a = —1/8, f§ = —1, then f is the Hermite quadratic interpolant, i.e. the
quadratic C' spline interpolant with one knot at the midpoint of the initial
interval. In this case (5) holds with & = 3 and C(a, 5) = 1/96, see [14].

3. The EQS-case a = ﬁ with § € [-1,0) is a one parameter extension of the
quadratic spline case. It was introduced and studied in [14]. In this case (5)
only holds with £ = 2 and C(a, 3) < 1/48 unless 3 = —1, but as we will see
this scheme has important shape preserving properties.



2.2 Direct computation of the function or the derivative
We can reformulate (3) so that only values of p are involved and similarly (2) with f.

Proposition 1 For o, € R and n € N, the function f and the deriwvative p of the
HC-interpolant satisfy the following relations:

Form=1,2,..., i=0,1,...,2" ' —1,
n+l __ n 1 é n o n
Pait1 =HP2; + (1+ 2)p2i+1 VDoiv2s
(6)
n+l __ n 1 é n n
Phivg = — vpy; + (1 + 5 )Pt + 1Py 0,
and form=1,2,..., i=0,1,...,2"2 —1,

sy =+ ) fi +2Q2 = ) fiiga + (v = D — 20f505 + v

4féﬁi§ =— pfy+2(1+ M)fZ‘Jrl +2—p— V)ffi+2 + 2V fiivs — VI iiga

Afgls = — v+ 20 fi + (2= =) flis + 204 1) iy — 11f5i0a

4f8nzil7 =vfy — 2V 5+ (n+v— 1)fzﬁ+2 +2(2 - /i)fzg-i-?) +(1+ M)fZi+4
where p = —2a(1 — 3) and v = p+ (/2.

Proof: We will use the notation Apy = pi ., —p, Af = fit, — [ and AQf,? —
A(Af,?) = fl?JFQ - 2f1?+1 + f/?
Let us start by proving (6). Using (3) with £ = 2i and k = 2i + 1
Afs B, n
Ay2 (p2i+1 + pm‘)
hy, 2
1 Afgir | B (®)
Pt = (1— 5)TZ + §(pgz‘+2 + D)

pZz'—:ll =(1-7)

;From (2) we obtain

Afy A

= 2aAp; !
hn hn—l Teasn (9)
Afgiga A -1
e N
hn hnfl “=h ’

The f difference on the right can be eliminated by a reordering of (3) with k£ = i and
n—mn-—1

Aff Bint | e
(1 - ﬁ) = Dojt1 — _(pi+11 +p; 1)‘ (10)
hy—1 2
Combining (8)-(10), we find
T n ﬂ n n— n—
p4z'i11 = Pait1 T+ b (p2i+1 - pi+11) — nAp; !
T n ﬁ n n— 77—
p4;;13 = Piy1 t 3 (p2i+1 D 1) + pAppt



and we obtain (6).
Now for (7), with n — n — 1 in (6), we obtain:

Apj; = (1 - )Apn - VAp2z+1
Apyiys = VAP L MAP22+1
Apjis = —vAps '+ (1= ) Aps.
Notice that with (2) , we get A2fyt! = —2ah, Ap} since fiith = fi* and (11) can

be written

Q0P ft = (1 — p) AP fy; — VA2ffi+2

2N fts = nA fl VAP fl

QAQfEZE = A [+ pANfr L,

20° fye = —v AP [l + (1= ) A% fii 1.
n+1

It remains to extract the values fg7 5, j = 1,3,5,7 from the previous formula using
again fi,7' = fI' to obtain (7) O

The previous formulae (6)-(7) can also be completed, then written in a vectorial
way. Forn >1

(12)

P 1 0 0 .
pe 14 3/2 Pai ,
pl#fll = /é 1 0 Pit1 1=0,1,... (13)
p#irlQ p72?+2
Pait3 v 1+5/2 p ¢
and for n > 2
- é—;—‘,—l- 4 0 O 0 0 —
s T+p 22—p) ptv—1 =2 v .
e 0 4 0 0 0 fn4z
fiits L= 2(0+p) 2-p—v 2v —v fﬁ}fﬂ oL ogn
faa 41 0 0 4 0 0 fzgm =0,1,...
SnZié -V 2v 2 — nw—v 2(]_ + ’u) — f‘g+3
8”;%3 0 0 0 4 0 4i44
sirl L W ptr—1 22—p) l4pu
(14)

i From (6) it follows that the new p-values on level n 4+ 1 (n > 1) can be formed

by an affine combination of three p values on the previous level n. In the EQS-case
we only need the two neighboring values. Moreover the derivatives will be sampled
from a piecewise linear curve.



Corollary 2 In the EQS-case a = ﬁ we have
n B
Pith = _§p2z (1+5 )p2z+17
e B (15)
Piitvs = (14 5)Phis1 — 5Dbisa-
2 2
and
n+1l ﬂ n n ﬂ
Afgin =1 - §)f4i + 4+ 0) fiip — (1 + )f4z+2
w1 _ B n B
Afgty = f4i + (2= 8) fai + 2+ )f4z+2
; 5 o)
Afsts =2+ §)ffi+2 + (2= 0)flis + §fZ+4
Afgrr=—(1+ §>f4i+2 + 4+ 8) s + (1= §>f4i+4
If in addition B € (—2,0) then there exist
a=T1y <7 < < Ty =b, (17)
with 75,1 = ‘%b forn > 1. such that
pi =L(1"), i=0,1,...,2", n=0,1,..., (18)
where L is the piecewise linear curve connecting the three points (a,p(a)), (QTH), p(aTij)%

(b, p(b)).

