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Abstract

In this work we propose a generalization of the Hadamard product
between two matrices to a tensor-valued, multi-linear product between
k matrices for any k ≥ 1. A multi-linear dual operator to the gener-
alized Hadamard product is presented. It is a natural generalization
of the Diag x operator, that maps a vector x ∈ Rn into the diago-
nal matrix with x on its main diagonal. Defining an action of the
n × n orthogonal matrices on the space of k-dimensional tensors, we
investigate its interactions with the generalized Hadamard product
and its dual. The research is motivated, as illustrated throughout
the paper, by the apparent suitability of this language to describe
the higher-order derivatives of spectral functions and the tools needed
to compute them. For more on the later we refer the reader to [14]
and [15], where we use the language and properties developed here to
study the higher-order derivatives of spectral functions.
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1 Introduction

Spectral functions, are functions on a symmetric matrix argument invariant
under a closed subgroup of the orthogonal group on the space of all n × n

symmetric matrices, Sn. More precisely, F : Sn → R is spectral if

F (UTXU) = F (X),

for all X ∈ Sn and U ∈ O(n) — the orthogonal group on Rn. It is not
difficult to see that such functions can be represented as the composition

F = f ◦ λ,

where f : Rn → R is a symmetric function (f(Px) = f(x) for any permu-
tation matrix P and vector x), and λ : Sn → Rn is the eigenvalue map:
λ(X) = (λ1(X), ..., λn(X)) — all eigenvalues of X . We will assume through-
out that,

λ1(X) ≥ · · · ≥ λn(X).

The study of spectral functions generalizes the study of the individual
eigenvalues of a symmetric matrix since if we let

φk(x) : R
n → R,

φk(x) := the kth largest element of {x1, ..., xn},

then φk(x) is symmetric and

λk(X) = (φk ◦ λ)(X).

Various smoothness properties of eigenvalues have been studied for some
time now and find a lot of applications in areas ranging from matrix perturba-
tion theory [16], and eigenvalue optimization [9], [8], to quantum mechanics
[4]. The Taylor expansion (when it exists) of the eigenvalues of symmetric
matrices depending on one scalar parameter are described in the monograph
by Kato [3]. This naturally raises the questions about the differentiability
properties of the spectral functions. Many such questions have already been
investigated in the literature (see below) and surprisingly the answers to most
of them follow the same pattern: f ◦ λ has a property at the matrix X if,
and only if, f has the same property at the vector λ(X). It is only natural,
then to try to describe the differentials of f ◦ λ in terms of the differentials
of the simpler function f .
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Here is a list of properties for which f ◦λ has that property at (or around)
the matrix X if and only if f has the same property at (or around) the vector
λ(X).

(i) F is lower semicontinuous at A if, and only if, f is at λ(A), [5].

(ii) F is lower semicontinuous and convex if, and only if, f is, [2], [5].

(iii) The symmetric function corresponding to the Fenchel conjugate of F
is the Fenchel conjugate of f , [13], [5]. (A similar statement holds for
the recession function of F , [13].)

(iv) F is pointed, has good asymptotic behaviour or is a barrier function
on the set λ−1(C) if, and only if, f is such on C, [13].

(v) F is Lipschitz around A if, and only if, f is such around λ(A), [6]

(vi) F is (continuously) differentiable at A if, and only if, f is at λ(A), [6].

(vii) F is strictly differentiable at A if, and only if, f is at λ(A), [6], [7].

(viii) ∇(f ◦ λ) is semismooth at X if, and only if, ∇f is at λ(X), [12].

(ix) If f is l.s.c. and convex, then F is twice epi-differentiable at A relatively
to Ω if, and only if, f is twice epi-differentiable at λ(A) relative to λ(Ω),
[17], where Ω is an arbitrary epi-gradient.

(x) F has a quadratic expansion at X if, and only if, f has a quadratic
expansion at λ(X), [11].

(xi) F is twice (continuously) differentiable at X if, and only if, f is twice
(continuously) differentiable at λ(X), [10].

(xii) F ∈ C∞ at A ⇔ f ∈ C∞ at λ(A), [1].

(xiii) F is analytic at A if, and only if, f is at λ(A), [18].

(xiv) F is a polynomial of the entries of A if, and only if, f is a polyno-
mial. This is a consequence of the Chevalley Restriction Theorem, [19,
p. 143].
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We want to stress that there are exceptions to the pattern. For example
if f is directionally differentiable at λ(X) this doesn’t imply that f ◦ λ is
such at X , see [6].

In [6] and [10] the authors gave explicit formulae for the gradient and the
Hessian of the spectral function F in terms of the derivatives of the symmetric
function f . In order to reproduce them here we need a bit more notation.
For any vector x in Rn, Diag x will denote the diagonal matrix with vector
x on the main diagonal, and diag : Mn → Rn will denote its dual operator
defined by diag (X) = (x11, ..., xnn). Recall that the Hadamard product of
two matrices A = [Aij ] and B = [Bij ] of the same size is the matrix of their
element-wise product A ◦B = [AijBij ]. Thus we have

∇(f ◦ λ)(X) = V
(

Diag∇f(λ(X))
)

V T , and(1)

∇2(f ◦ λ)(X)[H1, H2] = ∇2f(λ(X))[diag H̃1, diag H̃2]+(2)

+ 〈A(λ(X)), H̃1 ◦ H̃2〉,

where V is any orthogonal matrix such that X = V
(

Diagλ(X)
)

V T is the

ordered spectral decomposition of X ; H̃i = V THiV for i = 1, 2, and x ∈
Rn → A(x) is a matrix valued map that is continuous if ∇2f(x) is.

