UNSYMMETRIC ORDERING USING A CONSTRAINED
MARKOWITZ SCHEME *

PATRICK R. AMESTOY ', XIAOYE S. LI {, AND STEPHANE PRALET §

Abstract. We consider the LU factorization of unsymmetric sparse matrices using a three-phase
approach (analysis, factorization and triangular solution). Usually the analysis phase first determines
a set of potentially good pivot and then orders this set of pivots to decrease the fill-in in the factors.
In this paper, we present a preprocessing algorithm that simultaneously achieves the objectives of
selecting numerically good pivots and preserving the sparsity. We describe the algorithmic properties
and difficulties in implementation. By mixing the two objectives we show that we can reduce the
amount of fill in the factors and reduce the number of numerical problems during factorization. On
a set of large unsymmetric real problems, we obtain the average gains of 14% in the factorization
time, of 12% in the size of the LU factors, and of 21% in the number of operations performed in the
factorization phase.

1. Introduction. We consider the LU factorization of a unsymmetric sparse
matrix A based on a three-phase approach. It includes an analysis phase, a numerical
factorization phase, and a triangular solution phase. In this class of methods, without
loss of generality, we will consider the multifrontal and the supernodal algorithms (see
for example [2, 8, 12, 17, 19]). The analysis phase transforms A into A with better
properties for sparse factorization. It exploits the structural information to reduce
the number of fill-ins in the LU factors and exploits the numerical information to
reduce the number of numerical pivotings needed during factorization. Two separate
treatments are commonly used in sequence for these two objectives. Firstly, scaling
and maximum transversal algorithms are used to transform A into A; with large
entries in magnitude on the diagonal. Secondly, a symmetric fill-reducing ordering,
which preserves the large diagonal, is used to permute A; into Ay so that the factors
of As are sparser than those of A;. Note that during factorization, numerical
instabilities can still occur and will be handled either by partial pivoting resulting
in extra fill-ins in the factored matrices or by static pivoting resulting in a potentially
less accurate factorization. This approach has two drawbacks:

- The numerical treatment forces the fill-reducing ordering to restrict pivot
selection to the diagonal of A, and so to compute a symmetric permutation,
- The ordering phase does not have numerical information to select pivots.

To reduce the fill-in in the factors and improve the numerical quality of the
preselected pivots, we describe in this paper, a family of orderings that can select off-
diagonal pivots based on a combination of structural and numerical criteria. Based on
a numerical preprocessing of the matrix we build a set of numerically acceptable pivots,
referred to as matrix C, that may contain off-diagonal entries. We then compute an
unsymmetric ordering taking into account both the structure of A and the numerical

* Part of this research was supported by a grant NSF-INRIA number NSF-INT-0003274. The
work of the second author was supported in part by the Director, Office of Advanced Scientific
Computing Research, Division of Mathematical, Information, and Computational Sciences of the
U.S. Department of Energy under contract number DE-AC03-76SF00098, and was supported in
part by the National Science Foundation Cooperative Agreement No. ACI-9619020, NSF Grant No.
ACI-9813362.

 Patrick. Amestoy@enseeiht.fr, ENSEEIHT-IRIT, 2, rue Camichel, BP 7122 - F 31071 Toulouse
Cedex 7, France.

1 xsli@lbl.gov, Lawrence Berkeley National Lab, MS 50F-1650, 1 Cyclotron Rd., Berkeley, CA
94720.

§ Stephane.Pralet@cerfacs.fr, CERFACS, 42, av. G. Coriolis, 31057 Toulouse Cedex 01, France.

1

information in C. The C matrix serves as a constraint matrix for the pivot selection.
The new algorithm is referred to as constrained Markowitz with local symmetrization
(or CMLS). In this context, the use of local symmetrization introduced in [4] will be
explained and justified in Section 3.2.

We will focus on two state-of-the-art direct solvers representative of this class:
the multifrontal code MA41.UNS [2, 5] and the supernodal code SuperLUDIST [27,
28]. For the MA41_UNS multifrontal code, standard partial pivoting with a threshold
value is applied to locally select numerically stable pivots within a so-called frontal
matrix. It is possible that some variables cannot be locally eliminated. Postponing
the elimination of a pivot will then result in an increase in the size of the LU factors
estimated during analysis and in an increase in the number of operations. In the
case of the supernodal code, SuperLUDIST, the distributed memory version uses
a right-looking formulation which, having computed the factorization of a block of
columns, then immediately sends the data to update the block columns in the trailing
submatrix. A static pivoting strategy is used and we keep the pivotal sequence chosen
in the analysis. The result is that iterative refinement may be needed to improve the
solution.

In practice, it has been observed in [3] that setting large entries on the diagonal,
based on [14], one can significantly reduce the number of numerical problems for both
solvers. Nevertheless, the static approach can still fail on some problems and relies
more on iterative refinement in the solution phase. In this context, the problem of
finding a good ordering for preserving the diagonal entries (symmetric ordering) and
taking into account the asymmetry of the matrix was studied in [4]. In this paper
the work described in [4] (referred to as DMLS) has been extended and generalized as
follows. Firstly, we do not limit our choice of pivots to a transversal of the original
matrix. Secondly, at each step of elimination, the pivot is chosen within a constraint
matrix C, which is updated at each step. Thirdly, we may also consider numerical
values and numerical updates during the pivot selection. To do so, we compute an
incomplete factorization of the constraint matrix. Finally, because of all the new
concepts introduced in this approach, we had to introduce new algorithms, revisit the
existing ones and introduce new data structures to implement our algorithms.

The rest of the paper is organized as follows. Section 2 introduces the main
components of our algorithm. Section 3 defines the graph-theoretic notations and
describe the use of local symmetrization in our context. Section 4 describes the
algorithmic contributions of the proposed CMLS method. A full detailed presentation
of our implementation is given in [32]. Section 5 analyses the results of the newly
implemented CMLS algorithm when applied to real-life unsymmetric test cases.

2. Components of our unsymmetric ordering. Given a matrix A, our
unsymmetric ordering consists of two main steps:

e Step 1: Based on a numerical pre-treatment of the matrix A, we extract a
set of numerically acceptable pivots, referred to as the constraint matrix
C. We have Pattern(C) C Pattern(A), and if ¢;; # 0 then ¢;; = a;;.

e Step 2 : Constrained unsymmetric ordering: the constraint matrix is used
at each step of the symbolic Gaussian elimination to control the set of eligible
pivots (possibly with respect to both numerical and structural criteria).

Before describing more precisely these 2 steps, we introduce definitions and notations
that will be used to describe our algorithms.

Let M = (m;;) be a matrix of order n. If M can be permuted to have nonzeros
on the diagonal then M is structurally nonsingular. Let Gy = (V;., V¢, E) be the

2

bipartite graph associated with the matrix M. V,. is the set of row vertices and V is
the set of column vertices. Let (i, j) € V; x V. then (i, j) € E if and only if m;; # 0.
A matching is a subset of edges M C FE such that for all vertices v € V, at most
one edge of M is incident on v. If M is structurally nonsingular, then there exists a
matching M with n edges and M is said to be a perfect matching. We will say
also that M is a perfect transversal.

For the sake of clarity, in the remainder of this paper we assume that A is
structurally nonsingular. The adaptation of our algorithms to structurally singular
matrices is straightforward but would have severely over-complicate our notations and
our comments.

2.1. Step 1: Numerical preprocessing. The objective of this preprocessing
step is to extract the most significant (structurally and numerically) entries of matrix
A and to use them to build the constraint matrix C.

Firstly, we scale the matrix A with the diagonal matrices D, and D., resulting
in A < D,.AD.. Secondly, a constraint matriz C can be constructed from A such
that Pattern(C) C Pattern(A) and C satisfies certain numerical and/or structural
properties. Since the entries in C correspond to the potential pivots for the subsequent
step, we only keep a subset of bounded size (typically less than 3n) of the largest
entries in the scaled matrix. Furthermore, we want C to be structurally nonsingular
and thus we add entries from A to guarantee that C includes a perfect transversal
M. Note that M is also a perfect transversal of A.

2.2. Step 2: Constrained unsymmetric ordering. Let A' = A be the
original matrix of order n and AF be the reduced matrix after eliminating the
first k — 1 pivots (not necessarily on the diagonal). Let C! = C be such that
Pattern(C') C Pattern(Al). At each step k, a pivot p* such that p* € Pattern(C*)
is selected. This selection may combine structural heuristics based on the structure
of A*¥ (e.g., approximate Markowitz count, approximate minimum fill, etc.) and
numerical heuristics carried by the C* matrix. Matrix A is updated (remove row and
column of the pivot and add fill-ins in the Schur complement). Matrix C* is updated
such that C**! remains structurally nonsingular and Pattern(C*t1) is included in
the pattern of CF, where CF is defined as the reduced matrix after the elimination of
pivot p* in C¥. Note that C* includes the fill-in resulting from the elimination of p*
in A*. This implies that Pattern(C**t1) C Pattern(A*+!). To keep C* structurally
nonsingular, a perfect matching in C* is maintained at each step. When there is no
ambiguity, we will omit the superscript k& from the matrix notations.

The following two considerations influence the update that will be performed on
C:

e Which metric do we use to select a pivot?
e Which entries and/or values are added/updated in C at each step of the
elimination?
Note that if we consider the magnitude of the C’s entries to select a pivot, both the
pattern of C and the numerical values need be stored and updated. Furthermore, the
structural metric of each entry (i,j) in C should carry information on the reduced
matrix associated with the complete matrix A.

The ordering algorithm also depends on how C is updated at each step. As
mentioned before in the description of Step 2, we want at each step to guarantee
that:

(2.1) C must remain structurally nonsingular,
3

(2.2) Pattern(CF+Y) C Pattern(CF).

3. Notations and definitions. Before giving the algorithmic details of the
proposed CMLS method, we introduce the graph structures and notations that will be
used in this paper. The structure of an unsymmetric matrix can be represented as a
bipartite graph, and Gaussian elimination can be efficiently modeled by a bipartite
quotient graph [31]. We first describe the main properties of bipartite graphs and
bipartite quotient graphs and their relationship with Gaussian elimination. We then
introduce the notations that will be used to describe our algorithms and define
local symmetrization [4], a technique that simplifies the bipartite quotient graph
implementation. Note that we use calligraphic letter for notations related to quotient
graphs.

3.1. Bipartite graph. Let C = (¢;;) be a matrix and G¢ = (V;, V., E) be
its associated bipartite graph. Let R; denotes the structure of row i, i.e., R; =
{j € V. s.t. (i,j) € E}. Let C; denote the structure of column j, i.e., C; = {i €
Ve s.t. (i,7) € E}.

In Gaussian elimination, when a pivot (7, j) is eliminated, a new matrix, referred
to as the reduced matrix C is computed. C is obtained from C by removing row
¢ and column j and by adding the Schur complement entries. In terms of graph
manipulations, this elimination adds edges in the bipartite graph of C to connect all
the rows adjacent to j to all the columns adjacent to ¢. This set of connected rows
and columns is referred to as a bi-clique.