Proof: If o= 1 i1_p then p = —F/2 and (15) follows from (6). Similarly, we obtain
(16).
We claim that (18) holds with

Tt =13, 7'411% = 5T + (1 + 2)7'2z‘+1a (19
7'4:5 = Toii1 7'4:&*) = 5T pio T (14 5 )T

Since py = p(a) and p5. = p(b), we have 7' = a and 75, = b for all n > 0.
Moreover, since pj,_; = p(aTJ“b), we see that 77, = “TJ“b for all n > 1. Thus (17) will
follow from (19) since the latter involves convex combinations for 3 € (—2,0). (19)
follows from (15) by induction. Suppose (18) holds for some n. Since L is linear on
the actual segment we obtain

n B g n
p4':k11 = _§L(T2i> + (1 + §)L(7-21+1) L(7-4zill)

where 7;:1] is given by (19). The proof of the other T-relation is similar. O

7



2.3 ('-convergence

To study convergence we observe that it is enough to consider the interval [0, 1].
Indeed, if I := [a, b] and h := b— a, defining the initial data g(u) = f(a+hu), ¢'(u) =
hf'(a + hu), for u € {0,1}, the construction of f on [a,b] or g on [0,1] by (1)
are equivalent and at step n, g(u) = f(a + uh) and ¢'(u) = hf'(a + hu) for u €
{0,1/27,...,0/2", ... 1}.

In [13] it was shown that if there exist positive constants ¢, p with p < 1 such that
for each integer n > 0 we have |Ap?| < ¢p™ for i =0,1,...,2" — 1, where

1 L
Ap? ::p(ZQn )—p(;—n), i=0,1,...,2" —1, (20)

then p has a unique continuous extension to I. Moreover, there is a positive constant
c1 such that for all (z,y) € [0, 1]?

Ip(z) — p(y)| < e — y| =822,

i.e. pis Holder continuous with exponent — log, p.

Suppose p is continuous and lim max |A(f,p)!'| = 0, where
n—oo 0<i<2" —1

A(f,p)i = 2"Af] = op},  op} = %(p(i ;1) +p(;¥n)), (21)

and Aff = f(21) — f(55). Then ([13]) f has a unique continuous extension to
)

2”1
I :=[0,1]. Moreover f € C'([0,1]) with f" = p. From this discussion we have the

following lemma.

Lemma 3 Let U := [Ap?, A(f,p)MT fori=0,1,...,2" and n = 0,1,2,.... If we
can find a vector norm ||-|| on R* and positive constants c,p with p < 1 such that

U <cp™, i=0,1,...,2" andn =0,1,...

then the HC-algorithm is C'-convergent and f' = p is Holder continuous with expo-
nent — log, p.

We can now show
Proposition 4 Algorithm HC" is C*-convergent for («, 3) € [-1/8,0) x [—2,1).
Proof: An immediate evaluation gives

Ustt = MU and Upy = AU for i = 0,1,...,2", n=0,1,...,

where .
2 e(1-3)
€
4 2



Since the off-diagonal elements of A, have the same sign for « > —1/8 and 5 < 1, we
can define a vector norm by ||v|| := ||P~ ||, where || - |5 is the usual Euclidian norm

. . . o 2v1=p 0 1 .
of a vector and P is a suitable matrix. If P := 0 m} then P7*A_P is

symmetric. The corresponding matrix operator norm is given by ||[A.|| := || P7'A P2,
where ||A||2 := \/p(AT A) is the spectral norm of a matrix A. The eigenvalues of A,
or of P7'A_P are

A = i(2+ﬁ+ V(2 =0)2+32a(1-8), X= i(zw—\/(z — )2 +32a(1 — 3))

Since P~'A_ P is symmetric the eigenvalues are real with Ay < A\;. Now for g € [-2,1)
and o € [-1/8,0) we find \y < 2+ 8+ /(2-0)?)/4 =1and Ay > 2+ 3 —
V(2—-0)?)/4 = /2 > —1. Thus p := ||A;]] = max{|\|,|Ae]} < 1 for ¢ = £1
and we have shown that max{||Usy™" |, [|[Us (|} < pl|UP| or [|UP|| < p™[|UY]| for i =
0,1,...,2"—1andn=0,1,2,---. The C'-convergence for (o, 3) € [-1/8,0)x[-2,1)
now follows from Lemma 3 O

By Proposition 4, the HC-algorithm converges for 8 € [—1,0) if a = ﬁ. We
can now extend this result.

Proposition 5 If a = then the HC-algorithm is Cl-convergent for 3 €

(—2,0).

g
4(1-p)

1
1 (1 —
Proof: Fore = +1 the matrices A, in (22) take the form : A, = ( . Fi ( ﬂﬁ) ) .
1(1-p) 2
Now, for any positive real number 6, we define the norm ||-||s on R? by ||(x,y)|ls =
|z|+6]y|. It is easy to prove that for any matrix M = (m;;) € R?**?, the corresponding

matrix operator norm is given by ||M||s := max(|mq1|+6|ma], \m612| +|maz|). Choosing

0 = 2(1 — ) we find ||A1]lo = |A-1lle = 1/2(1 + |1 + G|), which is stricly less than
one for —2 < 3 < 0. Lemma 3 now gives the convergence.
O

We define the convergence region C' by
C:={(a,B): the scheme HC" is C' - convergent }. (23)

We have shown that [—1/8,0) x [-2,1) C C and also that {(ﬁ,ﬁ) -2 <0<
0} c C.

The function f” = p is Holder continuous with exponent —log, p. In the case
where o = ﬁ we have ||A1]lp = ||A=illo = p = p(B) = 1/2(1 + |1 + (|)which is
piecewise linear with a minimum for § = —1 and we obtain the best regularity of the
interpolant for # = —1 when f is a quadratic spline.

To illustrate the smoothness properties of a HC'-interpolant we show the Hermite

basis with # = —3/5 and o = ﬁ = —3/32 in Figure 2. The spectral radius of
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Figure 2: Hermite basis and derivatives, corresponding to o = —3/32 and § = —3/5.

the matrices A, is 7/10 and hence the derivatives of the Hermite basis functions are
Holder continuous with exponent p = —log,(7/10) ~ 0.5146.

Remark: The data f(a),p(a), f(b), p(b) can either have real values or vector values
in R® s > 2. In this second case, we look for vector continuous functions f and p
with f/ = p from I = [a,b] to R*. The C'-convergence is guaranteed for all (o, 3) in
the convergence region C' since it suffices to study the convergence independently for
each component of f and p.

