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Abstract

We study the following “inverse first passage time” problem. Given a diffusion
process Xt and a probability distribution q on [0,∞), does there exist a boundary
b(t) such that q(t) = P[τ ≤ t], where τ is the first hitting time of Xt to the time
dependent level b(t). A free boundary problem for a parabolic partial differential
operator is associated with the inverse first passage time problem. We prove the
existence and uniqueness of a viscosity solution to this equation. We also investigate
the small time behavior of the boundary b(t), presenting both upper and lower
bounds. Finally, we derive some integral equations charaterizing the boundary.

1 Introduction.

In this paper we study the following free boundary problem: find a boundary x = b(t)

(t > 0) and an unknown function w = w(x, t) (x ∈ R, t ≥ 0) such that
wt(x, t) = 1

2
(σ2wx)x − µwx for x > b(t), t > 0,

w(x, t) = p(t) for x ≤ b(t), t > 0,

0 ≤ w(x, t) < p(t) for x > b(t), t > 0,

w(x, 0) = 1(−∞,0)(x) for x ∈ R, t = 0,

(1.1)

where q(t) = 1 − p(·) is a given cumulative probability distribution function with the

following properties:

1 = p(0) = lim
t↘0

p(t), p(t1) ≥ p(t2) ≥ 0 ∀ t1 < t2. (1.2)
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This problem arises from the consideration of the first passage times of diffusion pro-

cesses to curved boundaries. More specifically, we let Xt be the solution of the following

stochastic differential equation:

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt X0 = 0 (1.3)

where Bt is a standard Brownian motion on a filtered probability space satisfying the

usual conditions, and µ : R × R+ → R and σ : R × R+ → R and smooth bounded

functions, and σ(x, t) > ε > 0 for all x ∈ R, t ≥ 0. For a given function b : R+ → R we

define the first passage time of the diffusion process Xt to the curved boundary b(t) to

be:

τ = inf{t > 0 | Xt ≤ b(t)} (1.4)

Two important problems concerning the first passage time of a diffusion process to a

curved boundary are the following:

1. The first passage problem: Given a barrier function b(t), find the survival prob-

ability p(t) that X does not cross b before or at t.

p(t) := P{τ > t}. (1.5)

2. The inverse first passage problem: Given a survival probability function p(t),

find a barrier function b(t), such that (1.5) holds.

The first passage problem is a classical problem in probability, and is the subject of a

rather large literature. It is also fundamental in many applications of diffusion processes

to engineering, physics, biology and economics. For a survey of techniques for approxi-

mating and computing first passage times to curved boundaries, and a discussion of their

applications in the biological sciences, we refer to [14]. For some applications in economics

closely related to those that motivated this study, we refer to [2].

The work of Peskir [13], [12] on the first passage problem is of particular relevance for

the inverse problem discussed in this paper. In [13], he derived a sequence of integral

equations1

tn/2Hn

(
b(t)√
t

)
+

∫ t

0

(t− s)n/2Hn

(
b(t)− b(s)√

t− s

)
ṗ(s)ds = 0, n = −1, 0, 1... (1.6)

1In this reference, the derivations are carried out for the case σ ≡ 1 and µ ≡ 0, i.e. when Xt is
a Brownian motion. As mentioned in the reference, the techniques directly extend to other diffusion
processes.
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where H−1(x) = 1√
2π
e−x2/2 and Hn(x) =

∫∞
x
Hn−1(z)dz for n ≥ 0. In [12], under the

assumption that b(t) is C 1 on (0,∞), decreasing, and concave, he derived the equality

ṗ(0+) = − lim
t↘0

1

2
√

2π

b(t)

t3/2
e−

b2(t)
2t = − lim

t↘0

ḃ(t)√
2πt

e−
b2(t)
2t ,

provided that the second or third limit exists.

The inverse first passage problem is much harder than the direct problem and there are

only a few studies about it. These are principally concerned with the numerical calculation

of the boundary b(t) for a given p(t). There is no publication proving the well-posedness

(existence and uniqueness) of the boundary given the survival probability.

Our interest in the inverse first passage problem originates2 from Merton’s structural

model [11] for credit risk management. Consider a company whose asset value and debt

at time t ≥ 0 are denoted by At and Dt respectively. Assume the following:

1. D0 ≤ A0 and the company is in default at a time t > 0 if At < Dt.

2. At follows a geometric Brownian motion.

It is convenient to use the default index Xt and the barrier function b(t) defined

by

Xt := log
At

A0

, b(t) := log
Dt

A0

.

Then Xt is a diffusion process satisfying (1.3). In this context, the inverse first passage

time problem is the problem of finding the default barrier b(t) given the survival function

p(t) (which may, for example, be inferred from the credit spreads on bonds).

Formulating the problems in a PDE setting, we introduce a new function w(x, t) being

the probability that the company does not default before or at t and its default index Xt

is bigger than x, i.e.,

w(x, t) := P{Xt > x, τ > t}. (1.7)

Then the density function of Xt when τ > t can be computed by

u(x, t) =
d

dx
P{X(t) ≤ x, τ > t} = (p(t)− w(x, t))x. (1.8)

From (1.3) and the Kolmogorov forward equation, we see that (assuming sufficient regu-

larity) w(x, t) (x ∈ R, t ≥ 0) satisfies (1.1). From this we see the following:

2We thank A. Kreinin and R. Stamicar for introducing us to this problem, and for helpful discussions.
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• The first passage problem is to solve (1.1) for p, with given b.

• The inverse first passage problem is to solve (1.1) for b, with given p.

The first passage problem can be solved as follows. From the Kolmogorov forward equa-

tion, we obtain the following closed system for u(x, t)
ut(x, t) = 1

2
(σ2u)xx − (µu)x for x > b(t), t > 0,

u(b(t), t) = 0 for x ≤ b(t), t > 0,
u(x, 0) = δ(x) for x > 0, t = 0,

(1.9)

where δ is a Dirac measure concentrated at 0. Given sufficiently regular b, this system

has a unique solution. Then p and ṗ can be computed from the formulas

p(t) =

∫ ∞

b(t)

u(x, t)dx ∀ t ≥ 0, (1.10)

ṗ(t) = −1

2
(σ2u)x

∣∣
x=b(t)

∀ t ≥ 0. (1.11)

It is only possible to compute the solution in a closed form in a few special cases. However,

there is a large literature on numerical and analytic approximations of the solution.

Avellaneda and Zhu [1] were the first to use (1.9) and (1.11) to study the inverse first

passage problem. They performed a change of variables from Xt to Yt = Xt− b(t), whose

financial meaning is the risk-neutral distance-to-default process (RNDD) for the company.

Denote by f(y, t) = u(y + b(t), t) the probability density function of Yt when τ > t. (1.9)

and (1.11) are equivalent to:
ft = ḃ(t)fy − (µf)y + 1

2
(σ2fy)y for y > 0, t > 0,

f(0, t) = 0 for y = 0, t > 0,
f(y, 0) = δ0(y − b(0)) for y > 0, t = 0,
1
2
σ2fy(0, t) + ṗ(t) = 0 for y = 0, t > 0.

(1.12)

In [8], I.Iscoe and A.Kreinin demonstrated that a Monte Carlo approach can be applied

to solve the inverse first-passage problem in discrete time, essentially by reducing it to the

sequential estimation of conditional distributions. In [15], both a Monte Carlo algorithm

based on a piecewise linear approximation of the boundary, and a method based on the

integral equation (1.6) with n = 1 are studied.

In this paper, we are particularly interested in the following fundamental questions: (1)

Given a survival probability function p(t) satisfying (1.2), is there a barrier function b(t)?
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(2) If there is a barrier function, how many are there? Namely, we are concerned about

the well-posedness (existence and uniqueness) of the free boundary problem (1.1).

We point out that solutions to (1.1) are not smooth, so that a notion of weak solution has

to be used. Instead of using the classical weak solution defined in the distributional sense

(see Evans [4]), we use viscosity solutions, introduced by Crandall and Lions in 1981. In

this paper, we shall prove the following theorem.

Theorem 1. Problem (1.1) is a well-posed problem, i.e., for any given p(t) satisfying

(1.2), there is a unique (weak) solution.

The remainder of the paper is organized as follows. In §2, we provide a definition of

the viscosity solution to (1.1) and show there is at most one such solution. In §3, we

establish the existence of a viscosity solution. First we define and study a regularization

of the problem obtained by penalizing the obstacle (a standard procedure for the obstacle

problem, see Friedman [6]). The ε-regularization is carefully designed so that the solution

is monotonic in ε, and therefore the existence of a limit as ε → 0 is automatically guar-

anteed. We show that the limit is a viscosity solution. In §4, we study the asymptotic

behavior of the boundary as t↘ 0 by providing explicit upper and lower bounds. When

lim supt↘0−
1−p(t)
tṗ(t)

<∞, we prove that

lim
t→0

b(t)√
−2t log(1− p(t))

= −1.

In §5, we derive the integral equations for b when σ ≡ 1 and µ ≡ 0 under the assumption

that p is continuous and non-increasing.

2 Viscosity Solutions and Uniqueness

By noticing that w(x, t) < p(t) for all x > b(t) when τ > t, we can state the inverse first

passage problem as follows. Find an unknown function w = w(x, t) such that,
Lw = 0 when w(·, t) < p(t),

0 ≤ w(x, t) ≤ p(t) for any (x, t) ∈ (R× (0,∞)),

w(x, 0) = 1(−∞,0)(x) for (x, t) ∈ (R× [0,∞)),

(2.1)

where Lw := wt − 1
2
(σ2wx)x + µwx. Define the free boundary as:

bw(t) := inf {x |w(x, t) < p(t)} .
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We can write (2.1) as a variational inequality:

{
max{Lw,w − p} = 0 in R× (0,∞),

w(·, 0) = 1(−∞,0)(·) on R× {0}.
(2.2)

For a given p, we define

p∗(t) = lim inf
0≤s→t

p(s), p∗(t) = lim sup
0≤s→t

p(s) ∀t ≥ 0.

