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C1 Interpolatory Subdivision with Shape
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Tom Lyche ∗, Jean-Louis Merrien†

December 16, 2004

Abstract

We derive two reformulations of the C1 Hermite subdivision scheme intro-
duced in [12]. One where we separate computation of values and derivatives and
one based of refinement of a control polygon. We show that the latter leads to
a subdivision matrix which is totally positive. Based on this we give algorithms
for constructing subdivision curves that preserve positivity, monotonicity, and
convexity.

Math Subject Classification: 65D05, 65D17
Keywords: Interpolation, Subdivision, Corner Cutting, Total Positivity, Positiv-
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1 Introduction

Subdivision is a technique for creating a smooth curve or surface out of a sequence of
successive refinements of polygons, or grids see [1]. Subdivision has found applications
in areas such as geometric design [6],[17], and in computer games and animation [4].
We consider here the two point Hermite scheme, the HC1-algorithm, introduced in
[12]. We start with values and derivatives at the endpoint of an interval and then
compute values and derivatives at the midpoint. Repeating this on each subinterval
we obtain in the limit a function with a certain smoothness. The scheme depends
on two parameters α and β and it has been shown that the limit function is C1

for a range C of these parameters. For more references to Hermite subdivision see
[5, 11, 13, 14].
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The strong locality of the HC1-algorithm was used in [14] to construct subdivision
curves with shape constraints like positivity, monotonicity, and convexity. A notion
of control points, control coefficients and a Bernstein basis for two subfamilies of the
HC1-interpolant were introduced in [16].

In this paper we continue the study of subdivision with shape constraints initiated
in [14, 16]. Before detailing our results let us first describe the shape preserving
subdivision process and give an example. Suppose we have values y1, . . . , yn and
derivatives y′1, . . . , y

′
n at some abscissae t1 < t2 < · · · < tn. With each subinterval

[ti, ti+1] we associate parameters (αi, βi) ∈ C chosen so that the HC1-interpolant
using data (yi, y

′
i, yi+1, y

′
i+1) has the required shape on [ti, ti+1]. We then obtain a

C1-function on [t1, tn]. As an illustration consider the function in Figure 1.

0 1 2 3 4
0

1

2

positive
strictly increasing

constant

concave

Figure 1: A given function.

This function is defined on the interval [0, 4]. It is positive on [0, 1], strictly in-
creasing on [1, 2], constant on [2, 3] and concave on [3, 4]. Suppose we want to use sub-
division to construct a C1-approximation to this function with the same shape char-
acteristics and that all we know about the function are the function values y1, . . . , yn

at some points t1 < · · · < tn. We can achieve this with the HC1-algorithm using
only crude estimates for the derivatives y′1, . . . , y

′
n as long as the transition points

1, 2, 3 are among the abscissae and the chosen derivatives are consistent with the re-
quired shapes. See Section 6 for details. For classical curve based shape preserving
algorithms we refer to [7, 9, 10] and references therein.

Our paper can be detailed as follows. In Section 2, we recall the HC1-algorithm
and some properties which were proved in [14]. We give a new formulation of the
HC1-algorithm were we separate the computation of function values and derivatives.
This formulation is useful for proving shape preserving properties and shows why
the one parameter family given by α = β/(4(1 − β)) and β ∈ [−1, 0) considered
in [14, 16] really is an extension of the quadratic spline case. We will refer to this
family as the EQS-case. We also give a new domain C for C1-convergence of the
algorithm. In Section 3 we use control points to reformulate the HC1 algorithm as
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a stationary subdivision algorithm called SC1. The control points depend on a third
parameter λ ≥ 2 and we show convergence of the stationary subdivision algorithm
for (α, β) ∈ C and λ ≥ 2. The SC1 algorithm can also be used in the parametric
case, but a discussion of this will be deferred to a future paper. Starting in Section
4, we restrict our attention to the EQS-case. By formulating the SC1-algorithm as
a corner cutting scheme we show that the subdivision matrix S is totally positive.
We show this for an extended range of β and λ and also prove the total positivity
of the HC1-Bernstein basis. With this last property, the interpolant inherits shape
properties of the control polygon such as nonnegativity, monotonicity or convexity.
In Section 5, we give algorithms for interpolation with any of the previous shape
constrains. An example based on Figure 1 is given in Section 6.

2 The HC1 Algorithm

We recall the univariate version of the Hermite subdivision scheme for C1 interpola-
tion, given by Merrien [12] which we call here HC1. We start with values (f(a), p(a))
and (f(b), p(b)) of a function f and of its first derivative p = f ′ at the endpoints a, b
of a bounded interval I := [a, b] of R. To build f and p on I, we proceed recursively.
At step n (n ≥ 0), let us denote by Pn the regular partition of I in 2n subintervals
and let us write hn := (b−a)/2n. If c and d are two consecutive points of Pn, then we
compute f and p at the midpoint (c+ d)/2 according to the following scheme, which
depends on two parameters α and β

f(
c+ d

2
) :=

f(d) + f(c)

2
+ αhn[p(d) − p(c)],

p(
c+ d

2
) :=(1 − β)

f(d) − f(c)

hn
+ β

p(d) + p(c)

2
.

(1)

By applying these formulae on ever finer partitions, we define f and p on P = ∪Pn

which is a dense subset of I. We say that the scheme is C1-convergent if, for any
initial data, f and p can be extended from P to continuous functions on I with p = f ′.
We call f defined either on I or on P the HC1-interpolant to the data.

The HC1-algorithm can also be formulated as follows. We start with Hermite
data f0, p0, f1, p1 at the endpoints of a finite interval [a, b] and set f 0

0 = f0, p
0
0 = p0,

f 0
1 = f1, and p0

1 = p1. For n = 0, 1, 2, . . ., hn = 2−n(b− a), and k = 0, 1, . . . , 2n − 1

fn+1
2k := fn

k , fn+1
2k+1 :=

fn
k+1 + fn

k

2
+ αhn

(
pn

k+1 − pn
k

)
, (2)

pn+1
2k := pn

k , pn+1
2k+1 :=(1 − β)

fn
k+1 − fn

k

hn
+ β

pn
k+1 + pn

k

2
, (3)

and fn+1
2n+1 := fn

2n , pn+1
2n+1 := pn

2n . If the scheme is C1-convergent with limit functions f
and p then

f(tnk) = fn
k , f

′(tnk) = p(tnk) = pn
k , t

n
k := a+ khn, k = 0, 1, . . . , 2n. (4)
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2.1 The Vector Space of HC1-interpolants

To each choice of (α, β) there is a vector space

V C1
α,β(P) := {f : P → R : f, p computed by (2) − (4)}

of HC1-interpolants. If the scheme is C1-convergent we define

V C1
α,β(I) := {f : I → R : f |P ∈ V C1

α,β(P)}.

The HC1-Hermite basis functions {φ0, ψ0, φ1, ψ1} are defined by taking as initial
data the four unit vectors ej = (δi,j)

4
i=1, respectively. They are always defined on P

and the HC1-interpolant corresponding to initial data (f0, p0, f1, p1) can be written
f = f0φ0 + p0ψ0 + f1φ1 + p1ψ1. Since the Hermite basis functions are clearly linearly
independent on P they form a basis for V C1

α,β(P). Thus V C1
α,β(P) and V C1

α,β(I) are
vector spaces of dimension 4.

Let us denote the HC1-interpolant to initial data sampled from a function g by
f = Hg. By induction it is easy to see that for any (α, β) we have g = Hg for all
polynomials g of degree at most one, while g = Hg for all quadratic polynomials if
and only if α = −1/8. We also have g = Hg for all cubic polynomials if and only
if α = −1/8 and β = −1/2 and it can be shown that xk �= Hxk for any integer
k ≥ 4. The fact that the scheme reproduces polynomials up to a certain degree can
be used to give error bounds, see [14]. Assume (α, β) are chosen so that the scheme is
C1-convergent. Then there is a constant C(α, β) such that for all intervals I = [a, b]
and all g ∈ Ck(I) we have

‖g −Hg‖L∞(I) ≤ C(α, β)hk‖g(k)‖L∞(I), (5)

where h := b− a and k = 2 for most choices of α and β.
Notice some important choices of (α, β):

1. If α = −1/8, β = −1/2, then f is the cubic polynomial known as the Hermite
cubic interpolant. For these parameters (5) holds with k = 4 and C(α, β) =
1/384.