3 Control Polygons and Subdivision Algorithm

3.1 Control Coefficients and Control Polygons

Suppose we apply the subdivision scheme HC" to some real valued data f(a), p(a),
f(b), p(b). In order to obtain a geometric formulation of the scheme we define control
coefficients relative to the interval [a, b] by
h
ap = fla), ar=fla) +1pla), az=[f(b) = 3p(b), a3=f(b), (24)
where h := b — a and A > 2 is a real number to be chosen. We define the control
points (Ao, A1, Aa, A3) on [a,b] by
h h
AOZ (a7&0)7 Al - (a_‘_Xaal)a AQ = (b_X’GQ)’ A3: (baa3)7 (25)

and the control polygon {Ao, A1, A2, A3} on [a,b] by connecting the four control
points by straight line segments. If f is the HC'-interpolant then the parametric

10



curve (z, f(z)) with z € [a, b] passes through A, with tangent directions A; — Ay and
Az with tangent direction A3 — A,. See Figure 3.

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: A HCl-interpolant and its control polygon, 3 = —3/5, a = —3/32,\ =
16/3.

We can also apply the subdivision scheme HC" to vector valued data fo, po, f1,p1
in R* for some s > 2. We pick an interval [a,b] and use the HC'-algorithm on each
component of f and p. To obtain a geometric formulation of this process we define
control coefficients relative to [a,b] by (24) and we define the control points to be the
same as the control coefficients. The computed curve interpolates the first and last
control coefficient and its tangent direction at ag is a; — ag, and at az the tangent
direction is as — as.

Note that if 4 points ag, a1, as, as in R® for s > 1 are given we can think of these
as control coefficients of a HC-interpolant on some finite interval [a, b] and apply the
HC! algorithm to the data given by

f(a) = ag, pla) = é(al — ao), f(b) == asz, p(b) := é(ag — &2), (26)

h h
where h := b—a. We now derive a parameter independent formulation of this scheme.
In particular suppose (ag, a1, as, az) are points in R® for some s > 1 which are distinct
if s > 2 and let [a, b] be any finite interval.

Using (24) and (26) we can compute new control coefficients (ay, a;, aq,ag) for
the interval [; and new control coefficients (as, @, as, ag) for o, and then join them
into control coefficients (ag, a1, as, as, ay, as, ag) on [a,b]. In the following geometric
formulation of the subdivision scheme we do this computation directly without picking
an underlying interval [a, b]. The proposition is a generalization of Theorem 10 of [16]:

11



Proposition 6 Suppose a; € R® fori = 0,1,2,3 and some s > 1. After one sub-
division of the control coefficients (ag, a1, az,as) we obtain new control coefficients
(C_LO,(_ll,C_LQ,C_Lg,C_L4,(_I5,(_16) gw@” by

ao 4 0 0 0
a, . 2 2 0 0 “
as ao L7 v—0 v+pB 0 &O
az| =S al =7 2—v W v 2—w al , (27)
iy S 0 w+B u=F oy | |°
as 3 0 0 2 2 3
| g | | 0 0 0 4
where
v = —4al
y=2—v+2+8N=2)/A (28)
d=2—v—02+5N-2)/\
Moreover,
1
az = 5(ELQ + ay). (29)
Proof: Pick any interval [a,b] and let h :=b — a. By (24)
L _ h __ .a+tb h a+b  _  _a+b
aO_f(a>7al—f(a)_'_ﬁp(a)vcb—f( 2 >_ﬁp( 9 )7 aS_f( 2 )7

h b h b
G5 = ), a5 = F(b) — 5p(®), aa = () + Sop()

iFrom (1) and (26) we obtain on an interval [a, b] the inverse relations

fl@) = a0, pla) = (ar — ao)

f(b) = as, p(b) = é(CL:% - CL2)

h
a+0b ap+a v
f( 9 ) = 02 3—1((13—@2—@1—%&0) (30)
h a+b 1-—
ﬁp( 5 ) = 2)\ﬂ(a3 —ap) + %(ag —ay + a; — ao)
24 B(A—2
= #(ag — (lo) + g(al — CLQ).
But then we see that (G, @y, as, as, a4, as, ag)’ = S(ag, - - .,az)’, where S is the matrix

in equation (27). Since the sum of rows three and five in the matrix S equals twice
row four the relation (29) follows. O

For s > 2 the control coefficients and control points are the same and the propo-
sition also gives rules for subdividing the control polygon. The following corollary
holds in general.
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Corollary 7 Suppose (ag, a1, az,a3) € R® for some s > 1. After one subdivision of
the corresponding control polygon {Ag, A1, Ag, A3} we obtain a new control polygon
{Ao, Al, AQ, Ag, A4, A5, A6} gz’ven by

[Ag Ay A, Ay Ay Ay Ag]" =S[A; Ay Ay A" (31)

where S is given by (27). Moreover

_ 1 - _

Ag - 5(142 + A4), (32)
which means that these control points always lie on a straight line.

Proof: This has already been shown for s > 2 and for the control coefficients for
s = 1. For the control point abscissas we obtain the relation (a,a + h/(2\),a —
h/(2X\),a,a+h/(2)\),b—h/(2\),d)" = S(a,a+h/\,b—h/\,d)T, where a = (a+b)/2,
since the scheme HC' reproduces linear functions. Thus (31) and (32) also holds for
s=1.0

3.2 A Stationary Subdivision Algorithm

By applying (27), we can reformulate the Hermite subdivision scheme HC' as a
stationary subdivision scheme working on points in R*.
Starting with 4 points ag, a1, as, a3 in R*, s > 1, (o, #) in the convergence region

C, and X > 2, we define Algorithm SC* as follows.

At step n = 0, we set a8 = ao,a? = al,ag = a2,ag = as.

At step n+ 1,n > 0, we define

[al] [ 0 0 0 ]

agz'—:il 2 0 0 ag;
v v 2—v| |agio |’ T

giva | _
n+1 n
v+fB v—-08 v 313
2

n
| 3645

(RSN RS BN VRN

aorps| 4|2
. 0 2 -

and a3l = aj},.. Here v,v, ¢ are given by (28). The matrix (s¢x)s=o,..5k0,..3 il

(33) is formed from the first 6 rows of S given by (27).