The symbolic factorization of C is done by building C* for k = 1 to n, with
C! = C. After eliminating the k*" pivot (row,, col,) in C¥, we compute C*¥+! = Ck,

More formally, the changes of the bipartite graph from Gox to Gow+1 are

R¥ = (RFURF,,)\ {colp,} for i € C¥

TOWp colp, »

Cit = (CF U Cly,) \ {rowy} for j € Ry,

and remove row, and col, from the vertex sets of Ggp+1. When it is clear from the

context, we will use the notation L, in place of R, and U, in place of C’folp.

3.2. Bipartite quotient graph. In the previous section we have shown that,
to update the bipartite graph we must add, at each elimination step, the entries to the
Schur complement matrix which may be costly to update and to store. It has been
shown that the quotient graphs can be used to efficiently model the factorization of
symmetric matrices [18, 22]. The main idea is to use a compact representation of the
cliques associated with the eliminated vertices. This concept can be extended (see
[31]) to model the LU factorization. In this case, a bipartite quotient graph can be
used to represent the edges in a bi-clique. It has then been shown in [31] that doing so
the elimination can be modeled in space bounded by the size of the original matrix A.
In this section, we first explain why the quotient graph model leads to more complex
algorithms on unsymmetric matrices than on symmetric matrices. We then briefly
define element absorption and explain the use of local symmetrization to reduce the
quotient graph complexity. Finally we introduce the notations that will be used to
describe our algorithms.

Let G* be the bipartite quotient graph used to represent the structure of the
reduced submatrix A* after k steps of elimination. Initially the bipartite quotient
graph G! is identical to the bipartite graph G'. At step k of Gaussian elimination,

4

any eliminated pivot e = (r¢, c.) will be referred to as a coupled row and column
element. All the row and column vertices that are not coupled elements are referred
to as the row and column variables of G*. Both row and column vertices of the graph
are thus partitioned into two sets composed of variables (uneliminated vertices) and
elements (eliminated vertices). We then define G* = (V, UV, V. UV.,E UE). The
vertices in V,. (respectively V.) correspond to the row (respectively column) variables.
The vertices in V, (respectively V.) correspond to the row (respectively column)
elements. The edge set £ is such that & C (V, x V.) whereas £ is such that & C
Ve x V) UV, x Vo) U (V, x V..). With our definitions (r,c) is a nonzero entry in
the reduced matrix at step k if and only if there exists a path joining r and ¢ which
only visits the elements and for which all the edges in the even positions correspond
to already eliminated pivots. In other words, the structure of a row i at step k is
the set of reachable columns j through all the paths of the form ¢ = ¢, = re, ... =
Cey = Te, — j where e; = (7¢;,¢e;),1 < i <[are coupled elements. Similarly, the
structure of a column j at step k is the set of reachable rows i through all the paths
of the form j — 7., = ¢¢, ... = ¢, = ¢, —+ ©. This process may involve paths of
arbitrary length in G¥ [31] and in particular through more than one coupled element.
For example in Figure 3.1, we assume that the entry (rowy,ce2) corresponds to the
fill-in due to the elimination of element e; and is implicitly represented by an edge
between variable row, and element c.; in the quotient graph. In this case we know
that the row structure of row, contains the row structure of e2 because of the path
TOWp —> Cel —» Tel —7 Ce2 —7 Te2-

In the context of sparse Cholesky factorization, an undirected quotient graph
(the row and column vertices are merged) is preferred and commonly used to
compute an ordering for symmetric matrices (e.g., Multiple Minimum Degree [29] and
Approximate Minimum Degree [1]). The structure of the factors can be computed
following the paths of length at most two in this quotient graph. There are no edges
between the elements.

In the unsymmetric case, when a pivot p = (row, col,) is selected, if there exists
a cycle of the form row, — ce;, = 7e, ... = c¢, = ¢, = colp = row, (referred to as
a strongly connected component in [31]) then, except for row, and col,, the row
and column elements in the cycle are not needed any more to retrieve the structure
of the remaining variables. Firstly, all the row (resp. column) variables adjacent to
these column (resp. row) elements will be included in the adjacency of col, (resp.
rowp), and secondly, the row (resp. column) variables which were adjacent to one
of the removed elements will be adjacent to col, (resp. row,). This process will be
called element absorption and is illustrated in Figure 3.1.

To avoid long search paths, we decided to relax the element absorption rule. A
row (resp. column) element is absorbed by the current row (resp. column) pivot if
either it is adjacent to the column (resp. row) pivot or its associated column (resp.
row) element is adjacent to the row (resp. column) pivot. This is referred to as
local symmetrization in [4]. It implies that the resulting quotient graph G* at
step k models only an approximation of the structure of the reduced submatrix. It
has been shown in [4] that the exploitation of element absorption combined with
local symmetrization results in an in-place algorithm: at each step of the Gaussian
elimination, the size of the quotient graph is bounded by the size of G!. Note that
because of local symmetrization, an approximation of the symbolic factors can be
computed following the paths of length at most three of the form i - ¢, — re — j
where (7, ce) denotes a coupled row and column element.

5

fep el<1(1
,,,,,,,,,,,,,,, 2 —x
l'eo \ 1
row, --------- X=——p —

F1G. 3.1. Illustration of a cycle (rowp — ce; — Tey —* Ceq —> Teg —> COlp — TOWR).

To simplify the description of how the bipartite quotient graph is modified at each
elimination step, we define V C (V, x V) to be the set of coupled row and column
elements corresponding to already eliminated pivots. Entries of the set V will also be
referred to as coupled elements or elements when it is clear from the context. Let
U, (resp. L,) be the row (resp. column) variables adjacent in G* to the row (resp.
column) element of a pivot p = (rowp,col,). Thanks to local symmetrization, the
concept of absorption can be extended to coupled elements: an element e = (r¢,ce)
such that (row,,c.) € € or (re,col,) € £ can be absorbed by p when p is selected
as a pivot. A consequence of this absorption is that our ordering also generates a
dependency graph between elements that is in fact a forest. This forest will be fully
exploited by the unsymmetrized multifrontal approach [5].

For each row variable ¢ € V, and column variable j € V., we define the element
lists R; and C; as follows:

Ri={e= (re,ce) €V s.t. (i,c.) € E}
and
Cj ={e=(re,ce) €V s.t. (re,j) € E}.

Let e = (re,ce) be an element, if e € R; then we will say that element e is adjacent
to row variable ¢. Similarly, if e € C; we will say that element e is adjacent to
column j.

Using this notation, the adjacency of a row variable ¢ (resp. column j) in G
consists of a list of column variables denoted as A;. (resp. a list of row variables
A,;) and a list of elements R; (resp. C;). At the beginning R; = C; = 0 and
A = AES) and A,; = A,(:;) corresponds to the original entries of A. Each step of
Gaussian elimination involves changes in the sets R; and C; as well as the computation
of the structure of a current pivot p (computation of £, and U,). The variable lists
A;x and A,; can also be pruned. Indeed, the edges in G between the variables and
the elements implicitly represent the bi-clique of the element and can thus be used to
remove the redundant entries in A;. and A.;. This important point will be further
discussed in detail in Section 4.3.

When (i,5) € V. x V, is selected as the next pivot we build the element p =

6

(i,J) € G such that:

(3.1) Uy =AU | Ueu | Ue
eER; e€C;

and

(3.2) L, =AU] Lou | £
e€C; e€R;

The third term in each equation results from local symmetrization and will enable
the current pivot to absorb all the elements which it was adjacent to. For example, let
us assume that the entry pl is selected as pivot in Figure 3.2. Since colp; is adjacent
to el, local symmetrization adds the virtual Spl entry so that the row structure of
pl contains U.;. Let F, = C; UR; be the set of elements adjacent to the current
pivot. Note that when it is clear from the context, F will also refer to the elements
adjacent to the current variable. The elements in F, are absorbed by p and can be
removed from the quotient graph. For each column variable j; in U, (resp. 41 in
L,) the element p is added to its adjacency and the elements in F, are removed:
Cj, < (Cjy \ Fp) U {p} (resp. Ri, (Riy \ Fp) U {p}). The structure of column j; of
the factors in the reduced matrix is then given by A.;, U L. The structure of

e€Cjy
row i of the factors is A;,« U UeeRi1 U,.
col pl col p2
el\
e?
\33 —
row, (S 52 x\ pl p2 —

F1G. 3.2. Influence of local symmetrization on the pivot structure

Note that, although the above structural changes of the reduced submatrix are
correct, they should not be used to compute the structural metrics. Indeed, if (i1, j1) is
selected as the next pivot, then the correctly computed structure of the reduced matrix
should include the local symmetrization terms (similar to equations (3.1) and (3.2)).
In Figure 3.2, we illustrate the effect of local symmetrization on the structure of the
selected pivot. Let us consider two candidate pivots belonging to the same row row,,
pl = (rowp,coly) and p2 = (rowp,colyy). We assume that all the elements in G
adjacent to pl and p2 are indicated in the figure. The structure of row, is then given
by Arow,x UUe;. This however does not give enough information on the structure
of row, if either pl or p2 were selected as the next pivot. If pl were the next pivot
then the structure of row, would be given by Up = Aix UlUe, UU,, because of the
locally symmetrized entry Sp;. If p2 were the next pivot then the structure of row,

7

Bipartite graph G Bipartite quotient graph G

Go = Ve, Ve, E) GF =V, UV, Ve UV, EUE)
R; structure of row 1% R; elements adjacent to row i
A;« variables adjacent to row %
A;« initial structure of row AES) initial structure of row %
C; structure of column j Cj elements adjacent to column j
A,j variables adjacent to column j
A.; initial structure of column j Ag(;.) initial structure of column j
Up row structure of the p*® pivot U, row structure of the pt" pivot
L, column structure of the p*® pivot Ly column structure of the pt* pivot
F elements that are adjacent to row % or

column j for a pivot (4,) (F = R;UC;)

TABLE 4.1
Notations used for bipartite graph and bipartite quotient graph.

would be given by Ups = Ajx U U, U U, because of the locally symmetrized entry
Sp2. This shows that, even if we cannot anticipate the effect of local symmetrization
on the quotient graph G before the pivot selection, we should anticipate its effect on
the metrics used to select the best pivot between p; and ps.

4. CMLS algorithm. In this section, we describe the main features and
properties of the CMLS algorithm. At each step of the algorithm, we need to know
the exact structure and the metric of each nonzero entry in C. It is thus natural to
use a bipartite graph (with possibly weighted edges) for C. Each edge corresponding
to a nonzero entry may have one or more weights (for example, a numerical value
and a structural metric) that will be used to select a pivot. On the other hand, in
order to have a fast computation of the structural metrics based on the pattern of A
and to have an in-place algorithm, A is represented by its quotient graph and local
symmetrization is employed. The notations used to represent the two graphs at each
step of the algorithm are summarized in Table 4.1.