2. If α = −1/8, β = −1, then f is the Hermite quadratic interpolant, i.e. the
quadratic C1 spline interpolant with one knot at the midpoint of the initial
interval. In this case (5) holds with k = 3 and C(α, β) = 1/96, see [14].

3. The EQS-case α = β
4(1−β)

with β ∈ [−1, 0) is a one parameter extension of the

quadratic spline case. It was introduced and studied in [14]. In this case (5)
only holds with k = 2 and C(α, β) ≤ 1/48 unless β = −1, but as we will see
this scheme has important shape preserving properties.
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2.2 Direct computation of the function or the derivative

We can reformulate (3) so that only values of p are involved and similarly (2) with f .

Proposition 1 For α, β ∈ R and n ∈ N, the function f and the derivative p of the
HC1-interpolant satisfy the following relations:
For n = 1, 2, . . . , i = 0, 1, . . . , 2n−1 − 1,

pn+1
4i+1 =µpn

2i + (1 +
β

2
)pn

2i+1 − νpn
2i+2,

pn+1
4i+3 = − νpn

2i + (1 +
β

2
)pn

2i+1 + µpn
2i+2,

(6)

and for n = 1, 2, . . . , i = 0, 1, . . . , 2n−2 − 1,

4fn+1
8i+1 =(1 + µ)fn

4i + 2(2 − µ)fn
4i+1 + (µ+ ν − 1)fn

4i+2 − 2νfn
4i+3 + νfn

4i+4

4fn+1
8i+3 = − µfn

4i + 2(1 + µ)fn
4i+1 + (2 − µ− ν)fn

4i+2 + 2νfn
4i+3 − νfn

4i+4

4fn+1
8i+5 = − νfn

4i + 2νfn
4i+1 + (2 − µ− ν)fn

4i+2 + 2(1 + µ)fn
4i+3 − µfn

4i+4

4fn+1
8i+7 =νfn

4i − 2νfn
4i+1 + (µ+ ν − 1)fn

4i+2 + 2(2 − µ)fn
4i+3 + (1 + µ)fn

4i+4

(7)

where µ := −2α(1 − β) and ν = µ+ β/2.

Proof: We will use the notation ∆pn
k = pn

k+1 − pn
k , ∆fn

k = fn
k+1 − fn

k and ∆2fn
k =

∆(∆fn
k ) = fn

k+2 − 2fn
k+1 + fn

k .
Let us start by proving (6). Using (3) with k = 2i and k = 2i+ 1

pn+1
4i+1 = (1 − β)

∆fn
2i

hn
+
β

2

(
pn

2i+1 + pn
2i

)
pn+1

4i+3 = (1 − β)
∆fn

2i+1

hn
+
β

2

(
pn

2i+2 + pn
2i+1

)
.

(8)

¿From (2) we obtain

∆fn
2i

hn
=

∆fn−1
i

hn−1
+ 2α∆pn−1

i

∆fn
2i+1

hn
=

∆fn−1
i

hn−1
− 2α∆pn−1

i ,

(9)

The f difference on the right can be eliminated by a reordering of (3) with k = i and
n→ n− 1

(1 − β)
∆fn−1

i

hn−1

= pn
2i+1 −

β

2

(
pn−1

i+1 + pn−1
i

)
. (10)

Combining (8)-(10), we find

pn+1
4i+1 = pn

2i+1 +
β

2

(
pn

2i+1 − pn−1
i+1

) − µ∆pn−1
i

pn+1
4i+3 = pn

2i+1 +
β

2

(
pn

2i+1 − pn−1
i

)
+ µ∆pn−1

i
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and we obtain (6).
Now for (7), with n→ n− 1 in (6), we obtain:

∆pn
4i = (1 − µ)∆pn−1

2i − ν∆pn−1
2i+1

∆pn
4i+1 = µ∆pn−1

2i + ν∆pn−1
2i+1

∆pn
4i+2 = ν∆pn−1

2i + µ∆pn−1
2i+1

∆pn
4i+3 = −ν∆pn−1

2i + (1 − µ)∆pn−1
2i+1.

(11)

Notice that with (2) , we get ∆2fn+1
2k = −2αhn∆pn

k since fn+1
2k = fn

k and (11) can
be written

2∆2fn+1
8i = (1 − µ)∆2fn

4i − ν∆2fn
4i+2

2∆2fn+1
8i+2 = µ∆2fn

4i + ν∆2fn
4i+2

2∆2fn+1
8i+4 = ν∆2fn

4i + µ∆2fn
4i+2

2∆2fn+1
8i+6 = −ν∆2fn

4i + (1 − µ)∆2fn
4i+2.

(12)

It remains to extract the values fn+1
8i+j , j = 1, 3, 5, 7 from the previous formula using

again fn+1
2k = fn

k to obtain (7) �

The previous formulae (6)-(7) can also be completed, then written in a vectorial
way. For n ≥ 1


pn+1

4i

pn+1
4i+1

pn+1
4i+2

pn+1
4i+3


 =




1 0 0
µ 1 + β/2 −ν
0 1 0
−ν 1 + β/2 µ





 pn

2i

pn
2i+1

pn
2i+2


 , i = 0, 1, . . . 2n−1 (13)

and for n ≥ 2


fn+1
8i

fn+1
8i+1

fn+1
8i+2

fn+1
8i+3

fn+1
8i+4

fn+1
8i+5

fn+1
8i+6

fn+1
8i+7




=
1

4




4 0 0 0 0
1 + µ 2(2 − µ) µ+ ν − 1 −2ν ν

0 4 0 0 0
−µ 2(1 + µ) 2 − µ− ν 2ν −ν
0 0 4 0 0
−ν 2ν 2 − µ− ν 2(1 + µ) −µ
0 0 0 4 0
ν −2ν µ+ ν − 1 2(2 − µ) 1 + µ






fn

4i

fn
4i+1

fn
4i+2

fn
4i+3

fn
4i+4


 , i = 0, 1, . . . 2n−2

(14)

¿From (6) it follows that the new p-values on level n + 1 (n ≥ 1) can be formed
by an affine combination of three p values on the previous level n. In the EQS-case
we only need the two neighboring values. Moreover the derivatives will be sampled
from a piecewise linear curve.
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Corollary 2 In the EQS-case α = β
4(1−β)

we have

pn+1
4i+1 = −β

2
pn

2i + (1 +
β

2
)pn

2i+1,

pn+1
4i+3 = (1 +

β

2
)pn

2i+1 −
β

2
pn

2i+2.

(15)

and

4fn+1
8i+1 =(1 − β

2
)fn

4i + (4 + β)fn
4i+1 − (1 +

β

2
)fn

4i+2

4fn+1
8i+3 =

β

2
fn

4i + (2 − β)fn
4i+1 + (2 +

β

2
)fn

4i+2

4fn+1
8i+5 =(2 +

β

2
)fn

4i+2 + (2 − β)fn
4i+3 +

β

2
fn

4i+4

4fn+1
8i+7 = − (1 +

β

2
)fn

4i+2 + (4 + β)fn
4i+3 + (1 − β

2
)fn

4i+4

(16)

If in addition β ∈ (−2, 0) then there exist

a = τn
0 < τn

1 < · · · < τn
2n = b, (17)

with τn
2n−1 = a+b

2
for n ≥ 1. such that

pn
i = L(τn

i ), i = 0, 1, . . . , 2n, n = 0, 1, . . . , (18)

where L is the piecewise linear curve connecting the three points (a, p(a)), (a+b
2
, p(a+b

2
)),

(b, p(b)).

Proof: If α = β
4(1−β)

then µ = −β/2 and (15) follows from (6). Similarly, we obtain

(16).
We claim that (18) holds with

τn+1
4i = τn

2i, τn+1
4i+1 = −β

2
τn
2i + (1 +

β

2
)τn

2i+1,

τn+1
4i+2 = τn

2i+1, τn+1
4i+3 = −β

2
τn
2i+2 + (1 +

β

2
)τn

2i+1.

