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ASYMPTOTIC EXPANSION OF A MULTISCALE NUMERICAL
SCHEME FOR COMPRESSIBLE MULTIPHASE FLOW

REMI ABGRALL* AND VINCENT PERRIER'

Abstract. The simulation of compressible multiphase problems is a difficult task for mod-
elization and mathematical reasons. Here, thanks to a probabilistic multiscale interpretation of
multiphase flows, we construct a numerical scheme that provides a solution to these difficulties.
Three types of terms can be identified in the scheme in addition to the temporal term. One is a
conservative term, the second one plays the role of a nonconservative term that is related to inter-
facial quantities, and the last one is a relaxation term that is associated with acoustic phenomena.
The key feature of the scheme is that it is locally conservative, contrarily to many other schemes
devoted to compressible multiphase problems. In many physical situations, it is reasonable to assume
that the relaxation is instantaneous. We present an asymptotic expansion of the scheme that keeps
the local conservation properties of the original scheme. The asymptotic expansion relies on the
understanding of an equilibrium variety. Its structure depends, in principle, on the Riemann solver.
We show that it is not the case for several standard solvers, and hence this variety is characterized
by the local pressure and velocity of the flow. Several numerical test cases are presented in order to
demonstrate the potential of this technique.

1. Introduction. In [10], we have considered the following model for compress-
ible multiphase flows:

(1.1)

(k) F
agt fup - Va® = p(P® — PV,
a(a® k)
% +div(a®p® u®) =0,
(k) (k) (k)
% +div (a®p®Fu® @ u®) + V(@™ Pr) = Pva®
+ )\(u(E) - u(k))a
A (a®) pk) pk)
% +div (a® (pME® + pR))u®) = Pruy - Vo®

_Npl(p(_k) — ph)
+ Auz(u®) — ),

In (1.1), P is the pressure of phase X, and the total energy is related to the
pressure by E®) = ¢®)(pk) pk)) 4 %u(k)Q where the internal energy is a con-
cave function of its arguments. We define k = 1 (resp., = 2) when k = 2 (resp., k = 1).
The interface velocity and pressure u; and P; are modeled, and this is one of the dif-
ficult points; see, e.g., Drew and Passman [4]. The variables p and X are relaxation
parameters that depend on the interfacial area.

With respect to standard approaches, the seven equation model (1.1) has several
original features and properties. First, (1.1) is hyperbolic whatever the choice of the
interface parameters. This is in contrast with models that are only conditionally
hyperbolic such as in [12, 5]. From the numerical point of view, the interesting
consequence is that one may adapt modern standard techniques for the approximation
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of hyperbolic problems. Another interesting feature is the occurrence of the relaxation
parameters p and A that can be interpreted as a way to introduce the local flow
topology.

However, the model (1.1) leads to several difficult issues:

o A modelization problem. How can we define the interface velocity and pres-
sure? From a rigorous point of view, the situation is rather clear only when
A — 400 and g — +00, in which case we have pressure and velocity equilib-
rium. This corresponds to interface problems or problems where the phases
are intimately mixed.

e A mathematical problem. The system cannot be cast into conservative form,
which induces difficulties for the definition of a shock and for the derivation
of a numerical scheme. This point is in contradiction with the initial goal,
the use of standard hyperbolic techniques for the simulation of multiphase
flow problems.

In the limit A, u — 400, while /A remains bounded, Murrone and Guillard [8]
have obtained by asymptotic expansion the following model:

PO pBrg(®)? _ (k) g (k)
. (k) = i
ot tu-Va T pk)gk)? +p<i=)a<2=)2 div u,
) )
() p®)
i %) )(K) 1) =
(1.2) 5 + div (a p u) 0,
0
—%?2+mv@u®u)+VP =0,
0(pE
J%l+dm(@E+Pm) =0,

where p and F are the mixture density and the mixture energy defined by

p=a® )M 4 o,

a(l)p(l)E(l) _|_ a(Q)p(Q)E(Q)
p

and a®) is the isentropic sound velocity of each phase defined by

2 opk)
a9 — (W> .
P ) k)

This system was obtained by developing the different pressures and velocities of (1.1)
around the equilibrium variables P and u. In what follows, we often denote this model
as the “five equations model.”

This system can be shown to be unconditionally hyperbolic. Unfortunately, a
nonconservative product appears one more time in the volume of fluid equation. This
term can be interpreted as follows: when a shock enters a mixture zone, the volume
fraction must change because the shock speed is different in the two phases. This term
is proportional to the divergence of the velocity and does not play any role in pure
interface problems. In contrast, this term does not vanish in general across a shock
wave, and it induces a change in volume. However, the difficulty, from a mathematical
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point of view, is that this term has no precise meaning in the case where u and

POMOESOMON

P a®?2 H(R) g (k)2
am T Tom

are simultaneously discontinuous. In that case, it is difficult to derive a numerical
scheme.