In [10] a conjecture was made that F is k-times (continuously) differen-
tiable at A if, and only if, f is such at λ(A). It is conceivable that high-
powered analytical methods may give a direct proof of this conjecture, but
never the less an interesting question is what the kth differential of F looks
like and how to compute it practically. Explicit formula for the kth differen-
tial of F will generalize the formula for the kth term in the Taylor expansion
(when it exists) of the individual eigenvalues given in [3].

Before attacking the questions in the previous paragraph we need to an-
swer several more basic questions. What are the common features in Formu-
lae (1) and (2), that we expect to generalize when we further differentiate?
We propose a language that shows a good promise to simplify the description
of the higher order derivatives of spectral functions. It is based on the idea
of generalizing the Hadamard product of two matrices to a k-tensor valued
product between k matrices. The current paper is the first of three. It defines
what we mean by a generalized Hadamard product and investigates some of
its multi-linear algebraic properties. In [14] we will formulate calculus-type
rules for the interaction between the generalized Hadamard product and the
eigenvalues of symmetric matrices. Finally, in [15] we will describe how to
compute the derivatives of spectral functions in two important cases. In
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particular, we will show that Conjecture 4.1 holds for the derivatives of any
spectral function at a symmetric matrix with distinct eigenvalues, as well as
for the derivatives of separable spectral functions at an arbitrary symmetric
matrix. (Separable spectral functions are those arising from symmetric func-
tions f(x) = g(x1) + · · ·+ g(xn) for some function g on a scalar argument.)

2 Generalizations of the Hadamard product

By {Hpq : 1 ≤ p, q ≤ n} we will denote the standard basis of the space of
all n × n matrices. That is, the matrices Hpq are such that (Hpq)

ij is 1 if
(i, j) = (p, q), and 0 otherwise.

Let us look closely at the Hadamard product, H1 ◦H2, between two ma-
trices H1 and H2 from Mn. It is a matrix valued function on two matrix
arguments, linear in each argument separately. Therefore it is uniquely de-
termined by its values on the pairs of basic matrices (Hp1q1 , Hp2q2).

On such basic pairs the Hadamard product is defined as:

(Hp1q1 ◦Hp2q2)
ij =

{

1, if i = p1 = p2 and j = q1 = q2,

0, otherwise.

Naturally, we may define the cross Hadamard product by the rule

(Hp1q1 ◦(12) Hp2q2)
ij :=

{

1, if i = p1 = q2 and j = p2 = q1,

0, otherwise,

and then extend this to a bilinear function on all Mn ×Mn. The Hadamard
product and the cross Hadamard product are essentially the same thing:

Hp1q1 ◦(12) Hp2q2 = Hp1q1 ◦H
T
p2q2

= Hp1q1 ◦Hq2p2 .

These observations can be naturally generalized in the following way.
Denote the set {1, 2, ..., k} of the first k natural numbers by Nk. A k-tensor
on Rn is a real-valued map on Rn×· · ·×Rn (k-times) linear in each argument
separately. When a basis in Rn is fixed, a k-tensor can be viewed as an
n × · · · × n (k-times) “block” of numbers. We will index the elements of a
tensor just like we index the entries of a matrix. The space of all k-tensors
on Rn will be denoted by T k,n.
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Definition 2.1 For a fixed permutation σ on Nk, we define σ-Hadamard
product between k matrices to be a k-tensor on Rn as follows. Given any k

basic matrices Hp1q1, Hp2q2,...,Hpkqk we define:

(Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpkqk)
i1i2...ik =

{

1, if is = ps = qσ(s), ∀s = 1, ..., k,
0, otherwise.

Now, extend this product to a k-tensor valued map on k matrix arguments,
linear in each of them separately.

Another way to write the above definition is using the Kronecker delta.
Recall that δij is equal to 1 if i = j, and 0 otherwise. Thus,

(Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpkqk)
i1i2...ik = δi1p1δi1qσ(1)

· · · δikpkδikqσ(k)
(3)

= δi1p1δp1qσ(1)
· · · δikpkδpkqσ(k)

.

The next lemma gives the formula for the general entry of the σ-Hadamard
product between arbitrary matrices.

Lemma 2.2 The σ-Hadamard product of arbitrary matrices is given by

(H1 ◦σ H2 ◦σ · · · ◦σ Hk)
i1i2...ik = H

i1iσ−1(1)

1 · · ·H
ikiσ−1(k)

k

= H
iσ(1)i1

σ(1) · · ·H
iσ(k)ik

σ(k) .

Proof. Let σ be a permutation on Nk and let H1,...,Hk be arbitrary
matrices. Using the definition that the product is linear in each argument
separately, we compute

(H1 ◦σ H2 ◦σ · · · ◦σ Hk)
i1i2...ik

=

n,n
∑

p1,q1=1

· · ·

n,n
∑

pk,qk=1

H
p1q1
1 · · ·Hpkqk

k (Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpkqk)
i1i2...ik

=

n,n
∑

p1,q1=1

· · ·

n,n
∑

pk,qk=1

H
p1q1
1 · · ·Hpkqk

k δi1p1δi1qσ(1)
· · · δikpkδikqσ(k)

=

n,n
∑

p1,q1=1

· · ·

n,n
∑

pk,qk=1

H
p1q1
1 · · ·Hpkqk

k δi1p1δiσ−1(1)q1
· · · δikpkδiσ−1(k)qk

= H
i1iσ−1(1)

1 · · ·H
ikiσ−1(k)

k

= H
iσ(1)i1

σ(1) · · ·H
iσ(k)ik

σ(k) . �
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Corollary 2.3 When the first k − 1 of the matrices involved in the product
are basic we get

(Hp1q1 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H)i1i2...ik

= δi1p1δi1qσ(1)
· · · δil−1pl−1

δil−1qσ(l−1)
H iσ(l)ilδil+1pl+1

δil+1qσ(l+1)
· · · δikpkδikqσ(k)

,

where l = σ−1(k).