(19)

Since pn
0 = p(a) and pn

2n = p(b), we have τn
0 = a and τn

2n = b for all n ≥ 0.
Moreover, since pn

2n−1 = p(a+b
2

), we see that τn
2n−1 = a+b

2
for all n ≥ 1. Thus (17) will

follow from (19) since the latter involves convex combinations for β ∈ (−2, 0). (19)
follows from (15) by induction. Suppose (18) holds for some n. Since L is linear on
the actual segment we obtain

pn+1
4i+1 = −β

2
L(τn

2i) + (1 +
β

2
)L(τn

2i+1) = L(τn+1
4i+1),

where τn+1
4i+1 is given by (19). The proof of the other τ -relation is similar. �
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2.3 C1-convergence

To study convergence we observe that it is enough to consider the interval [0, 1].
Indeed, if I := [a, b] and h := b−a, defining the initial data g(u) = f(a+hu), g′(u) =
hf ′(a + hu), for u ∈ {0, 1}, the construction of f on [a, b] or g on [0, 1] by (1)
are equivalent and at step n, g(u) = f(a + uh) and g′(u) = hf ′(a + hu) for u ∈
{0, 1/2n, . . . , 	/2n, . . . , 1}.

In [13] it was shown that if there exist positive constants c, ρ with ρ < 1 such that
for each integer n ≥ 0 we have |∆pn

i | ≤ cρn for i = 0, 1, . . . , 2n − 1, where

∆pn
i := p

( i+ 1

2n

) − p
( i
2n

)
, i = 0, 1, . . . , 2n − 1, (20)

then p has a unique continuous extension to I. Moreover, there is a positive constant
c1 such that for all (x, y) ∈ [0, 1]2

|p(x) − p(y)| ≤ c1|x− y|− log2 ρ,

i.e. p is Hölder continuous with exponent − log2 ρ.
Suppose p is continuous and lim

n→∞
max

0≤i<2n−1
|∆(f, p)n

i | = 0, where

∆(f, p)n
i := 2n∆fn

i − σpn
i , σpn

i :=
1

2

(
p
(i+ 1

2n

)
+ p

( i
2n

))
, (21)

and ∆fn
i = f

(
i+1
2n

) − f
(

i
2n

)
. Then ([13]) f has a unique continuous extension to

I := [0, 1]. Moreover f ∈ C1([0, 1]) with f ′ = p. From this discussion we have the
following lemma.

Lemma 3 Let Un
i := [∆pn

i ,∆(f, p)n
i ]T for i = 0, 1, . . . , 2n and n = 0, 1, 2, . . .. If we

can find a vector norm ‖·‖ on R
2 and positive constants c, ρ with ρ < 1 such that

‖Un
i ‖ ≤ cρn, i = 0, 1, . . . , 2n and n = 0, 1, . . .

then the HC1-algorithm is C1-convergent and f ′ = p is Hölder continuous with expo-
nent − log2 ρ.

We can now show

Proposition 4 Algorithm HC1 is C1-convergent for (α, β) ∈ [−1/8, 0) × [−2, 1).

Proof: An immediate evaluation gives

Un+1
2i = Λ1U

n
i and Un+1

2i+1 = Λ−1U
n
i for i = 0, 1, . . . , 2n, n = 0, 1, . . . ,

where

Λε =




1

2
ε(1 − β)

ε
8α + 1

4

1 + β

2


 , ε = ±1. (22)
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Since the off-diagonal elements of Λε have the same sign for α ≥ −1/8 and β ≤ 1, we
can define a vector norm by ‖v‖ := ‖P−1v‖2, where ‖ · ‖2 is the usual Euclidian norm

of a vector and P is a suitable matrix. If P :=

[
2
√

1 − β 0
0

√
8α + 1

]
then P−1ΛεP is

symmetric. The corresponding matrix operator norm is given by ‖Λε‖ := ‖P−1ΛεP‖2,
where ‖A‖2 :=

√
ρ(ATA) is the spectral norm of a matrix A. The eigenvalues of Λε

or of P−1ΛεP are

λ1 =
1

4

(
2+β+

√
(2 − β)2 + 32α(1 − β)

)
, λ2 =

1

4

(
2+β−

√
(2 − β)2 + 32α(1 − β)

)
Since P−1ΛεP is symmetric the eigenvalues are real with λ2 < λ1. Now for β ∈ [−2, 1)
and α ∈ [−1/8, 0) we find λ1 < (2 + β +

√
(2 − β)2)/4 = 1 and λ2 > (2 + β −√

(2 − β)2)/4 = β/2 ≥ −1. Thus ρ := ‖Λε‖ = max{|λ1|, |λ2|} < 1 for ε = ±1
and we have shown that max{‖Un+1

2i ‖, ‖Un+1
2i+1‖} ≤ ρ‖Un

i ‖ or ‖Un
i ‖ ≤ ρn‖U0

0‖ for i =
0, 1, . . . , 2n−1 and n = 0, 1, 2, · · · . The C1-convergence for (α, β) ∈ [−1/8, 0)×[−2, 1)
now follows from Lemma 3 �

By Proposition 4, the HC1-algorithm converges for β ∈ [−1, 0) if α = β
4(1−β)

. We
can now extend this result.

Proposition 5 If α = β
4(1−β)

then the HC1-algorithm is C1-convergent for β ∈
(−2, 0).

Proof: For ε = ±1 the matrices Λε in (22) take the form : Λε =

( 1
2

ε(1 − β)

ε β+1
4(1−β)

1+β
2

)
.

Now, for any positive real number θ, we define the norm ‖·‖θ on R
2 by ‖(x, y)‖θ =

|x|+θ|y|. It is easy to prove that for any matrixM = (mij) ∈ R
2×2, the corresponding

matrix operator norm is given by ‖M‖θ := max(|m11|+θ|m21|, |m12|
θ

+|m22|). Choosing
θ = 2(1 − β) we find ‖Λ1‖θ = ‖Λ−1‖θ = 1/2(1 + |1 + β|), which is stricly less than
one for −2 < β < 0. Lemma 3 now gives the convergence.

�

We define the convergence region C by

C :=
{
(α, β) : the scheme HC1 is C1 - convergent

}
. (23)

We have shown that [−1/8, 0) × [−2, 1) ⊂ C and also that {( β
4(1−β)

, β) : −2 < β <

0} ⊂ C.
The function f ′ = p is Hölder continuous with exponent − log2 ρ. In the case

where α = β
4(1−β)

we have ‖Λ1‖θ = ‖Λ−1‖θ = ρ = ρ(β) = 1/2(1 + |1 + β|)which is
piecewise linear with a minimum for β = −1 and we obtain the best regularity of the
interpolant for β = −1 when f is a quadratic spline.

To illustrate the smoothness properties of a HC1-interpolant we show the Hermite
basis with β = −3/5 and α = β

4(1−β)
= −3/32 in Figure 2. The spectral radius of
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Figure 2: Hermite basis and derivatives, corresponding to α = −3/32 and β = −3/5.

the matrices Λε is 7/10 and hence the derivatives of the Hermite basis functions are
Hölder continuous with exponent ρ = − log2(7/10) ≈ 0.5146.
Remark: The data f(a), p(a), f(b), p(b) can either have real values or vector values
in R

s, s ≥ 2. In this second case, we look for vector continuous functions f and p
with f ′ = p from I = [a, b] to R

s. The C1-convergence is guaranteed for all (α, β) in
the convergence region C since it suffices to study the convergence independently for
each component of f and p.

3 Control Polygons and Subdivision Algorithm

3.1 Control Coefficients and Control Polygons

Suppose we apply the subdivision scheme HC1 to some real valued data f(a), p(a),
f(b), p(b). In order to obtain a geometric formulation of the scheme we define control
coefficients relative to the interval [a, b] by

a0 = f(a), a1 = f(a) +
h

λ
p(a), a2 = f(b) − h

λ
p(b), a3 = f(b), (24)

where h := b − a and λ ≥ 2 is a real number to be chosen. We define the control
points (A0, A1, A2, A3) on [a, b] by

A0 = (a, a0), A1 = (a+
h

λ
, a1), A2 = (b− h

λ
, a2), A3 = (b, a3), (25)

and the control polygon {A0, A1, A2, A3} on [a, b] by connecting the four control
points by straight line segments. If f is the HC1-interpolant then the parametric

10



curve (x, f(x)) with x ∈ [a, b] passes through A0 with tangent directions A1 −A0 and
A3 with tangent direction A3 − A2. See Figure 3.
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Figure 3: A HC1-interpolant and its control polygon, β = −3/5, α = −3/32, λ =
16/3.

We can also apply the subdivision scheme HC1 to vector valued data f0, p0, f1, p1

in R
s for some s ≥ 2. We pick an interval [a, b] and use the HC1-algorithm on each

component of f and p. To obtain a geometric formulation of this process we define
control coefficients relative to [a, b] by (24) and we define the control points to be the
same as the control coefficients. The computed curve interpolates the first and last
control coefficient and its tangent direction at a0 is a1 − a0, and at a3 the tangent
direction is a3 − a2.