From Murrone and Guillard analysis, it is clear that something has to be added
in the volume of fluid equation to take into account the volume changes across non-
linear waves. In the present contribution, we propose to answer this problem by
starting with the scheme of [2] and then to derive an asymptotic expansion from the
discrete scheme, instead of the system of PDE (1.1). The scheme of [2], which is well
adapted to approximate multiphase problems, relies on a multiscale representation
of the flow. We recall the fact that (1.1) is obtained from an ensemble average of
realization; for any realization we have well-localized interfaces between phases, with
possibly different scales for bubbles. From the numerical point of view, we write a
scheme for each realization, using standard assumptions in the finite volume context.
This scheme makes use of one’s favorite Riemann solver. Here we consider Godunov,
HLL type, acoustic, and relaxation solvers. We take into account the various scales
by dividing cells into subcells being filled by any of the two phases. Then we make
an ensemble average of the different schemes. This avoids defining precisely interface
variables (even though a limit model can be derived), and this also solves the problem
of nonconservative products (since the scheme for each realization is obtained from
conservation principles). We can identify terms that correspond to relaxation terms
as in (1.1); they are the consequence of acoustic effects. The last step, writing the
scheme for (1.2), is obtained by doing an asymptotic expansion of the scheme of [2].

This paper is organized as follows. We first recall in detail the results of [2]
with a particular emphasis on the relaxation terms. This is the topic of section 2.
The structure of the equilibrium variety for several numerical schemes is studied in
section 3. Section 4 is devoted to the derivation of the asymptotic scheme of (1.2).
Numerical illustrations are provided in section 5.

2. A numerical scheme for the seven equations model. The derivation
of the scheme uses the ensemble averaging ideas of Drew and Passman [4] combined
with the discretization principle introduced by Godunov. In [4], the nonconservative
and the modelization terms appear after an ensemble average. The idea of [2] is to
begin the derivation of the numerical scheme before the averaging procedure. We
describe the scheme in the case of the Godunov solver. All this can easily be adapted
to other solvers. We also note that the different terms of (2.3) can be approximated
with different solvers; the only constraint is conservation.

At each time step, the flow is described in each computational cell by the average

W; = (@, a0, a0 pDuD, ol oD ED 0 0@ D 4@ ,@,0) o @ p)

AR g i
We consider a family of random subdivision of the cell
Cj = [wj—1/2, w4172 = |k G-

k

In each of the subcells |, £x+1[, we randomly set the flow variables (see Figure 1)

U = (0o, V) or U = (60 o0l 0D
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Fic. 1. Evolution of each phase after a random subdivision of the cell C; between time t and t + s.

The only constraint on the random subdivision is that it must be consistent with the
volume fraction of each phase. Therefore, if X is the indicator function of 3, the
average S(fwﬁll/2 Xdz) must precisely be ag )(xﬁ_l/g — T 1/2).

J

In the cell C;, the phase ¥, satisfies
ou o
X dxdt = 0.
/c ( o * 833)

N(“’) bt N@=1 g4

(2.1) X d + Z/ X =0,
7=0

J= 0 &

Then

and the characteristic function X obeys

N(w)—1

t+s 9 Ei+1
Z/ —dxdt—i— Z/ / o—dxdt—O

where o is the local interface velocity. We denote by Apax the maximum wave speed
in the internal Riemann problems. Under the CFL condition

we can integrate (2.1) to get

N(w)—1

(2.2) Z/ /&“ Y et + Z/ /;HlX—dxdt—O

Equation (2.2) can be split into three parts: interaction with the left cell (2.3a),
interaction with the right cell (2.3c), and internal interactions (2.3b):

ouU o
(2.3a) ~/AD’DX ( = 8x> dz dt
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N(w)—1 &+s’o(UL U F
(2.3b) + Z / / X <88—[; + g_x) dzds’

&+s'0(ULTUY)

oU  OF
. — — - .
(2.3¢) +/03le ( 5+ ax) dzdt =0

We study the three terms of (2.3).
e Boundary terms. For the term (2.3a), a straightforward calculation provides

ou OF 0XU OJOXF
X =+ 5 ddtZ/ < + )d dt
/AD’D <8t 873) v AD'D ot ox
0X 0X
- S 4F
/AD/D<U6% +F(U) ax)d at

II'17%+€(7 (UJr U; )
= / X (z,t 4 s) U(z,t + s)dz
T, 1

i3

—sX (xi_;,ﬁ) F (U’f_l)
i—1 il

+ sFle9 (UL, U;) [X] i—o-

Doing the same for the right term (2.3c), we find

s1tso” (U UL,
L/ X(ﬁiﬁﬁyma:/*z X (0t + 5) Ut + s)da
BCC' (% 8$ T

H»%

X (w40, 1) F (U,
2

+sF9 (UF, Upy) [X],_no -

e Internal terms (2.3b). A similar algebra provides

Siy1t+s’ (T Ul UHI) F
/ / X (QU + 0 ) dxds’
&+’ (7 U‘ 1 U’ ot ox
=4mﬂW@mWUHmAW%WﬂWD
&r1+so (UL U
+/ X (z,t+ s) U(x,t + s)dx
g+so(UIHUY)
Sit1