In Section 4.1, we first describe the pivot selection algorithms. Updating the
graph G¢ and G associated with C and A respectively is discussed in Sections 4.2
and 4.3. In Section 4.4 we describe how to compute, at each step k and for each entry
in the constraint matrix C*, the structural metric relative to G*. Section 4.5 finally
explains how supervariables are defined and used in our context.

4.1. Pivot selection. At each step, the pivot with minimal metric is selected.
The choice of a metric implies the underlying algorithmic strategy. We say that
we use structural strategies in our algorithms when the entries are selected with
respect to only the structural metrics whereas the hybrid strategies correspond to
the combination of structural and numerical metrics.

Using doubly-linked lists and a hash function based on the value of the structural
metric provides a direct access to the entry in C that has the minimum structural
metric in G¢.

Furthermore, as it is often the case in sparse matrix factorization, we may want
to preserve the sparsity of the factors while controlling the growth in the factors.
Numerical thresholds are introduced to give freedom for the pivot selection to balance
numerical precision with sparsity preservation. For each entry (i,j) € C* we define
its numerical metric: v(i,5) = |cijl/||c.jlloo- A pivot in position (i,7) is said to
be numerically acceptable (or acceptable) according to a threshold 7 if and only if
|eij| > 7 % ||c.j|loo Where T € [0,1].

To reduce the complexity of the algorithms, it is also common to limit the pivot
search to a set of candidate pivots. For example in [11] the authors proposed to visit
the entries of a fixed number of columns using the Zlatev-style search [34]. We use
a slightly different algorithm to limit our search. At each step of the ordering, we
look for the best entry p = (row,, col,) within a subset (say S) of the entries in the
bipartite graph G¢. The subset S is defined by two threshold parameters MS > 0 and
NCOL > 0 as follows. Firstly, the M S entries with the smallest structural metric mg
are added to S. Secondly, those M S entries may belong to several different columns.
We then add in S all the other nonzero entries of those columns, but restricted to at
most the first NCOL columns. The set S is thus composed of a first set of M S entries,
the so-called M S-set, and a second set, the so-called NCOL-set = S \ M S-set. This
implies that if NCOL > 0, the NCOL-set will guarantee that the numerically best
pivots in the first NCOL columns will belong to S. As for the structural strategies,
it is straightforward to access entries in the M S-set and their corresponding columns
using the doubly-linked lists and a hash function.

We now explain how we select the entry of minimum structural metric in S among
the numerically acceptable pivots. We first visit the M S-set sorted in increasing
order of the structural metric mg. The first numerically acceptable entry found
corresponds to the minimum with respect to our hybrid strategy and we stop the
search. Otherwise, none of the values in the M S-set entries is numerically acceptable.
However, if NCOL > 0 then we are sure that at least NCOL entries will be
numerically acceptable since 7 < 1. In this case, however, all the entries of S need to
be considered to obtain the minimum on S according to our hybrid strategy. Finally
if NCOL = 0 and none of the entries in the M S-set is numerically acceptable then
the first entry of the M S-set is selected even if it is not numerically acceptable.

4.2. Update of the bipartite graph G¢. A bipartite graph is used to
represent C. At each step k, we need to add new entries in Ggr+1 corresponding to
the fill-ins in C**!. Since G¢ holds the set of candidate pivots, we need to guarantee
that the Properties (2.1) and (2.2) hold.

Let M be a matching in C*. The following two extreme strategies preserves these
two properties:

¢ MATCHUPDATE will refer to the strategy that performs incomplete
Gaussian elimination to only preserve the perfect matching property (2.1).
Let p = (rowp,coly) be the current pivot. Let (row,,match_col) and
(match_row, col,) be the matched entries of C in row row, and column
col,, respectively. That is, (row,, match_col) € M and (match_row, colp) €
M. If these entries are the same (i.e., (rowp,col,) is a matched entry),
nothing needs to be done to maintain Property (2.1). Otherwise entry
(match_row, match_col) is added to maintain Property (2.1). Note that this
entry corresponds to an entry in Pattern(CFk), so that Property (2.2) remains
true.

e TOTALUPDATE will refer to the strategy which performs all the updates
in C (i.e., CF! = CF).

In practice, a mixed strategy, exploiting both MATCHUPDATE and
TOTALUPDATE will be used for the experiments. At each step, TOTALUPDATE
strategy is used except when we want to limit the memory or the time complexity,
then MATCHUPDATE strategy is used. See [32] for further details.

4.3. Update of the bipartite quotient graph §G. In Algorithm 4.1 we
describe how the bipartite quotient graph associated with the reduced matrix is
updated.

Algorithm 4.1 CMLS update of the bipartite quotient graph G*

Let p = (rowp, colp) be the current pivot at step k and Fp = Rrow, U Ceol,, -
if Uy #0 and L, #0 then
for each row i € £, do

1 Aix = (Aix \Up) \ {colp} /* variable elimination in row direction */
2 Ri=(Ri\ Fp)Up
end for
for each column j € U, do
3 Asj = (Asj \ Lp) \ {rowp} /* variable elimination in column direction */
4 Ci=(Ci\Fp)Up

end for
else /* pivot pruning : delete all that is related to p, if U, = P or L, =0 */
for each row ¢ € £, do
Ri=(Ri\ Fp)
Ajx = Ajs \ {colp}
end for
for each column j € U, do
Cj = (Ci\ Fp)
Auj = A \ frowp)
end for
end if

The “if” block of code shows how the elements and variables are pruned.
The element pruning performed at lines 2 and 4 includes pruning due to local
symmetrization. The variable pruning performed at lines 1 and 3 removes the
intersection of the adjacency structures. For each row ¢ in £, variables of A;, that
appear in U, are removed and we say that we perform variable elimination in
the row direction. For each column j in U, variables of A,; that appear in £,
are removed. This will be referred to as variable elimination in the column
direction. We then say that our algorithm performs variable elimination in one
direction. Note that if, at a given step, variables are removed from both row i and
column 4, it means that ¢ € £, and ¢ € U,. In Section 4.3.1, we will prove that under
additional assumptions more pruning of the variables could have been introduced.
We then however comment in Section 4.3.2 that doing so makes reducibility detection
as done in the “else” block of Algorithm 4.1 impossible. Note that this additional
pruning would have improved the accuracy of our structural metrics as explained in
Section 4.4.

The “else” block of Algorithm 4.1 shows that the algorithm can exploit the fact
that when only one of the £, or U, is empty we can prune the current pivot from the
quotient graph G and therefore benefit from the reducibility of the input matrix. This
feature of the CMLS algorithm will be justified in Section 4.3.2. We will also explain
why it is correlated with the strategy used to prune variables.

4.3.1. Two-way variable elimination. Property 4.1 shows that under
additional assumptions the structure of the quotient graph can be further pruned.
PROPERTY 4.1. If at step k, the entry at position (i,j) is the only entry in row
i and column j of C* then:
(1) if i € Lp, all the variables belonging to L, can then be removed from A,;
(even though j ¢ U,),

10

(2) if j € Up, all the variables belonging to U, can then be removed from A
(even though i ¢ L,). B

Proof. From equation (2.2), we have Pattern(CF*1) C Pattern(CF). Therefore,
if at step k, (i,7) is the only entry in row i and column j of C*, it will remain the
only entry in its row and column for all subsequent C', for I > k. Thus, it is for sure
that (¢,7) will be selected as a pivot in a future step, and we can anticipate where
local symmetrization will occur. So the entries in A,; N £, for property 4.1(1) (or
in A;. NU, for property 4.1(2)) can be pruned and will be retrieved from £, (or Up,)
when (i, 7) is eliminated. O

When we apply Property 4.1, we say that the algorithm performs elimination in
both row and column directions. This process will be referred to as two-way variable
elimination. For example when the pivot choice is limited to a transversal, the two-
way variable elimination can be performed at each step of the elimination, as in the
DMLS algorithm [4]. This is illustrated in Figure 4.1. We assume, for the sake of
clarity, that the input matrix has been permuted to have all the candidate pivots on
the diagonal. The shaded areas correspond to the variables that can be removed from
the variable adjacency lists because they are implicitly stored through the adjacency
lists of element p.

» p-0- X —=3
| X\X\
J 0~ X X = m—

F1G. 4.1. Illustration of two-way variable elimination.

If the hypothesis of Property 4.1 is not true, the two-way variable elimination
cannot be applied because we do not know whether local symmetrization will be
performed or not. Consider Figure 4.1 again, if all three entries (7,4), (j,) and (j,1%)
belong in C, then we cannot prune all the shaded areas. This is because both (4,1%)
and (j,4) can be potential pivots from column i. If (é,4) is chosen as the pivot from
that column, then the shaded area in column ¢ can be pruned, because i € £, and
local symmetrization is invoked. However, if (j,4) is selected as the pivot from that
column, then since j ¢ £, and ¢ ¢ U,, the element p will not be used to build the row
and column adjacency of (j,i), and the shaded area in column i cannot be pruned.
Otherwise, we cannot retrieve those variables from anywhere. The same observation
applies to the shaded area in row j if (j,¢) instead of (j,j) is chosen as the pivot.
Note that the shaded area in column j can be pruned, because the entry (p, j) is not
a locally symmetrized entry, and so the variable elimination in the column direction
can be applied.

4.3.2. Reducibility detection. If the input matrix is reducible, we may
encounter a pivot p such that either (1) both £, = @ and U, = @ (we may call it

11

strongly reducible) or (2) L, = 0 or U, = 0 (we may call it weakly reducible). Ideally,
we would like to remove p from the quotient graph G in both reducible cases. However,
we will show that whether p can be removed or not depends on whether we use only
one-way variable elimination or use two-way variable elimination as well.

PROPERTY 4.2. If the variable elimination is always done in one direction, then
the current pivot p can be removed from the quotient graph if it is weakly reducible.

Property 4.2 comes from the fact that the pruning of the structures due to local
symmetrization has not been anticipated. Thus, none of the entries in £, (if U, = 0)
or U, (if £, = @) will be needed by the other variables to represent their adjacency
structure in G. Therefore, pivot p can be removed from G.

PROPERTY 4.3. If the two-way variable elimination has been done at least once,
then the current pivot p can be safely removed from the quotient graph if and only if
it is strongly reducible.

Proof. Firstly, when U, = 0 and £, = 0, p becomes a singleton element and can
certainly be removed from the quotient graph. Secondly, let us suppose that two-
way variable elimination has been performed at least once. We now build a counter
example to show that we cannot safely (in all possible cases) remove a weakly reducible
pivot p. Let us assume without loss of generality that U, = 0 and £, # 0. Let us
assume that there exists a variable i € £, and that there is an entry (4, j) that is

the only entry in row ¢ and column j in C. We also assume that variables in AS;)
have been pruned under two-way variable elimination. Therefore, p must be used to
retrieve those entries and cannot be removed from G. This is illustrated in Figure 4.2
where the shaded area (1) in column j is first stored through element e then stored
through element p (after pivot p absorbs element e). O

Property 4.3 indicates a drawback of the two-way variable elimination: we can
only prune the pivot in the strongly reducible case. The algorithm may be very
inefficient if the matrix is very reducible in the weak sense.