Note that if 4 points a0, a1, a2, a3 in R
s for s ≥ 1 are given we can think of these

as control coefficients of a HC1-interpolant on some finite interval [a, b] and apply the
HC1 algorithm to the data given by

f(a) := a0, p(a) :=
λ

h

(
a1 − a0

)
, f(b) := a3, p(b) :=

λ

h

(
a3 − a2

)
, (26)

where h := b−a. We now derive a parameter independent formulation of this scheme.
In particular suppose (a0, a1, a2, a3) are points in R

s for some s ≥ 1 which are distinct
if s ≥ 2 and let [a, b] be any finite interval.

Using (24) and (26) we can compute new control coefficients (ā0, ā1, ā2, ā3) for
the interval I1 and new control coefficients (ā3, ā4, ā5, ā6) for I2, and then join them
into control coefficients (ā0, ā1, ā2, ā3, ā4, ā5, ā6) on [a, b]. In the following geometric
formulation of the subdivision scheme we do this computation directly without picking
an underlying interval [a, b]. The proposition is a generalization of Theorem 10 of [16]:

11



Proposition 6 Suppose ai ∈ R
s for i = 0, 1, 2, 3 and some s ≥ 1. After one sub-

division of the control coefficients (a0, a1, a2, a3) we obtain new control coefficients
(ā0, ā1, ā2, ā3, ā4, ā5, ā6) given by



ā0

ā1

ā2

ā3

ā4

ā5

ā6




= S



a0

a1

a2

a3


 :=

1

4




4 0 0 0
2 2 0 0
γ v − β v + β δ

2 − v v v 2 − v
δ v + β v − β γ
0 0 2 2
0 0 0 4






a0

a1

a2

a3


 , (27)

where

v = −4αλ

γ = 2 − v + (2 + β(λ− 2))/λ

δ = 2 − v − (2 + β(λ− 2))/λ.

(28)

Moreover,

ā3 =
1

2
(ā2 + ā4). (29)

Proof: Pick any interval [a, b] and let h := b− a. By (24)

ā0 = f(a), ā1 = f(a) +
h

2λ
p(a), ā2 = f(

a+ b

2
) − h

2λ
p(
a+ b

2
), ā3 = f(

a+ b

2
),

ā6 = f(b), ā5 = f(b) − h

2λ
p(b), ā4 = f(

a+ b

2
) +

h

2λ
p(
a+ b

2
).

¿From (1) and (26) we obtain on an interval [a, b] the inverse relations

f(a) = a0, p(a) =
λ

h
(a1 − a0)

f(b) = a3, p(b) =
λ

h
(a3 − a2)

f(
a+ b

2
) =

a0 + a3

2
− v

4
(a3 − a2 − a1 + a0)

h

2λ
p(
a+ b

2
) =

1 − β

2λ
(a3 − a0) +

β

4
(a3 − a2 + a1 − a0)

=
2 + β(λ− 2)

λ
(a3 − a0) +

β

4
(a1 − a2).

(30)

But then we see that (ā0, ā1, ā2, ā3, ā4, ā5, ā6)
T = S(a0, . . . , a3)

T , where S is the matrix
in equation (27). Since the sum of rows three and five in the matrix S equals twice
row four the relation (29) follows. �

For s ≥ 2 the control coefficients and control points are the same and the propo-
sition also gives rules for subdividing the control polygon. The following corollary
holds in general.
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Corollary 7 Suppose (a0, a1, a2, a3) ∈ R
s for some s ≥ 1. After one subdivision of

the corresponding control polygon {A0, A1, A2, A3} we obtain a new control polygon
{Ā0, Ā1, Ā2, Ā3, Ā4, Ā5, Ā6} given by

[
Ā0 Ā1 Ā2 Ā3 Ā4 Ā5 Ā6

]T
= S

[
A0 A1 A2 A3

]T
(31)

where S is given by (27). Moreover

Ā3 =
1

2
(Ā2 + Ā4), (32)

which means that these control points always lie on a straight line.

Proof: This has already been shown for s ≥ 2 and for the control coefficients for
s = 1. For the control point abscissas we obtain the relation (a, a + h/(2λ), ā −
h/(2λ), ā, ā+h/(2λ), b−h/(2λ), d)T = S(a, a+h/λ, b−h/λ, d)T , where ā = (a+b)/2,
since the scheme HC1 reproduces linear functions. Thus (31) and (32) also holds for
s = 1. �

3.2 A Stationary Subdivision Algorithm

By applying (27), we can reformulate the Hermite subdivision scheme HC1 as a
stationary subdivision scheme working on points in R

s.
Starting with 4 points a0, a1, a2, a3 in R

s, s ≥ 1, (α, β) in the convergence region
C, and λ ≥ 2, we define Algorithm SC1 as follows.

At step n = 0, we set a0
0 = a0, a

0
1 = a1, a

0
2 = a2, a

0
3 = a3.

At step n + 1, n ≥ 0, we define


an+1
6i

an+1
6i+1

an+1
6i+2

an+1
6i+3

an+1
6i+4

an+1
6i+5




=
1

4




4 0 0 0
2 2 0 0
γ v − β v + β δ

2 − v v v 2 − v
δ v + β v − β γ
0 0 2 2






an

3i

an
3i+1

an
3i+2

an
3i+3


 , i = 0, 1, . . . 2n − 1 (33)

and an+1
3.2n+1 = an

3.2n . Here v, γ, δ are given by (28). The matrix (s�,k)�=0,...,5,k=0,...,3 in
(33) is formed from the first 6 rows of S given by (27).

Lemma 8 For all n ≥ 1 and for all i = 1, . . . , 2n − 1, we have

an+1
6i = an

3i, i = 1, . . . , 2n−1

an+1
6i+1 − an+1

6i =
1

2

(
an

3i+1 − an
3i

)
, i = 1, . . . , 2n−1 − 1

an
3i+1 + an

3i−1 = 2an
3i, i = 1, . . . , 2n − 1

(34)
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Proof: The first two equations follows immediately from (33). As in the proof of
(29) it is clear that

an+1
6i+2 + an+1

6i+4 = 2an+1
6i+3, i = 0, . . . , 2n − 1, n = 0, 1, . . . ,

and in particular a1
2 + a1

4 = 2a1
3. By (34) and induction on n

an+1
6i+1 + an+1

6i−1 =
1

2
(an

3i + an
3i+1) +

1

2
(an

3i−1 + an
3i) = 2an

3i = 2an+1
6i .

�

If we define a0
i for i < 0 and i > 3 in any way, the subdivision scheme can be written

an+1
� =

∑
k∈Z

σ�,ka
n
k , 	 ∈ Z where σ6i+�,3i+k = s�,k for i ∈ Z, 	 = 0, . . . , 5, k = 0, . . . , 3

and σi,j = 0 otherwise. With the definitions recalled in [2], the scheme is local since
σ�,k = 0 for |	− 2k| > 4. Since

∑
k∈Z

σ�,k = 1, it is affine but it is not interpolating
in a classical sense since we generally have an+1

6i+2 �= an
3i+1.

3.3 Convergence of SC1

The convergence of the subdivision schemes are usually established by studying the
difference sequence. Alternatively convergence follows since SC1 was derived from
HC1. Here are the details.

Theorem 9 Let s ≥ 1 and a0, a1, a2, a3 be 4 points in R
s. Suppose λ ≥ 2 and that

(α, β) is in the convergence region C given by (23). We build the sequence of points
{ an

i }n∈N,i=0,...,3.2n by (33). Choose any interval I := [a, b] with h := b − a > 0 and
define tni := a + ihn, where hn := h2−n for n ∈ N and i = 0, . . . , 2n. Then, there
exists a C1 function f : I → R

s such that for all n ∈ N:

an
3i = f(tni ), i = 0, . . . , 2n,

an
3i+1 − an

3i =
hn

λ
f ′(tni ), i = 0, . . . , 2n − 1,

an
3i − an

3i−1 =
hn

λ
f ′(tni ), i = 1, . . . , 2n.

For s ≥ 2, let An
i = an

i , i = 0, 1, . . . , 3×2n and for s = 1, let An
3i = (tni , a

n
3i),A

n
3i+1 =

(tni + hn

λ
, an

3i+1), A
n
3i+2 = (tni+1 − hn

λ
, an

3i+2), i = 0, 1, . . . , 2n −1, and An
3×2n = (b, an

3×2n).
Then the sequence of polygons {An

0 , . . . , A
n
3×2n} converges to the curve {f(t), t ∈

I}.