Since cumulative probability distribution functions (hence q) are increasing and right

continuous, we see that for any b, p(t) = P{τ > t} ≥ 0 is decreasing and right continuous,

and in particular, p = p∗. Furthermore, Blumenthal’s zero-one law (see, for example [9])

implies that we must have either p(0) = 0 (in which case the problem is trivial) or p(0) = 1.

Therefore, in the remainder of the paper, we shall only consider lower semicontinuous p

for which p(0) = 1.

For a function w defined on R× [0,∞), we define w∗ and w∗ by

w∗(x, t) := lim sup
y→x,0≤s→t

w(y, s), ∀(x, t) ∈ R× [0,∞),

w∗(x, t) := lim inf
y→x,0≤s→t

w(y, s), ∀(x, t) ∈ R× [0,∞).

A function w is called upper-semi-continuous (USC) if w = w∗, and lower-semi-

continuous (LSC) if w = w∗.

In the sequel, the parabolic open ball Bδ(x, t) is defined as:

Bδ(x, t) := (x− δ, x+ δ)× (t− δ2, t) ∀δ > 0, (x, t) ∈ R× [0,∞).

For any cylindrical set of the form D = (s, t) × Ω where 0 ≤ s < t and Ω ⊆ R, the

parabolic boundary is defined to be:

∂pD = ∂Ω× (s, t) ∪ Ω̄× {s}

Definition 1 (Viscosity Sub, Super, and Solutions).

1. A function w defined on R× (0,∞) is called a (viscosity) subsolution if

w = min{p, w∗} in R× (0,∞),

and Lϕ(x, t) ≤ 0 whenever ϕ is smooth and w∗−ϕ attains at (x, t) a local maximum

on B̄δ(x, t), where x ∈ R and t > δ2 > 0.
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2. A function w defined on R× (0,∞) is called a (viscosity) supersolution if

0 ≤ w = w∗ in R× (0,∞),

and max{w(x, t)− p(t), Lϕ(x, t)} ≥ 0 whenever ϕ is smooth and w − ϕ attains at

(x, t) a local minimum on B̄δ(x, t), where x ∈ R and t > δ2 > 0.

3. A function w defined on R× [0,∞) is called a (viscosity) solution if w is both a

subsolution and a supersolution in R× (0,∞), and for all x ∈ R,

w(x, 0) = lim inf
y→x,t↘0

w(y, t) = 1(−∞,0), lim sup
y→x,t↘0

w(y, t) = 1(−∞,0]. (2.3)

Remark 2.1. Here we use the default that a viscosity solution is LSC (w = w∗). Also,

the (probabilistically obvious) condition w ≥ 0 imposed for super-solutions is to ensure

the boundedness of the super-solution, as is usually required. This condition could be

relaxed to the assumption that w ≥ −eA(1+|x|2) for some A > 0.

To prove the uniqueness of the solution to (2.2), we first establish a few properties of

viscosity solutions.

Lemma 2.1. Let w be a viscosity solution and define

Q := {(x, t) ∈ R× [0,∞) | w(x, t) < p(t)}, Π := Qc = R× [0,∞) \Q.

Then

1. Q is open and w is a smooth solution to Lw = 0 in Q;

2. Π = {(x, t) ∈ R× [0,∞) | w(x, t) = p(t)} = Π0 ∪ Π1 ∪ Π2 where

Π0 : = {(x, t) ∈ R× [0,∞) | w∗(x, t) = w∗(x, t) = p(t)},

Π1 : = {(x, t) ∈ R× [0,∞) | p∗(t) > w∗(x, t) > w∗(x, t) = p(t)},

Π2 : = {(x, t) ∈ R× [0,∞) | p∗(t) = w∗(x, t) > w∗(x, t) = p(t)}.

In particular, if p is continuous, then w is continuous in R× [0,∞) \ {(0, 0)}.

Proof. 1. First we show that Q is open and w is continuous in Q. For any (x, t) ∈ Q,

w(x, t) < p(t). As a supersolution, w(x, t) = w∗(x, t), and as a subsolution, w(x, t) =
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min{p(t), w∗(x, t)} = w∗(x, t). Then w∗ = w = w∗ at (x, t). So that w is continuous at

(x, t) and w < p in a neighborhood of (x, t). Consequently, Q is open and w is continuous

in Q.

Next we prove Lw = 0 in Q. Let (x0, t0) ∈ Q with t0 > 0. Then w(x0, t0) < p(t0) and

w is continuous at (x0, t0). There exist positive constants η and δ such that w < p − η

in D̄ ⊂ Q where D = (x0 − δ, x0 + δ) × (t0 − δ2, t0 + δ2). Denote by w̃ the solution to

Lw̃ = 0 in D with continuous initial data w̃(·, t0 − δ2) = w(·, t0 − δ2) and boundary data

w̃ = w on the parabolic boundary ∂pD. Let ε > 0 and ϕε = w̃− ε
t0+δ2−t

, ψε = w̃+ ε
t0+δ2−t

.

We have that w − ϕε > 0 on ∂pD, and w − ϕε → ∞ as t ↗ t0 + δ2. Suppose there is a

point (x, t) ∈ D such that w(x, t)− ϕε(x, t) ≤ 0, then w − ϕε will have a local minimum

in D, say at (x∗, t∗). Since w is a supersolution, and w(x∗, t∗) < p(t∗) we must have

− ε
t0+δ2−t∗

= Lϕε ≥ 0, which is a contradiction. Thus w > ϕε. A similar argument gives

that w < ψε. Sending ε → 0 we obtain w = w̃ in D, which implies that w is a smooth

solution to Lw = 0 in Q.

2. Since w ≤ p, Π := Qc. As a subsolution w = min{p, w∗} ≤ p, and as a supersolution,

w = w∗. It follows that w∗ = w = p ≤ w∗ and w∗ ≤ p∗ in Π. Hence w∗ = p ≤ w∗ ≤ p∗.

There are only three possibilities for w∗: (i) w∗ = p, (ii) w∗ ∈ (p, p∗) and (iii) w∗ = p∗ > p.

Thus Π = Π0 ∪ Π1 ∪ Π2.

The following Lemma characterizes the discontinuities of a solution.

Lemma 2.2. Suppose w is a viscosity solution. Then for each t > 0, the following hold:

1. w(·, t) = w∗(·, t) is continuous in R;

2. for each x ∈ R,

w∗(x, t) = min{p(t), w∗(x, t)} = lim
y→x,s↘t

w(y, s), (2.4)

w∗(x, t) = lim
y→x,s↗t

w(y, s) ≤ p∗(t); (2.5)

3. if w∗(x, t) < p∗(t), then for some δ > 0, w = w∗ in Bδ(x, t) and w∗ is a smooth

solution to Lw∗ = 0 in B̄δ(x, t).
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Proof. 1. If w(x, t) < p(t), by Lemma (2.1) w is continuous near (x, t); otherwise w(x, t) =

p(t). Then using the subsolution property, lim infy→xw(y, t) ≥ w∗(x, t) = w(x, t) = p(t) ≥
lim supy→xw(y, t). Thus lim infy→xw(y, t) = w(x, t) = lim supy→xw(y, t), and the first

assertion follows.

2. Next we prove (2.4). The first equality is immediate since w is both a subsolution and

a supersolution. The second follows by considering separately the cases w(x, t) < p(t)

and w(x, t) = p(t) as in the previous step. If w(x, t) < p(t), then w is continuous near

(x, t). So that w∗(x, t) = min{p(t), w∗(x, t)} = limy→x,s↘tw(y, s). If w(x, t) = p(t), then

w∗(x, t) = w(x, t) = p(t) ≥ limy→x,s↘tw(y, s) ≥ w∗(x, t). Thus (2.4) holds.

3. Now we prove (2.5) and the third assertion when w∗(x, t) < p∗(t). By the upper

semicontinuity of w∗, there exist some positive constants δ and η such that w(·, ·) <

p∗(t) − η in B̄δ(x, t). For all s < t, p(s) ≥ p∗(t). Following the same proof as that for

the previous Lemma, we conclude that w∗ = w in Bδ(x, t) and w∗ is a smooth solution

to Lw∗ = 0 in B̄δ(x, t). The third assertion and (2.5) for the case w∗(x, t) < p∗(t) thus

follow.

4. Finally we verify (2.5) for the case w∗(x, t) = p∗(t). For each small δ > 0, we compare

w in Bδ(x, t) with solutions w̄ and w to{
Lw̄ = 0 in Bδ,
w̄ = w∗ on ∂pBδ,

and

{
Lw = 0 in Bδ,
w = min{w∗, p∗(t)} on ∂pBδ,

respectively. Note that w ≤ w∗ = w̄ and w = min{w∗, p∗(t)} ≤ min{w∗, p} = w on ∂pBδ

since w ≤ p∗(t) ≤ p(s) for all s < t. By the maximum principle, w ≤ w ≤ w̄ in Bδ.

Observing that maxB̄δ
{w̄ − w} = max∂pBδ

{w̄ − w} ≤ p∗(t− δ2)− p∗(t), we find

lim sup
y→x,s↗t

w(y, s)− lim inf
y→x,s↗t

w(y, s) ≤ sup
Bδ(x,t)

{w̄ − w} ≤ p∗(t− δ2)− p∗(t).