F1G. 4.2. Effect of variable elimination in both directions on reducibility detection (S indicates
the position of local symmetrization).

In the rest of this section, we discuss the detection and/or the exploitation of
the BTF (Block Triangular Form) of the initial matrix. We show that, under certain
assumptions, using one-way variable elimination, we can exploit and detect part of
the BTF.

DEFINITION 4.1. We say that an ordering is BTF compatible when

(1) it selects only pivots within the diagonal blocks of the BTF;

(2) it eliminates all the pivots in a block before processing another block;

12

(8) the order in which the diagonal blocks are considered must be such that each
selected block is not adjacent to any remaining block in either the row or the
column direction.

Note that condition (3) allows a block to be considered in the order of the BTF

but also allows some slight variation of this form as will be shown in Figure 4.3.

PROPERTY 4.4. If CMLS selects pivots with a BTF compatible ordering then the
sparsity of the block triangular form will be fully preserved and CMLS will generate a
forest in which each tree corresponds to an irreducible component of the BTF.

This property is a consequence of Property 4.2. We illustrate in the following why
condition (3) is needed in Definition 4.1. We also comment on the benefit of using
one-way variable elimination when the matrices are reducible and on the adverse effect
of two-way variable elimination for reducible matrices.

Let us assume that the constraint matrix C is restricted to the diagonal of A and
that pivots are chosen down the diagonal in order. In this case, the two-way variable
elimination could also be applied at each step of the ordering (see Property 4.1).
Figure 4.3 shows a matrix with five full diagonal blocks of size k. The original
matrix in BTF is shown on the left-hand side. The structure resulting from the
use of a modified CMLS algorithm that would include two-way variables elimination is
shown in the middle of the figure. We see that, with two-way variable elimination,
local symmetrization interconnects all the diagonal blocks of the BTF and the BTF
forest (independence between the diagonal blocks) is lost. In addition, because of the
nonzero “s” between block (1) and block (2), the first row of block (2) is completely
filled, which in turn will create fill-ins in all the lines of block (2) and in all the lines
of the subsequent blocks.

With only one-way variable elimination, the last pivot of block (1) will be removed
(see Property 4.2). The same holds for all subsequent blocks so that Algorithm 4.1
does not introduce any fill-in and produces a forest in which each tree corresponds to
a diagonal block of the BTF matrix.

, () (@)

3
A ®
@
Aisin BTF two BTF compatible orderings
o Initial nonzero entries [| Fill=in in the factors © Local symmetriza

F1g. 4.3. Illustration of two BTF compatible orderings of a matriz A in BTF. Using two-way
variable elimination introduces fill-ins in the factors.

We now assume that the blocks of the matrix have been symmetrically permuted
in the order 1,5,2,3,4, see the right-hand side matrix in Figure 4.3. This ordering
does not respect the BTF, however, it is BTF compatible thanks to the condition (3)
of Definition 4.1. Property 4.2 can be applied to the last pivot of each block, since
either U, or £, will be empty. The last pivot selected in each block will become the
root of the tree associated with that block of the BTF matrix. Algorithm 4.1 thus
fully exploits the BTF and preserves the sparsity of matrix. On the other hand, if we

[P}

use two-way variable elimination, because of the “s” entry at position (k + 1, k), row
13

k + 1 becomes completely filled and after eliminating the (k + 1)st diagonal entry the
remaining submatrix becomes also full.

FRFF BTF(A)=

Fi1G. 4.4. The initial matriz is not in BTF (left plot) and the ordering is not BTF compatible
(factors in the middle plot). The ordering on the right is BTF compatible and preserves sparsity.
F: fill-in. S: local symmetrization.

Finally, we show in Figure 4.4 that when the ordering of the blocks does not
satisfy condition (3) of Definition 4.1, CMLS algorithm may partially lose BTF. In this
example, local symmetrization between blocks (1) and (2) will create a dependency
between them and fills one rectangular block because of the propagation of this
dependency. Block (3) will however remain an independent tree because the last pivot
p in block (2) will have U, = 0 and p will become the root of the tree containing blocks
(1) and (2). Note that if two-way variable elimination were applied, the ordering would
not have detected the independence of block (3).

4.4. Update of the structural metric. In this section, we describe two classes
of local heuristics to estimate the structural quality of a pivot. In the preamble
section, we first describe the common framework that is independent of the metric
used. In Section 4.4.2, the approximate Markowitz cost [4] is briefly introduced. In
Section 4.4.3, we describe a metric based on an upper bound on the fill-ins introduced
at each step of elimination. This approximation of the fill-ins has been studied by
the authors of AMD [1] for symmetric matrices. We provide a generalization of this
approximation to unsymmetric matrices and prove that it is a tighter upper bound
on the fill-ins than the approximations proposed for symmetric matrices in [33]. Note
that concerning the deficiency approximation in [30], there is no guarantee that it is an
upper bound of the fill-in. Our approximate minimum fill-in heuristic will be referred
to as AMFI. Finally, in Section 4.4.4, we discuss the complexity of the algorithms used
to update the structural metrics.

4.4.1. Preamble. Let us assume that the p!* pivot (row,,col,) has been
selected. All the entries in (£, x V., U V. x Up) N Pattern(C) are involved in
the structural metric updates since the structure of rows in £, and columns in i,
might have changed. The size of this area is thus larger than the area involved in
the update of the structure of C since columns (resp. rows) of Uy, \ Ryow, (resp. of
Ly \ Ceot,) need also be considered. The algorithm to update the structural metrics
will be one of the most costly steps of our algorithm.

We want the metrics to reflect the structural quality of an entry if it were selected
as the next pivot. That is why we compute metrics which are related to the structure
of our quotient graph and for which local symmetrization has been applied. In the
following, the degrees, approximate degrees, fill-ins and approximate fill-ins are all
related to this quotient graph structure. Note that, since for symmetric matrices our
quotient graph becomes the standard symmetric quotient graph, all the discussions
naturally apply to symmetric matrices.

14

Equations (3.1) and (3.2) that include local symmetrization could be used to
compute the exact external degrees, but it would be costly. Instead, similar to
AMD [1] and DMLS [4] algorithms, approximate row and columns external degrees can
be computed. The AMD like approximate external row and columns degree, amd,. (3, 5)
and amd,(i, j) respectively, are then defined by the following two equations:

amd, (i,§) = |Auw \Up| + [Up \ j| + Xcerne, (Ue \Up|) + Xoce, (U \Up|) — aj,
with a; = max(|C;|,1) if j ¢ U, else a; = 0.
(4.1)

amde(i,j) = [Auj \ Lo +Lp \ i] + X oer, (1€ \ Lpl) + 2eec,\r. (1£e \ Lol) = Biy
with §; = max(|R;|,1) if i ¢ £, else ; = 0.

(4.2)

As observed in [4], degree corrections (o; and j3; in equations (4.1) and (4.2)) are
introduced to improve the approximations of the row and column external degrees
in the presence of local symmetrization. To justify these correction terms, one can
observe that if j ¢ U, then j is counted in every U, \ U, for e that is adjacent to
column j (e € C;). Furthermore, if C; is empty and j ¢ U, then column j has been
counted in A;. \ U, and should then be subtracted. This explains the use of a; in the
correction. f3; can be justified in a similar way. The |l \ U,| and |L. \ £,| quantities
are computed similarly as in the AMD algorithm.

Note that since only one-way variable elimination is employed, the computation
of the metric is less accurate than with two-way variable elimination. This is because
in the latter case, for any element e, row index ¢ € U, and column index j € £,, we
have A;x NU, = 0 and A,; N L. = . This is no longer true when one-way variable
elimination is used (see Algorithm 4.1). But as was shown in Section 4.3, the benefit
of one-way variable elimination is to better exploit the BTF of the matrix.

4.4.2. Approximation of Markowitz cost. The approximation of the
Markowitz cost comes directly from our approximation of the external row and column
degrees. After eliminating the k** pivot, we define

(4.3) amd,(i,j) = min(amd,(i,j),n — k — 1),
and
(4.4) amd.(i,j) = min(amd.(i,j),n — k — 1).

The metric associated with the approximate Markowitz cost is then defined as

amd,.(i, j) x amd,(i, j)
metric® (i,5) +|Uy, \ 5| x amd. (3, j)
+|L, \ i| x amd,.(3, j)
=ty \ 3| % |Lp \ il

Here, we use the convention that if (i, j) is a new entry in C, then metrict*) (i, 5)
in equation (4.5) is set to +oo. Note that during the update of the degrees, contrary
to AMD, we do not use the values of approximate row and column degrees computed
at the previous step. This could have been done but would have required us to store
two other arrays (one for row degrees, one for column degrees) of size |C| since the
approximate degree varies within a given row or column.

15

(4.5) metric®**tV (i, j) = min

4.4.3. Approximation of the fill-in. With a minimum fill-in based metric, we
want to estimate the new fill-in that would occur in the reduced matrix if an entry
were selected as the next pivot. For the sake of completeness, one should mention
that the fill-in metric of variables at distance two from the pivot might also vary.
In this work, we will only consider variables adjacent to the pivot, i.e. at distance
one, since results on symmetric matrices have shown that considering distance two
variables significantly increases the complexity of the algorithm for relatively little
gain in the quality of the ordering [30, 33].

A coarse upper bound of the fill-in that would occur can be obtained by removing
the area corresponding to £, x U, from the Markowitz cost or the area corresponding
to the largest adjacent clique [33]. A tighter approximation of the fill-in in the factors
can be obtained by removing all the areas already filled during the elimination of the
previous elements. We explain how to compute this new upper bound using already
computed information and local correction terms.

Suppose that ¢ € £, or j € Up. Let F = R;UC;. Let e be an element that belongs
to F. To simplify the notation we define £, = ([, \ L)\ {i}, U = U \U) \ {5},
Aoj = (A \ L\ i}, Aiw = (Asu \Uyp) \ {5}, Lo = Lo\ {i} and U, = U \ {j}. Thus
a ~ means that we subtract the current pivot structure and the current variable and
a " means that we only subtract the current variable.

Let d.(,7) and d.(¢,j) denote the external row and column external degrees of
entry (i,j) respectively. With our notation we have:

(4.6) dr(i,5) = |(Up U Ais U U Ue) \ {7} < |Z'2p| + |A~z*| +1 U Z]6|

ecF ecF
(4.7) de(i,j) = |(£p U -A*j U U L) \ {Z}| < |£Ap| + |A~*j| + | U Ee|
ecF ecF

Let S(i,j) denote the union of the areas associated with all the elements adjacent to
entry (4,7):

7,]—|U \ (£, x Up)].

ecF

Ideally one might want to subtract both |£, x U,| and S(i,7) from the Markowitz
cost. An upper bound of the fill-in that would occur (including local symmetrization)
if an entry (¢,) were eliminated is:

dr (i, §)de (i, §) — [Upl|Lp| — S(i,).