- X(z,t)U(z,t)dx.
3

By summing the different terms and taking the limit when s — 0, we obtain the
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semidiscrete scheme

oL /”7X(x,t)U(x,t)dx

o\ a2l
(5 ) () () (0,)
(2.4) )
— Aix ]:zi;) ([X]J Flag (U{,U{‘l) _ [X]j—l Flag (Ug—l’Ug_g))
(I P (U2, 07) + Xy B (07, U;)).

We may assume that two adjacent subcells contains different phases,' so that the sum
in (2.4) can be rewritten as

Ni (1x1, Fo0 (07,09 7) — [x],_ B (U7, 077))
v, (1 (02, 0) B (00 02)).

2.1. Averaging procedure. It remains to take the mathematical expectancy
of the semidiscrete scheme (2.4). For the first term, we have

o (1 /+ a(aiV Uty

Then the scheme can be rewritten as

(2.5)
My
gt ag (E (5 (et F (U2)) ~2 (3 () P (U14))
= (Fres (U, 0lV) - ples (U, Ul

+Aia: (5 ([X]p) Fleo (US,,U0;7) + & <[X]N(o_;)) Flag (Uj,U;H)).

Here we have introduced the notation

which can be interpreted as the number of interfaces per cell.?

1Otherwise, if two neighboring cells contain the same phase, we gather them: this is not an extra
assumption.

2In the multidimensional case, more than one relaxation parameter can be introduced. Typically,
the same arguments show that there is one relaxation parameter associated with the pressure, two for
the velocity in two dimensions, and three in three dimensions. These relaxation parameters depend
on thermodynamical parameters, such as the acoustic impedance, but also on the interfacial area
between the faces. More details can be found in [1].
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TABLE 1
Fluz indicator for the Eulerian flux where we denote ﬁiipl) = sign (a (Uf, Uf+1)).
2

Flow patterns | Left and right states | Flux indicator
S O a2))"
1 — &2 UZ ) Ui+1 :61+%
-5 v ul) 1
+
T — 5 v@® gL _13(2’1)
7 0 a1 i+%
S — 5y u®, u2), 0

Similarly we get, for Xo,

(2.6)

A e (3 (gt P (U2)) =€ (5 (g ) (01,))
= =i (Fos (U, U0) - Fres (U, UP))

1

o (£ X F0 (UL, U7) + € (X ) B0 (UF, URL)).

In (2.5) and (2.6), the expected fluxes S(X(xii%,tﬂF(UL_l)), & ([X]y)

Ff (Uf,,U;), and 5([X]N(w))Fe“9 (Uf,U;,,) are evaluated by a close exami-
nation of each possible case.

In the case of £(X (211, t+)F(U:+l)), and specializing on the right interface of
)

the cell C;, four cases may happen:

either fluid ¥, is on the left and fluid ¥, is on the right
or fluid ¥; is on the left and fluid X5 is on the right
or fluid X5 is on the left and fluid X5 is on the right
or fluid X5 is on the left and fluid 37 is on the right.

Depending on which case occurs, we may or may not take into account the fluxes.
Four fluxes are evaluated (and summarized in Table 1); they are flagged when needed
following the procedure we describe now. Of course, a similar situation happens on
the left interface. Then if we define

Pray (51,50 =P (X (a7,,) = 1and X (s7,,) = 1),
Prvy (2.5 = P (X (e, ) =0 and X (a7, ) =),
Proy (51,50 = P (X (a7,,) = 1and X (s7,,) =0),
Prvy (52,50 =P (X (a7, ) = 0and X (s7,,) = 1),
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Flux indicator for the Lagrangian flux where we denote Biipl) = sign ( (U UH_l))
2

TABLE 2

Flow patterns Lagrangian flux Flux indicator
- | Pl (0P uf) (ﬁfﬁ))
2
si-si | Flas (o uf)) 0
S, _ 3 Flas (U@ yO | _ (7 @1)) -
2 1 ( 1+1> ﬁz+%
Yo — 3o Flag ( (2) Ul(i)l) 0

we get

g (X (33#%775:{) F (U:Jr%)) = Pi+% (21,5 F (U(l) USA)
+ Piyy (31,%2) (ﬁ(l 2)) F (U(l) UE%)

Py () (—020) R (U2, U,

Similarly, in the case of the Lagrangian term of the right interface, the four cases
are summarized in Table 2; a similar situation occurs at the left interface. We get for
the right interface

& ([X]N(w)) Flag (UN(U-’) U7+1) Pi+% (31, %0) (6(1 2)) Flag (U(l) Uv(i)l)

_ PiJr% (2, %1) (ﬁfié)) Ftag (U(Q) Ug-li-)l)
and for the left one

€ ([X]o) F9 (UF,, UY) = ~P;_s (1, %) (5(1’2)) Fies (U, uf?))