Proof: We will show that the scheme SC1 generates sequences {fn} and {pn} of
piecewise linear vector functions which interpolate values and derivatives at the points
of Pn = {tn0 , . . . , tn2n}.
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We define fn and pn to be linear on [tni , t
n
i+1], i = 0, . . . , 2n − 1, and to interpolate

the following values

fn(tni ) = an
3i, pn(tni ) =

λ

hn

(an
3i+1 − an

3i), i = 0, . . . , 2n − 1,

fn(b) = an
3.2n , pn(b) =

λ

hn

(an
3×2n − an

3×2n−1).

(35)

Since tni = tn+1
2i we find from (34) and (35)

fn+1(tni ) = fn(tni ), pn+1(tni ) = pn(tni ), i = 0, . . . , 2n. (36)

Below we prove that, for i = 0, . . . , 2n − 1,

fn+1(tn+1
2i+1) =

fn(tni+1) + fn(tni )

2
+ αhn(pn(tni+1) − pn(tni )), (37)

pn+1(tn+1
2i+1) = (1 − β)

fn(tni+1) − fn(tni )

hn

+ β
pn(tni+1) + pn(tni )

2
. (38)

Comparing (36), (37) and (38) with (2)-(3) we conclude that fn = f and pn = p
on Pn where f and p are the functions built on ∪Pn by HC1 defined by (2)-(4) from
the initial data f(a) = a0, p(a) = λ

h
(a1 − a0), f(b) = a3 and p(b) = λ

h
(a3 − a2), and

then extended to [a, b]. So that, if (α, β) ∈ C, then the sequences fn and pn defined
from SC1 by (35) converge uniformly to continuous vector functions f and p defined
on [a, b]. Moreover f ∈ C1([a, b]) and f ′ = p.

Now since f ′ is bounded and an
3i+1 − an

3i = h
λ2n f

′(tni ), i = 0, . . . , 2n − 1, we deduce
that an

3i+1 − an
3i tends uniformly to 0. We conclude that the sequence of polygons

{A0, . . . , A3×2n} tends to the curve {f(t), t ∈ I} since an
3i = f(tni ) for i = 0, . . . , 2n.

It remains to prove (37) and (38). Since α = −v/4λ, for i = 0, . . . , 2n − 1 and
using (35) and (33),

1

2
(fn(tni+1) + fn(tni )) + αhn(pn(tni+1) − pn(tni ))

=
1

2
(an

3i+3 + an
3i) −

v

4
(an

3i+3 − an
3i+2 − an

3i+1 + an
3i)

= an+1
6i+3 = fn+1(tn+1

2i+1)

so that (37) is proved.
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Similarly, for (38), let i ∈ {0, . . . , 2n − 1}. With the definitions of γ and δ in (28)
we find

1 − β

hn
(fn(tni+1) − fn(tni )) +

β

2
(pn(tni+1) + pn(tni ))

=
1 − β

hn
(an

3i+3 − an
3i) +

βλ

2hn
(an

3i+3 − an
3i+2 + an

3i+1 − an
3i)

=
λ

hn+1

( − (
1 − β

2λ
+
β

4
)an

3i +
β

4
an

3i+1 −
β

4
an

3i+2 + (
1 − β

2λ
+
β

4
)an

3i+3

)
=

1

4

λ

hn+1

(
(δ − 2 + v)an

3i + βan
3i+1 − βan

3i+2 + (γ − 2 + v)an
3i+3

)
=

λ

hn+1

(
an+1

6i+4 − an+1
6i+3

)
= pn+1(tn+1

2i+1).

�

4 Total positivity and consequences

4.1 Corner Cutting and Total Positivity of the Subdivision

Matrix

Consider now the subdivision process in the EQS-case when α = β
4(1−β)

with β ∈
(−2, 0). Since v = −4αλ = β

β−1
λ, or λ = β−1

β
v we find from (28)

γ = 2 − v +
2 + βλ− 2β

λ
= 2 − v +

2 + (β − 1)v − 2β

(β − 1)v
β =

(2 − v)(v − β)

v
,

and similarly

δ =
(2 − v)(v + β)

v
.

Thus the subdivision matrix (27) can be written

S =
1

4




4 0 0 0
2 2 0 0

(2−v)(v−β)
v

v − β v + β (2−v)(v+β)
v

2 − v v v 2 − v
(2−v)(v+β)

v
v + β v − β (2−v)(v−β)

v

0 0 2 2
0 0 0 4



. (39)

In this case, as soon as 1 ≤ v ≤ 2 and v ≥ −β, we can compute the subdivided
control points

(Ā0, Ā1, Ā2, Ā3, Ā4, Ā5, Ā6)
T = S(A0, A1, A2, A3)

T
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by successive convex combinations starting with the polygon defined by (A0, A1, A2,
A3). With 2 intermediate quantities B and C we have

Ā0 = A0, Ā1 =
1

2
A0 +

1

2
A1, Ā5 =

1

2
A2 +

1

2
A3, Ā6 = A3,

B = (1 − v

2
)A0 +

v

2
A1

C = (1 − v

2
)A3 +

v

2
A2

Ā2 =
v − β

2v
B +

v + β

2v
C

Ā4 =
v + β

2v
B +

v − β

2v
C

Ā3 =
1

2
Ā2 +

1

2
Ā4.

(40)

_
A

0
=A

0
 

_
A

1

A
1
 

_
A

2

_
A

3

_
A

4

_
A

5

_
A

6
=A

3

B C 

A
2
 

Figure 4: Corner Cutting with α = −3/32, β = −3/5 and v = 1.5.

The equations (40) can be formulated as a corner cutting scheme in the following
way. We start with the polygon {A0, A1, A2, A3} and then either cut one of the
previous corners or break an edge in a sequence of convex combinations.

1. B = (1 − v
2
)A0 + v

2
A1 (replace A1 by B to obtain {A0, B, A2, A3})

2. C = (1 − v
2
)A3 + v

2
A2 (replace A2 by C to obtain {A0, B, C,A3})

3. Ā1 = (1 − 1
v
)A0 + 1

v
B (break [A0, B] to obtain {A0, Ā1, B, C,A3})

4. Ā5 = 1
v
C + (1 − 1

v
)A3 (break [C,A3] to obtain {A0, Ā1, B, C, Ā5, A3} )

5. Ā2 = v−β
2v
B + v+β

2v
C (replace B by Ā2 to obtain {A0, Ā1, Ā2, C, Ā5, A3})
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6. Ā4 = v+β
v−β

Ā2 − 2β
v−β

C (replace C by Ā4 to obtain {A0, Ā1, Ā2, Ā4, Ā5, A3})
7. Ā3 = (Ā2 + Ā4)/2 (break [Ā2, Ā4] to obtain {A0, Ā1, Ā2, Ā3, Ā4, Ā5, A3})
Since Ā0 = A0 and Ā6 = A3 we have obtained the subdivided polygon {Ā0, Ā1, Ā2,

Ā3, Ā4, Ā5, Ā6} by carrying out a sequence of simple corner cuts (see for example
[15, 9]) on the polygon defined by {A0, A1, A2, A3}.

We then obtain

Theorem 10 Suppose −2 < β < 0, 1 ≤ v := λβ
β−1

≤ 2, and λ ≥ 1 − β. Then the

matrix S given by (39) is totally positive. For each v /∈ [1, 2] there is a β ∈ [−1, 0[
such that S is not totally positive.

Proof: The sequence of simple corner cuts corresponds to a factorization of S into
a product of 7 matrices as follows:

S =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1

2
1
2

0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 v+β
v−β

−2β
v−β

0 0

0 0 0 0 1 0
0 0 0 0 0 1







1 0 0 0 0 0
0 1 0 0 0 0

0 0 v−β
2v

v+β
2v

0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1

v
1 − 1

v

0 0 0 0 1







1 0 0 0
1 − 1

v
1
v

0 0
0 1 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 1 0 0
0 0 v

2
1 − v

2

0 0 0 1







1 0 0 0
1 − v

2
v
2

0 0
0 0 1 0
0 0 0 1




Since these matrices are bidiagonal and the entries are nonnegative for the indicated
values of the parameters it is well known that each of the 7 matrices are totaly positive
(see for example [9]). Since a product of totally positive matrices is totally positive
we conclude that S is totally positive.