The authors of [33] have observed that instead of using the exact external degrees
one could use the approximate (in the sense of the AMD algorithm) external degrees
since both produce results of comparable quality and since AMD based metrics are
significantly faster to compute. In this context, the corresponding upper bound of the
fill-in metric becomes

(4.8) amd, (i,))amde (i, j) — Ul [£y| = S, j).-
Let AS be an overestimation of area S,

(49) AS(i,5) = Y (Lo x U\ (Lp x Up)| = 3 el [Le] + [Lel[Uhe NUhy|-
ecF ecF
16

Ue2() Up Ue2\Up

rOV%Z — ——
Uel

——T1T/—
roviy

Up
rowp

L

S T | I I

Lel

S i R

Fill of el (fill of premoved) [Fill of €2 (fill of p removed)

F1G. 4.5. AMFI areas in the expanded matriz.

Property 4.5 proves that one can in fact subtract area AS(i,j), instead of S(i,),
from equation (4.8), to obtain a more accurate upper bound of the fill metric.

PROPERTY 4.5. amd,(i,5)amd,(i,5) — |Uy||L,| — AS(i,5) is an upper bound of
the fill-in that would occur in the quotient graph if (i,j) were eliminated.

An intuitive proof of Property 4.5 is that, during the computation of the
approximate degree, the submatrix is expanded in such a way that the intersections
between all ¢/, and between all £, for e € F are empty. The area AS corresponds
to a real surface in the expanded matrix and can be removed from the area
amd,(i,j)amd.(i,j) to compute the fill-in that would occur in the expanded matrix
(see Figure 4.5). Moreover, this fill-in in the expanded matrix is an upper bound of
the exact fill-in in the quotient graph. A formal proof of Property 4.5 is given in [32].

We now explain that, although computing AS(4,5) is not trivial it is however
not costly. To compute the area AS, we need to evaluate I]e, ﬁe, U, and L, (see
equation (4.9)). It appears to be difficult to compute these quantities directly. Indeed
only the quantities |Ue|, |Lel, [Ue \ Up|, |Le \ Lpl, U NUp| and |Lc N L, are known
thanks to AMD like computations. For each entry (i, j) involved in the metric update,
two quantities are computed: an approximation of AS(i, j), area;j, such that

(4.10) area;; = Z(We \Upl|Le| +[Le \ Ly||Ue N Upl),
eeF

and local correction terms, cor_loc;;, so that
(4.11) AS(i,) = area;; — cor_loc;;.

Computing area;; only involves already known quantities. To compute the local
correction terms cor_loc;; we have to take into account for each e € F all possible
cases: e € R; \Cj, e € C; \ Ri, and e € C; NR;.

17

COIel COlp Uel

row, .o
i5 i6
kR
il i2 i3 i4
Lel
¢ i7 i8
i9

F1G. 4.6. AMFI: different cases of local symmetrization. i1,42,13,14,15,16 are cases encountered
in loop 1, 17,18,19 are cases encountered in loop 2.

Algorithm 4.2 explains how to compute both area;; and cor_loc;; from which the
AMFI metric can be deduced. To help understand how the local correction terms are
computed, we indicate in Figure 4.6 the areas corresponding to different values of the
local correction. In the following, we focus on the local correction terms computed
during Loop 1 of the algorithm. For ¢ € £, (Loop 1), we note that, for each element
e € R;, |Ue \Up| must be added to the correction term since it was taken into account
by mistake in U \Up||L.|. In Figure 4.6, this situation occurs to cases i1, i2, i3 and i4
but not to cases i5 and i6 for which |U, \ U,| is not added at line (1) of the algorithm
since el ¢ R;5 and el ¢ R;s. We then see at line (2) of the algorithm that, since
J €Uy, |Le\ Lp| must be added to the local correction (case i2). For case i3 at line [3]
of the algorithm, the complete column structure |£.| has been taken into account in
area;; and must be added to the correction term. Furthermore, since the entry (3, j)
had already been counted in |U,. \ U,|, one should remove it from the correction term
at line [3] of the algorithm. For case i5 (i6) in Figure 4.6, we add |L. \ £,| (|£c|) that
were counted by mistake in term L. \ Lp||Ue NUp| ([Ue \ Up||Le|) of areas;.

In practice we use amd,(i,j) and amd.(i,j) as defined in equations (4.3)
and (4.4) instead of amd,.(i,7) and amd.(i,j). Because of that it may happen that
amd,.(i,§)amd,. (i, 7) — U, \ j||£, \ i| — AS(i,) becomes negative, meaning that either
amd,(i,j) < amd,(i,j) or amd,(i,7) < amd.(i,j). In such cases, as it is done in AMD
and DMLS, one can artificially set the metric to 0. We propose here an alternative,
that could also be applied to these approaches to limit the tie-breaking. We introduce
row and column scaling terms

amd, (i, J) and colscale = amde(i, j)

rowscale = amdr(’i,j) m

If one systematically scales the area AS by rowscale x colscale, then we ensure a
positive metric and avoid tie-breaking problems due to metrics equal to 0. Our final

18

Algorithm 4.2 Computation of areas and local corrections for AMFI metric.

for i € £, do /* Loop 1*/
area-save; = EeeRi(We \Up|Le| +[Le \ Lp|Ue NUp|)
1 corlocsave; =3 g, [Ue \Up| /* cases il,12,43 and i4 */

for each j such that (4,5) € C do
area;; = area_save;, cor_loc;; = cor_loc_save;
for each e € C; do

if e € R; then /* e already visited, its fill-in already counted in area;; */
if j € U, then

2 corloc;j = corldocij + |Le \ Lp| /* case i2 */
else

3 corloc;j = cordocij + |Le| — 1 /* case i3 */
end if

else /* e not already visited, we need to count its corresponding area */
area;j = areai; + [Ue \ Up||Le| + |Le \ Lp|[Ue NUp|
if j € Uy then
4 corloc;j = corldocij + |Le \ Lp| /* case 15 */
else
5 corloc;j = cordoci; + |Le| /* case i6 */
end if
end if
end for
end for
end for
for each j € U do /* Loop 2 */
area_save; = 3, e, (Ue \Upl [Cel + Lo \ Lpl[Ue N U])
cor_loc_save; = Zeecj [Le\ Lp| /* used for cases i8 and 19 */

for each row ¢ such that (¢,5) € C and ¢ ¢ £, do
area;; = area_save;; cor_loc;; = cor_loc_save;
for each e € R; do
if e ¢ C; then
area;; = area;j + [Ue \Up||Le| + |Le \ Lp|[Ue N Up|
corloc;j = cordoc;j + |Ue| /* case i7 */
else
cor_loc;j = corloc;j + |Ue| — 1 /* case i8 */
end if
end for
end for
end for

AMFI metric is then defined as follows:

amdy(i, j)amde (i, j) — [Up \ jI|1Cp \ i

— rowscale x colscale x AS(i,7)
(4.12) metric®**V(i,5) =min < metric® (i,5) +Uy, \ §| x amd,(3,)
+[Lp \ i| x amd.(i, 5)
=2 [Up \ j| x [Lp \ 4]

4.4.4. Complexity. First note that the complexity of the update of all
the proposed metrics is comparable since the dominant cost associated with the
computation of the approximate row and column degrees is shared by all metric
calculations. We will thus focus here on the computation of the approximate
Markowitz cost and more particularly on the computation of amd. as defined by
equation (4.2). The quantity |As; \ £p| is computed only once for all the entries in
column j belonging to C. The computation time is thus at each step bounded by
O, [A«j1) = O(|E|). For each row in L, the computational cost of the third term
of Equation (4.2) is O(|R;|). For each row in £, and each column j such that (7, j)

19

belongs to C, the computational cost of the fourth term of equation (4.2) is O(|C;|).
Thus the total complexity of amd, for all the (4, j) entries in (£, x V) N Pattern(C)
is

(4.13) O Y IR+ D D Icl

i€Ly i€Lp jER;

Let us define ny,...,n|c,| by induction: n; = argmax|C;| and for i > 1, n; =
argmaxXjzn; ,..n: [Cjl. At each step p of the symbolic factorization, Let us define
kP as the largest row or column length. kP = max(max;ey, |R}|, max;ey, |C}|). The
double sum of equation (4.13) thus contains at most k?|L,| terms where k? is defined as
the size of the largest row/column at step p. Note that at most kP terms can be equal
to Cy, for all i € [1,[Lp[]. Thus, we have the following inequality: > ;e > icp, ICi] <
kP X 321<i<|c,) |Cni|- Then we have

Z (lRll + Z |CJ|) < kP x Z |Rz| + Z |Cm

i€Ly JER; i€L,y 1<i< | Ly

Finally, thanks to the in-place property of our algorithm to update the bipartite
quotient graph we obtain

SR+ D> lCwl <IEI

i€L, 1<i<| Ly |

The same bounds can be obtained for amd, so that the total cost for updating
the metric is O(kP|E|) per elimination step. The total time complexity is
O 1<p<n KP|E[). If kP is bounded, the complexity becomes O(n|E|) which is the
same complexity as the AMD algorithm [26].

4.5. Supervariables and mass elimination. For the sake of clarity, the
algorithms described in the previous section did not include supervariables. In this
section, we first define our generalization of supervariables and mass elimination
to bipartite quotient graphs with off-diagonal pivots. We then revisit the previous
algorithms and explain what has to be modified to detect and exploit supervariables.

4.5.1. Adaptation of CMLS main scheme. In our context, we want
supervariables to exploit identical adjacency structures in the graph at each step
of the elimination. Supervariables are thus defined on the bipartite quotient graph of
A, whereas on the bipartite graph of C we only use simple variables. With the CMLS
algorithm we cannot use exactly the same kinds of supervariables as in [1, 4, 16, 21]
because they assume that pivots are on the diagonal so that a row can be associated
with a column before being selected as pivot. That is why our concept of supervariable
is closer to the one used in [20]: we define indistinguishable row variables (resp.
indistinguishable column variables) as row variables (resp. columns variables) which
have the same adjacency in G. To limit the cost of supervariable detection, two hash
functions (see for example [7]) are then used for each row and column direction.