Lemma 8 For alln > 1 and for allt=1,...,2" — 1, we have
agtt =a%, i=1,...,2""*
n n 1 n n . n—
%;-111_‘16;1:5(@31‘+1_@3i)7 i=1,...,2"1=1 (34)
&giJrl—i_agifl :2&31‘7 L= 1”2n_1

13



Proof: The first two equations follows immediately from (33). As in the proof of
(29) it is clear that

n+1 n+1 __ n+1 - n _
Ugiin + Qgipy = 20g;, 5, 1=0,...,2" =1, n=0,1,...,

and in particular a + a} = 2a3. By (34) and induction on n

1 1
n+1 n+1l __ n n n ny __ n o __ n+1
Ag;pq + Qg = §(a3i +ag;q) + 5(“3171 + ay;) = 2ay; = 2ag;"".

O

If we define a! for i < 0 and 7 > 3 in any way, the subdivision scheme can be written
a}‘“ = Zkez ovray,l € Z where ogitpsitr = Sex fori € 2,0 =0,...,5,k=0,...,3
and o; ; = 0 otherwise. With the definitions recalled in [2], the scheme is local since
op = 0 for [0 —2k| > 4. Since >, , 04 = 1, it is affine but it is not interpolating
in a classical sense since we generally have af;\}, # a%;, .

3.3 Convergence of SC!

The convergence of the subdivision schemes are usually established by studying the
difference sequence. Alternatively convergence follows since SC! was derived from
HC". Here are the details.

Theorem 9 Let s > 1 and ag, aq,as, a3 be 4 points in R®. Suppose X > 2 and that
(e, B) is in the convergence region C given by (23). We build the sequence of points
{ al'}neniizo,. 390 by (33). Choose any interval I := [a,b] with h :=b—a > 0 and
define t}! := a + ih,, where h, := h2™" forn € N and i = 0,...,2". Then, there
exists a C1 function f : I — R® such that for all n € N:

ay, = f(tF), i=0,...,2",
n n hn !(4m - n
a3i+1_a3i:7f(ti)7 1=0,...,2" =1,
n n hn !(4m - n
CL3Z _a31_1 — Tf (tl)7 1 = 17...72 .

Fors > 2, let A} =a?,1=0,1,...,3x2" and fors =1, let A}, = (1, a%;), A1 =
(t7 + 5 a5 0), Ay = (8 = B2vaia), 1= 0,1,...,2" = 1, and A3, 50 = (b, aypn).-
Then the sequence of polygons { Ay, ..., Al on} converges to the curve {f(t),t €

I}.

Proof: We will show that the scheme SC?' generates sequences {f"} and {p"} of
piecewise linear vector functions which interpolate values and derivatives at the points
of P, ={t},....th.}.

14



We define f™ and p" to be linear on [t},¢7,,],i = 0,...,2" — 1, and to interpolate
the following values

() = azg;, p(ti):h_(GSiJrl_aSi)v 1=0,...,2" =1,

: (35)
fr(b) =azq., p'(b)= h_(agwn — Ayon_y)-
Since 7' = t5;! we find from (34) and (35)
) = 1), o) =p (), i =0,..0,2m (36)
Below we prove that, for i =0,...,2" — 1,
il gn frtda) + /(@ n(m n(gm
pronqegtty = LT | op i) e, (37)
Pty = (1 - gy e T | g BP (g

Comparing (36), (37) and (38) with (2)-(3) we conclude that f* = f and p" = p
on P, where f and p are the functions built on UP, by HC! defined by (2)-(4) from
the initial data f(a) = ao, p(a) = 2(a1 — ao), f(b) = as and p(b) = 2(as — a»), and
then extended to [a,b]. So that, if («, 5) € C, then the sequences f™ and p™ defined
from SC! by (35) converge uniformly to continuous vector functions f and p defined
on [a, b]. Moreover f € C*([a,b]) and f' = p.

Now since f” is bounded and a%;,, — a%; = 5% f'(t7),i = 0,...,2" — 1, we deduce
that ay;,; — aj; tends uniformly to 0. We conclude that the sequence of polygons
{Ao, ..., Asxon} tends to the curve {f(t),t € I} since a}; = f(t') for i = 0,...,2™.

It remains to prove (37) and (38). Since a = —v/4A, for i = 0,...,2" — 1 and
using (35) and (33),

1 n n n n n n mn n
§(f (ti+1) +f (ti )) + ahy(p (ti+1) -Pp (ti ))
n n /U n n n n
= §(a3i+3 +az;) — Z(a3i+3 — Q349 — Q341 T az;)
n+1 fnJrl(thrl )

= Qg4 3 = 2i+1

so that (37) is proved.
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Similarly, for (38), let ¢ € {0,...,2" — 1}. With the definitions of v and ¢ in (28)
we find

1-p g

: (f"(E) = F2E) + S 0" () + 2" ()
= h—(a3i+3 — ay;) + ﬁ(a3i+3 — a3 o + a3 — az;)
A 1-8 B., B, B . 1-8 B, .,
= (—( o T Z)agi T % T %2 T (T + Z)@3i+3)
1 A n n n n
=an » ((5 — 2+ w)ay; + Bag;, — Bagi o+ (v =2+ U)@3i+3)
A
= (- att) = ).
n+1
O

4 Total positivity and consequences

4.1 Corner Cutting and Total Positivity of the Subdivision
Matrix

Consider now the subdivision process in the EQS-case when a = ﬁ with 3 €
(—2,0). Since v = —4a = %)\, or A = 221y we find from (28)

B
2+ p6A—203 2+ (f—1)v—20 (2—=0v)(v—7)
vy v+ y v+ G- 1 B ” :
and similarly
2t
. :
Thus the subdivision matrix (27) can be written
4 0 0 0 7
2 2 0 0
' (va)évfﬂ) v—03 v+ P (27v)1§v+ﬁ)
S = 1 2—v v v 2—w (39)
eI g oy g EoeD)
0 0 2 2
0 0 0 4]

In this case, as soon as 1 < v < 2 and v > —(, we can compute the subdivided

control points

(A07 Ala AQ) A37 A47 A57 A6)T - S(A07 A17 A27 AS)T
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by successive convex combinations starting with the polygon defined by (Ao, A;, As,
Asz). With 2 intermediate quantities B and C' we have

_ - 1 1 _ 1 1 -
A=A, A= 5/40 + §A17 As = 5142 + §A3, Ag = As,

v )
L (40)
A-'"Pp v 0,

20 20
A=V p =0,

2v 2v
_ 1 - 1 -
A3—§A2+—A4

Figure 4: Corner Cutting with a = —3/32, § = —3/5 and v = 1.5.