Proof. Let l = σ−1(k), using the result of the previous lemma we calculate.

(Hp1q1 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H)i1i2...ik = H

i1iσ−1(1)
p1q1 · · ·H

ik−1iσ−1(k−1)
pk−1qk−1 H

ikiσ−1(k)

= δi1p1δiσ−1(1)q1
· · · δik−1pk−1

δi
σ−1(k−1)qk−1

H
ikiσ−1(k)

= δi1p1δi1qσ(1)
· · · δil−1pl−1

δil−1qσ(l−1)
H iσ(l)ilδil+1pl+1

δil+1qσ(l+1)
· · · δikpkδikqσ(k)

. �

The above corollary can be easily modified when the matrix H is in
arbitrary position in the product.

Example 2.4 We already saw that, when k = 2 and σ = (12) the σ-
Hadamard product is essentially the ordinary Hadamard product:

H1 ◦(12) H2 = H1 ◦H
T
2 .

If we restrict our attention to the space of symmetric matrices, then the two
products coincide. In the case when σ = (1)(2) we get

H1 ◦(1)(2) H2 = (diagH1)(diagH2)
T .

Example 2.5 The σ-Hadamard product has meaning even when k = 1. In
that case, there is just one permutation on the set N1 and the σ-Hadamard
product corresponding to it has one matrix argument and returns, by def-
inition, a vector (1-tensor). Since σ = (1), extending the notation, the
σ-Hadamard product is given by the rule:

(◦σHp1q1)
i1 =

{

1, if i1 = p1 = q1
0, otherwise

= (diagHq1p1)
i1 .

Extending by linearity we get

◦σH = diagH.
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For any two k-tensors, T1, and T2 we define a scalar product between
them in the natural way:

〈T1, T2〉 =

n,...,n
∑

i1,...,ik=1

T i1...ik
1 T i1...ik

2 .

Lemma 2.6 Let T be a k-tensor on Rn, and H be a matrix in Mn. Let
Hp1q1,...,Hpk−1qk−1

be basic matrices in Mn, and let σ be a permutation on
Nk. Then the following identities hold.

(i) If σ−1(k) = k, then

〈T,Hp1q1 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H〉 =

(

k−1
∏

t=1

δptqσ(t)

)

n
∑

t=1

T p1...pk−1tH tt.

(ii) If σ−1(k) = l, where l 6= k, then

〈T,Hp1q1 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H〉 =

(

k−1
∏

t=1
t6=l

δptqσ(t)

)

T p1...pk−1qσ(k)Hqσ(k)pσ−1(k).

Proof. Using the definitions and observation (3), we calculate.

〈T,Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H〉

=

n,n
∑

pk,qk=1

Hpkqk〈T,Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpk−1qk−1
◦σ Hpkqk〉

=

n,n
∑

pk,qk=1

Hpkqk

n,...,n
∑

i1,...,ik=1

T i1...ik(Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpk−1qk−1
◦σ Hpkqk)

i1...ik

=

n,n
∑

pk,qk=1

Hpkqk

n,...,n
∑

i1,...,ik=1

T i1...ikδi1p1δp1qσ(1)
· · · δikpkδpkqσ(k)

=

n,n
∑

pk,qk=1

HpkqkT p1...pkδp1qσ(1)
· · · δpkqσ(k)

.

The result follows easily by considering the two cases separately. �
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3 A partial order on P k and one property of

the σ-Hadamard product

Given two permutations σ, µ on Nk, we say that σ refines µ if for every
s ∈ Nk there is an r ∈ Nk such that

{σl(s) : l = 1, 2, ...} ⊆ {µl(r) : l = 1, 2, ...},

where σl(s) = σ(σ(· · · (σ(s)) · · · ) - l times.
In other words σ refines µ if every cycle of σ is contained in a cycle of µ.

Clearly the cycles of σ will partition the cycles of µ. If σ refines µ we will
denote it by

µ � σ.

The set of all permutations on Nk as well as the set of all n× n permutation
matrices will be denoted by P k. Clearly the refinement is a pre-order on
P k (it is reflexive, transitive, but not antisymmetric). With respect to this
pre-order, the identity permutation is the biggest element (that is, bigger
that any one else) and every permutation with only one cycle is a smallest
element (that is, it is smaller than any other element).

There is a natural map between the set P k and the diagonal subspaces of
Rk, given as follows:

D(σ) = {x ∈ Rk : xs = xσ(s) ∀s ∈ Nk}.

This map is onto but is not one-to-one since, for example, when k = 3
D((123)) = D((132)) = {x ∈ R3 : x1 = x2 = x3}. Clearly the image of the
identity permutation is Rk. The following relationship helps to visualize the
partial order on P k

µ � σ ⇔ D(µ) ⊆ D(σ).

Finally, given a tensor T ∈ T k,n we may want to preserve the entries
lying on a diagonal “subspace” of T and substitute the rest of the entries of
T with zeros. In other words, given a permutation µ ∈ P k, we introduce the
notation Pµ(T ) for the tensor in T k,n defined by

(Pµ(T ))
i1...ik =

{

T i1...ik , if is = iµ(s), ∀s ∈ Nk

0, otherwise.

After all these preparations, we can formulate the main result in this
section. It describes when we can transfer diagonal “subspaces” of T between
different σ-Hadamard products.
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Theorem 3.1 Let σ1, σ2, and µ be three permutations on Nk. Then the
identity

〈Pµ(T ), H1 ◦σ1 · · · ◦σ1 Hk〉 = 〈Pµ(T ), H1 ◦σ2 · · · ◦σ2 Hk〉

holds for any matrices H1,...,Hk, and any tensor T in T k,n if, and only if,
µ � σ−1

2 ◦ σ1.