If 7 and j are two indistinguishable row variables, they are replaced in G by a row
supervariable containing both ¢ and j, labeled by its principal row variable (i, say) [15,
16, 17]. The notation i is used to denote this row supervariable and i = {i,5}. ¢ and j
are said to be constituent row variables of the row supervariable i and the notations i €

20

iand j € i are then used. At the beginning of Gaussian elimination, the row variables
are said to be simple row variables. Each simple row variable 7 can also be seen as a
row supervariable i = {i}. For each row supervariable i, |i| corresponds to its size, i.e.
its number of constituent variables. Similar definitions and notation can be introduced
for the column supervariables, the principal column variables, the constituent column
variables and the simple column variables. When it is clear from the context, we do
not differentiate between a column or a row supervariable. Furthermore, let r; and
ro be two row variables which belong to the same row supervariable r and ¢; and ¢
be two column variables which belong to the same column supervariable c. After the
pivot p1 = (r1,c¢1) is eliminated, ps = (72, c2) can be eliminated in G without causing
extra fill-in. This process, commonly referred to as mass elimination [23], creates a
new (super)element e = (r,c) in the quotient graph. In the following, we comment
on the algorithmic modifications due to the introduction of supervariables.

Let p = (r,c) be the current pivot. The first modification of the algorithm
concerns the introduction of a scaling of the structural metrics as defined either by
equation (4.5) or by equation (4.12). The structural metric of an entry (4, j) adjacent
to p either in the row or column direction is divided by min(|i|, |j|). Indeed min(]i], |j|)
corresponds to the size of the largest pivot block which could be eliminated if a pivot
at the intersection of these row and column supervariables were selected.

The second modification of the algorithm concerns he elimination process which
is performed in the three main steps. During the first step, the scaled metric is
use to select a pivot in C. During the second step, we retrieve its associated row r
and column c supervariable in A. During the third step, we eliminate “as many as
possible” variables belonging to (r x ¢) N C. Note that the meaning of “as many as
possible” will depend on the context. If a hybrid strategy is used then pivot entries
might be rejected because of numerical criteria. Furthermore, since the C matrix
is updated when eliminating a pivot, the new nonzero entries that might be in the
intersection of the pattern of C and the supervariables need also be considered. The
same modified three steps are also applied to the mass elimination process. Finally,
if some constituent variables of a supervariable have not been eliminated, then they
are used to build a new supervariable and are re-inserted in G.

The final modification concerns the update of the structural metric that will be
fully described in Section 4.5.2. Note that during the metric update, we also mark
candidates for mass elimination.

4.5.2. Revisiting computation of the structural metrics. When using
supervariables and after the elimination of a pivot p, the approximate external row
and column degrees as defined by equations (4.1) and (4.2) become:

amdy (i, 7) = [Ai \Up| + [Up \ {5} + Xcer,uc; (IUe \ Up|) — a5 i,

(4.14) with a; = max(|Gj|, 1) if] ¢ U, else a; = 0.

(a15) Omdeled) = [AG\ Lo+ 1L \ I} + Doemyuc (1£e \ £ol) = B il
' with f; = max(|Ri|,1) if i ¢ £, else ; = 0.

In Section 4.4.3, we have shown that to evaluate the AMFI metric of an entry (4, 5)
we need to compute the area AS(i,j) of equation (4.12) as the sum of two terms
area;; and cor_loc;; (see equation (4.11)). The area;; term (see equation (4.10)) is
related to the areas of all the bi-cliques of the already eliminated elements so that its
computation does not depend on the use of supervariables. The computation of the

21

local correction terms cor_loc;; must however be revisited. We split this correction
term into two parts. Each part, row_cor_loc;; and col_cor_loc;;, refers respectively to
entries in the row supervariable and to entries in the column supervariable so that
the new equation for defining the area AS is :

(4.16) AS(i,j) = area;; — row_cor_locsj |i| — col_cor_loc;;j|.

For an entry (i,7) € C, the local corrections for the different cases of Figure 4.6 are
then:
Case il: row_cor_loc;; = |Ue \ Up| and col_cor_loc;; =0,
Case 12: row_cor_loci; = |U, \ Up| and col_cor_loc;j = |Le \ Ly,
Case i3: row_cor_loc;; = |U, \ Up| and col_cor_loc;; = |Lc| — i,
Case i4: row_cor_loc;j = |U, \ Up| and col_cor_loc;; = 0,
Case i5: row_cor_loc;; = 0 and col_cor_loc;j = |Le \ Lp),
Case i6: row_cor_loc;; = 0 and col_cor_loc;; = |L],
Case i7: row_cor_loc;; = |U,| and col_cor_loc;; = 0,
Case i8: row_cor_loc;; = |U| — |j| and col_cor_loc;; = |L. \ Lp|,
e Case i9: row_cor_loc;; = 0 and col_cor_loc;; = |L. \ Lp]-
It is then straightforward to accumulate these corrections by adapting Algorithm 4.2.

5. Experiments. In this section we analyze the effect of the CMLS ordering
on the performance of sparse solvers. Our new ordering will be compared to the
combination of DMLS ordering and MC64 [13, 14] because it is the most robust in-place
local heuristic (better than AMD, see [4]) in terms of numerical stability and fill-in
reduction in the factors. DMLS takes into account the asymmetry of the matrices,
selects pivots on the diagonal, applies local symmetrization and two-way variable
elimination. Thus it can be considered a restricted CMLS. We recall that MC64 permutes
the matrix such that the product of the diagonal elements is maximized.

With the CMLS ordering, our pivot sequence results from a combination of
structural and numerical information (even when only structural metrics are used
to select the pivots, the initialization of our constraint matrix is based on numerical
considerations). Therefore it is important to analyze the numerical quality of the
proposed sequence of pivots. In this context, for very different motivations, we may
want to experiment with both an approach that performs partial pivoting to preserve
numerical stability and an approach based on static pivoting. In the first case, the
numerical quality of the proposed sequence of pivots is not so critical to obtaining
a backward stable factorization and we expect to improve the sparsity of the factors
because of the freedom to select entries in the constraint matrix C. In the case of
a static pivoting, we expect that the capacity of CMLS to select pivots according to
numerical criteria can be used to better control the numerical quality of the sequence
while still offering some more freedom than a diagonal Markowitz algorithm. In fact
with the CMLS algorithm we can define a family of orderings and expect that two
probably different members of this family can be used in these two cases: a CMLS
ordering in which C offers a lot of freedom to choose the pivots and a CMLS ordering
in which the selection of the pivots is strongly guided by the numerical values in C.

To represent each class of solver techniques, we consider the multifrontal code
MA41 UNS [2, 5] which performs numerical pivoting during the factorization and the
supernodal code SuperLUDIST [28] which performs static pivoting. Both codes are
run in sequential mode. As shown in [3, 5, 10, 25] the approaches used to factorize the
matrix in MA41_UNS and SuperLUDIST are very competitive in shared/sequential and
distributed memory environments respectively. Note that because of the important

22

algorithmic similarities between MA41 UNS and the distributed memory code MUMPS,
this work will be also very beneficial to the distributed memory multifrontal code.

In Section 5.1, we present our experimental environment. In Section 5.2 we first
briefly discuss the case where the pivot choice in CMLS is restricted to the matching
provided by MC64. In Section 5.3, we analyze the behavior of our ordering when
a structural strategy is used to select the pivots. We report performance obtained
with MA41 UNS solver in terms of time and memory used during factorization. In
Section 5.4, we illustrate the benefits resulting from the use of hybrid strategies for
pivot selection in the SuperLUDIST context and focus in the case on the numerical
effects.

5.1. Experimental environment.

5.1.1. Test matrices and computing environment. A representative set
of 19 large unsymmetric matrices has been selected (see Table 5.1) from Tim
Davis’ collection [9]. All our results have been obtained on a Linux PC computer
(Pentium 4, 2.8 GHz, 2 GBytes of memory and 1 MByte of cache). We use the
Portland Fortran 90 compiler pgf90, C compiler gcc (both with -O3 option) and
GOTO BLAS [24].

Consider a matrix A = (a;;) and let nnz(A) be its number of nonzero entries.
We define the structural symmetry s(A) as:

size {(7,7) s.t. a;; # 0 and aj; # 0}
nnz(A))

s(A) =

In the remainder of this section, the symmetry of a matrix always refers to the
structural symmetry once the MC64 permutation has been applied (see column sym
of Table 5.1).

Group/Matrix n nnz | sym |description
Vavasis/av41092 41092 | 1683902 | 0.08 | Unstructured finite element
Hollinger/g7jac200sc 59310 | 837936 | 0.10 | Economic model
Hollinger/g7jac180sc 53370 | 747276 | 0.10 | Economic model

Hollinger/jan99jac120sc | 41374 | 260202 | 0.16 | Economic model
Hollinger/jan99jac100sc | 34454 | 215862 | 0.16 | Economic model
Mallya/lhr34c 35152 | 764014 | 0.19 | Light hydrocarbon recovery
Mallya/lhr71c 70304 | 1528092 | 0.20 |Light hydrocarbon recovery
Hollinger/mark3jac120sc | 54929 | 342475 | 0.21 | Economic model
Hollinger/mark3jac140sc | 64089 | 399735| 0.21 | Economic model

Grund/bayer01 57735 | 277774 | 0.25 | Chemical process simulation
Hohn/sinc18 16428 | 973826 | 0.27 | Single-material crack problem (sinc-basis)
Hohn/sincl5 11532 | 568526 | 0.27 | Single-material crack problem (sinc-basis)
Zhao/Zhao2 33861 | 166453 | 0.27 | Electromagnetism
Sandia/mult_dcop_03 25187 | 193216 | 0.36 | Circuit simulation
ATandT/twotone 120750 | 1224224 | 0.42 | Harmonic balance method
ATandT/onetonel 36057 | 341088 | 0.42 | Harmonic balance method
Norris/torsol 116158 | 8516500 | 0.43 | Finite element matrices from bioengineering
Simon/bbmat 38744 | 1771722 0.49 |2D airfoil, turbulence
Shen/shermanACb 18510 | 145149| 0.50 | Matrices from Kai Shen

TABLE 5.1

Test matrices.

We systematically apply random row and column permutations to our initial
matrix so that the ordering algorithms are less sensitive to the effects of tie-breaking,
We ran each problem with eleven random permutations and selected the run whose
ordering returns the median fill-in in the factors.

23

5.1.2. CMLS default parameters. The initialization of C is done using scaled
matrix and the maximum weighted matching returned by MC64. To limit the size of
C and the complexity (cost and memory) of the ordering phase, the initial number
of entries in CO is set between n and 4n. We then drop the entries that are smaller
than 0.1 in magnitude and the entries that have too large structural metrics. While
dropping, we still maintain the property M C Pattern(C). On our test set, we
observed that the size of C° is between n and 3n after this last dropping phase.

We use the Improved Approximate Minimum Fill metric AMFI of Section 4.4.3
since it is the most efficient metric for both CMLS and DMLS orderings.