The equations (40) can be formulated as a corner cutting scheme in the following
way. We start with the polygon {Ag, Ay, A, A3} and then either cut one of the
previous corners or break an edge in a sequence of convex combinations.

1. B=(1-2)4+ 4

2)
2. C=(1-3%)As+ 54,
3. 4 =(1-H4,+1B
4. A5 =1C+(1-1)A;

5. Ay=2LB+ 80

(replace A; by B to obtain {Ag, B, As, A3})
(replace Az by C to obtain {Ag, B, C, A3})
(break [Ag, B] to obtain {Ay, Ay, B, C, A3})
(break [C, As] to obtain {Ag, Ay, B,C, As, A3} )

(replace B by A, to obtain {4y, Ay, Ay, C, As, As})
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6. Ay = %[lg — %C (replace C' by A4 to obtain {Ag, A1, Ay, Ay, As, As})

7. Ag = (AQ -+ A4)/2 (break [AQ, A4] to obtain {Ao, Ala AQ, Ag, A4, Ag), Ag})

Since Ay = Ay and Ag = A3 we have obtained the subdivided polygon {A, A, A,
As, Ay, As, Ag} by carrying out a sequence of simple corner cuts (see for example
[15, 9]) on the polygon defined by {Ay, A1, As, As}.

We then obtain

Theorem 10 Suppose —2 < <0, 1 < v :=
matriz S given by (39) is totally positive. For
such that S is not totally positive.

and A\ > 1 — 3. Then the

ﬁ—ﬁ <2
each v & [1,2] there is a 3 € [—1,0]

Proof: The sequence of simple corner cuts corresponds to a factorization of S into
a product of 7 matrices as follows:

L0 007009 0 0 00110 0 0 00
0L 0000, o o oollo1 0o 0 00
001000 0 1 0 0o0]]oo =2 28 g g
S=100 5 5 00015 g ws =2 g ollgg 0 1 00
000100 =3 v=p
0000 1olloo 0 0o 1olfoo 0 0 10
b oooo 0o 0 0 ofloo o 0 01
1000 0
0100 0 1i18881000 1 000
0010 0 0 ool oo 0 iy s 00
0001 0 0 oaolloosa—gll o010
000 1-1 0 00 1/ OO0 1 0 001
0000 1]

Since these matrices are bidiagonal and the entries are nonnegative for the indicated
values of the parameters it is well known that each of the 7 matrices are totaly positive
(see for example [9]). Since a product of totally positive matrices is totally positive
we conclude that S is totally positive.

If v ¢ [1,2] then we can find § € [—1,0) such that S has at least one negative
entry. Hence S is not totally positive for these v, 5. O

4.2 The HC!'-Bernstein Basis

Let a,b be 2 real numbers with a < b. Let us define h := b — a. Recall that the
HC'-Hermite basis {0, 10, ¢1,1} on I := [a,b] forms a basis for the space VO, 5(I)
of all possible HC" interpolants on I. The HC'-Bernstein basis {by, b1, b, b} on I
are defined as in [16] from the Hermite basis on I by

A

A A A
by := o — Ewoa by = Ewoa by 1= —E%, bs := ¢1 + E%’ (41)

18



where A > 2 is the parameter used to define the control points. These functions are
clearly linearly independent and so, they form a basis for VC&W(I ). The coefficients
in terms of this basis are the control coefficients of f. This follows since

= fla)go +pla)io + f(b)o1 +p(b)Y1, = [ = agby + a1y + asby + asbs,

where ag, a1, as, az are the control coefficients of f on I given by (24).
We note that bj (0) =050 and bj(]_) = 05,3-
For certain values of the parameters the H(C!-Benstein basis is totally positive.

Theorem 11 Suppose =2 < 3 <0, 1 < v := /\fl

=59 <2, and A > 1 — (3. Then the

HC-Bernstein basis is totally positive.

Proof: It is enough to prove the result for the interval [0,1]. Consider for some
integers n, k with n > 0 and 0 < k < 2" — 1 the interval I} := [k/2", (k + 1)/2"].
On I the HC'-Hermite basis {00 ks V6 k> @1 1 W14} can be expressed as

O u(t) = do(2t — k), g (t) = 27"o(27t — k),
1) = 01(2"t — k), Y7(t) = 27" (2" — k),
where {¢g, Vo, @1, } is the HC'-Hermite basis on [0, 1]. From (41) with h := 27",

it then follows that the HC'-Bernstein basis {bf,, 0%, 1, bl 0, Uipsg} on I} can be
expressed in terms of the HC'-Bernstein basis {by, by, b2, b3} on [0, 1] as

. bij(2"t — k), ifte I} and j=0,1,2,3
b4k+j(t) = ’ k (42)
0 otherwise.
We note that
b2k+](]€/2n) = 05,0, b2k+]((k + 1)/2”) =053 fOI‘ ] = 0, ]_, 2, 3 (43)
Let f € C'[0,1] be a HC'-interpolant to some initial data. We can then write
f=>ar,
i=0

where m := 4 x 2" — 1 and where for & = 0,...,2" — 1 the numbers ay,, aj,,
a4y, Q4.5 are the control points of f on I!. In vector form, we have f = b"a"
where 0" = (by,...,b") is a row vector and a" = (ag,...,a”)" a column vector.