If v /∈ [1, 2] then we can find β ∈ [−1, 0) such that S has at least one negative
entry. Hence S is not totally positive for these v, β. �

4.2 The HC1-Bernstein Basis

Let a, b be 2 real numbers with a < b. Let us define h := b − a. Recall that the
HC1-Hermite basis {φ0, ψ0, φ1, ψ1} on I := [a, b] forms a basis for the space V C1

α,β(I)
of all possible HC1 interpolants on I. The HC1-Bernstein basis {b0, b1, b2, b3} on I
are defined as in [16] from the Hermite basis on I by

b0 := φ0 − λ

h
ψ0, b1 :=

λ

h
ψ0, b2 := −λ

h
ψ1, b3 := φ1 +

λ

h
ψ1, (41)
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where λ ≥ 2 is the parameter used to define the control points. These functions are
clearly linearly independent and so, they form a basis for V C1

α,β(I). The coefficients
in terms of this basis are the control coefficients of f . This follows since

f := f(a)φ0 + p(a)ψ0 + f(b)φ1 + p(b)ψ1, ⇔ f = a0b0 + a1b1 + a2b2 + a3b3,

where a0, a1, a2, a3 are the control coefficients of f on I given by (24).
We note that bj(0) = δj,0 and bj(1) = δj,3.
For certain values of the parameters the HC1-Benstein basis is totally positive.

Theorem 11 Suppose −2 < β < 0, 1 ≤ v := λβ
β−1

≤ 2, and λ ≥ 1 − β. Then the

HC1-Bernstein basis is totally positive.

Proof: It is enough to prove the result for the interval [0, 1]. Consider for some
integers n, k with n ≥ 0 and 0 ≤ k ≤ 2n − 1 the interval In

k := [k/2n, (k + 1)/2n].
On In

k the HC1-Hermite basis {φn
0,k, ψ

n
0,k, φ

n
1,k, ψ

n
1,k} can be expressed as

φn
0,k(t) = φ0(2

nt− k), ψn
0,k(t) = 2−nψ0(2

nt− k),

φn
1,k(t) = φ1(2

nt− k), ψn
1,k(t) = 2−nψ1(2

nt− k),

where {φ0, ψ0, φ1, ψ1} is the HC1-Hermite basis on [0, 1]. From (41) with h := 2−n,
it then follows that the HC1-Bernstein basis {bn4k, b

n
4k+1, b

n
4k+2, b

n
4k+3} on In

k can be
expressed in terms of the HC1-Bernstein basis {b0, b1, b2, b3} on [0, 1] as

bn4k+j(t) =

{
bj(2

nt− k), if t ∈ In
k and j = 0, 1, 2, 3

0 otherwise.
(42)

We note that

bn4k+j(k/2
n) = δj,0, bn4k+j((k + 1)/2n) = δj,3 for j = 0, 1, 2, 3. (43)

Let f ∈ C1[0, 1] be a HC1-interpolant to some initial data. We can then write

f =

m∑
i=0

an
i b

n
i ,

where m := 4 × 2n − 1 and where for k = 0, . . . , 2n − 1 the numbers an
4k, a

n
4k+1,

an
4k+2, a

n
4k+3 are the control points of f on In

k . In vector form, we have f = bnan

where bn = (bn0 , . . . , b
n
m) is a row vector and an = (an

0 , . . . , a
n
m)T a column vector.

Note that bn is a vector of linearly independent functions on [0, 1]. They span a
space containing V C1

α,β[0, 1] as a 4-dimensional subspace. On level n + 1, we have
f = bn+1an+1 where from Proposition 6, it follows that an+1 = Ana

n for some matrix
An. The matrix An is a block diagonal with 2n diagonal blocks Ŝ of order 8 × 4.
Indeed, Ŝ is obtained from the matrix S in (27) by adding a copy of row 4 as a new
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row 5. But then f = bn+1an+1 = bn+1Ana
n = bnan and by linear independence, it

follows that bn = bn+1An. Thus we obtain

b0 = bnAn−1 · · ·A0, n ≥ 1. (44)

For distinct points y0, . . . , yp and functions f0, . . . , fq defined on the y’s, we use the
standard notation

M

[
y1, . . . , yp

f1, . . . , fq

]
:=



f1(y1) · · · fq(y1)

...
...

f1(yp) · · · fq(yp)




for a collocation matrix of order p × q. In order to show total positivity of b =
b0 we choose 0 ≤ x0 < x1 < x2 < x3 ≤ 1 and consider the collation matrix

M

[
x0, x1, x2, x3

b0, b1, b2, b3

]
. From (44) we immediatly obtain

M

[
x0, . . . , x3

b0, . . . , b3

]
= M

[
x0, . . . , x3

bn0 , . . . , b
n
m

]
An−1 · · ·A0, n ≥ 1. (45)

Since the matrix S is totally positive, it follows that Ŝ and hence each Ak is totally
positive. We now show that the first matrix on the right of (45) is totally positive
provided xj ∈ Pn for j = 0, 1, 2, 3. For this, with m = 2n−1 − 1, we consider the
bigger matrix

B = M

[
y0, . . . , ym+1

bn0 , . . . , b
n
m

]
using all points yi = i/2n, i = 0, 1, . . . , 2n in Pn. ¿From (43) it follows that b4k−1(yk) =
1 for k = 1, . . . , 2n, b4k(yk) = 1 for k = 0, . . . , 2n − 1 and bni (yj) = 0 otherwise. Thus
the columns of B have the following form

B = [e1, 0, 0, e2, e2, 0, 0, e3, e3, 0, 0, e4 . . . , em, 0, 0, em+1],

where ej = (δi,j)
m
i=0 is the jth unit vector in R

m+1. From this explicit form we see that
B is totally positive since each nonzero minor must be the determinant of the identity
matrix. But then all matrices on the right in (45) are totally positive and we conclude

that M

[
x0, . . . , x3

b0, . . . , b3

]
is totally positive provided xj ∈ Pn for j = 0, 1, 2, 3. Since ∪Pn

is dense in [0, 1] we conclude that the HC1-Bernstein basis is totally positive. �

Corollary 12 For p ≥ 0 and m = 4 · 2p − 1, the basis bp = (bp0, . . . , b
p
m) for the space

span(bp) is totally positive on [0, 1].

Proof: Instead of (44) we use for n > p the equation

bp = bnAn−1 · · ·Ap.
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The argument now proceeds as in the proof of Theorem 11 replacing x0, . . . , x3 by
suitable x0, . . . , xm. �

It is well known that total positivity of the HC1 Bernstein basis on [0, 1] implies
that the HC1-interpolant f inherits properties of the control polygon P 0 defined by
{a0, a1, a2, a3}, see for example ([9]). In particular if P0 is positive (monotone, convex)
then f is positive (monotone, convex). We can use this to generalize Theorem 4 in
([16]).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Figure 5: Bernstein basis, β = −3/5, α = −3/32, λ = 16/3.

Corollary 13 Let b0, b1, b2, b3 be the HC1 Bernstein basis on [0, 1] given by (41) with
λ = v(β − 1)/β > 2. Suppose also α = β

4(1−β)
, −1 ≤ β < 0 and 1 ≤ v ≤ 2. Then

1. b0 is nonnegative, decreasing, and convex on [0, 1]. If v = 2 then b0(t) = 0 for
t ∈ [1/2, 1].

2. b1 is nonnegative and concave on [0, 1/2] and nonnegative, decreasing and convex
on [1/2, 1]

3. b2 is nonnegative, increasing and convex on [0, 1/2] and nonnegative and concave
on [1/2, 1].

4. b3 is nonnegative, increasing, and convex on [0, 1]. If v = 2 then b3(t) = 0 for
t ∈ [0, 1/2].

5.
∑3

j=0 bj(t) = 1 for t ∈ [0, 1]

21



Proof: ¿From (41) it follows that the control points of the function bj is the jth unit
vector ej+1 for j = 0, 1, 2, 3. Thus nonnegativity of bj follows from the nonnegativity
of ej+1 for j = 0, 1, 2, 3. Moreover the monotonicity and convexity properties of b0
and b3 follow. For the remaining properties of b1 and b2, we carry out one subdivision,
then the proof is similar.