(2.5) then follows by sending δ → 0.

Theorem 2 (Uniqueness). There is at most one viscosity solution.

Proof. Suppose w1 and w2 are two solutions. We claim that for any η > 0,

w1(x, t) ≤ w2(x− η, t) ∀(x, t) ∈ R× [0,∞). (2.6)
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To the contrary, suppose this is not true, i.e., there exists at least one pair of (x̄, t̄ ) ∈
R× [0,∞) such that w1(x̄, t̄) > w2(x̄− η, t̄). Then for all sufficiently small positive ε,

Mε := sup
x∈R,t≥0

{w1(x, t)− w2(x− η, t)− ε4x2 − εet} > 0.

Hence fix such a positive ε such that ε ≤ 1/(1+‖σ2‖∞+2‖σσx−µ‖∞). Let {(xn, tn)}∞n=1 be

a sequence in R× [0,∞) such that the supremum Mε is attained along the sequence. This

sequence is bounded since 0 ≤ w1, w2 ≤ 1. By taking a subsequence if necessary, there

exist the limits (x̂, t̂) := limn→∞(xn, tn), α := limn→∞w1(xn, tn) and β := limn→∞w2(xn−
η, tn). Note that

0 ≤ w1∗(x̂, t̂ ) ≤ α ≤ w∗1(x̂, t̂ ) ≤ 1,

0 ≤ w2∗(x̂− η, t̂ ) ≤ β ≤ w∗2(x̂− η, t̂ ) ≤ 1,

β < α.

Consequently,

Mε = α− β − ε4x̂2 − εet̂ > 0. (2.7)

Additionally, |x̂| < ε−2. Otherwise Mε ≤ α−β−1−ε ≤ −ε < 0, which is a contradiction

to (2.7).

Now we show that this is impossible, by excluding the following three possibilities:

(i) t̂ = 0; (ii) t̂ > 0, β < p(t̂); (iii) t̂ > 0, β ≥ p(t̂).

Case (i): Suppose t̂ = 0. If x̂ ≥ η, then 0 ≤ β < α ≤ w∗1(x̂, 0) = 0; otherwise

1 ≥ α > β ≥ w2∗(x̂− η, 0) = 1. Both are impossible.

Case (ii) Suppose t̂ > 0 and β < p(t̂). Then w2∗(x̂− η, t̂) ≤ β < p(t̂). By Lemma (2.1) w2

is a smooth solution to Lw2(· − η, ·) = 0 in D̄ where D = (x̂− δ, x̂+ δ)× (t̂− δ2, t̂+ δ2)

for some δ > 0. Let

ϕ(x, t) = w2(x− η, t) + ε4x2 + εet + (x− x̂)4/δ4 + (t− t̂)2/δ4.

Then ϕ is smooth in D̄ and

max
D
{w∗1 − ϕ} = sup

D̄

{w1 − ϕ} ≤Mε ≤ w∗1(x̂, t̂)− ϕ(x̂, t̂).
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That is, (x̂, t̂) is a local maximum of w∗1 − ϕ in D. As w1 is a subsolution, Lϕ(x̂, t̂) ≤ 0.

However Lϕ(x̂, t̂) = εet̂ − ε4σ2 − 2(σσx − 2µ)ε4x̂ ≥ ε− ε2‖σ2‖∞ − 2ε2‖σσx − µ‖∞ > 0 by

the smallness of ε. This is a contradiction. Thus case (ii) is impossible.

Case (iii): Suppose t̂ > 0 and β ≥ p(t̂). Since p∗(s) ≤ p(t) for any s > t̂, w1(x, s) ≤
p(s) ≤ p∗(t) for each x. Then supxw1(x, s) ≤ p(t̂) ≤ β < α = limn→∞w1(xn, tn). We

claim tn < t̂ for all sufficiently large n, i.e., there exists N ∈ N+ such that tn < t̂ for

each n ≥ N . To the contrary, suppose for each N ∈ N+, there exists n > N such that

tn > t̂. Then α > β ≥ supxw1(x, tn) > w1(xn, tn). Hence there exists ε > 0, independent

on n, such that α > w1(xn, tn) + ε. This is a contradiction to α = limn→∞w1(xn, tn).

Consequently, from (2.5), we conclude that

α = w∗1(x̂, t̂) ≤ p∗(t̂), β = w∗2(x̂− η, t̂) ≤ α < p∗(t̂).

By Lemma 2.2 (3), for some δ > 0, w∗2 = w2 in Bδ(x̂ + η, t̂) and w∗2 is a smooth solution

to Lw∗2 = 0 in B̄δ(x̂+ η, t̂). Set

φ(x, t) := w∗2(x− η, t) + ε4x2 + εet + (x− x̂)4/δ4 + (t− t̂)2/δ4.

Then, by (2.5) and w∗2 = w2 in Bδ(x̂+ η, t̂),

max
B̄δ(x̂,t̂)

{w∗1 − φ} = sup
Bδ(x̂,t̂)

{w1 − φ} ≤Mε = w∗1(x̂, t̂)− φ(x̂, t̂).

That is w∗1 − φ obtains its local maximum at (x̂, t̂). As w1 is a subsolution, Lφ(x̂, t̂) ≤ 0.

However Lφ(x̂, t̂)εet̂− ε4σ2− 2(σσx− 2µ)ε4x̂ ≥ ε− ε2‖σ2‖∞− 2ε2‖σσx− µ‖∞ > 0 by the

smallness of ε. This is a contradiction. Thus case (iii) is impossible.

The exclusion of cases (i),(ii) and (iii) implies that (2.6) holds for each η > 0. Sending

η → 0 and using Lemma 2.2 (1) we conclude that w1 ≤ w2 on R × [0,∞). Exchanging

the roles of w1 and w2, we also have w2 ≤ w1, so that w1 ≡ w2.

As a product, (2.6) and the uniqueness give the following.

Corollary 2.3. The unique solution w, if it exists, is non-increasing in x, i.e., w(x, t) ≤
w(x− η, t) for all η > 0 and (x, t) ∈ R× [0,∞).
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3 Existence of a Viscosity Solution

To establish a solution, we first define and study a regularization of the problem obtained

by penalizing the obstacle. This ε-regularization is carefully designed so that the solution

is monotonic in ε, and therefore the existence of a limit as ε→ 0 is automatically guaran-

teed. Then we prove some regularity properties of the solution to the penalized problem

for the purpose of establishing compactness. Finally, we show that the limit is a viscosity

solution.

3.1 The Regularization

Following the classical penalization technique (see for example Friedman [6]) for varia-

tional inequalities, we consider a semi-linear parabolic equation: Lwε = −β
(
ε−1(wε − pε)

)
in R× (0,∞),

wε(·, 0) = W ε(·) on R× {0}.
(3.1)

where pε and W ε are the smooth approximations of p and w(·, 0) = 1(−∞,0) respectively,

and β(·) is a smooth function being identically zero in (−∞, 0] and strictly increasing and

convex in [0,∞). For definiteness, we take

β(s) := max{0, s3} ∀ s ∈ R.

The particular pε and W ε are chosen so that the solution wε is strictly increasing in ε.

Define

pε(t) :=
3

4

∫ 1

−1

(1− z2)p(t+ ε+ εz) dz − 3ε2/3 ∀ε > 0, t ≥ 0.

Then pε ∈ C1([0,∞)), and

−1

ε
≤ d

dt
pε(t) ≤ 0,

d

dε
pε(t) ≤ − 2

ε1/3
, lim

ε↘0
pε(t) = p(t) ∀ε > 0, t ≥ 0. (3.2)

The first two inequalities follow directly from the definition of pε and monotonicity of p.

Consequently for any fixed t > 0, the limit as ε↘ 0 of pε(t) exists, and is p(t).

When t = 0, (3.2) yields: limε↘0 p
ε(0) = p(0) = 1 and pε(0) is a monotone function of ε.

We denote by ε∗ > 0 the unique constant such that pε∗(0) = 0, and in the sequel assume

ε ∈ (0, ε∗).
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Fix a smooth function W (·) defined on R that satisfies:

W (x) = 0 ∀x ≥ 0, W (x) = 1 ∀x ≤ −1, Ẇ ≤ 0 ∀ x ∈ (−1, 0).

Set

W ε(x) := pε(0) W (x/ε) ∀x ∈ R.

Then W ε is a smooth function satisfying:

d

dε
W ε(x) ≤ 0,

d

dx
W ε(x) ≤ 0, W ε(x) = 0 ∀x ≥ 0, W ε(x) = pε(0) ∀x ≤ −ε.

Before proving the existence of a solution to problem (3.1), we introduce the following

functions.

1. Denote by wε
0(x, t) the solution to:{

Lwε
0 = 0 in R× (0,∞),

wε
0(·, 0) = W ε(·) on R× {0}.

(3.3)

Since the problem for wε
0 is linear, the solution wε

0 can be expressed as

wε
0(x, t) =

∫
R
K(x, t; y, 0)wε

0(y, 0) dy = pε(0)

∫ 0

−∞
K(x, t; y, 0)W (y/ε) dy

where K(x, t; y, s) is the fundamental solution associated with the linear operator L. In

particular, when L = ∂t − 1
2
∂xx, i.e., µ ≡ 0 and σ ≡ 1,

K(x, t; y, s) = Γ(x− y, t− s), Γ(x, t) =
1√
2πt

e−x2/2t.