Proof. Since both sides are linear in each of the matrices H1,..,Hk sepa-
rately, it is enough to prove the theorem when these matrices are basic. In
other words, we are going to show that

〈Pµ(T ), Hp1q1 ◦σ1 · · · ◦σ1 Hpkqk〉 = 〈Pµ(T ), Hp1q1 ◦σ2 · · · ◦σ2 Hpkqk〉,

for any indexes p1,...,pk, q1,...,qk, and for any T ∈ T k,n if, and only if, µ �
σ−1
2 ◦ σ1. Direct calculation shows:

〈Pµ(T ), Hp1q1 ◦σ1 · · · ◦σ1 Hpkqk〉

=

n,...,n
∑

i1,...,ik=1

(Pµ(T ))
i1...ik(Hp1q1 ◦σ1 · · · ◦σ1 Hpkqk)

i1...ik

=

n,...,n
∑

i1,...,ik=1

(Pµ(T ))
i1...ikH

i1i
σ
−1
1 (1)

p1q1 · · ·H
ikiσ−1

1 (k)

pkqk

=

n,...,n
∑

i1,...,ik=1

(Pµ(T ))
i1...ikδi1p1δi1qσ1(1) · · · δikpkδikqσ1(k)

= (Pµ(T ))
p1...pkδp1qσ1(1) · · · δpkqσ1(k).

The last expression is equal to T p1...pk when ps = pµ(s) = qσ1(s) for all s ∈ Nk,
and is equal to 0 otherwise.

Analogously we have

〈Pµ(T ), Hp1q1 ◦σ2 · · · ◦σ2 Hpkqk〉 = (Pµ(T ))
p1...pkδp1qσ2(1) · · · δpkqσ2(k),

which is equal to T p1...pk when ps = pµ(s) = qσ2(s) for all s ∈ Nk, and is equal
to 0 otherwise.

Suppose that µ � σ−1
2 ◦ σ1. We consider three cases.

If there is an s0 such that ps0 6= pµ(s0), then both expressions are zero and
we trivially have equality.
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If ps = pµ(s) for all s ∈ Nk but for some s0 we have that ps0 6= qσ1(s0), then
it is not possible to have ps = qσ2(s) for all s ∈ Nk. Indeed, suppose on the
contrary that ps = qσ2(s) for all s ∈ Nk. Letting r = σ2(s) we get pσ−1

2 (r) = qr
for every r ∈ Nk. Therefore pσ−1

2 (σ1(s))
= qσ1(s) for every s ∈ Nk. In particular

pσ−1
2 (σ1(s0))

= qσ1(s0) 6= ps0. But µ � σ−1
2 ◦ σ1 implies that σ−1

2 (σ1(s0)) and s0

belong to the same cycle of µ, that is µl(s0) = σ−1
2 (σ1(s0)) for some l ∈ N.

By the assumption in this case we have that ps0 = pµl(s0) for every l. This is
a contradiction. Thus for some s1 ∈ Nk we have ps1 6= qσ2(s1) and again we
will have that both expressions are equal to zero.

Suppose finally that ps = pµ(s) = qσ1(s) for all s ∈ Nk. Then the first
expression is equal to T p1...pk. If we show that ps = qσ2(s) for every s ∈ Nk,
then we will be done. Suppose this is not true, that is, for some s0, ps0 6=
qσ2(s0). Then for r0 = σ2(s0) we will have pσ−1

2 (r0)
6= qr0 , and for s1 = σ−1

1 (r0)

we have pσ−1
2 (σ1(s1))

6= qσ1(s1). Again µ � σ−1
2 ◦ σ1 implies that σ−1

2 (σ1(s1))
and s1 belong to the same cycle of µ and we reach a contradiction as in the
previous case.

To prove the opposite direction of the theorem, suppose that

(4) (Pµ(T ))
p1...pkδp1qσ1(1) · · · δpkqσ1(k) = (Pµ(T ))

p1...pkδp1qσ2(1) · · · δpkqσ2(k),

for every choice of the indexes p1,...,pk and q1,...,qk and every T . Take T to
be such that T i1...ik 6= 0 for every choice of the indexes i1, ..., ik satisfying
is = iµ(s) for every s ∈ Nk. Suppose that µ � σ−1

2 ◦ σ1. This means that
there is an number s0 ∈ Nk such that σ−1

2 (σ1(s0)) and s0 are not in the same
cycle of µ. Choose the indexes p1,...,pk and q1,...,qk so that ps = pµ(s) and
ps = qσ1(s), for every s ∈ Nk. Moreover, choose the indexes p1,...,pk so that
if s, r ∈ Nk are not in the same cycle of µ, then ps 6= pr. This in particular
means that pσ−1

2 (σ1(s0))
6= ps0 .

With the choices so made, the left-hand side of Equation (4) will be equal
to T i1...ik 6= 0. We will reach a contradiction if we show that for some r0,
pr0 6= qσ2(r0), since then the right-hand side of Equation (4) will be zero.
Suppose on the contrary that pr = qσ2(r) for every r ∈ Nk. Then,

pσ−1
2 (σ1(s))

= qσ1(s) = ps, for every s ∈ Nk.

Substitute above s = s0 to reach a contradiction. Thus, pr0 6= qσ2(r0) for some
r0 ∈ Nk and we are done. �
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Notice that if µ � ν, then for arbitrary permutation σ in P k we have

µ � ν−1 = (σ ◦ ν)−1 ◦ σ.

This observation leads to the next corollary.

Corollary 3.2 Suppose µ and ν are permutations in P n such that µ � ν.
Then for arbitrary permutation σ ∈ P k, any matrices H1,...,Hk, and a tensor
T in T k,n we have the identity:

〈Pµ(T ), H1 ◦σ · · · ◦σ Hk〉 = 〈Pµ(T ), H1 ◦σ◦ν · · · ◦σ◦ν Hk〉.