+P; 1 (227 1) (5(2 1)) Flag (Uz(i)hU?(:l)) )

These expressions are given for the phase ;. Similar expressions can be given for
35: the variable X is changed into 1 — X, and the phase index for ¥; (resp., 32) is
changed into the one for ¥y (resp., ¥1).

2.2. A numerical scheme. As detailed in [2], a natural choice for the proba-
bility is



A MULTISCALE NUMERICAL SCHEME FOR MULTIPHASE FLOW 9

This leads to the following numerical scheme:

0 (a(l)U(l)) g (XF)H% -£ (XF)i—%
ot + Az

= L (gt e (Fras?X
Az O i,bound Ox i,relax

(2.7)

with
£(XF),,, =max (o) —afl),0) (502) F (UM, UZ)
—|—m1n( z+1) (U ) Ug}rl)

e (o —el8,0) (429) B (0,083,

0o 0X 1 1 1,2)\ T ma 1 2
& (Fe 9%>Ab ) =max (Oél(' ) §+)1a0) (ﬂl(Jr%)) Flag (UE ),U§+)1)
e (ol — a2, 0) (8D Feer (0, U
2
—max( (1) B agl)’o) (ﬂ(m)) Flag (Ugl_)l,UEQ))
2

b () — a,0) (827 s (U2, U0,

and

£ (Ffag it ) = (B (U, ulV) — Fo (U, u?)).
T/ i relax

Setting F' = 0 and U = 1 leads to the following numerical semidiscrete scheme for the
volume fraction:

doiV 1
XN _ L [max (al(.l) — ozl(.}r)l, 0)

dt¢ Az

s (o = of?.0) (427 (02,0
+ )\i{u* (UEQ),UE”) W (Ugl),UEQ)) }

In practical applications, the discretization is achieved via a splitting method. First,
we integrate (with some abuse of notation?)
(2.9)

X
1y)+i/2 M\ 5(Ffa9 )
(Wi ) —(Wi ) E(XF)i s —E(XF),_, 97 ), hound

At + Az = Az

3This is because (2.8) is not written as a difference of flux plus a relaxation term.
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and then a relaxation step

(W“))”“ (Wf”)"H/Q ox
U

(2.10)

The flux are computed at time t,. The relaxation step is carried out implicitly.

2.3. Extension to second order. The scheme (2.9)—(2.10) makes use of several
terms (the conservative terms, the boundary terms, and the relaxation terms) that
do not play the same role in the derivation. The “conservative” terms are standard,
so that any standard high order extension will do. The “relaxation” and “boundary”
terms have the same status: they are the agglomeration of fluxes between different
phases for which the high order procedure is not immediate.

In order to construct a high order extension of the scheme (2.9)-(2.10), the pro-
cedure described in [2] is considered:

1. We extrapolate the physical variables (a(g) ul®, p ) { = 1,2, using the
MUSCL method. Here, the minmod or van Leer —van Albada limiters are
used.

2. We subdivide the cell C; into N regular subcells (N arbitrary) denoted by
[y,yi+1] (1 <1 < N — 1) and average in each subcell the reconstructed
variables.

3. Each subcell is randomly subdivided as above.

4. Then we gather the contribution of each subsub-cell and let N — +oc.

In the following, v (resp., U( )1/2 ) represents the variable U(®) at the cell

i+1/2,0
interface ;41,2 (resp., z;_1/2) on the left (resp., right) after MUSCL extrapolation.

If f is any of the extrapolated variables, d;f represents its limited slope in C;. The

jump in a(® at Y12 18 Aa® (Yi41/2)-
The nonconservative terms

g (Froa?X) — g (pras?X g (pas?X
Ox i Ox i,bound Ox i,relax

(1,2) a (1) (2)
—(B7)) Pigrya(S1, Ba)Fa(UY), 5 U, )
(2,1) a (2) (1)
(5z+1/2) Pis1/2(X2, El)Fe (U, i+1/2,1 Uz+1/2 r)
2 a 2
(ﬁfll}g) i—1/2(31, o) F* g(U( )1/21,U§ )1/2 -

(2,1) a (2) 1)
+(@‘4/2) 731'71/2(22721)1?8 g(Uiq/zl’Uz 1/2’r)

sum up to

N-1

1) + > max (o, Aa“)(ylH/Q))F“g(U;Q) (Wis1/2), U (Wis1/2))
. =1

N-1

= 3 (0,80 1720 ) PO (1112, O 1 2)

=1
N-1

+ Z A(yl+1/2) (Feag(U;Q) (yl+1/2)7 Ugl)(ym/z))
=1

N-1
_ Z Ffag(Ugl)(yz+1/2)7 Uéz) (yz+1/2))) ’
I=1
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where

A0‘(1)(Z/l+1/2) = (51'0‘(1))(211“ — Y1)

We do not need any additional 3 terms because we account for all the internal cells

in i1/, Tig1/2]
The third and fourth terms of the above formula converge, when N — 400, to

Tit1/2
([ a0 ), 0 )iy ) max (0,600
Ti—1/2

Tit1/2
([ R ), U )y ) max(0.5:0 ).