2. Denote by ρε the solution to:
d
dt
ρε(t) = −β

(
ρε(t)−pε(t)

ε

)
in (0,∞),

ρε(0) = pε(0) .

Comparing the solution ρε with the functions of the form pε +C where C is constant, one

finds that,

pε(t) ≤ ρε(t) ≤ pε(t) + ε‖ṗε‖1/3
∞ , ρ̇ε(t) ≤ 0, ∀t ≥ 0.

Now we are ready to prove the existence of a solution to problem (3.1).
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Theorem 3. For each ε > 0, problem (3.1) admits a unique smooth (C2,1) solution in

R× [0,∞). The solution is continuously differentiable in ε and satisfies, for all ε > 0 and

(x, t) ∈ R× (0,∞),

wε
0(x, t) + ρε(t)− ρε(0) ≤ wε(x, t) ≤ min{ρε(t), wε

0(x, t)}, (3.4)

wε
x(x, t) < 0,

d

dε
wε(x, t) < 0.

Consequently, the following limit exists

w(x, t) := lim
ε↘0

wε(x, t) ∀ (x, t) ∈ R× [0,∞).

Proof. 1. First we prove that (3.1) admits a unique smooth solution in R × [0,∞) sat-

isfying (3.4). Since Lwε
0 + β(

wε
0−pε

ε
) = β(

wε
0−pε

ε
) ≥ 0, wε

0 is a supersolution. Also, as

maxx∈RW
ε(x) = pε(0) = ρε(0), ρε is another supersolution. Hence, min{ρε, wε

0} is a

supersolution.

Set wε := wε
0(x, t) + ρε(t)− ρε(0). We can compute

Lwε + β
(wε − pε

ε

)
= Lwε

0(x, t) + Lρε(t) + β
(wε − pε

ε

)
= −

[
β
(ρε − pε

ε

)
− β

(ρε − pε + wε
0 − ρε(0)

ε

)]
≤ 0

since β(·) is non-decreasing and

wε
0 ≤ max{wε

0(·, 0)} = max
x∈R

W ε(x) = max
x∈R

pε(0)W (x/ε) = pε(0) = ρε(0). (3.5)

Hence wε is a subsolution, and wε ≤ min{ρε, wε
0} followed by (3.5). We see that (3.1)

admits a unique smooth solution in R× [0,∞) and the solution satisfies (3.4).

2. Differentiating the system (3.1) with respect to ε we obtain

d

dε
wε(x, 0) =

d

dε
W ε(x) ≤ 0 ∀x ∈ R,

L d

dε
wε +

1

ε
β̇
(wε − pε

ε

) d

dε
wε =

1

ε2
β̇
(wε − pε

ε

){
wε − pε + ε

d

dε
pε

}
≤ 0,
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since β̇ ≥ 0, wε − pε ≤ ρε − pε ≤ ε‖ṗε‖1/3
∞ ≤ ε2/3, and d

dε
pε ≤ −2ε−1/3. Then, by the

maximum principle, d
dε
wε < 0 in R × (0,∞). The monotonicity and boundedness of wε

in ε and imply that w = limε↘0w
ε exists.

In a similar manner, differentiating the system (3.1) with respect to x and let uε := −wε
x,

we obtain

Auε + 1
ε
β̇
(

wε−pε

ε

)
uε = 0,

uε(x, 0) = − d
dx
wε(x, 0) = − d

dx
W ε(x) ≥ 0 ∀x ∈ R.

where Au = Lu − σσxux + (µx − σσxx + (σx)
2)u. Since 1

ε
β̇
(

wε−pε

ε

)
> 0, −wε

x(x, t) =

uε(x, t) > 0 in R× (0,∞).

Also note that since wε
0 is monotonic in ε and bounded, the limit w0 := limε↘0w

ε
0 exists

and is the solution to

Lw0 = 0 in R× (0,∞), w0(·, 0) = 1(−∞,0).

3.2 Continuity Estimates and Existence.

In this section, we prove that the limit w = limε↘0 is the viscosity solution to our varia-

tional inequality. In order to do so, we first need to derive some supplementary estimates

on the continuity of w.

Lemma 3.1. For each T > 0, there exists a constant C = C(T ) that depends only on σ

and µ such that for all ε ∈ (0, ε∗), 0 < s < t ≤ T , and x, y ∈ R,

−Cp
ε(0)√
t

≤ wε
0x(x, t) ≤ wε

x(x, t) ≤ 0, (3.6)

|wε(x, t)− wε(y, s)| ≤ Cpε(0)√
s

{
|x− y|+ 2

√
t− s

}
+ ρε(s)− ρε(t). (3.7)

Consequently, the limit w = limε↘0w
ε satisfies for all 0 < s < t ≤ T and x, y ∈ R,

− C√
t
≤ w0x(x, t) ≤ wx(x, t) ≤ 0, (3.8)

|w(x, t)− w(y, s)| ≤ C√
s

{
|x− y|+ 2

√
t− s

}
+ p(s)− p(t), (3.9)

w(x, t)− w(y, s) ≤ C√
s

{
|x− y|+ 2

√
t− s

}
. (3.10)
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We remark that when σ ≡ 1 and µ ≡ 0, C = C(T ) = (2π)−1/2 for all T .

Proof. Differentiating the systems (3.1) and (3.3) with respect to x, and using the notation

from the previous theorem, we find

Awε
x = −ε−1β̇(ε−1(wε − pε)wε

x ≥ 0 = Awε
0x in R× (0,∞),

wε
x(·, 0) = W ε

x(·) = wε
0x(·, 0) on R× {0}.

since wε
x ≤ 0. Therefore by the maximum principle (the zeroth order term in A is bounded

above) wε
0x ≤ wε

x ≤ 0.

Next we estimate the lower bound of wε
0x. Differentiating the system (3.3) with respect

to x, we obtain

Awε
0x = 0 in R× (0,∞), wε

0x(·, 0) = W ε
x(·) on R× {0}.

This is a linear problem, the solution can be expressed as

wε
0x(x, t) =

∫
R
K̃(x, t; y, 0)W ε

y (y) dy,

where K̃ is the fundamental solution associated with the linear operator A, and we there-

fore have K̃ > 0. Also W ε
y ≤ 0, then for any 0 < t ≤ T ,

0 ≤ −wε
0x(x, t) ≤ sup

x,y∈R
{K̃(x, t; y, 0)}

∫
R
−W ε

y (y) dy =
C√
t

∫
R
−W ε

y (y) dy =
Cpε(0)√

t

where

C = C(T ) = sup
x,y∈R,0<t<T

{√
t K̃(x, t; y, 0)

}
.

and the above quantity is finite by the standard Gaussian upper bound on the fundamental

solution K̃ (see Friedman [5]). The estimates for wε
x and wε

0x (3.6) thus follow. Sending

ε→ 0, we obtain (3.8).

Now we estimate the continuity in the time variable. By Theorem 3, wε
x < 0 and wε(x, t) ≥

ρε(t) − ρε(0) (since wε
0 ≥ 0). We conclude that limx→∞w

ε exists. Similarly, the limit

limx→∞w
ε
0 exists, and is nonnegative. Now using wε(x, t) ≤ ρε(t) for any t ≥ 0, we can

compute ∫
R
|wε

x(x, t)|dx =

∫
R
−wε

x(x, t) ≤ ρε(t)− lim
x→∞

wε(x, t)

≤ ρε(t)− lim
x→∞

wε
0(x, t)− ρε(t) + ρε(0)

= ρε(0)− lim
x→∞

wε
0(x, t) ≤ ρε(0).
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Also note that since β(·) is increasing and wε ≤ ρε,

0 ≤ β(ε−1(wε − pε)) ≤ β(ε−1(ρε − pε)) = −ρ̇ε(t) ∀ t ≥ 0, x ∈ R.

For 0 < s < t ≤ T denote ‖wε
x‖s,t
∞ = supR×[s,t] |wε

x|, then for each δ > 0,

∣∣∣ ∫ x+δ

x−δ

{wε(y, t)− wε(y, s)} dy
∣∣∣ =

∣∣∣∣∫ x+δ

x−δ

∫ t

s

wε
v(y, v) dv dy

∣∣∣∣
=

∣∣∣∣∫ t

s

∫ x+δ

x−δ

(
1

2
(σ2wε

y)y − µwε
y − β

(
ε−1(wε − pε)

))
dy dv

∣∣∣∣
≤

∣∣∣∣∫ t

s

1

2
σ2wε

y

∣∣∣x+δ

x−δ
dv

∣∣∣∣ +

∣∣∣∣∫ t

s

∫ x+δ

x−δ

µwε
ydy dv

∣∣∣∣ +

∣∣∣∣∫ t

s

∫ x+δ

x−δ

β
(
ε−1(ρε − pε)

)
dy dv

∣∣∣∣
≤ (t− s)

(
‖σ2‖∞‖wε

x‖s,t
∞ + pε(0)‖µ‖∞

)
+

∣∣∣∣∫ t

s

∫ x+δ

x−δ

− d

dv
ρε(v)dy dv

∣∣∣∣
≤ (t− s)

(
‖σ2‖∞‖wε

x‖∞ + pε(0)‖µ‖∞
)

+ 2δ(ρε(s)− ρε(t)).

Finally, note that for any s ≥ 0,∣∣∣∣wε(x, s)− 1

2δ

∫ x+δ

x−δ

wε(y, s) dy

∣∣∣∣ =

∣∣∣∣ 1

2δ

∫ x+δ

x−δ

(wε(x, s)− wε(y, s)) dy

∣∣∣∣
≤ 1

2δ

∫ x+δ

x−δ

|y − x| · ‖wε
x(·, s)‖∞ dy ≤ δ‖wε

x(·, s)‖∞.