In particular, the result holds when ν = µ or ν = µ−1.

It will be useful to see what are the conclusions of the above theorem
when k ≤ 3. We summarize them in the next corollary.

Corollary 3.3 For any T ∈ T 2,n and any two matrices H1 and H2 we have

〈P
(12)

(T ), H1 ◦(1)(2) H2〉 = 〈P
(12)

(T ), H1 ◦(12) H2〉.

For any T ∈ T 3,n and any three matrices H1, H2, and H3 we have

〈P
(13)

(T ), H1 ◦(132) H2 ◦(132) H3〉 = 〈P
(13)

(T ), H1 ◦(12)(3) H2 ◦(12)(3) H3〉,

〈P
(23)

(T ), H1 ◦(123) H2 ◦(123) H3〉 = 〈P
(23)

(T ), H1 ◦(12)(3) H2 ◦(12)(3) H3〉,

and

〈P
(13)

(T ), H1 ◦(13)(2) H2 ◦(13)(2) H3〉 = 〈P
(13)

(T ), H1 ◦(1)(2)(3) H2 ◦(1)(2)(3) H3〉,

〈P
(23)

(T ), H1 ◦(1)(23) H2 ◦(1)(23) H3〉 = 〈P
(23)

(T ), H1 ◦(1)(2)(3) H2 ◦(1)(2)(3) H3〉.

Finally, for any two permutations σ1, σ2 on N3 we have

〈P
(123)

(T ), H1 ◦σ1 H2 ◦σ1 H3〉 = 〈P
(123)

(T ), H1 ◦σ2 H2 ◦σ2 H3〉.

Example 3.4 In this example we demonstrate that Formula (1) for the first
derivative of a spectral function, at X , can be rewritten in a different form.
Let X = V (Diag λ(X))V T and Ẽ = V TEV , where E is a symmetric matrix.
Using the definitions and notation in the previous subsection we have:

∇(f ◦ λ)(X)[E] = 〈V
(

Diag∇f(µ)
)

V T , E〉

= 〈∇f(µ), diag Ẽ〉

= 〈∇f(µ), ◦
(1)
Ẽ〉.

12



Example 3.5 Let X be a symmetric matrix with ordered spectral decom-
position X = V (Diag λ(X))V T . Take two symmetric matrices E1 and E2

and let Ẽi = V TEiV for i = 1, 2. As we saw in the examples in Section 2 we
have:

E1 ◦(1)(2) E2 = (diagE1)(diagE2)
T and E1 ◦(12) E2 = E1 ◦ E2.,

Then Formula (2) for the Hessian of the spectral function f ◦ λ becomes:

∇2(f ◦ λ)(X)[E1, E2] = ∇2f(λ(X))[diag Ẽ1, diag Ẽ2] + 〈A(λ(X)), Ẽ1 ◦ Ẽ2〉

= 〈∇2f(λ(X)), Ẽ1 ◦(1)(2) Ẽ2〉+ 〈A(λ(X)), Ẽ1 ◦(12) Ẽ2〉.

All these examples support the following conjecture, which describes the
structure of the higher-order derivatives of spectral functions.

Conjecture 3.1 The spectral function f ◦λ is k times (continuously) differ-
entiable at X if and only of f(x) is k times (continuously) differentiable at
the vector λ(X). Moreover, there are k-tensor valued maps Aσ : Rn → T k,n,
σ ∈ P k, such that for any symmetric matrices E1,...,Ek we have

∇k(f ◦ λ)(X)[E1, ..., Ek] =
∑

σ∈P k

〈Aσ(λ(X)), Ẽ1 ◦σ · · · ◦σ Ẽk〉,

where X = V (Diag λ(X))V T and Ẽi = V TEiV , for i = 1, .., k.

In [15] we will show that this conjecture holds for the derivatives of any
spectral function at a symmetric matrix X with distinct eigenvalues, as well
as for the derivatives of separable spectral functions at an arbitrary symmet-
ric matrix. (Separable spectral functions are those arising from symmetric
functions f(x) = g(x1) + · · · + g(xn) for some function g on a scalar argu-
ment.) There we also describe how to compute the operators Aσ for every σ

in P k.
There is one major draw-back of the conjectured formula above. On the

left hand-side we have the the k-th derivative of the spectral function eval-
uated at the matrices E1, ..., Ek while on the right-hand side these matrices
are “jumbled” with the orthogonal matrix V into the σ-Hadamard products
Ẽ1 ◦σ · · · ◦σ Ẽk. This is the problem that we address in the next section.

13



4 The Diag σ operator

Recall that the adjoint of the linear operator Diag : Rn → Mn is the operator
diag : Mn → Rn. That is, we have the identity

(5) 〈Diag x,H〉 = 〈x, diagH〉,

for any vector x and any matrix H . It is also easy to verify that for any
vector x, matrix H , and orthogonal matrix U we have

(6) 〈U(Diag x)UT , H〉 = 〈x, diag (UTHU)〉.

Vector x can be viewed as a 1-tensor on Rn given through the linear isometry
x → 〈x, ·〉 and similarly Diag x can be viewed as a 2-tensor. In this section
we will generalize Equations (5) and (6) for an arbitrary k-tensor in place of
x and arbitrary σ-Hadamard product in place of diag .

Let T be an arbitrary k-tensor on Rn and let σ be a permutation on Nk.
We define Diag σT to be a 2k-tensor on Rn in the following way

(Diag σT )
i1...ik
j1...jk =

{

T i1...ik , if is = jσ(s), ∀s = 1, ..., k,
0, otherwise.