The refined points are given as the columns in the matrix S given by (39). When
v = 2 the first column is given by [1, 1/2, 0, 0, 0, 0, 0]. Since the last four entries are
zero it follows that b0(t) = 0 for t ∈ [1/2, 1]. Similarly b3(t) = 0 for t ∈ [0, 1/2].

The interpolation of the constant function f = 1 with p = f ′ = 0 gives a0 = a1 =
a2 = a3 = 1 in (24) so that 5. holds. �

5 Algorithms for local shape constraints

We base shape preserving algorithms on the extended quadratic spline case given by
α = β

4(1−β)
. The control point subdivision matrix for this case is given by (39), where

we have both β and λ as free parameters. The matrix simplifies when v = βλ
β−1

= 2
and we will use this one parameter family of schemes in our algorithms. Using the
parameter λ to control the shape we thus have

α =
β

4(1 − β)
= − 1

2λ
, β =

2

2 − λ
. (46)

We restrict our attention to λ ≥ 4. We then have β ∈ [−1, 0) and both algorithms
HC1 and SC1 are convergent. In the limit when n → ∞ we obtain a function
f ∈ C1(I). This function is the quadratic spline interpolant with a knot at the
midpoint of I when λ = 4 , while p = f ′ is Hölder continuous on I with exponent

log2

(
1 +

1

λ− 3

) ≈ 1.44

λ− 3
, λ→ ∞.

Thus the derivative becomes less regular when λ increases, but it is always C1.
Given s ≥ 1, points a0

j = aj ∈ R
s for j = 0, 1, 2, 3, and λ ≥ 4, the following

algorithm computes sequences {an} of control coefficients an = (an
0 , a

n
1 , . . . , a

n
3×2n) in

R
s.

Algorithm 14 (CC1)

1. β = 2/(2 − λ);

2. For n = 0, 1, 2, 3, . . .
For i = 0, 1, . . . 2n − 1

(a) an+1
6i = an

3i;

(b) an+1
6i+1 = 1

2
(an

3i + an
3i+1);
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(c) an+1
6i+2 = (1

2
− β

4
)an

3i+1 + (1
2

+ β
4
)an

3i+2;

(d) an+1
6i+3 = 1

2
(an

3i+1 + an
3i+2);

(e) an+1
6i+4 = (1

2
+ β

4
)an

3i+1 + (1
2
− β

4
)an

3i+2;

(f) an+1
6i+5 = 1

2
(an

3i+2 + an
3i+3);

a3·2n+1 = a3·2n ;

The control points corresponding to the computed control coefficients converges
to a C1-curve. More specifically, pick any finite closed interval [a, b] and define hn :=
(b− a)/2n and tnk := a + khn for k = 0, . . . , 2n, n ≥ 0. By Theorem 9 the computed
control points converge uniformly to a C1-curve f : [a, b] → R

s. Moreover,

an
3i = f(tni ), i = 0, . . . , 2n,

an
3i+1 − an

3i =
hn

λ
f ′(tni ), i = 0, . . . , 2n − 1,

an
3i − an

3i−1 =
hn

λ
f ′(tni ), i = 1, . . . , 2n.

We now discuss shape preservation in the scalar case s = 1 in more detail. We
start by noting that if the initial control polygon is nonnegative (respectively in-
creasing, convex) on an interval I = [a, b], then the HC1-interpolant computed in
Algorithm 14 will be nonnegative (respectively increasing, convex) on the same in-
terval I. This follows from the total positivity of the Bernstein basis. In addition
to total positivity the main tool will be Corollary 2 which says that the p-values of
the interpolant are located on the piecewise linear curve connecting the three points
(a, p(a)), (a+b

2
, p(a+b

2
)), (b, p(b)).

5.1 Nonnegative Interpolants

We already remarked that if the initial control coefficients are nonnegative then the
HC1-interpolant will be nonnegative. Notice that the converse is false. For example,
the HC1-interpolant to the function f given on [0, 1] by f(x) := 16(x − 1/4)2 and
using λ = 4 is f itself. Note that f is nonnegative, but the initial control coefficient
a1 = −1 is negative.

To give an algorithm for constructing a nonnegative interpolant we assume that

f(a) ≥ 0, f(b) ≥ 0, p(a) ≥ 0 if f(a) = 0, and p(b) ≤ 0 if f(b) = 0. (47)

Under these weak assumptions nonnegative initial control coefficients a0, . . . , a3 can
always be obtained by choosing λ sufficiently large. Indeed, since a0 = f(a) ≥ 0
and a3 = f(b) ≥ 0 we only need to make sure that a1 = f(a) + hp(a)/λ ≥ 0 and
a2 = f(b) − hp(b)/λ ≥ 0. If f(a) = 0 then p(a) ≥ 0 and a1 ≥ 0 whenever λ > 0 .
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Similarly a2 ≥ 0 if f(b) = 0. But then we can choose λ = 4 except possibly in the
two cases f(a) > 0, p(a) < 0 and f(b) > 0, p(b) > 0. If (47) holds then the following
algorithm will compute a nonnegative HC1-interpolant on [a, b].

Algorithm 15 (Nonnegative Interpolant)

1. Compute λ

(a) λ = 4;

(b) if (f(a) > 0) & (p(a) < 0) then λ = max(λ,−hp(a)/f(a));

(c) if (f(b) > 0) & (p(b) > 0) then λ = max(λ, hp(b)/f(b));

2. Compute initial control coefficients using (24).

3. Apply Algorithm 14 or Algorithm HC1 with α = − 1
2λ
, β = 2

2−λ
.

5.2 Monotone interpolants

The monotonicity of the HC1-interpolant is completely determined by the mono-
tonicity of the initial control polygon. If f is decreasing then −f is increasing and
we restrict our discussion to increasing interpolants.

Proposition 16 Suppose that the parameters are chosen according to (46). Then
the HC1-interpolant f is nondecreasing on an interval I = [a, b] if and only if the
control polygon on I is nondecreasing.

Proof: By Theorem 11 the Bernstein basis is totally positive and it follows that
the HC1-interpolant is nondecreasing if the control polygon is nondecreasing , see [9].
Conversely, suppose the HC1-interpolant f is nondecreasing. Since β = 2/(2 − λ),
we obtain from (1)

p(
a+ b

2
) =

1

λ− 2

(
λ
f(b) − f(a)

h
− (p(a) + p(b))

)
. (48)

From (24), we then find

a1 − a0 =
h

λ
p(a), a2 − a1 =

λ− 2

λ
hp(

a+ b

2
), a3 − a2 =

h

λ
p(b). (49)

Now p ≥ 0 at all points if f is nondecreasing. It follows that the control coefficients,
and hence the control polygon is nondecreasing. �

Consider next the case of a strictly increasing interpolant.

Proposition 17 Suppose that the parameters are chosen according to (46) and that
the HC1-interpolant f is nondecreasing on an interval I = [a, b]. Then f is strictly
increasing on [a, b] if and only if the two middle control coefficients on I satisfy
a2 > a1.
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Proof: Since f is nondecreasing, we have p(a) ≥ 0, p(a+b
2

) ≥ 0 and p(b) ≥ 0. By
Corollary 2, it follows that f is strictly increasing on [a, b] if and only if p(a+b

2
) > 0.

By (49), this happens if and only if a2 > a1. �

To give an algorithm to construct a nondecreasing interpolant we assume that

f(a) ≤ f(b), p(a) ≥ 0, p(b) ≥ 0 and p(a) = p(b) = 0 if f(a) = f(b). (50)

In the latter case the HC1-interpolant is constant and we can set λ = 4.
Suppose f(b) > f(a). With h := b− a we then have

a0 = f(a) ≤ a1 = f(a) +
h

λ
p(a) ≤ a2 = f(b) − h

λ
p(b) ≤ a3 = f(b)

provided

a2 − a1 = f(b) − f(a) − h

λ

(
p(b) + p(a)

) ≥ 0

or

λ ≥ (p(a) + p(b))h

f(b) − f(a)
. (51)

If (50) holds then the following algorithm will compute a nondecreasing HC1-
interpolant on [a, b]. It will be strictly increasing if f(b) > f(a) and (51) holds with
strict inequality.

Algorithm 18 (Nondecreasing- or Strictly Increasing Interpolant)

1. Compute λ

(a) λ = 4;

(b) If f(a) < f(b) then

i. λ1 ≥ (p(a)+p(b))h
f(b)−f(a)

ii. λ = max (4, λ1)

2. Compute initial control coefficients using (24).

3. Apply Algorithm 14 or Algorithm HC1 with α = − 1
2λ
, β = 2

2−λ
.