Now we are ready to estimate the continuity in the time variable. For any 0 < s < t ≤ T ,

|wε(x, t)− wε(x, s)|

≤
∣∣∣∣wε(x, t)− 1

2δ

∫ x+δ

x−δ

wε(y, t)dy

∣∣∣∣ +

∣∣∣∣ 1

2δ

∫ x+δ

x−δ

(wε(y, t)− wε(y, s)) dy

∣∣∣∣
+

∣∣∣∣ 1

2δ

∫ x+δ

x−δ

wε(y, s)dy − wε(x, s)dy

∣∣∣∣
≤ ‖wε

x‖s,t
∞

(
2δ +

(t− s)‖σ2‖∞
2δ

)
+

(t− s)2‖µ‖∞pε(0)

2δ
+ ρε(s)− ρε(t).

By taking δ = 1
2

√
‖σ2‖∞(t− s), we then obtain

|wε(x, t)− wε(x, s)| ≤
√
‖σ2‖∞(t− s)

(
2‖wε

x‖s,t
∞ +

2‖µ‖∞pε(0)

‖σ2‖∞

)
+ ρε(s)− ρε(t).

Since 0 ≥ wε
x(x, s) ≥ −Cpε(0)√

s
, we have

|wε(x, s)− wε(y, s)| ≤ |x− y| · ‖wε
x(·, s)‖∞ ≤ Cpε(0)√

s
|x− y| .
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Similarly, ‖wε
x‖s,t
∞ ≤ Cpε(0)√

s
. Then

|wε(x, t)− wε(y, s)| ≤ |wε(x, t)− wε(x, s)|+ |wε(x, s)− wε(y, s)|

≤ Cpε(0)√
s

{
|x− y|+ 2

√
t− s

}
+ ρε(s)− ρε(t).

This proves (3.7) and (3.9) then follows by sending ε → 0. Finally, observe that in

estimating the upper bound of wε(x, s)−wε(x, t), the term involving the integral of β can

be dropped, so we have (3.10). This completes the proof.

We can now show the following:

Theorem 4. Assume p(·) defined on [0,∞) is nonnegative, decreasing and lower semicon-

tinuous, with p(0) = 1. Then there is a unique viscosity solution, and it can be obtained

as the limit w := limε↘0w
ε.

Proof. First we verify that w satisfies the initial condition (2.3). For any t > 0, from (3.4)

|wε(·, t)− wε
0(·, t)| ≤ ρε(0)− ρε(t), so that

‖w(·, t)− w0(·, t)‖∞ ≤ lim
ε↘0

‖wε(·, t)− wε
0(·, t)‖∞ ≤ p(0)− p(t),

where

w0(x, t) = lim
ε→0

wε
0(x, t) =

∫ 0

−∞
K(x, t; y, 0) dy,

‖w(·, t)− w0(·, t)‖∞ = sup
x∈R

|w(·, t)− w0(·, t)|.

Sending t↘ 0, we see that w satisfies (2.3).

To verify that w is a viscosity solution in R × (0,∞) we consider two cases for each

(x, t) ∈ R× (0,∞): (i) p(t)− w(x, t) > 0 and (ii) p(t)− w(x, t) ≤ 0.

Case (i): Suppose p(t) − w(x, t) > 0. Let Dδ = (x − δ, x + δ) × (t − δ2, t + δ2) ∀ δ > 0.

Then for each (y, s) ∈ Dδ,

ρε(s)− ρε(t)| ≤ |ρε(s)− pε(s)|+ |pε(s)− pε(t)|+ |pε(t)− ρε(t)| ≤ |pε(s)− pε(t)|+ 2ε2/3,

since 0 ≤ ρε − pε ≤ ε2/3. As pε(·) is decreasing, when s > t,

pε(t)− pε(s) + |pε(t)− pε(s)| = 2 (pε(t)− pε(s)) ≤ 2
(
pε(t)− pε(t+ δ2)

)
;
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and when s ≤ t,

pε(t)− pε(s) + |pε(t)− pε(s)| = 0 ≤ 2
(
pε(t)− pε(t+ δ2)

)
.

Using (3.7), we can compute

wε(y, s)− pε(s) ≤ wε(x, t) + (2+2
√

2)Cδ√
t−δ2 + |ρε(s)− ρε(t)| − pε(s)

≤ (2+2
√

2)Cδ√
t−δ2 + wε(x, t)− pε(t) + pε(t)− pε(s) + |pε(t)− pε(s)|+ 2ε2/3

≤ (2 + 2
√

2)Cδ√
t− δ2

+ wε(x, t)− pε(t) + 2(pε(t)− pε(t+ δ2)) + 2ε2/3.

Then if we take δ small enough,

lim sup
ε→0

max
D̄δ

{
wε − pε

}
≤ lim sup

ε→0

(2 + 2
√

2)Cδ√
t− δ2

+ wε(x, t)− pε(t) + 2(pε(t)− pε(t+ δ2)) + 2ε2/3

≤ (2 + 2
√

2)Cδ√
t− δ2

+ w(x, t)− p(t) + 2(p(t)− p(t+ δ2)) < 0.

(3.11)

Thus, for all sufficiently small positive ε, wε − pε < 0 in D̄δ. Consequently, Lwε =

−β(wε−pε

ε
) = 0 in D̄δ. The limit w is then a smooth solution to Lw = 0 in Dδ.

Case (ii): Suppose w(x, t) − p(t) ≥ 0. However, w − p ≤ 0 in R × [0,∞) since wε ≤
ρε and limε↘0 ρ

ε(t) = p(t) in R × [0,∞). Hence, we must have w(x, t) = p(t) =

min{p(t), w∗(x, t)}. From (3.10)

w(x, t)− w∗(x, t) = lim sup
y→x,s→t

(w(x, t)− w(y, s)) ≤ lim sup
y→x,s→t

(
C√
s

{
|x− y|+ 2

√
t− s

})
= 0.

So that w∗(x, t) = w(x, t) = p(t). Thus the semi-continuity requirements for a viscosity

solution hold.

In this case, we clearly have max{w(x, t) − p(t),Lϕ(x, t)} ≥ 0 for any smooth ϕ. So

that w is a supersolution. It remains to verify the differential inequality for subsolutions.

To this end, let ϕ be a smooth function on B̄δ where Bδ = Bδ(x, t) such that w∗(y, s) −
ϕ(y, s) attains at (x, t) a local maximum on B̄δ. Set

ψ(y, s) = ϕ(y, s) + (y − x)4/δ4 + (s− t)2/δ4.

For each small positive ε, wε − ψ attains a global maximum on B̄δ. Denote any such

point of maximum by (yε, sε). Then (wε − ψ)s ≥ 0, (wε − ψ)yy ≤ 0, (wε − ψ)y = 0 at
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(yε, sε). Thus, Lψ(yε, sε) ≤ Lwε(yε, sε) = −β(ε−1(wε − pε)) ≤ 0. If (x̄, t̄) is a limit point

of {(yε, sε)} as ε→ 0, then Lψ(x̄, t̄) ≤ 0. Thus, it suffices to show that (x̄, t̄) = (x, t).

Since wε ≤ w ≤ w∗,

lim sup
ε↘0

max
B̄δ

{
wε − ψ

}
≤ lim sup

ε↘0

{
w∗(yε, sε)− ψ(yε, sε)

}
≤ w∗(x̄, t̄)− ψ(x̄, t̄) ≤ max

B̄δ

(w∗ − ϕ)− |x̄− x|4/δ4 − |t̄− t|2/δ4.

On the other hand, from (3.9) and (3.10), we see that w∗(x̂, t) = lims↗tw(x̂, s), so that

lim sup
ε↘0

max
B̄δ

{
wε − ψ

}
≥ lim

s↗t
lim sup

ε↘0
{wε(x, s)− ψ(x, s)}

= lim
s↗t
{w(x, s)− ψ(x, s)} = w∗(x, t)− ψ(x, t) = max

B̄δ

(w∗ − ϕ).

Thus, we must have (x̄, t̄) = (x, t). This completes the proof.

3.3 The Differential Equation and the Free Boundary Problem

Since

0 ≤ β(ε−1(wε − pε)) ≤ −ρ̇ε,

and ρε(·) is decreasing, by weak compactness of measures, as ε→ 0,

β(ε−1(wε − pε)) −→ γ as a measure in R× [0,∞),

Lw = γ on R× (0,∞),

where γ is a Radon measure satisfying

0 ≤ γ dx dt ≤ −dx dp(t).

In addition, from step 2 of the proof in the preceding subsection, γ is supported on the

set w = p.

Now suppose that p is continuous. Then γ = ṗ on the contact set Π (noticing that Π2 is

empty). Hence, w is the solution to

Lw = ṗ(t)1{w=p} in R× (0,∞), w(·, 0) = 1(−∞,0) on R× {0}. (3.12)
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Using a free boundary approach, this can be written as the solution to the free boundary

problem, for (b, w) :
Lw = ṗ(t)1x<b(t) in R× (0,∞),

b(t) := inf{x | w(x, t) < p(t)} for all t ≥ 0,
w(·, 0) = 1(−∞,0) on R× {0}.

(3.13)

We emphasize that this formulation works only when p is continuous, since if p is not

continuous at s, then

Lw = min{p(s)− w∗(x, τ), 0} · δ(t− s) on R× {s},

where δ is the Dirac measure.