When k = 1 and σ is the only choice from P 1, namely σ = (1), then this
definition coincides with the definition of the Diag operator in Equation (5).
Equivalent way to define Diag σT that is useful for calculations is:

(Diag σT )
i1...ik
j1...jk = T i1...ikδi1jσ(1)

· · · δikjσ(k)
.

We now define an action of the group, On, of all n×n orthogonal matrices
on the space of all k-tensors on Rn. For any k-tensor T , and U ∈ On this
action will be denoted by UTUT , and defined by:

(7) (UTUT )i1...ik =
n

∑

p1=1

· · ·
n

∑

pk=1

(

T p1...pkU i1p1 · · ·U ikpk

)

.

In the case k = 1, when T is viewed as an n-dimensional vector, this is
exactly the action of the orthogonal group on Rn:

(UTUT )i1 ≡ (UT )i1 =
n

∑

p1=1

U i1p1T p1.

14



In the case k = 2 the definition coincides with the conjugate action of the
orthogonal group on the set of all n× n square matrices:

(UTUT )ij =

n,n
∑

p,q=1

T pqU ipU jq,

hence the use of the same notation for the general action UTUT . For future
reference we state the formula of the action in the case when the tensor is of
even order. That is, if T is a 2k-tensor, then

(8) (UTUT )
i1...ik
j1...jk =

n,n
∑

p1,q1=1

· · ·

n,n
∑

pk,qk=1

(

T
p1...pk
q1...qk

k
∏

ν=1

U iνpνU jνqν

)

.

Let P be an n×n permutation matrix and σ its corresponding permuta-
tion on Nn, that is, P

T ei = eσ(i) for all i = 1, ..., n, where {ei | i = 1, ..., n} is
the standard basis in Rn. The action of P on the tensors will be given by:

(PTP T )i1...ik =
n

∑

p1=1

· · ·
n

∑

pk=1

(

T p1...pk

k
∏

ν=1

P iνpν

)

= T σ(i1)...σ(ik).

That is, the conjugate action of a permutation matrix on a k-tensor is what
one expects it to be. We have the following immediate observation.

Lemma 4.1 For any permutation µ on Nk, any permutation matrix P in
P n and any k-tensor T on Rn, we have

P (Diag µT )P T = Diag µ(PTP T ).

Proof. Let σ be the permutation on Nn corresponding to P . Fix any multi
index (i1...ikj1...jk

). We begin calculating the right-hand side entry corresponding
to that index. In the third equality below, we use the fact that σ is a one-
to-one map.

(

P (Diag µT )P T
)

i1...ik
j1...jk =

(

Diag µT
)

σ(i1)...σ(ik)
σ(j1)...σ(jk)

= T σ(i1)...σ(ik)δσ(i1)σ(jµ(1)) · · · δσ(ik)σ(jµ(k))

= T σ(i1)...σ(ik)δi1jµ(1) · · · δikjµ(k)

= (PTP T )i1...ikδi1jµ(1) · · · δikjµ(k)

=
(

Diag µ(PTP T )
)

i1...ik
j1...jk .
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A natural question to ask is whether the action defined above on the
space T k,n is associative.

Lemma 4.2 for any k-tensor, T , on Rn and any two orthogonal matrices
U , V in On we have

V (UTUT )V T = (V U)T (V U)T .

Proof. The proof is a direct calculation using the definitions. On one hand
we have

(V (UTUT )V T )i1...ik =

n
∑

p1=1

· · ·

n
∑

pk=1

(

(UTUT )p1...pk
k
∏

ν=1

V iνpν

)

=
n

∑

p1=1

· · ·
n

∑

pk=1

((

n
∑

l1=1

· · ·
n

∑

lk=1

T l1...lk

k
∏

µ=1

Upµlµ

)

k
∏

ν=1

V iνpν

)

.

On the other hand we have

((V U)T (V U)T )i1...ik =

n
∑

l1=1

· · ·

n
∑

lk=1

T l1...lk

k
∏

µ=1

(V U)iµlµ .

Using that

(V U)iµlµ =
n

∑

pµ=1

V iµpµUpµlµ ,

we get

k
∏

µ=1

(V U)iµlµ =

k
∏

µ=1

(

n
∑

pµ=1

V iµpµUpµlµ

)

=

n
∑

p1=1

· · ·

n
∑

pk=1

(

k
∏

µ=1

V iµpµUpµlµ

)

.

Putting everything together and observing that we can exchange the multiple
sum

∑n

p1=1 · · ·
∑n

pk=1 with the multiple sum
∑n

l1=1 · · ·
∑n

lk=1 we finish the
proof of the lemma. �

Let us see now that conjugation with an orthogonal matrix is orthogonal
transformation on T k,n. That is, it doesn’t change the norm of the tensor.
In other words, if we define

‖T‖ :=
√

〈T, T 〉,

then we have the following lemma.
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Lemma 4.3 Let T be a k-tensor on Rn, and U be any orthogonal matrix in
On, then

‖UTUT ‖ = ‖T‖.

Proof. Direct calculation of the quantity ‖UTUT ‖2 gives:

‖UTUT ‖2 = 〈UTUT , UTUT 〉

=

n,...,n
∑

i1,...,ik=1

(UTUT )i1...ik(UTUT )i1...ik

=

n,...,n
∑

i1,...,ik=1

(

n,...,n
∑

p1,...,pk=1

T p1...pkU i1p1 · · ·U ikpk

)(

n,...,n
∑

q1,...,qk=1

T q1...qkU i1q1 · · ·U ikqk

)

=

n,...,n
∑

p1,...,pk=1

n,...,n
∑

q1,...,qk=1

T p1...pkT q1...qk

(

n
∑

i1=1

U i1p1U i1q1

)

· · ·
(

n
∑

ik=1

U ikpkU ikqk

)

=

n,...,n
∑

p1,...,pk=1

n,...,n
∑

q1,...,qk=1

T p1...pkT q1...qkδp1q1 · · · δpkqk

=

n,...,n
∑

p1,...,pk=1

(T p1...pk)2

= ‖T‖2. �

After all these preparations, we can give the following generalization to
Equation (6). (When, k = 1 and σ = (1) we obtain exactly Equation (6).)