Note that if the initial control points are located on a straight line then the HC1-
interpolant is the line segment connecting the first and last control point. For if the
initial control points are located on a straight line then

λ

h
(a1 − a0) =

λ

(λ− 2)h
(a2 − a1) =

λ

h
(a3 − a2)

and by (49) the three slopes p(a), p(a+b
2

), p(b) are all equal. By Corollary 2, all slopes
are equal and the function f is a straight line.
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In Figure 6 we interpolate three sets of data on [0, 1]. In all cases f(0) = −1 and

f(1) = 1. In the first case, with p(0) = 3 and p(1) = 4 we find p(0)+p(1)
f(1)−f(0)

= 7/2 < 4.

Suppose in Algorithm 18 we choose 7/2 ≤ λ1 ≤ 4 in Statement (b)i. and apply
Algorithm 14 with λ = 4. Then the HC1-interpolant is the quadratic spline and
it is strictly increasing since λ > 7/2. In the two other cases we use p(0) = 8 and

p(1) = 4 giving p(0)+p(1)
f(1)−f(0)

= 6. With λ = 6 we have p(1/2) = 0 and the interpolant
is increasing, but not strictly increasing. We obtain a strictly increasing interpolant
by using λ = 10. Note that choosing a bigger λ decreases the regularity of the
interpolant. In both cases the first derivative is Hölder continuous, but the exponent
is log2 (4/3) ≈ 0.415 when λ = 6 and log2 (4/3) ≈ 0.193 when λ = 10.
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Figure 6: Monotone interpolants

5.3 Convex interpolants

The convexity of the HC1-interpolant is also completely determined by the convexity
of the initial control polygon.

26



Proposition 19 Suppose that the parameters are chosen according to (46). Then f
is convex (concave) on an interval I = [a, b] if and only if the control polygon on I is
convex (concave).

Proof: Again by total positivity of the Bernstein basis the HC1-interpolant is
convex (concave) if the control polygon is convex (concave), see [9]. Conversely,
suppose the HC1-interpolant f is convex (concave). Now the control polygon is
convex if and only if the conditions

a1 − a0

h/λ
≤ a2 − a1

h− 2h/λ
≤ a3 − a2

h/λ

hold. But from (49) we find

a1 − a0

h/λ
= p(a),

a2 − a1

h− 2h/λ
= p(

a+ b

2
),

a3 − a2

h/λ
= p(b).

Since f is convex (concave) the function p is nondecreasing (nonincreasing) and hence
the control polygon is convex(concave). �

To give an algorithm for constructing a convex (concave) HC1-interpolant on an
interval I = [a, b] we first assume that

p(a) <
f(b) − f(a)

h
< p(b)

(
p(a) >

f(b) − f(a)

h
> p(b)

)
, (52)

where h := b− a. We define

λ1 :=
p(b) − p(a)

p(b) − f(b)−f(a)
h

, λ2 :=
p(b) − p(a)

f(b)−f(a)
h

− p(a)
(53)

and note that the tangents

tc(x) := f(a) + (x− a)p(a), td(x) := f(b) + (x− b)p(b)

of f at a and b intersect at the point(x̄, ȳ) given by

x̄− a

h
=

1

λ1
, and

b− x̄

h
=

1

λ2
.

Moreover, the hypothesis (52) is equivalent to a < x̄ < b.
Under the assumption

p(a) ≤ f(b) − f(a)

h
≤ p(b)

(
p(a) ≥ f(b) − f(a)

h
≥ p(b)

)
(54)

the following algorithm will compute a convex (concave) interpolant.
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Figure 7: Convex interpolants

Algorithm 20 (Convex or Concave interpolant)

1. (a) If p(a) = f(b)−f(a)
h

�= p(b), choose λ ≥ max (4, λ1)

(b) If p(a) �= f(b)−f(a)
h

= p(b), choose λ ≥ max (4, λ2)

(c) If p(a) �= f(b)−f(a)
h

�= p(b), choose λ ≥ max (4, λ1, λ2)

2. Compute initial control points using (24)

3. Apply Algorithm 14 or Algorithm HC1 with α = − 1
2λ
, β = 2

2−λ
.

In Figure 7, we have interpolated three sets of data on [0, 1]. In all cases f(0) = 0.5
and f(1) = 1.

In the first case, p(0) = −1 and p(1) = 3 so that λ1 = 8/5 and λ2 = 8/3. Then
max (4, λ1, λ2) = 4 and we have chosen λ = 4. In this case, the interpolant is the
quadratic spline.

In the two other cases p(0) = −1 and p(1) = 8 so that λ1 = 18/5 and λ2 = 6.
Then max (4, λ1, λ2) = 6. With λ = 6 we have p = −1 on [0, 1/2], while we obtain a
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Figure 8: The function φ and its derivative

strictly convex interpolant by using λ = 10. Recall that choosing a bigger λ decreases
the regularity of the interpolant.

6 Example

Given data (ti, yi, y
′
i) for i = 1, . . . , n, where t1 < · · · < tn and the y’s are real numbers.

We look for a function f ∈ C1([t1, tn]) that satisfies

f(ti) = yi, f
′(ti) = y′i for i = 1, . . . , n. (55)

In addition we would like f to be positive, monotone, linear, or convex on some or
all of the subintervals Ii = [ti, ti+1], i = 1, . . . n− 1. We assume that

(P) (47) holds for the subintervals where we want nonnegativity or positivity.

(M) (50) holds for the subintervals where we want a nondecreasing or a strictly
increasing interpolant.

(L) y′i = y′i+1 = yi+1−yi

ti+1−ti
for the subintervals where the interpolant should be linear.

(C) (54) holds for the subintervals where the interpolant should be convex or con-
cave.

We also require that the given data is consistent with these shape requirements. We
can compute f locally by applying the HC1-algorithm with parameters given by (46)
on each subinterval Ii = [ti, ti+1], i = 1, . . . n−1 using initial data f(ti) = yi, f(ti+1) =
yi+1, p(ti) = y′i and p(ti+1) = y′i+1. We obtain C1-convergence and the desired shape
locally by choosing the parameter λi for the interval Ii sufficiently large.
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Figure 9: Interpolation with exact derivatives

Consider now (55) for the example illustrated in Figure 1. The data are sampled
from the function φ ∈ C1([0, 4]) given by

φ(t) =




1
2
sin(2πt+ π/2) + 1

2
, 0 ≤ t ≤ 1,

1 + exp(− 1
1−(t−2)2

+ 1) , 1 < t ≤ 2,

2 , 2 < t ≤ 3,
2 cos(π t−3

2
) , 3 ≤ t ≤ 4.

(56)

The function and its first derivative are displayed in Figure 8 and it can be shown that
φ is positive on [0, 1], strictly increasing on [1, 2], constant on [2, 3] and concave on
[3, 4]. Given n and let (t1, . . . , tn) be a partition of [0, 4]. The points (t2, . . . , tn−1) are
chosen randomly except that 1, 2, 3 are among them. In the example, we used t1 = 0,
tn1 = t5 = 1, tn2 = t9 = 2, tn3 = t13 = 3 and tn = t17 = 4. We want an interpolant f
which is positive on [t1, tn1] = [0, 1], strictly increasing on [tn1 , tn2] = [1, 2], constant
on [tn2 , tn3 = [2, 3] and concave on [tn3 , tn] = [3, 4].

In the first test we use yi = φ(ti) and exact derivatives y′i = φ′(ti), i = 1, . . . , n. In
this case all λ’s become equal to 4 and the quadratic spline interpolant f1 does the
job. Plots of this function and its first derivative are shown in Figure 9. The first
derivative appears continuous and piecewise linear.

For the second test shown in Figure 10, we kept the previous data ti and yi = φ(ti)
for i = 1, . . . , n = 17, but we used inexact derivatives given by crosses in the lower
part of the figure. However the derivatives were chosen so that the relevant require-
ment (P),(M), (L), and (C) above are satisfied on each subinterval [ti, ti+1]. We obtain
a C1-interpolant f2 satisfying the required shape constraints. The computed values
of λi are successively
(4, 5.1425, 4, 4, 4, 12.8631, 55.8239, 4, 4, 4, 4, 17.6767, 20.0216, 4.4087, 11.3544). This ex-
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Figure 10: Interpolation with modified derivatives

ample shows that we can obtain a desired shape even with more or less random
derivative values.
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