Remark 3.1. Suppose ‖ṗ‖∞ := supt≥0 |ṗ(t)| is finite. Then ‖ṗε‖∞ ≤ ‖ṗ‖∞ and ρε− pε ≤
ε‖ṗ‖1/3. Consequently, ρ̇ε = −β(‖ṗ‖1/3) = −‖ṗ‖∞. Hence

0 ≤ γε(x, t) ≤ ‖ṗ‖∞ ∀(x, t) ∈ R× [0,∞).

It is then easy to show that wε(x, t) − wε
0 → w − w0 in W 2,1

r ([−R,R] × [0, R2]) for any

r > 1 and any R > 0.

4 Estimation of The Free Boundary

In this section, we provide both upper and lower bounds for the free boundary

b(t) := inf{x ∈ R | w(x, t) < p(t)} ∈ [−∞,∞] ∀ t > 0.

in the case of Brownian motion, i.e. when σ ≡ 1 and µ ≡ 0.

Recall the notation q(t) = 1− p(t). Note that for any s > 0, 0 = q(0) = q∗(0) ≤ q(s), and

since p is lower semicontinuous, q is upper semicontinuous. We define

q̇(s) := lim inf
t↗s

q(s)− q(t)

s− t
∈ [0,∞].

The following lemma is obvious from the probabilistic interpretation of our problem since

it states that P[Xt ≤ b(t)] ≤ P[τ ≤ t]. Its analytic derivation is equally simple.

Lemma 4.1. For every t > 0,
1√
π

∫ b(t)/
√

2t

−∞
e−z2

dz ≤ q(t).
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Proof. We need only consider the case b(t) > −∞. Since w(x, t) ≤ w0(x, t),

1− q(t) = p(t) = w(b(t), t) ≤ w0(b(t), t) =

∫ 0

−∞
Γ(b(t)− y, t) dy

= 1− 1√
2πt

∫ ∞

0

e−
(b(t)−y)2

2t dy = 1− 1√
π

∫ b(t)/
√

2t

−∞
e−z2

dz.

Lemma 4.2 (Method for Lower Bounds). Assume that w defined on R×[0, t] satisfies
Lw = 0 in R× (0, t],

w(·, 0) ≤ w(·, 0) on R× {0},

w ≤ p on R× (0, t),

w(s, t) ≥ p(t) at (s, t).

(4.1)

Then

w ≤ w in R× [0, t), s ≤ b(t).

Proof. First consider the case where p is continuous at t, so p(t) = p∗(t). For each

ε > 0, let φε = w − εer − εx2. We claim that φε ≤ w on R × [0, t]. Suppose not, then

w − φε can attain a global negative minimum, say, at (x̂, r̂). Since w(x, 0) − φε(x, 0) =

w(x, 0) − w(x, 0) + ε + εx2 ≥ ε, r̂ > 0. So that Lφε(x̂, r̂) = −εer̂ + ε < 0. As a

supersolution, max{w(x̂, r̂)−p(r̂),Lφε(x̂, r̂)} ≥ 0, hence we must have w(x̂, r̂)−p(r̂) ≥ 0.

The condition w ≤ p on R× (0, t), and p∗(t) = p(t) implies that w ≤ p on R× (0, t]. Then

w(x̂, r̂) < φε(x̂, r̂) < w(x̂, r̂) ≤ p(r̂). This is a contradiction. Thus φε ≤ w in R× (0, t] for

each ε > 0. Sending ε↘ 0, we conclude that w ≤ w in R× (0, t].

In general, let {tn} be a sequence of positive numbers such that tn ↗ t as n → ∞, and

p(·) is continuous at tn. Then w ≤ w in R× [0, tn]. Sending n→∞ we obtain w ≤ w in

R× [0, t).

As a subsolution, w = min{p, w∗}. From the above argument, w∗(s, t) ≥ w(s, t) ≥ p(t).

So that w(s, t) = w∗(s, t) = p(t). By the definition of b(·), we conclude that b(t) ≥ s.

Lemma 4.3 (A Criterion for Lower Bounds). For each s < 0 < t, let

Q(s, r) := q(r)− 2√
π

∫ s/
√

2r

−∞
e−z2

dz.
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Suppose (s, t) is such that

s < 0 < t, Q(s, r) ≤ Q(s, t) ∀ r ∈ (0, t).

Then b(t) ≥ s.

Proof. Let w be the solution to{
Lw = 0 in R× (0, t],
w(·, 0) = θ 1(2s,0) on R× {0}.

where θ = p(t)

(
2√
π

∫ 0

s/
√

2t

e−z2

dz

)−1

. We claim w satisfies (4.1).

1. Since the problem for w is linear, it can be expressed as:

w(x, r) = θ

∫ 0

2s

Γ(x− y, r)dy =
θ√
π

∫ x−2s√
2r

x√
2r

e−z2

dz ∀x ∈ R, r > 0. (4.2)

In particular, when x = s,

w(s, t) =
θ√
π

∫ −s/
√

2t

s/
√

2t

e−z2

dz =
2θ√
π

∫ 0

s/
√

2t

e−z2

dz = p(t).

2. By (4.2), we find

max
x∈R

w(x, r) = w(s, r) =
p(t)

∫ 0

s/
√

2r
e−z2

dz∫ 0

s/
√

2t
e−z2dz

∀r > 0. (4.3)

For any s < 0 < r, we can compute

2√
π

∫ 0

s/
√

2r

e−z2

dz = 1− 2√
π

∫ s/
√

2r

−∞
e−z2

dz = 1 +Q(s, r)− q(r) = Q(s, r) + p(r). (4.4)

From (4.3) and (4.4), for all r ∈ (0, t),

max
x∈R

w(x, r)− p(r) =
p(t)[Q(s, r) + p(r)]

Q(s, t) + p(t)
− p(r)

=
p(t)Q(s, r)− p(r)Q(s, t)

Q(s, t) + p(t)

≤ p(t)[Q(s, r)−Q(s, t)]

Q(s, t) + p(t)
≤ 0,

i.e., w ≤ p on R× (0, t).
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3. Since Q(s, ·) is increasing for any s < 0, Q(s, t) ≥ limr↘0Q(s, r) = 0. In particular

when r = t, (4.4) reads as

2√
π

∫ 0

s/
√

2t

e−z2

dz = Q(s, t) + p(t) ≥ p(t).

So that θ ≤ 1 and thus w(·, 0) ≤ w(·, 0) on R× {0}. Lemma 4.2 now gives b(t) ≥ s.

Before we continue, we provide an interesting application of Lemmas 4.3 and 4.1.

Corollary 4.4. For each t > 0, let ζ(t) ∈ (−∞, 0) and ν(t) ∈ R be defined by

q(t) =
2√
π

∫ ζ(t)/
√

2t

−∞
e−z2

dz =
1√
π

∫ ν(t)/
√

2t

−∞
e−z2

dz.

1. Suppose ζ is a constant function. Then the exact solution to (1.1) is given by w(x, t) = 1√
π

∫ (x−2ζ)/
√

2t

x/
√

2t
e−z2

dz ∀x ≥ ζ, t > 0,

b(t) = ζ ∀ t > 0.
(4.5)

2. Suppose ζ(r) ≤ ζ(t) for all r ∈ (0, t). Then ζ(t) ≤ b(t) ≤ ν(t).

3. Suppose ζ̇(t) ≥ 0 for all t ∈ (0, T ]. Then

ζ(t) ≤ b(t) ≤ ν(t) ∀t ∈ (0, T ], lim
t↘0

b(t)

ζ(t)
= 1.

Proof. 1. The first assertion may be verified by a direct computation. We note that it

agrees with the formula for the first hitting time of Brownian motion to the level ζ (see

e.g. [9] pages 94–96).

2. Suppose ζ(r) ≤ ζ(t)∀ r ∈ (0, t). Set s = ζ(t). Then

Q(s, r) = q(r)− 2√
π

∫ ζ(t)/
√

2r

−∞
e−z2

dz =
2√
π

∫ ζ(r)/
√

2r

ζ(t)/
√

2r

e−z2

dz ≤ 0 = Q(s, t)

for each r ∈ (0, t). Thus by Lemma 4.3, b(t) ≥ s = ζ(t). This is the lower bound for b(t).

For t > 0, Lemma 4.1 reads as

1√
π

∫ b(t)/
√

2t

−∞
e−z2

dz ≤ q∗(t) =
1√
π

∫ ν∗(t)/
√

2t

−∞
e−z2

dz,

which implies that b(t) ≤ ν∗(t).
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3. Suppose ζ̇(t) ≥ 0 in (0, T ]. Then by (2) ζ(t) ≤ b(t) ≤ ν(t) for all t ∈ (0, T ]. To

complete the proof, it remains to estimate the difference between α(t) := ν∗(t)/
√

2t and

γ(t) := ζ(t)/
√

2t. Let δ(t) = ln 2/(−2γ(t) − 1). Since limt↘0 γ(t) = −∞, we conclude

that for all small positive t > 0, δ(t) ∈ (0, 1). Note that

1√
π

∫ α

−∞
e−z2

dz = q(t) =
2√
π

∫ γ

−∞
e−z2

dz =
2√
π

∫ γ+δ

−∞
e−z2+2δz−δ2

dz

≤ 2√
π

∫ γ+δ

−∞
e−z2+2δ(γ+δ)−δ2

dz =
2eδ(2γ+δ)

√
π

∫ γ+δ

−∞
e−z2

dz

=
2e− ln 2+δ2−δ

√
π

∫ γ+δ

−∞
e−z2

dz ≤ 1√
π

∫ γ+δ

−∞
e−z2

dz.