5.2. Preliminary remarks about diagonal constraint matrices. When Cg
contains only the entries from the MC64 matching and thus the set of candidate
pivots for CMLS and DMLS is identical, one should expect a comparable behavior of
the two algorithms in terms of fill-in in the factors. However, we have noticed (see
[32] for detailed results) that CMLS ordering tends to produce sparser factors even if
DMLS uses two-way variable elimination which leads (as explained in Section 4.4.1) to
more accurate structural metrics. This can be explained by the following algorithmic
differences:

e Thanks to the one-way variable elimination, CMLS can eliminate all the
elements in both the strongly reducible and the weakly reducible situations.
It has more chance to better preserve the sparsity of reducible matrices. This
is well illustrated by the mult_dcop-3 matrix, which has 7448 irreducible
components. DMLS and CMLS detect 875 singletons during a common
preprocessing step. Then during ordering, DMLS detects 95 additional blocks
versus 229 blocks for CMLS. Note that on the other matrices the number of
detected blocks does not depend on the ordering and thus the algorithm used
for variable elimination will not influence much the results on our set of test
matrices.

e CMLS can create a row (column) supervariable if two rows (columns) have
the same structure. DMLS can create a supervariable only if both rows and
columns have the same structure. Thus, on the same quotient graph CMLS
will detect more supervariables than DMLS. Note that the use of supervariables
improves the accuracy of the structural metric. For example, if we consider
that variables i and j belong to the same row supervariable, then the entries
in A;, and Aj, will not be counted as fill-in.

e In the CMLS implementation, we use rowscale and colscale coefficients (see
end of Section 4.4.3) to reduce the amount of tie-breaking between variables
that would have a negative metric (reset to 0) with DMLS.

We should stress that most of these algorithmic differences were justified because
CMLS is designed to handle more general and complex situations than DMLS. What
was not at all predicted is that the best implementation of DMLS should use the more
general framework of the CMLS ordering.

5.3. Structural strategy.

5.3.1. Structure of the factors. In this section, we analyze the effect of the
ordering on the size of the factors and compare the predicted size and the actual size
of the factors. When there are no off-diagonal pivoting and node amalgamation, the
actual size would be the same as the predicted size.

Table 5.2 compares CMLS with DMLS for both the estimated and the real size of
the factors, using the MA41 UNS solver. For most matrices, the CMLS ordering results

24

in sparser factors. The gains in sparsity vary from 0% to 43%, with gains very much
comparable for both the estimated and the real size of the factors.

Estimated size of factors | Real size of factors | Ratio: actual/predicted
Matrix CMLS DMLS CMLS DMLS | CMLS DMLS
av41092 6610 9359 7237 9965 | 1.09 1.06
g7jac200sc 28217 36345 | 29035 37001 1.02 1.01
g7jacl80sc 21561 31797 | 22222 32391 | 1.03 1.01
jan99jac120sc 3793 3774 4190 4221 1.10 1.11
jan99jac100sc 3172 3119 3505 3496 | 1.10 1.12
Ihr34c 6612 6833 7522 7821 1.13 1.14
Ihr7lc 13958 15274 | 15860 17450 1.13 1.14
mark3jac120sc 13079 13433 | 13658 14140 | 1.04 1.05
mark3jacl140sc 15127 15621 | 15790 16452 1.04 1.05
bayer01 1374 2410 1633 2737 1.18 1.13
sincl8 31314 37971 | 32382 39878 1.03 1.05
sinclb 15453 16974 | 16093 17343 | 1.04 1.02
Zhao2 12819 13937 | 13453 14689 | 1.04 1.05
mult_dcop_03 780 865 959 1022 | 1.22 1.18
twotone 7469 8452 8377 9099 | 1.12 1.07
onetonel 2827 3174 3125 3484 1.10 1.09
torsol 30605 30639 | 31491 31544 | 1.02 1.02
bbmat 37942 43382 | 38549 43915 | 1.01 1.01
shermanACb 365 396 465 487 | 1.27 1.22
Mean CMLS/DMLS 0.87 0.88

TABLE 5.2

MA41_UNS size of the factors and analysis reliability. Fach number for the factor size is in
thousands.

As expected the fact that more flexibility has been offered to select off-diagonal
pivots in the constraint matrix help CMLS at preserving the sparsity of the factors.
Doing so we have however authorized CMLS to select pivots that do not belong to the
maximum weighted matching. Since, a structural metric has then been used by CMLS
algorithm to select the pivots, it is thus critical to evaluate the numerical quality of our
sequence of pivots with MA41 _UNS. We recall that, thanks to partial threshold pivoting,
the factorization phase of MA41 UNS (the default value of the threshold is used in all
experiments) will modify the pivot sequence to control the growth factor. This may
result in an increase in the estimated factor size and number of operations. We thus
also provide in Table 5.2 the ratio between the number of nonzeros in the factors and
the forecast number of nonzeros in the factors (both delayed pivots and amalgamation
contributes to increasing this ratio). Note that from a software point of view it is also
critical for the estimation to reflect the reality. We see in Table 5.2 that the growth
of the size of the factors is reasonable. Note that the fill-in due to the amalgamation
process can be predicted and so if node amalgamation were included in the estimation,
the growth of the size of the factors would be even smaller. Furthermore, it is even
more interesting to observe that the growth obtained with CMLS is comparable to
that obtained with DMLS. This shows that limiting the pivot choice to the maximum
weighted matching (as done in DMLS) and considering numerical information in the
constraint matrix (hybrid strategies to select pivots) are not critical in the context of
a partial pivoting code.

5.3.2. Run-time and memory usage. In this section, we are concerned with
the number of operations, run-time and memory usage of MA41 UNS. The extra cost
due to numerical pivoting during factorization is always included in the number of
operations.

25

Number of operations | Memory needed
Matrix CMLS DMLS CMLS DMLS
av41092 1876.7 3809.2 7610 10066
g7jac200sc 27330.2 44379.8 | 30328 40543
g7jacl80sc 17005.9 38434.8 | 23153 34577
jan99jacl20sc 1162.5 1141.8 4318 4303
jan99jac100sc 1039.0 938.3 3577 3554
Thr34c 1609.4 1812.7 7766 8389
Ihr71c 3567.8 4981.5 | 16139 18052
mark3jacl20sc 6786.6 7142.8 | 14036 15150
mark3jacl40sc 7661.2 8135.0 | 16273 17153
bayer01 58.9 155.4 1635 2743
sincl8 55501.4 77367.7 | 35369 46735
sinclb 19521.4 22388.5 | 20092 19915
Zhao2 8023.3 9250.6 | 14400 15354
mult_dcop-03 85.7 114.6 1011 1073
twotone 5142.9 5591.1 9296 9282
onetonel 1023.2 1250.3 3532 3791
torsol 24417.6 25068.9 | 34364 35256
bbmat 30455.0 40766.0 | 38941 44448
shermanACb 22.3 27.7 490 536
Mean CMLS/DMLS 0.79 0.88

TABLE 5.3

MA41_UNS number of operations (in millions) and memory used (in thousands of reals).

We see in Table 5.3 that on almost all the matrices, the CMLS ordering reduces
the amount of memory used, with an average reduction around 12%. The reduction
in the number of operation is even more important (mean value of 21%) and will
contribute to the reduction in the factorization time.

ordering time | factorization time | solution time
Matrix CMLS DMLS CMLS DMLS CMLS DMLS
av41092 3.79 3.62 1.57 2.52 0.69 0.70
g7jac200sc 22.25 9.46 | 16.17 23.95 | 1.50 2.36
g7jacl80sc 16.34 7.42 | 12.14 19.95 1.51 2.06
jan99jac120sc 6.07 2.59 1.68 1.48 | 0.35 0.31
jan99jac100sc 4.78 1.92 | 1.616 1.17 | 0.32 0.28
Ihr34c 3.56 3.22 | 11.85 23.11 0.84 0.93
lhr71c 8.28 7.87 | 19.87 39.51 1.88 2.31
mark3jac120sc 7.85 3.39 4.53 3.86 | 1.08 1.10
mark3jacl40sc 9.56 4.20 5.16 4.54 1.09 1.42
bayer01 1.58 1.14 0.32 0.39 0.59 0.49
sincl8 16.54 | 18.03 | 22.99 26.55 | 0.66 0.91
sincl5 7.73 3.58 8.77 10.55 | 0.35 0.38
Zhao2 2.15 0.90 4.47 4.97 | 0.46 0.83
mult_dcop-03 0.61 0.47 0.24 0.27 | 0.24 0.27
twotone 3.58 2.09 4.69 6.34 1.30 1.32
onetonel 1.02 0.53 0.86 1.32 0.25 0.26
torsol 14.50 | 68.27 | 11.68 11.61 2.45 2.40
bbmat 44.74 | 16.50 | 31.60 37.67 | 1.57 1.37
shermanACb 0.26 0.14 0.09 0.08 0.09 0.10
Mean 1.77 0.86 0.91

TABLE 5.4

MA41_UNS ordering, factorization and solution time (in seconds).

Table 5.4 then compares the time of the three main steps of the resolution. Note
that the ordering time of both orderings depends on two opposite effects that are

26

difficult to detect. The better we preserve sparsity, the smaller might be the quotient
graph, and the faster we can process it. The better we preserve sparsity, the fewer
the elements are absorbed, the fewer the supervariables are detected, and higher the
complexity might be. However, our new ordering is a real unsymmetric ordering that
selects off-diagonal pivots and updates a constraint matrix. One should thus expect
the time spent in the ordering to be higher with CMLS than with DMLS. Indeed, CMLS
performs more metric computations and has to explicitly store and manipulate the
constraint matrix C. The metric update is the most costly step of the ordering so that
the complexity of the ordering is tightly linked to the size of C (see Section 4.4.4).
Considering that the size of the C? is typically between 2n and 3n, we see in Table 5.4
that CMLS is quite competitive with respect DMLS (we observe that the cost of CMLS does
not linearly increase with the size of C°). Two algorithmic differences might explain
the good behaviour of the CMLS ordering. Since CMLS has the flexibility to select
pivots in the constraint matrix it may not be critical to know the metric of the entries
that belong to a fairly dense row or column. That is why our CMLS implementation
avoids such computation. It sometimes decreases significantly the ordering time (see
for example torsol matrix). Furthermore, supervariables have been generalized in the
context to CMLS ordering resulting in separated row and column supervariables. This
feature helps CMLS exploit in a more efficient way the unsymmetric structure of the
matrix.

We then see in Table 5.3 that the decrease in fill-in and in the number of operations
performed during the factorization phase leads to decrease in the factorization time.
The gains in factorization time are slightly smaller than the gains in the number of
operations (the average decrease in the number of operations is around 21%). This is
because sparser factors often leads to smaller full blocks on which basic linear algebra
kernels are slower. We observed that the flop rate of MA41_UNS tends to be smaller
with CMLS than with DMLS: the average flop rate is nearly 1.33 GFlops with the DMLS
ordering whereas it is around 1.23 GFlops with the CMLS ordering. The largest gains
in time are then obtained for matrices with small flop rate. For example, for the lhr*
matrices the average flop rate is around 100 MFlops, and MA41 UNS is two times faster
with CMLS than with DMLS.