Ti-1/2

(2.12)

A similar formula is obtained for the phase 3. The integrals in (2.12) are evaluated
via the midpoint formula (since second order accuracy is sought).

Similarly, the relaxation terms corresponding to a linear reconstruction of the
data can be approximated, thanks to the same interpretation in terms of Riemann
sums and to the midpoint rule by

(213) A7 (FZGQ(UEQ)’ Ugl)) _ Féag (Ugl) , U§2))) .

We finally obtain a second order approximation of the nonconservative terms by

0X
la (1 2) la, (1) (2)
AxS(F (e ) ( 1+1/2) Pit1/2(E1,82)F g(Uz+1/2l’Uz+1/2T)
2,1 a 2 1
+ (8 1(+1)2) Pis1/2(S2, 51)F* g(Ung)l/zz’Ung)l/2 »)
(1 2) tag (y7(D) (2)
( i— 1/2) i— 1/2 (X1, %2)F g(Ul 1/2l’Uz 1/2’r)
(2 1) tag (y7(2) 1)
(2.14) + (6 1/2) i-1/2(82, BOF(UT 00U 0 )
+x (FeoUu®, ul) - Fes Ul ul))

+ max <0, 5a§1)> FZ“-"(UEQ) , Ugl))
— max <07 50[7(2)) Flag (Uz(l) : UEQ)),

@ _ ,® (1)
Qii1/00 ~ X100

of a and o® in the cell C;.

Hence, the second order extension of the scheme can be geometrically interpreted
by adding an additional interface inside the cell C;; this is the meaning of last two
terms of (2.14).

@ _ ,2 ()

and da; Qiv1/20 — Y12,

where doy; are the limited slope

2.4. Extension to other solvers. In (2.7), the numerical flux F that we use
at the microscopic level is obtained thanks to an approximate Riemann solver for
which it is possible to define a contact speed. The contact speed between the left
state Uy, and the right state Ug is denoted by o(Ur,Ug). We also denote by UfR
the left and right states surrounding the approximate contact discontinuity, similarly
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contact
o(UL,Ur)

Shock/fan /l

Shock/fan

Fic. 2. Structure of the Riemann problem.

as in Figure 2 for the Godunov solver. This permits us to define the Lagrangian flux
F9(UL,Ug) = F(U}R)—o(UL,Up)U} = F(U; ) —0(Ur,Ur)U . Last, we define
ﬂi(i’lq/)g = sign(o (Ui(p)v Ui(-;q-)ﬂ)-

All the calculations have been performed for the Godunov scheme but can be
extended to more general fluxes. The key ingredients of the derivation are, besides
the randomization, average procedures, and estimation of the various coefficients, the
use of a Riemann solver for which it is possible to define a contact discontinuity
speed o(U, V). This property is needed because we must define a Lagrangian flux,
F9(U,V) = F(U,V) — o(U,V)U*. This Lagrangian flux has to be consistent, as
well as the base flux F(U,V).

Even more, the choice of the base flux F and the Lagrangian flux F¢9 may be
independent: we do not really need a relation of the type F*9 = [* — ocU*; see [2]
for more details.

3. Asymptotic model for the numerical scheme. To get the numerical
scheme for the five equations model (1.2), we propose following a similar technique as
in [8], where the continuous model was derived via an asymptotic expansion of (1.1).
The very difference is that we will do it at a discrete level. If we set g; = %, the
discrete scheme for the seven equations model can be formally rewritten as

oW G R(W)

o Az e

(3.1)

and we assume that ¢; is large.
The first step to get the asymptotic scheme is to determine the equilibrium set

{W such that R(W) =0} .
From the previous section, this set is defined as

(3.2)
V={W=(a®,aMUD a® oPU?) such that F9(W,, Wy) = F9(Wo, Wy)}.
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Then the limit model is obtained by developing the variables around the equilibrium
set. We assume that V can be parametrized by a mapping M : u— M (u) (we prove
this fact later) and that R(W) has an expansion of the form

R(W) = R(M(u)) 4+ eR (M (u))V + o(e).
Thus (3.1) becomes

ou G ,
e + — =R'(M 1).
dM, 8t+Ax R (M(u))V +0(1)
To get the reduced model, it remains to multiply by the projection P onto the kernel
of R'(M(u)) in the direction of dM,. This gives the model

Ju G
3.3 PdMy— +P — =0.
(3:3) ot T Ax
The aim of this section is to show that for several classical solvers, P does not
depend on the solver. We have to show two properties:

1. Vis equal to
(3.4)  {(aM,aMUD o2 oPUP) such that u; =uy and P, = Py}

as in the continuous case.
2. The Jacobian matrix of F9(UM U®) - pleg(U?) UWM) in primitive vari-

ables is
0 0 0 =X 00 0 N
0 0 0 0 0 0 0 0
0 0 ! 0 00 —u 0
. 0 0 pu NP 0 0 —pu —NP
0 0 0 0 0 0 0 0
0 0 —u 0 0 0 w 0
0 0 —pu NP 0 0 pu MNP

as in the continuous case.
In the following, we denote by a subscript 12 (resp., 21) the intermediate states
obtained by solving an elementary Riemann problem before averaging with left and
right states given by the phase X7 (resp., X2) on the left and X5 (resp., X1) on the
right.

3.1. Case of the acoustic solver. Given two states, left and right, described
by the physical variables, (pr,,ur, Pr) for the left state and (pgr, ugr, Pr) for the right
state, the Lagrangian flux for the acoustic solver is defined as (0, P*, P*u*) with the
pressure and the velocity of the intermediate state(x) given by (see, e.g., [9])

_ ZrPpL+ ZyPr+ Z1LZR (ur — uR)

P*
(36) Zr+ 721, ’
’ u*_ZRUR+ZLUL+PL_PR
Zp+ 2L '

In (3.6), Z1,r = pr,rGL, R IS the acoustic impedance. Therefore, using the above men-
tioned conventions, and using the fact that within the cell we consider the left/right
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states are defined from the conservative variables U for ¥; and U® for X5, we have

Z\Py + Zo Py + Z1Z5 (u2 — uy) _ ZyPy+ ZoPy + Z1 Zp (ug — uz)

PX = P
12 Zy+ 2y P Zy + Zs ’
N :Z1u1+Z2u2+P2—P1 u :Z1U1+Z2u2+P1—P2
" Zy + 7> ’ . Zy + 7>
so that
2
Uiy —usy = 7Z1+Zz (P — P),
L s
Pry — P3y :721_'_22 (Ul—uz)-

We immediately see that if uj, —u3; = 0 and P — P3; = 0, we have u; = ug and
P, =P

Let us evaluate now the Jacobian matrix of Ffd(U™M) U2) — Fleg(U2) M)
with respect to the primitive variable on V. We have

F@ag(U(1)7 U(2)) - ang(U@)a U(l)) = (07 P1*2 - P2*17 PfQUTQ - P;lugl)a

and we have to evaluate the partial derivative of this vector with respect to v = p, u,
and P. Using the fact that the considered state lies in V), a straightforward calculation
gives (with u =uy = ug and P = P; = D)

oPh—Ph) 2 (0P 0P
Ov T Zy 4+ Za \ Qv ov )’
O(Piyuty — P3yus,) 2717 " or, OR, 2 p Ouy  Oug
ov 71+ Zs ov ov Z1+ Zy ov ov
so that we get (3.5) with
2 27179
A=t d - a2
Zy + Zsy o a Z1+ Zy

3.2. Case of the exact solver. For the exact solver, the Lagrangian flux can be
written as (0, P*, P*u*), where P* and u* are the intermediate velocity and pressure
when the Riemann problem is solved exactly. Equation (3.4) can be rewritten as

(0, Ply, Piuyy) = (0, Pyy, P3yujy)
so that
u* = uy = uly and P* =P} = Pj.

Thus in the (u, P) variables, the point (u*, P*) lies on the 1-wave curve coming from
the state (u1, P1) and on the 3-wave curve coming from the state (w1, P;). Therefore
u* = uy and P* = Pj, because the 1-wave curve is decreasing and the 3-wave curve is
increasing: this is a consequence of the convexity of the equation of state [7, page 89].
The same argument holds for the state 2, so that u* = us and P* = P, so that
uy = ug and P; = Ps.

Now we estimate the Jacobian matrix. Indeed, we find exactly the same Jaco-
bian matrix as for the acoustic solver because the relations (3.6) are obtained by a
linearization in the (u, P) variables of the true Riemann invariants at (u = u; =
’U,Q,P:P1:P2).
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3.3. Case of the HLLC solver. The HLLC solver is based on the choice of
two wave velocities S and S*. The intermediate states are calculated by writing the
Rankine-Hugoniot relations across these waves; see [11, page 293] for more details.
With this solver, the intermediates states are given by

1
SK—UK u*
*
pr (ST —uk)

with K = L or R. The Lagrangian flux is then

0
Flog = PK (u*—uK) (SL—UL)+PL
(pK (u* — ug) (SL — uL) + PL) u*

Thus F{%9 and F5}¢ are given by the following expressions:

0
(3.7a) F5 = p1 (ufy —u1) (Sfy —wr) + P1
(p1 (uig — 1) (ST —u1) + Pr) ufy

(3.7b) = p2 (ufy — u2) (Sfh — uz) + P,
(p2 (ufy — u2) (S1h — u2) + ) uf,

(3.7¢) Fii9 = p1 (uby —ug) (S35 —w) + Py

(3.7d) = pa (uby —uz2) (833 —u2) + P

The intermediate velocity is given by

ot = Pr — Pr, + pLuL(SL — uL) — pRuR(SR — UR)
pr(St —wur) — pr(SE — ugr) '

For more convenience, we denote by

ZL = pL(uL — SL),
ZR = pR(SR — UR).