Thus, α(t) ≤ γ(t) + δ(t). Then

0 ≤ 1− b(t)

ζ(t)
≤ 1− ν(t)

ζ(t)
= 1− α(t)

γ(t)
≤ δ(t)

−γ(t)
=

ln 2

2γ2(t) + γ(t)
.

The third assertion of the Lemma thus follows by sending t→ 0.

Next we present a sufficient condition for Q(s, ·) to attain its maximum in (0, t] at t. Note

that for 0 < r < t, Q(s, r) ≤ Q(s, t) is equivalent to

q(t)− q(r)

t− r
≥ 2√

π(t− r)

{∫ s/
√

2t

−∞
e−z2

dz −
∫ s/

√
2r

−∞
e−z2

dz
}

=
−s e−s2/(2θ)

θ3/2
√

2π
,

where r < θ ≤ t. The second equality follows from the mean value theorem. To achieve

the maximum in (0, t] for Q(s, ·), it is sufficient to have

inf
0<r<t

q(t)− q(r)

t− r
≥ sup

r<θ≤t

|s|e−s2/(2θ)

θ3/2
√

2π
=
|s|e−s2/(2t)

t3/2
√

2π
(4.6)

provided that s ≤ −
√

3t. Taking the best possible s ≤ −
√

3t for the inequality (4.6) to

hold, we then obtain the following.

Lemma 4.5. Assume that t > 0 and

k(t) := inf
0≤r≤t

q(t)− q(r)

t− r
> 0.

Then

b(t) ≥ max
{
s

∣∣∣ s ≤ −
√

3t ;
|s|√

2πt3/2
e−s2/(2t) ≤ k(t)

}
.

As an immediate consequence of the Lemma, we have
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Corollary 4.6. If q̇(t) > 0, then b(t) > −∞.

We end this section with the following

Theorem 5. Assume that

lim sup
t↘0

q(t)

tq̇(t)
<∞. (4.7)

Then

lim
t↘0

b(t)√
−2t log q(t)

= −1. (4.8)

Consequently, in special cases the following holds:

1. when q(t) = A tm, where A and m are positive constants,

b(t) = −
√
−2mt log t [1 + o(1)], lim

t↘0
o(1) = 0;

2. when q(t) = Ae−γ2/(2tm), where A,m, γ are positive constants,

b(t) = −γ t(1−m)/2 [1 + o(1)], lim
t↘0

o(1) = 0.

In particular,

lim
t↘0

b(t) =


−∞ if m > 1,

γ if m = 1,

0 if 0 < m < 1.

Proof. The idea is to estimate k(r) via q(r)/r. Under the assumption (4.7), there exist

positive constants C and T such that

0 < q(r) ≤ C r q̇(r) ∀ r ∈ (0, T ].

For any 0 < r < t ≤ T , we can compute,

C (q(t)− q(r)) ≥
∫ t

r

C q̇(θ) dθ ≥
∫ t

r

q(θ)

θ
d(θ − r)

=
q(θ)(θ − r)

θ

∣∣∣θ=t

θ=r
−

∫ t

r

(θ − r)
θq̇(θ)− q(θ)

θ2
dθ

=
(t− r)q(t)

t
−

∫ t

r

q̇(θ) dθ +

∫ t

r

rθq̇(θ) + (θ − r)q(θ)

θ2
dθ

≥ (t− r)
q(t)

t
− [q(t)− q(r)].
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That is, (C + 1)(q(t)− q(r)) ≥ (t− r) q(t)/t. It follows that

k(t) = inf
0<r<t

q(t)− q(r)

t− r
≥ 1

C + 1

q(t)

t
.

Now fix t ∈ (0, T ], when s ≤ −
√

3t,

|s|
t3/2

√
2π

∫ s/
√

2t

−∞
e−z2

dz ≤ |s|
t3/2

√
2π
es2/(2t).

Let s < −
√

3t be the solution to

|s|√
2πt3/2

∫ s/
√

2t

−∞
e−z2

dz =
1

C + 1

q(t)

t
. (4.9)

For small t, q(t) is small, so that s/
√
t� −1 and we can use the expansion, for a < 0,∫ a

−∞
e−z2

dz =

∫ ∞

a2

e−xdx

2
√
x

=
e−a2

2|a|
−

∫ ∞

a2

e−xdx

4x3/2
=
e−a2

2|a|

{
1− θ

2a2

}
,

where θ = θ(a) ∈ (0, 1). Hence, the equation for s reads

e−s2/(2t)
{

1− θ

s2/(2t)

}
=

√
2π

C + 1
q(t).

It then follows that

|s| =
√

2t
(
− log q(t) + log(1− θt/s2) + log[(C + 1)/

√
2π]

)1/2

≤
√
−2t log q(t)

{
1 +

log[(C + 1)/
√

4π]

− log q(t)

}1/2

.

By Lemma 4.5, we then have

b(t) ≥ s ≥ −
√
−2t log q(t)

{
1 +

log[(C + 1)/
√

2π]

| log q(t)|

}1/2

= −
√
−2t log q(t){1 + o(1)}.

This gives the lower bound for b(t), now we estimate the upper bound. From Lemma

(4.1),

q(t) ≥ 1√
π

∫ b(t)/
√

2t

−∞
e−z2

dz =

√
t√

2π|b(t)|

{
1− θ t

b2(t)

}
e−b(t)2/(2t).

This implies that

b(t) ≤ −
√
−2t log q(t)

{
1 +

log[1− θt/b2(t)]− log[
√

2π|b(t)|/
√
t]

− log q(t)

}1/2

≤ −
√
−2t log q(t)

{
1− O(1) log | log q(t)|

| log q(t) + o(1)|

}1/2

.

The assertion (4.8) thus follows. The remainder of the theorem is a direct application of

(4.8).
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5 Integral Equations

As in §4, we assume σ ≡ 1 and µ ≡ 0. Also we assume that p (and therefore q) is

continuous. Then the solution to (3.12) can be expressed as

w(x, t) =

∫ 0

−∞
Γ(x− y, t)dy +

∫ t

0

dp(s)

∫ b(s)

−∞
Γ(x− y, t− s) dy

= 1−
∫ ∞

0

Γ(x− y, t)dy +

∫ t

0

dp(s)

(
1−

∫ ∞

b(s)

Γ(x− y, t− s) dy

)
= p(t)−

∫ x

−∞
Γ(z, t) dz +

∫ t

0

dq(s)

∫ x−b(s)

−∞
Γ(z, t− s) dz, (5.1)

where the second equation is obtained by using
∫

R Γ(x− y, s)dy = 1 ∀ s > 0.

Now assume that b is smooth. Differentiate w, we can derive

u(x, t) = −wx(x, t) = Γ(x, t)−
∫ t

0

Γ(x− b(s), t− s) dq(s). (5.2)

Also, for x 6= b(t), we can further differentiate to obtain

ux(x, t) = Γx(x, t)−
∫ t

0

Γx(x− b(s), t− s)dq(s), (5.3)

ut(x, t) = Γt(x, t)−
∫ t

0

Γt(x− b(s), t− s)dq(s)

= Γt(x, t) +

∫ t

0

(
d

ds
Γ(x− b(s), t− s) + ḃ(s)Γx(x− b(s), t− s)

)
dq(s)

= Γt(x, t) +

∫ t

0

ḃ(s)Γx(x− b(s), t− s)dq(s) +

∫ t

0

q̇(s)dΓ(x− b(s), t− s)

= Γt(x, t) +

∫ t

0

ḃ(s)Γx(x− b(s), t− s)dq(s)− q̇(0)Γ(x, t)

−
∫ t

0

Γ(x− b(s), t− s)dq̇(s), (5.4)

where the second equation is obtained by the equality

Γt(x− b(s), t− s) = − d

ds
Γ(x− b(s), t− s)− ḃ(s)Γx(x− b(s), t− s),

and the third equation by using integration by parts to
∫ t

0
q̇(s)dΓ(x− b(s), t− s).

From potential theory, for any b and f with the certain regularity, we have

lim
x→b(t)±0

∫ t

0

f(s)Γx(x− b(s), t− s)ds =

∫ t

0

f(s)Γx(b(t)− b(s), t− s) ds∓ f(t). (5.5)
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It can be derived as follow.

lim
x→b(t)±0

∫ t

0

f(s)Γx(x− b(s), t− s)ds

= − lim
x→b(t)±0

∫ t

0

f(s)

[
(b(t)− b(s))√
2π(t− s)3/2

e−
(x−b(s))2

2(t−s) +
(x− b(t))√
2π(t− s)3/2

e−
(x−b(s))2

2(t−s)

]
ds

=

∫ t

0

f(s)Γx(b(t)− b(s), t− s) ds− lim
x→b(t)±0

∫ t

0

f(s)
x− b(t)√

2π(t− s)3/2
e−

(x−b(s))2

2(t−s) ds

=

∫ t

0

f(s)Γx(b(t)− b(s), t− s) ds− 2√
π

lim
x→b(t)±0

∫ ±∞

x−b(t)√
2t

f

(
t− (x− b(t))2

2η2

)
e
−(η+

b(t)−b(s)√
2(t−s)

)2

dη

=

∫ t

0

f(s)Γx(b(t)− b(s), t− s) ds− 2√
π

∫ ±∞

0

f(t)e−η2

dη

=

∫ t

0

f(s)Γx(b(t)− b(s), t− s) ds∓ f(t).