Note that ™ is a vector of linearly independent functions on [0,1]. They span a
space containing VC’Ollﬁ[O, 1] as a 4-dimensional subspace. On level n + 1, we have
f =b""ta""! where from Proposition 6, it follows that "™ = A,,a™ for some matrix
A,. The matrix A, is a block diagonal with 2" diagonal blocks S of order 8 x 4.
Indeed, S is obtained from the matrix S in (27) by adding a copy of row 4 as a new
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row 5. But then f = v"Ha"t! = p"F1A 0" = b"a" and by linear independence, it
follows that b = b"+t'A,,. Thus we obtain

W=0"A, 1Ay, n>1. (44)

For distinct points v, ..., ¥y, and functions fy, ..., f, defined on the y’s, we use the
standard notation

filv) - folyr)

M|:y17"'7yp:| —
fl"“’fq fl(yp) fq(yp)

for a collocation matrix of order p x ¢. In order to show total positivity of b =
B° we choose 0 < x9g < x; < o9 < w3 < 1 and consider the collation matrix

MO T B o (44) we immediatly obtain
bOablab%bS
Lo, ..., T3 Zo,...,T3
= >
M{bo,...,bJ M{bg,...,bg} An-17:Ag, n 21 (45)

Since the matrix S is totally positive, it follows that S and hence each A}, is totally
positive. We now show that the first matrix on the right of (45) is totally positive
provided z; € P, for j = 0,1,2,3. For this, with m = 2"~! — 1, we consider the
bigger matrix
B=-M lyo,...,ym+1:|
0y, 0

using all points y; =i/2",i=0,1,...,2" in P,. ;From (43) it follows that by _1(yx) =
Lfork=1,...,2" by(yx) =1 for k=0,...,2" — 1 and b?(y;) = 0 otherwise. Thus
the columns of B have the following form

B =[e1,0,0,e9,62,0,0,e3,€3,0,0,e4...,€m,,0,0, e,11],

where e; = (8; ;)7 is the jth unit vector in R™*!. From this explicit form we see that
B is totally positive since each nonzero minor must be the determinant of the identity
matrix. But then all matrices on the right in (45) are totally positive and we conclude

Do, .., bs
is dense in [0, 1] we conclude that the HC'-Bernstein basis is totally positive. O

that M lﬂﬁo, o ’x?’] is totally positive provided z; € P, for j = 0,1,2,3. Since UP,

Corollary 12 Forp >0 and m =4-2° — 1, the basis b¥ = (b, ..., bk) for the space
span(bP) is totally positive on [0, 1].

Proof: Instead of (44) we use for n > p the equation

W =b'A, A,
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The argument now proceeds as in the proof of Theorem 11 replacing xy, ..., z3 by
suitable xg, ..., z,,. O

It is well known that total positivity of the HC" Bernstein basis on [0, 1] implies
that the HC-interpolant f inherits properties of the control polygon P° defined by
{ag, a1, az, az}, see for example ([9]). In particular if Py is positive (monotone, convex)
then f is positive (monotone, convex). We can use this to generalize Theorem 4 in

([16]).

0.5

Figure 5: Bernstein basis, § = —3/5, a« = —3/32, A = 16/3.

Corollary 13 Let by, by, by, b3 be the HC' Bernstein basis on [0, 1] given by (41) with
A=v(f—1)/8> 2. Suppose also a = ﬁ, —1<B8<0andl1<wv<2. Then
1. by is nonnegative, decreasing, and convex on [0,1]. If v = 2 then by(t) = 0 for
te(l/2,1].
2. by is nonnegative and concave on [0, 1/2] and nonnegative, decreasing and convex
on [1/2,1]
3. by is nonnegative, increasing and convex on [0,1/2] and nonnegative and concave
on [1/2,1].
4. bs is nonnegative, increasing, and convex on [0,1]. If v = 2 then bs(t) = 0 for

te0,1/2].
5. 30 o bi(t) =1 fort €[0,1]
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Proof: ;From (41) it follows that the control points of the function b; is the jth unit
vector ej4; for j = 0,1,2,3. Thus nonnegativity of b; follows from the nonnegativity
of ej41 for 57 = 0,1,2,3. Moreover the monotonicity and convexity properties of by
and b3 follow. For the remaining properties of b; and by, we carry out one subdivision,
then the proof is similar.

The refined points are given as the columns in the matrix S given by (39). When
v = 2 the first column is given by [1,1/2,0,0,0,0,0]. Since the last four entries are
zero it follows that by(t) = 0 for ¢ € [1/2,1]. Similarly b3(t) = 0 for ¢t € [0,1/2].

The interpolation of the constant function f =1 with p = f' = 0 gives ay = a; =
as = az = 1 in (24) so that 5. holds. O

5 Algorithms for local shape constraints

We base shape preserving algorithms on the extended quadratic spline case given by
a= ﬁ. The control point subdivision matrix for this case is given by (39), where

we have both § and A\ as free parameters. The matrix simplifies when v = ﬂ’g A —9
and we will use this one parameter family of schemes in our algorithms. Usmg the
parameter A to control the shape we thus have
16} 1 2

== —— = —. 46

== PTaoy (46)

We restrict our attention to A > 4. We then have 5 € [—1,0) and both algorithms

HC' and SC! are convergent. In the limit when n — oo we obtain a function

f € CYI). This function is the quadratic spline interpolant with a knot at the
midpoint of I when A =4 , while p = f’ is Holder continuous on I with exponent

1 1.44

10g2(1+/\_3)%)\_3, A — 0.

Thus the derivative becomes less regular when A increases, but it is always C*.

Given s > 1, points ag-) =a; € R° for j = 0,1,2,3, and A > 4, the following
algorithm computes sequences {a"} of control coefficients a™ = (af}, a}, ..., a4y o) in
R®.

Algorithm 14 (CCY)

1. B=2/(2— N

2. Forn=20,1,2,3,...
Fori=10,1,...2" — 1

(b) ng—rf—ll = (agi + a3;41);
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(c) agls =
(4) agy =
() agliy =

+1 _
(f agz’+5—

A3.on+1 = A3.9n;

The control points corresponding to the computed control coefficients converges
to a C''-curve. More specifically, pick any finite closed interval [a,b] and define h,, :=
(b—a)/2" and t}} := a + khy, for k=10,...,2" n > 0. By Theorem 9 the computed
control points converge uniformly to a C'-curve f : [a,b] — R*. Moreover,

ay, = f(t1), i=0,...,2",
n n hn !(4n - n
&3Z+1_a312_f(tl), 7/:0,...’2 _1’
ag, —ay_ =~ f'(t}), i=1,...,2"

We now discuss shape preservation in the scalar case s = 1 in more detail. We
start by noting that if the initial control polygon is nonnegative (respectively in-
creasing, convex) on an interval I = [a,b], then the HC'-interpolant computed in
Algorithm 14 will be nonnegative (respectively increasing, convex) on the same in-
terval 1. This follows from the total positivity of the Bernstein basis. In addition
to total positivity the main tool will be Corollary 2 which says that the p-values of
the interpolant are located on the piecewise linear curve connecting the three points

(a,p(a)), (452, p(%£2)), (b, p(b)).