Theorem 4.4 For any k-tensor T , any matrices H1,...,Hk, any orthogonal
matrix U , and any permutation σ on Nk we have the identity

(9) 〈T, H̃1 ◦σ · · · ◦σ H̃k〉 =
(

U(Diag σT )UT
)

[H1, ..., Hk],

where H̃i = UTHiU , for all i = 1, 2, ..., k.

Proof. Since both sides are linear in each argument separately, it is enough
to show that the equality holds for k-tuples (Hi1j1 , ..., Hikjk) of basic matrices.

Using Lemma 2.2 and the fact that H̃
pq
ij = U ipU jq, we develop the left-

hand side of Equation (9):

〈T, H̃i1j1 ◦σ · · · ◦σ H̃ikjk〉 =

n,...,n
∑

p1,...,pk=1

T p1...pkH̃
p1pσ−1(1)

i1j1
· · · H̃

pkpσ−1(k)

ikjk
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=

n,...,n
∑

p1,...,pk=1

T p1...pkU i1p1U j1pσ−1(1) · · ·U ikpkU jkpσ−1(k) .

On the other hand, using the definitions we calculate that the right-hand
side is:

(U(Diag σT )UT )[Hi1j1, ..., Hikjk ] =

=

n,n
∑

p1,q1=1

· · ·

n,n
∑

pk,qk=1

(

(U(Diag σT )UT )
p1...pk
q1...qkH

p1q1
i1j1

· · ·Hpkqk
ikjk

)

= (U(Diag σT )UT )
i1...ik
j1...jk

=

n,n
∑

p1,q1=1

· · ·

n,n
∑

pk,qk=1

(

(Diag σT )
p1...pk
q1...qk

k
∏

ν=1

U iνpνU jνqν

)

=

n
∑

p1=1

· · ·

n
∑

pk=1

(

T p1...pk

k
∏

ν=1

U iνpνU
jνpσ−1(ν)

)

.

This shows that the both sides are equal. �

If we take the orthogonal matrix U to be the identity matrix we obtain
the following corollary.

Corollary 4.5 For any k-tensor T , any matrices H1,...,Hk, and any per-
mutation σ on Nk, we have the identity

(10) 〈T,H1 ◦σ ... ◦σ Hk〉 = (Diag σT )[H1, ..., Hk].

If in Corollary 4.5 we substitute the matrices H1,...,Hk with H̃1,...,H̃k and
we use Theorem 4.4, we obtain the next result.

Corollary 4.6 For any k-tensor T , orthogonal matrix U ∈ O(n), permuta-
tion σ on Nk, and any matrices H1,...,Hk we have the identity

(11) (Diag σT )[H̃1, ..., H̃k] =
(

U(Diag σT )UT
)

[H1, ..., Hk].

If in Corollary 4.5 we take σ to be the identity permutation, then we get
the next corollary, which generalizes Equation (5).
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Corollary 4.7 For any k-tensor T , any matricesH1,...,Hk we have the iden-
tity

(12) T [diagH1, ..., diagHk] = (Diag (id)T )[H1, ..., Hk].

We conclude this section with a second look at the first two derivatives
of spectral functions.

Example 4.8 As we saw in Example 3.4, the first derivative of the spectral
function f ◦ λ at the point X = V (Diag λ(X))V T , applied to the symmetric
matrix E is given by the formula

∇(f ◦ λ)(X)[E] = 〈∇f(µ), ◦
(1)
Ẽ〉,

where Ẽ = V TEV . This formula can be rewritten as

∇(f ◦ λ)(X)[E] = 〈V
(

Diag∇f(µ)
)

V T , E〉 = V
(

Diag∇f(µ)
)

V T [E].

This was essentially the original form of this formula given in Equation (1).

The usefulness of the new notation becomes more evident below.

Example 4.9 Let X be a symmetric matrix with ordered spectral decom-
position X = V (Diag λ(X))V T . Take two symmetric matrices E1 and E2

and let Ẽi = V TEiV for i = 1, 2. As we saw in Example 3.4, the Hessian
of the spectral function f ◦ λ at the point X = V (Diag λ(X))V T , applied to
the symmetric matrices E1 and E2 is given by the formula

∇2(f ◦ λ)(X)[E1, E2] = 〈∇2f(λ(X)), Ẽ1 ◦(1)(2) Ẽ2〉+ 〈A(λ(X)), Ẽ1 ◦(12) Ẽ2〉.

With the notation introduced in this section we can rewrite it as

∇2(f ◦ λ)(X)[E1, E2] =
(

V
(

Diag (1)(2)∇2f(λ(X))
)

V T
)

[E1, E2]

+
(

V
(

Diag (12)A(λ(X))
)

V T
)

[E1, E2].

Or, in other words

∇2(f ◦ λ)(X) = V
(

Diag (1)(2)∇2f(λ(X)) + Diag (12)A(λ(X))
)

V T .

Finally, we express Conjecture 3.1 in the new language.

19



Conjecture 4.1 The spectral function f ◦λ is k times (continuously) differ-
entiable at X if, and only if, f(x) is k times (continuously) differentiable at
the vector λ(X). Moreover, there are k-tensor valued maps Aσ : Rn → T k,n,
σ ∈ P k, such that

(13) ∇k(f ◦ λ)(X) = V
(

∑

σ∈P k

Diag σAσ(λ(X))
)

V T ,

where X = V (Diag λ(X))V T .