Note w(x, t) = p and 0 = u(x, t) = ux(x, t) = ut(x, t) for x < b(t). Sending x to b(t)

from below in (5.1) and (5.2) we then obtain∫ b(t)

−∞
Γ(z, t)dz =

∫ t

0

dq(s)

∫ b(t)−b(s)

−∞
Γ(z, t− s)dz, (5.6)

Γ(b(t), t) =

∫ t

0

Γ(b(t)− b(s), t− s) dq(s), (5.7)

which reflect the free boundary condition w(b(t), t) = p(t) and the condition u(b(t), t) = 0

respectively. Sending x to b(t) from below in (5.3) and (5.4) and use (5.5), we have

q̇(t) = Γx(b(t), t)−
∫ t

0

Γx(b(t)− b(s), t− s) dq(s), (5.8)

−ḃ(t)q̇(t) = Γt(b(t), t) +

∫ t

0

ḃ(s)Γx(b(t)− b(s), t− s)dq(s)

−q̇(0)Γ(b(t), t)−
∫ t

0

Γ(b(t)− b(s), t− s)dq̇(s). (5.9)

(5.8) reflect the free boundary condition ux(b(t)
−, t) = 0 and ux(b(t)

+, t) = q̇(t). Sim-

ilarly, (5.9) reflects the free boundary condition that ut(b(t)
−, t) = 0 and ut(b(t)

+, t) =

−ḃ(t)ux(b(t)
+, t) = −ḃ(t)q̇(t).

Clearly, these identities can provide numerical schemes much more flexible and economic

than integrating the corresponding PDEs. For this purpose, it is necessary to study

solutions to each of these identities.
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One observes that if b(·) is a solution to (5.7), then b1(t) := −b(t) is also the solution as

well. Hence, we need to be careful when considering solutions to the integral equation.

Theorem 6. Let q : [0,∞) → [0, 1) be continuous, increasing, and q(0) = 0. Assume

that b : (0, T ] → R is a continuous function. Then x = b(t), t ∈ (0, T ], is the solution to

the free boundary problem provided that one of the following holds.

1. b satisfies (5.6) for all t ∈ (0, T ];

2. b satisfies (5.7) for all t ∈ (0, T ], b(t) < 0 for all sufficiently small positive t, and

the function

t→ q1/2(t) :=

∫ t

0

q̇(t)√
2π(t− s)

ds

is continuous in (0, T ] with q1/2(0+) = 0;

3. b satisfies (5.8), limt↘0
b(t)√

t
= −∞, q̇ is continuous in [0, T ], and the function

t→ qb
3/2 :=

∫ t

0

|b(t)− b(s)|√
2π(t− s)3/2

dq(s)

is continuous on (0, T ] and is uniformly bounded.

The analogous condition for (5.9) is too technical and hence we omit it here.

Proof. With the given continuous function b, we define w(x, t) as in (5.1). Note that

0 ≥ w(x, t)− w0(x, t) =

∫ t

0

dp(s)

∫ b(s)

−∞
Γ(x− y, t− s)dy

=

∫ t

0

dp(s)

(
1−

∫ ∞

b(s)

Γ(x− y, t− s)dy

)
= −q(t) +

∫ t

0

dq(t)

∫ x−b(s)

−∞
Γ(z, t− s)dz ≥ −q(t).

This implies that

|w(x, t)− w0(x, t)| ≤ q(t).

When t = 0, it reads |w(x, 0)−w0(x, 0)| ≤ q(0) = 0, so that w(x, 0) = w0(x, 0) = 1(−∞,0).

In addition, upon differentiation, Lw = ṗ1{x<b(t)} ≤ 0 as a measure in R × (0, T ]. This

can verified as follows. Direct calculation gives

wxx = −Γx(x, t) +

∫ t

0

Γx(x− b(s), t− τ)dq(s),

wt = ṗ(t)−
∫ x

−∞
Γt(z, t)dz +

∫ t

0

∫ x−b(s)

−∞
Γt(z, t− s)dzdq(s).
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Using the fact that Γt = 1
2
Γxx, we obtain∫ x

−∞
Γt(z, t)dz =

∫ x

−∞

1

2
Γxx(z, t)dz =

1

2
Γx(z, t)

∣∣∣z=x

z=−∞
=

1

2
Γx(x, t).

When x < b(s),∫ t

0

∫ x−b(s)

−∞
Γt(z, t− s)dzdq(s) =

1

2

∫ t

0

Γx(z, t− s)
∣∣∣z=x−b(s)

z=−∞
dq(s)

=
1

2

∫ t

0

Γx(x− b(s), t− τ)dq(s).

When x > b(s),∫ t

0

∫ x−b(s)

−∞
Γt(z, t− s)dzdq(s)

=
1

2

∫ t

0

Γx(z, t− s)
∣∣∣z=(b(t)−b(s))−

z=−∞
dq(s) +

1

2

∫ t

0

Γx(z, t− s)
∣∣∣z=x−b(s)

z=(b(t)−b(s))+
dq(s)

=
1

2

∫ t

0

Γx(x− b(s), t− s)dq(s) + lim
z↗(b(t)−b(s))

1

2

∫ t

0

Γx(z, t− s)dq(s)

− lim
z↘(b(t)−b(s))

1

2

∫ t

0

Γx(z, t− s)dq(s).

= q̇(t) +
1

2

∫ t

0

Γx(x− b(s), t− s)dq(s).

= −ṗ(t) +
1

2

∫ t

0

Γx(x− b(s), t− s)dq(s).

Thus Lw = ṗ1{x<b(t)} ≤ 0 in R× (0, T ] holds.

It remains to show that w(x, t) = p(t) for x ≤ b(t) and w < p(t) for x > b(t).

(1) Assume the condition of the first assertion. We define

v(x, t) := w(x, t)− p(t) = −
∫ x

−∞
Γ(z, t) dz +

∫ t

0

dq(s)

∫ x−b(s)

−∞
Γ(z, t− s) dz.

Upon differentiation, Lv = 0 in {x < b(t)}. Note that v is bounded, continuous and, by

(5.6), v(b(t), t) = 0. It follows that v(x, t) ≡ 0 for all x ≤ b(t), i.e., w = p(t) for any

x ≤ b(t). Also by differentiation, we see that Lv = −ṗ ≤ 0 in {x > b(t)}. The strong

maximum principle gives v < 0 in {x > b(t)}. That is w < p(t) in {x > b(t)}. Thus w is

a variational solution.

(2) Assume the condition of the second assertion. We see that u := −wx given by (5.2) is

continuous in R× (0,∞). For every small ε > 0, the function u satisfies Lu = 0 in

Ωε := {(x, t) | x < b(t), t ∈ (ε, T ]}.
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Also, from equation (5.7), u(b(t), t) = 0 for all t ∈ (0, T ]. Since b(t) < 0 for small positive

t, we can assume that b(ε) < 0. It then follows from (5.2) that for all x ≤ b(ε),

|u(x, ε)| ≤ max{Γ(x, ε), q1/2(ε)} ≤ max{Γ(b(ε), ε), q1/2(ε)} ≤ q1/2(ε),

since for any t ∈ (0, T ]∫ t

0

Γ(b(t)− b(s), t− s)dq(s) ≤
∫ t

0

q̇(s)√
2π(t− s)

ds = q1/2(t),

which holds for ε as well. It then follows from the maximum principle that

max
Ωε

|u| ≤ q1/2(ε).

Sending ε to 0 from above, we obtain wx = u ≡ 0 in {(x, t) | x ≤ b(t), t > 0}. w is

constant in {x ≤ b(t)} and w(−∞, t) = p(t) imply that w ≡ p(t) in {x ≤ b(t)}. From the

first assertion, the second assertion of the Theorem thus holds.

(3) Assume the conditions in the third assertion. Let u := −wx be given by (5.2) and

ux := −wxx by (5.3) when x 6= b(t). Since b, q̇, and qb
3/2 are continuous, and (5.5) holds

for f = q̇, sending x to b(t) from below in the equation for ux and using (5.8) we derive

that ux(b(t)
−, t) = 0.

Next we show that ux ≡ 0 in {x < b(t)}. To do this, we first show that that ux given in

(5.3) is uniformly bounded in {x < b(t)}. First of all, the boundedness of qb
3/2 and (5.8)

implies that Γx(b(t), t) is uniformly bounded in (0, T ]. Next, as b(t) < −
√

3t for small

positive t, we see that 0 < Γx(x, t) < Γ(b(t), t) for all x < b(t). Thus Γx(x, t) is bounded

for all x < b(t).

For x < b(t), let A1 = {s ∈ (0, t] | b(t)− x > 2|b(t)− b(s)|} and A2 = [0, t] \ A1. Then∫ t

0

Γx(x− b(t), t− s)dq(s) = I1 + I2, Ii =

∫
Ai

Γx(x− b(t), t− s)dq(s).

Note that

|I2| ≤
∫ t

0

|b(t)− b(s)|q̇(s)
2
√
π|t− s|3/2

ds ≤ 2qb
3/2(t)

is uniformly bounded. To estimate Ii, notice that when x − b(t) > 2|b(t) − b(s)|, (x −
b(s))2 = (x− b(t)− (b(t)− b(s))2 ≥ 1

4
(x− b(t))2. Thus,

|I1| ≤
∫ t

0

|x− b(t)|q̇(s)e−|x−b(t)|2/[16(t−s)]ds√
2π(t− s)3/2

≤ ‖q̇‖∞.
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and therefore ux is uniformly bounded in {x < b(t)}.

Since Lux = 0 in {x < b(t), t > 0}, ux(b(t) − 0), t) = 0, and ux(x, 0) = 0 for all x < 0, a

special maximum principle then implies that ux ≡ 0 in {x < b(t)}. Using u(−∞, t) = 0 we

then conclude that u ≡ 0. Following (2), the third assertion of the Theorem follows.
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