5.1 Nonnegative Interpolants

We already remarked that if the initial control coefficients are nonnegative then the
H(Cinterpolant will be nonnegative. Notice that the converse is false. For example,
the HC'-interpolant to the function f given on [0,1] by f(x) := 16(z — 1/4)* and
using A = 4 is f itself. Note that f is nonnegative, but the initial control coefficient
a1 = —1 is negative.

To give an algorithm for constructing a nonnegative interpolant we assume that

fla) =0, f(b) 20, p(a) 2 0if f(a) =0, and p(b) < 0if f(b) =0.  (47)

Under these weak assumptions nonnegative initial control coefficients ay, ..., a3 can
always be obtained by choosing A sufficiently large. Indeed, since ap = f(a) > 0
and az = f(b) > 0 we only need to make sure that a; = f(a) + hp(a)/A > 0 and
as = f(b) — hp(b)/X > 0. If f(a) = 0 then p(a) > 0 and a; > 0 whenever A > 0 .
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Similarly ay > 0 if f(b) = 0. But then we can choose A = 4 except possibly in the
two cases f(a) > 0, p(a) < 0 and f(b) > 0, p(b) > 0. If (47) holds then the following
algorithm will compute a nonnegative HC!-interpolant on [a, b].

Algorithm 15 (Nonnegative Interpolant)
1. Compute A
(a) A\ =4;
() if (£(a) > 0) & (pla) < 0) then A = max(\, —hp(a)/f(a));
(c) if (F() > 0) & (p(b) > 0) then A = max(A, hp(b)/ £(b);
2. Compute initial control coefficients using (24).

3. Apply Algorithm 14 or Algorithm HC' with o = —%, 8= %

5.2 Monotone interpolants

The monotonicity of the HC'-interpolant is completely determined by the mono-
tonicity of the initial control polygon. If f is decreasing then —f is increasing and
we restrict our discussion to increasing interpolants.

Proposition 16 Suppose that the parameters are chosen according to (46). Then
the HC'-interpolant f is nondecreasing on an interval I = [a,b] if and only if the
control polygon on I is nondecreasing.

Proof: By Theorem 11 the Bernstein basis is totally positive and it follows that
the HC'-interpolant is nondecreasing if the control polygon is nondecreasing , see [9].
Conversely, suppose the HC'-interpolant f is nondecreasing. Since 3 = 2/(2 — \),
we obtain from (1)

p(a—i-b 1 ()\f(b)—f(a)_

)= 55 (VO i o). (48)

From (24), we then find

h A—2 a+b h
a1—aozxp(a), as — a; = )\ hp( 5 ), a3—agzxp(b). (49)

Now p > 0 at all points if f is nondecreasing. It follows that the control coefficients,
and hence the control polygon is nondecreasing. O
Consider next the case of a strictly increasing interpolant.

Proposition 17 Suppose that the parameters are chosen according to (46) and that
the HC"-interpolant f is nondecreasing on an interval I = [a,b]. Then f is strictly
increasing on |a,b] if and only if the two middle control coefficients on I satisfy
as > aj.
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B
> 0.

Proof: Since f is nondecreasing, we have p(a) > 0, p(“T*b) > 0 and p(b)
Corollary 2, it follows that f is strictly increasing on [a, ] if and only if p(
By (49), this happens if and only if ay > a;. O

> 0.
%)

To give an algorithm to construct a nondecreasing interpolant we assume that

f(a) < F(b), pla) =0, p(b) > 0 and p(a) = p(b) = 0 if f(a) = F(B).  (50)

In the latter case the HC'-interpolant is constant and we can set A = 4.
Suppose f(b) > f(a). With h := b — a we then have

h h

ap = f(a) < ay :f((l)‘i‘xp(a) §a2:f(b)—xp(b) <az= f(b)
provided
2 =y = f(6) = f(a) = 3 (p0) + b)) 2 0
. (p(a) + p(b))h
A2 fa) (51)

If (50) holds then the following algorithm will compute a nondecreasing HC'-
interpolant on [a, b]. It will be strictly increasing if f(b) > f(a) and (51) holds with
strict inequality.

Algorithm 18 (Nondecreasing- or Strictly Increasing Interpolant)
1. Compute A
(a) N =4;
(b) If f(a) < f(b) then

. (p(a)+p(b))h
R (G
éi. A = max (4, \1)

2. Compute initial control coefficients using (24).
3. Apply Algorithm 14 or Algorithm HC' with o = —%, b= %

Note that if the initial control points are located on a straight line then the HC'*-
interpolant is the line segment connecting the first and last control point. For if the
initial control points are located on a straight line then

A A A

—((ll—ao): ( ag—al):—(ag—ag)

h )\—2)h( h

and by (49) the three slopes p(a), p(aT“’), p(b) are all equal. By Corollary 2, all slopes

are equal and the function f is a straight line.
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In Figure 6 we interpolate three sets of data on [0, 1]. In all cases f(0) = —1 and
f(1) = 1. In the first case, with p(0) = 3 and p(1) = 4 we find ?E?gf?%)) =T7/2 < 4.
Suppose in Algorithm 18 we choose 7/2 < A\; < 4 in Statement (b)i. and apply
Algorithm 14 with A = 4. Then the HCinterpolant is the quadratic spline and
it is strictly increasing since A > 7/2. In the two other cases we use p(0) = 8 and
p(l) = 4 giving ?E?gf?((é)) = 6. With A = 6 we have p(1/2) = 0 and the interpolant
is increasing, but not strictly increasing. We obtain a strictly increasing interpolant
by using A = 10. Note that choosing a bigger A\ decreases the regularity of the
interpolant. In both cases the first derivative is Holder continuous, but the exponent
is log, (4/3) ~ 0.415 when A = 6 and log, (4/3) ~ 0.193 when \ = 10.