In [15] we will show that this conjecture holds for the derivatives of any
spectral function at a symmetric matrix X with distinct eigenvalues, as well
as for the derivatives of separable spectral functions at an arbitrary symmet-
ric matrix. (Separable spectral functions are those arising from symmetric
functions f(x) = g(x1) + · · · + g(xn) for some function g on a scalar ar-
gument.) There we also describe how, for every σ in P k, to compute the
operators Aσ, that depend only on the symmetric function f .

5 Comments on Conjecture 4.1

In this section we show that once Conjecture 4.1 is established for k = 1,
then for k ≥ 2 it is enough to prove it only in the case when the X = Diag x
for some x ∈ Rn with x1 ≥ · · · ≥ xn. We begin with a simple lemma. For
brevity, given a k-tensor, T , on Mn by T [H ] we denote the (k − 1)-tensor
T [·, ..., H ].

Lemma 5.1 Let T be any 2k-tensor on Rn, U ∈ On, and let H be any
matrix. Then, the following identity holds.

U(T [H̃ ])UT = (UTUT )[H ],

where H̃ = UTHU .

Proof. Since both sides are linear with respect to H , it is enough to prove
the identity only for basic matrices Hikjk . By the definition of conjugation,
and using the fact that H̃pq

ikjk
= U ikpU jkq we obtain

(

U(T [H̃ikjk ])U
T
)

i1...ik−1
j1...jk−1
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=

n,...,n
∑

ps,qs=1
s=1,...,k−1

(T [H̃ikjk ])
p1...pk−1
q1...qk−1U i1p1U j1q1 · · ·U ik−1pk−1U jk−1qk−1

=

n,...,n
∑

ps,qs=1
s=1,...,k

T
p1...pk
q1...qkU i1p1U j1q1 · · ·U ikpkU jkqk

= (UTUT )
i1...ik
j1...jk

=
(

(UTUT )[Hikjk ]
)

i1...ik−1
j1...jk−1. �

Suppose that Conjecture 4.1 holds for all derivatives of order less than k

and for the k-th derivative it holds only for ordered diagonal matrices. We
will show that the conjecture holds for the k-th derivative at an arbitrary
matrix. Indeed, let X = V (Diag λ(X))V T , let E be arbitrary symmetric
matrix and denote Ẽ = V TEV . Then

∇k−1F (X + E) = ∇k−1F
(

V (Diag λ(X) + Ẽ)V T
)

= V
(

∇k−1F (Diag λ(X) + Ẽ)
)

V T

= V
(

∇k−1F (Diag λ(X))
)

V T + V
(

∇kF (Diag λ(X))[Ẽ]
)

V T + o(‖E‖)

= ∇k−1F (X) +
(

V (∇kF (Diagλ(X)))V T
)

[E] + o(‖E‖).

This shows that∇k−1F is differentiable atX and that V (∇kF (Diag λ(X)))V T

is the k-th derivative of F at X .

Proposition 5.2 Suppose the k-th derivative of the spectral function F =
f ◦λ is given by Equation (13) for all X. If for every σ ∈ P k the tensor valued
map x ∈ Rn → Aσ(x) ∈ T k,n is continuous, then ∇kF (X) is continuous in
X, in other words F ∈ Ck.

Proof. Suppose that there is a sequence of symmetric matrices Xm ap-
proaching X and an ǫ > 0 such that

‖∇kF (Xm)−∇kF (X)‖ > ǫ, for all m.

Let Xm = Vm(Diag λ(Xm))V
T
m and suppose without loss of generality that

the orthogonal Vm approaches V . (Otherwise, take a subsequence.) Clearly,
we have X = V (Diag λ(X))V T , and by continuity of eigenvalues λ(Xm) ap-
proaches λ(X). Using the formula for the k-th derivative and the continuity
of the tensorial maps, the contradiction follows. �
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6 Equivalence relations on Nn

Suppose that ∼ is an equivalence relation on the integers Nn and denote by
I1, I2,...,Ir the equivalence classes determined by ∼. The equivalence classes
will be also called blocks. One may assume that the blocks are numbered so
that I1 contains the integer 1, I2 contains that smallest integer not in I1, I3
contains the smallest integer not in I1 ∪ I2, and so on.

In this short section, we will be interested in tensors having the following
structure.

Definition 6.1 We say that a tensor T ∈ T k,n is block-constant (with respect
to the equivalence relation ∼) if

T i1...ik = T j1...jk , whenever is ∼ js for all s = 1, 2, ..., k.

Let µ be an arbitrary but fixed permutation in P k. We introduce the
linear operator P̃µ on the space T k,n, generalizing the operator Pµ defined in
Section 3. The definition is element-wise, as follows:

(

P̃µ(T )
)i1...ik :=

{

T i1...ik , if is ∼ iµ(s) ∀s ∈ Nk,

0, otherwise.

Clearly, when the equivalence relation ∼ is such that i ∼ j if, and only
if, i = j, then P̃µ becomes equal to the previously defined Pµ. We would like
to conclude this work with a generalization of Theorem 3.1.

Theorem 6.2 Let σ1, σ2, and µ be three permutations in P k. Then for
any block-constant matrices H1,...,Hk, and any tensor T in T k,n we have the
identity:

〈P̃µ(T ), H1 ◦σ1 · · · ◦σ1 Hk〉 = 〈P̃µ(T ), H1 ◦σ2 · · · ◦σ2 Hk〉

if, and only if, µ � σ−1
2 ◦ σ1.

Proof. The proof is completely analogous to the one of Theorem 3.1.
Consider a basis for the space of block constant matrices {Hpq : 1 ≤ p, q ≤ n}
such that H ij

pq is equal to one, if i ∼ j, and zero otherwise. Then all we have
to change in the proof of Theorem 3.1 is the “=” signs between indexes with
“∼” signs and all “ 6=” signs with “≁”. �
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