(3.8)

Then (3.8) becomes

*

_ Py, —PR+ZRUR+ ZLUL
- ZR 4 7k '

Here we have used the same notation convention as in section 3.1 for the velocity
and pressure. The subscripts 1 and 2 in Z are intended to highlight the fact that the
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definition of Z depends not only on the left and right state through p and « but also on
the ordering of the waves through the speed S. For example, Z{2 is evaluated with U M
on the left and U on the right and corresponds to the leftmost wave S. Thus we have

PQ—P1+2121U1+Z221UQ Pl—P2—|—le2u1—|—Z212uQ

* ok — —
12 T 72 + 731 7124 712
2121 + 2221 + 2112 + Z212 (P P ) N Z1212212 _ Z2212112 "
= 2 — 141 1
2+ 222 + 23 (27 + 2321 + 25
I iy i
(2 + 232+ 23)
= A(Ul—U2)+B(P2—P1)
with
(3.92) 4= A2 -4
' (281 + Z3')(Z1% + Z5%)
5.9b) p B+ 24 2P

@+ 2+ 27)

Let us examine the difference between the second component of (3.7a) and (3.7c),
ie., P}y — P3. We need to evaluate u* — uy, and u* — ug. From (3.8), we have

PL —PR+ZL(UL —'LLR)

R = ZR 1 7L ’
N Pr, — Pp+ Z%(ug — ur)
U —uy = .
ZR 4 ZE
This leads to
P, —-P; = 2212(@612 —uz) + 2221(1‘51 — uz)

P — P+ Z112('LL1 — 'LLQ)
Z112 _|_2212

P, — P +2121(U1 —UQ)

— 212
2 2121 I Z221

+ 73

21 712 21 712
= 2?1 2221_ 2122 & 12 (P — P)
(Z7' + Z3°)(Z1% + Z3?)

212Z12 Z21221
122 - T 212 - o7 ) (w1 —u2)
7%+ Zs Z7 + Z;

= C(u1 — UQ) - A(P2 — Pl)
with

12 712 21 721
ZQ Zl ZQ Zl

1 = .
(3.10) C=zeizE Ty

Clearly, the system

* *
{ ujy —u3y =0,

* *

Pry —P3; =0
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is equivalent to

{ A(u1 —'LLQ) +B(P2 —Pl):(),
C('LL1 —UQ) —A(PQ —Pl):(),

which has a determinant —A2? — BC.

For the system to be invertible, it is sufficient that B and C be strictly positive.
This is true in particular if all the Z are strictly positive. We show later in this section
and for several choices of speeds Sy, r that Z > 0, and thus the system is invertible.

Assume the system is invertible: the equilibrium set is (3.4).

It remains to evaluate the Jacobian matrix along the equilibrium set V. This is
done as in section 3.1. For example, if we compute the derivative of P, — P53 with
respect to v = p, u, or P, we have

o(P}, — P 0A 0B o(P, — P
( 12 21) :—(Pl—P2)+—(U1—U2)+A ( 1 2)

8(U1 — UQ)
Ov Ov Ov +B '

ov ov

If the variables belong to V, we have

orh, —r3) 0P —Ps) O(uy — ug)
Ov =4 Ov +B Ov '

Therefore, if A =0 in the equilibrium set, we get the result for P, — P3;. The same
result holds for uj, — u3;. Thus, the only thing left is to show that A is zero along
(3.4).
The remainder of this section is devoted to showing, for several classical choices
of speeds S [11], that
1. Z>0,
2. A defined in (3.9b) satisfies A = 0 along V.

3.3.1. Case where ST = u;, — ar, and S® = ugr + ag. We have

Z{%=pias,
Z3? = paas,
Z3 = praq,
Z3' = paas,

and we see immediately that the Z’s are all strictly positive and that, directly from
(3.9b), A =0 along V.