1 . A=4 4 e
p =
05} 1 s b1
0 2
-0.5 1
-1 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
1 . =6
2
0.5
0
-0.5
-1 L L L L
0 0.2 0.4 0.6 0.8 1
p =
0.5 3 o 3 3
0 4
-0.5 2
-1 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 6: Monotone interpolants

5.3 Convex interpolants

The convexity of the HC'-interpolant is also completely determined by the convexity
of the initial control polygon.
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Proposition 19 Suppose that the parameters are chosen according to (46). Then f
is conver (concave) on an interval I = [a,b] if and only if the control polygon on I is
convez (concave).

Proof:  Again by total positivity of the Bernstein basis the HC!-interpolant is
convex (concave) if the control polygon is convex (concave), see [9]. Conversely,
suppose the HC-interpolant f is convex (concave). Now the control polygon is
convex if and only if the conditions

a1 — Qo a2 — aq as — a2

WX~ h—2h/X =  h/A

hold. But from (49) we find

a9 — a1 CL+b a3 — ag

lh;Aozp(“)’ noony P T el

Since f is convex (concave) the function p is nondecreasing (nonincreasing) and hence
the control polygon is convex(concave). O

To give an algorithm for constructing a convex (concave) HC'-interpolant on an
interval I = [a, b] we first assume that

pla) < - <pb) (p(a) > ; > p(b)), (52)
where h := b — a. We define
(b) — p(a) (0) — p(a)
A= p(j; _ f(ghﬂa)’ Az = f(ghf(a) ﬁ p(a) (53)

and note that the tangents

te(z) := f(a) + (z — a)p(a), ta(z):= f(b) + (z — b)p(b)
of f at a and b intersect at the point(z,y) given by

T — 1 b—=x 1
x a:_’ and x

h A h Ay

Moreover, the hypothesis (52) is equivalent to a < Z < b.
Under the assumption

f(b) — f(a)

pla) < .

<pb) (p(a) 2 === >p(b)) (54)
the following algorithm will compute a convex (concave) interpolant.
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Figure 7: Convex interpolants

Algorithm 20 (Convex or Concave interpolant)

1. (a) If p(a) = fO)-fa@) p(b), choose X > max (4, \;)
(b) If p(a) # L@ — yb) choose A > max (4, \y)
(c) If p(a) # w # p(b), choose X > max (4, A1, \2)

2. Compute initial control points using (24)
3. Apply Algorithm 14 or Algorithm HC' with oo = —%, 8= %

In Figure 7, we have interpolated three sets of data on [0, 1]. In all cases f(0) = 0.5
and f(1) = 1.

In the first case, p(0) = —1 and p(1) = 3 so that \; = 8/5 and Ay = 8/3. Then
max (4, A1, \2) = 4 and we have chosen A\ = 4. In this case, the interpolant is the
quadratic spline.

In the two other cases p(0) = —1 and p(1) = 8 so that A\; = 18/5 and Ay = 6.
Then max (4, A\, Ag) = 6. With A = 6 we have p = —1 on [0, 1/2], while we obtain a
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Figure 8: The function ¢ and its derivative

strictly convex interpolant by using A = 10. Recall that choosing a bigger A\ decreases
the regularity of the interpolant.

6 Example

Given data (t;,y;,y;) fori = 1,...,n, where t; < --- < t,, and the y’s are real numbers.
We look for a function f € C'([t1,t,]) that satisfies

ft) =y, f'(t:) =y fori=1,...,n. (55)

In addition we would like f to be positive, monotone, linear, or convex on some or
all of the subintervals I; = [t;,t;11],i = 1,...n — 1. We assume that

(P) (47) holds for the subintervals where we want nonnegativity or positivity.

(M) (50) holds for the subintervals where we want a nondecreasing or a strictly
increasing interpolant.

(L) vi=vyi1 = % for the subintervals where the interpolant should be linear.
(C) (54) holds for the subintervals where the interpolant should be convex or con-
cave.

We also require that the given data is consistent with these shape requirements. We
can compute f locally by applying the HC'-algorithm with parameters given by (46)
on each subinterval I; = [t;,t;11],7 = 1,...n—1 using initial data f(t;) = v;, f(ti11) =
Yir1, p(ti) = yi and p(ti11) = yi1. We obtain C'-convergence and the desired shape
locally by choosing the parameter \; for the interval I; sufficiently large.
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Figure 9: Interpolation with exact derivatives

Consider now (55) for the example illustrated in Figure 1. The data are sampled
from the function ¢ € C'*([0,4]) given by

lsm(27nt+7r/2)+5 ., 0<t<1,

) T+exp(—3 t22+1) , 1<t <2,
o(t) = 2, 2<t<3, (56)

2 cos(m %) , 3<t<4.

The function and its first derivative are displayed in Figure 8 and it can be shown that
¢ is positive on [0, 1], strictly increasing on [1,2], constant on [2,3] and concave on
[3,4]. Given n and let (t1,...,t,) be a partition of [0, 4]. The points (2, ..., t,_1) are
chosen randomly except that 1, 2,3 are among them. In the example, we used t; = 0,
toy, =15 =1, 1y, =19 =2, t,,, = t13 = 3 and ¢, = t1; = 4. We want an interpolant f
which is positive on [t1, m] [0, 1], strictly increasing on [t,,,t,,] = [1, 2], constant
on [tn,,tm, = [2,3] and concave on [t,,,t,] = [3,4].

In the first test we use y; = ¢(;) and exact derivatives y, = ¢'(¢;),i =1,...,n. In
this case all A\’'s become equal to 4 and the quadratic spline interpolant fl does the
job. Plots of this function and its first derivative are shown in Figure 9. The first
derivative appears continuous and piecewise linear.

For the second test shown in Figure 10, we kept the previous data ¢; and y; = ¢(¢;)
fori=1,...,n = 17, but we used inexact derivatives given by crosses in the lower
part of the figure. However the derivatives were chosen so that the relevant require-
ment (P),(M), (L), and (C) above are satisfied on each subinterval [t;, t;11]. We obtain
a Cl-interpolant f, satisfying the required shape constraints. The computed values
of \; are successively
(4,5.1425,4,4,4,12.8631,55.8239, 4,4, 4,4,17.6767,20.0216, 4.4087, 11.3544). This ex-
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Figure 10: Interpolation with modified derivatives

ample shows that we can obtain a desired shape even with more or less random
derivative values.
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