5.4. Impact of the hybrid strategies on SuperLUDIST. Because of the
static pivoting strategy used during factorization, SuperLUDIST is expected to be
numerically more sensitive than MA41 UNS to the use of hybrid strategies to select
pivots during the CMLS ordering. We thus focus in this section, on the analysis of the
numerical behaviour of SuperLUDIST. It has been observed in [3] that, because of
static pivoting, iterative refinement may be required to obtain an accurate solution.
We thus analyse in this section the component-wise backward error of the solution [6]
during iterative refinement. Note that one step of iterative refinement costs at least
as much as one forward and backward substitution. The cost of the solution phase is
thus very much related to the number of steps of iterative refinement. In the hybrid
strategy (see Section 4.1), a relative threshold is set to avoid the selection of small
pivots in C. The relative threshold was set to 0.01 in all our experiments.

We added to our test set four matrices (see Table 5.5) on which we have observed
in [3] that SuperLUDIST need iterative refinement to improve the accuracy of the
solution.

Figure 5.1 compares CMLS and DMLS component-wise backward error during the
iterative refinement (results after 0, 2, 3, and 4 steps). From the results it is clear
that using the CMLS ordering clearly improves the numerical behavior of SuperLU DIST.

27

Group/Matrix n nnz Origin

MIXING-TANK 29957 | 1995041 fluid low (PARASOL, Polyflow S.A.)

INV-EXTRUSION-1 | 30412 | 1793881 fluid low (PARASOL, Polyflow S.A.)

fidapm11 22294 623554 CFD (SPARSKIT?2 collection)

cavity16 4562 138187 | Finite element modeling (SPARSKIT?2 collection)
TABLE 5.5

Test matrices.

DMLS
DMLS

cMLs cMLs

(a) Component-wise backward, step 0. (b) Component-wise backward, step 2.

DMLS

cMLS cmLs

(c) Component-wise backward, step 3. (d) Component-wise backward, step 4.

F1G. 5.1. SuperLU_DIST component-wise backward error during iterative refinement.

There are still two matrices (av41092 and Zhao2) for which, after both CMLS and DMLS
orderings, iterative refinement does not converge to an accurate solution. The torsol
matrix is the only one on which a DMLS approach succeeds whereas a CMLS approach
fails. There are seven matrices (sincl8, lhr34c, lhr71c, mult_dcop3, MIXING-TANK,
fidapm11 and cavity16) on which the backward error of SuperLU DIST combined with
DMLS remains larger than 10~1° whereas SuperLU_DIST combined with CMLS converges
in less than 4 iterations. Note finally that, with CMLS, on all problems (except torsol,
av41092 and Zhao2), three steps of iterative refinement are sufficient to obtain a
backward error smaller than 108,

28

6. Concluding remarks. The originality of the CMLS algorithm relies on its
ability to compute an unsymmetric permutation with the following goals in mind:
to reduce the fill-in in the factors and to preselect numerically good pivots for the
factorization. It is based on a constraint matrix which contains the candidate pivots
and a quotient graph that is used to compute the structural metrics. The CMLS
algorithm can be used to design a family of orderings that can address a large class
of problems. The main properties of the algorithm are summarized as follows:

e Significant gains in terms of fill-in (13%) and flops (21%) have been obtained
with the structural strategy to select the pivots.

e Using a structural metrics to select the pivots does not affect the numerical
behaviour of the MA41_UNS solver.

e On numerically difficult problems, CMLS can be used to improve the accuracy
of SuperLU_DIST and reduce the number of steps of iterative refinement during
the solution phase.

e Although the complexity of the ordering is higher with CMLS than with DMLS,
we have shown that CMLS benefits from algorithmic improvements (some of
which could even be implemented in DMLS).

The last property emphasizes that DMLS could also benefit from the algorithms
developed in the more general and complex framework used for the CMLS algorithm.
Both our approach to scale metrics in order to achieve better tie-breaking and our
generalized supervariables could be used in the context of DMLS to also improve the
metric computation.

One indirect but important consequence of our work is that we do not need
to limit our pivot choice to a maximum weighted transversal of the original matrix.
Preliminary experiments have shown that the maximum weighted matching can in fact
be substituted by a simpler structural maximum transversal during the preprocessing
phase (Step 1 as defined in Section 2). One possible direction for future work could
then be to design a simpler or easier to parallelize version of the preprocessing phase.

Furthermore, the constraint matrix C contains information that can be seen as
an incomplete factorization. We intend to use it as a preconditioner and to compare
its quality and cost with existing incomplete LU factorizations.

REFERENCES

[1] P. R. AMESTOY, T. A. DAvis, AND I. S. DUFF, An approzimate minimum degree ordering
algorithm, SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 886—905.

[2] P. R. AMESTOY AND 1. S. DUFF, Vectorization of a multiprocessor multifrontal code, Int. J. of
Supercomputer Applics., 3 (1989), pp. 41-59.

[3] P. R. AMmESsTOY, I. S. DurF, J.-Y. L’EXCELLENT, AND X. S. L1, Analysis and comparison
of two general sparse solvers for distributed memory computers, ACM Transactions on
Mathematical Software, 27 (2001), pp. 388—-421.

[4] P. R. AMESTOY, X. S. L1, AND E. Na, Diagonal Markowitz scheme with local symmetrization,
Tech. Rep. RT/APO/03/5, ENSEEIHT-IRIT, October 2003. Also appeared as Lawrence
Berkeley Lab report LBNL-53854.

[5] P. R. AMESTOY AND C. PUGLISI, An unsymmetrized multifrontal LU factorization, SIAM
Journal on Matrix Analysis and Applications, 24 (2002), pp. 553-569.

[6] M. ArIoLI, J. DEMMEL, AND 1. S. DUFF, Solving sparse linear systems with sparse backward
error, SIAM Journal on Matrix Analysis and Applications, 10 (1989), pp. 165-190.

[7] C. ASHCRAFT, Compressed graphs and the minimum degree algorithm, SIAM J. Sci. Comput.,
16 (1995), pp. 1404-1411.

[8] C. ASHCRAFT AND R. G. GRIMES, SPOOLES: An object oriented sparse matriz library, in
Proceedings of the Ninth STAM Conference on Parallel Processing for Scientific Computing,
San Antonio, Texas, March 22-24, 1999.

29

28]
(29]
30]

(31]

(32]

(33]

(34]

T. A. Davis, University of Florida sparse matric collection,
http://www.cise.ufl.edu/research/sparse/matrices/, 2002.

T. A. Davis, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method,
Tech. Rep. TR-00-006, Computer and Information Sciences Department, University of
Florida, Gainesville, FL, 2003. To appear in TOMS.

T. A. Davis AnND 1. S. DUFF, An unsymmetric-pattern multifrontal method for sparse LU
factorization, STAM Journal on Matrix Analysis and Applications, 18 (1997), pp. 140-158.

J. W. DEMMEL, S. C. EISENSTAT, J. R. GILBERT, X. S. L1, AND J. W. H. Liu, A supernodal
approach to sparse partial pivoting, SIAM Journal on Matrix Analysis and Applications,
20 (1999), pp. 720-755.

I. S. DUFF AND J. KOSTER, The design and use of algorithms for permuting large entries to
the diagonal of sparse matrices, STAM Journal on Matrix Analysis and Applications, 20
(1999), pp. 889-901.

, On algorithms for permuting large entries to the diagonal of a sparse matriz, SIAM
Journal on Matrix Analysis and Applications, 22 (2001), pp. 973-996.

I. S. DurF AND J. K. REID, A comparison of sparsity orderings for obtaining a pivotal sequence
in Gaussian elimination, Journal of the Institute of Mathematics and its Applications, 14
(1974), pp. 281-291.

, MA27—a set of Fortran subroutines for solving sparse symmetric sets of linear

equations, Technical Report R.10533, AERE, Harwell, England, 1982.

, The multifrontal solution of indefinite sparse symmetric linear systems, ACM
Transactions on Mathematical Software, 9 (1983), pp. 302-325.

———, The multifrontal solution of indefinite sparse symmetric linear systems, ACM
Transactions on Mathematical Software, 9 (1983), pp. 302-325.

, The multifrontal solution of unsymmetric sets of linear systems, SIAM Journal on

Scientific and Statistical Computing, 5 (1984), pp. 633-641.

, MA47, a Fortran code for direct solution of indefinite sparse symmetric linear systems,
Tech. Rep. RAL 95-001, Rutherford Appleton Laboratory, 1995.

A. GEORGE AND J. W. H. L1u, A fast implementation of the minimum degree algorithm using
quotient graphs, ACM Trans. Math. Softw., 6 (1980), pp. 337-358.

A. GEORGE AND J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, NJ., 1981.

A. GEORGE AND D. R. MCINTYRE, On the application of the minimum degree algorithm to

K

A

finite element systems, SIAM Journal on Numerical Analysis, 15 (1978), pp. 90-111.

. GoTo AND R. GELN, On reducing tlb misses in matriz multiplication, 2002.

. GUPTA, Recent advances in direct methods for solving unsymmetric sparse systems of linear
equations, ACM Transactions on Mathematical Software, 28 (2002), pp. 301-324.

P. HEGGERNES, S. EISENSTAT, G. KUMFERT, AND A. POTHEN, The computational complexity of
the minimum degree algorithm, in Proceedings of the Norwegian Conference on Computer
Science NIK, 2002.

X. S. L1 AND J. W. DEMMEL, A scalable sparse direct solver using static pivoting, in Proceedings
of the Ninth SIAM Conference on Parallel Processing for Scientific Computing, San
Antonio, Texas, March 22-24 1999.

, SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric
linear systems, ACM Transactions on Mathematical Software, 29 (2003).

J. W. H. Liu, Modification of the minimum degree algorithm by multiple elimination, ACM
Transactions on Mathematical Software, 11 (1985), pp. 141-153.

E. NG AND P. RAGHAVAN, Performance of greedy heuristics for sparse Cholesky factorization,
SIAM Journal on Matrix Analysis and Applications, 20 (1999), pp. 902-914.

G. PAGALLO AND C. MAULINO, A bipartite quotient graph model for unsymmetric matrices, in
Lecture Notes in Mathematics 1005, Numerical Method, Springer-Verlag, New York, 1983,
pp. 227-239.

S. PRALET, Constrained orderings and scheduling for parallel sparse linear algebra, phd thesis,
Institut National Polytechnique de Toulouse, Sept 2004. Available as CERFACS technical
report, TH/PA/04/105.

E. ROTHBERG AND S. C. EISENSTAT, Node selection strategies for bottom-up sparse matriz
ordering, SIAM Journal on Matrix Analysis and Applications, 19 (1998), pp. 682-695.

Z. ZLATEV, On some pivotal strategies in gaussian elimination by sparse technique, SIAM
Journal on Numerical Analysis, 17 (1980), pp. 18-30.

30