3.3.2. Case where S = min(ur —ar,ur —ar) and S® = max
(ur + ar,ur + ar). In this case, it is obvious that the Z’s are strictly positive
so that the equilibrium set is (3.4). Along this equilibrium set, we denote by a the
maximum sound speed and u the velocity of each fluid. We have

Z1* = p1a,
Z3* = paa,
Zi' = pa,
73" = pat;

therefore, A = 0 along the equilibrium set.
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3.3.3. Case where S = @& — @ and S® = @ + a, where % is the Roe
average? of x. The equation which gives the intermediate velocity no longer holds
because we are not sure that the denominator is nonzero. Nevertheless, we still can
use the equations (3.7). The equality of the second and third component of (3.7a)
and (3.7b) gives immediately

*x %
Ujp = Ugy,

and we denote by u* this velocity. Moreover, by abstracting the second component
of (3.7c) and the second component of (3.7a), and by doing the same algebra with
(3.7b) and (3.7d), we get

0,

(3.11) 0

(w* = us) (St — S31)
(u* —u1) (S5 — Sb)

Here the wave velocities are symmetric in u; and ug, so that ST = Sk = ST and
Sk = SE = SE. We have SE — SF = —2a # 0, which leads to

U = ug = u.

Last, the equality of the second component of (3.7a) and (3.7b) provides P, = P;.
Thus, the equilibrium set is once more (3.4). Along the equilibrium set, we have

Z1* = p1a,
Z3* = paa,
Z3' = pia,
Z3' = pa,

where a is the Roe average of a; and as, so that Z’s are strictly positive, and we can
use the formula (3.9a) for A which gives immediately A =0 on V.

3.3.4. Case of pressure—velocity-based wave speed estimates. A different
approach, that works for perfect gases only, consists in first estimating the pressure
P* and u* and then derivating the estimates of S and ST. If we suppose that we
have estimated P* and u*, then we choose the following wave speeds:

St =wup —arqr, S* = ug + arqr,
where
1 if P*< Pg,
(312) = <1+7—+1<P—*—1)>% if P*> Py
2y Px
Then we find

Z%szlalfiza
2212:/)2&2%1%2,
Z121 :plal(ﬁ{la
73" = paazgi’.

47 .— VPLTL+PRIR
' VPL+VPR
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These Z’s are all strictly nonnegative, so that the equilibrium set is (3.4). On the
equilibrium set, Pf, = P3; so that with (3.12) we have

B gR =
and A is null on the equilibrium set.

3.4. Case of the relaxation solver of [3]. We approximate the solutions of
the Euler equations with those of the following relaxation system:

dp | 9(pu) _

o " or Y

pw)  O(pw+m) _ o
(3.13) ot Oz

0(pE)  O((pE+mu) _

ot ox ’
3_”+u@+“_2@_ p—m
ot or  poxr n

where a is a parameter chosen to ensure the system is dissipative when the relaxation
time n — oo (a > max (pc)). The solution of the Riemann problem for (3.13) can
easily be computed because all the fields are linearly degenerate. In particular, we
find the following formulas for the intermediate pressure and velocity:

*:T(R—I—TI'L a

5 5 (L —ur),
. T —TR ur, +uUR
“ T T2
Thus we immediately get
" * ai2 + a2
1312_17321:72 (ur —u2),
N N 1/1 1
Uy —Uy; =g (G—H‘Fa—ﬂ) (P —P).

As in the case of the acoustic solver, we see immediately that the equilibrium set is
(3.4). Last, the study of the Jacobian matrix with the same method as before shows
that (3.5) is true with

1 1 1
A== [ — 4+ — and M:w.
2 \a12  an 2

4. Derivation of the numerical scheme for the five equations model. In
the previous section, we have shown that, for several classical solvers, the equilibrium
variety is the same as the one in the continuous case, namely

(4.1) V= {ul =uy and P = Pg}.
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Therefore, V is of dimension 6 and can be parametrized by the mapping M:

aq

aq P1

P1 U

U P

M : p — .
la%) P2

P2 U

P

Since this parametrization is naturally written in primitive variables and not in con-
servative variables, the first thing to do is to provide the form of the numerical scheme
for the seven equations model in primitive variables, which is equivalent to the form
in conserved variables.

The next step is to compute the projector P onto the kernel of R/(M(u)) in the
direction of dMy and then to evaluate (3.3).

4.1. Transformation into primitive form. In order to simplify the algebra,
we rewrite (3.1) as

dav (k)

—VE®,
8t
PYRCORC)
(Oé 8tpl ) _ Maﬂ(k),
(4.2) 8(a(k)p(k) (k))
iUy _ MoFi(k),
ot
(o o g®
(o ) _ pE®.
875
Since
) (k) O (k) . (k) (k)
(4.3) i pi 8—175 = MoF;™ —u; " Mo E
we have
2
106 P _ o 0(aOnOu®) | ol oul?
2 ot T2 ot 2 ot
_ %UEM M,F® & %u§k> ( M,E® — @, ka))
1 k 1 k ulk ’ k
LW p® Ly g Yy g
2 3 3 2 3 (2 2 3
(
g0 )y g
Similarly,

ot 000V ER) 0(apVe)  1o(al” ) (u)?)
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and

(k) (k) (k) (k)y2
9(aipie”) = EF® _ W pr g 4 ) M,F®
ot : i et 2 i

We develop the energy equation to get an equation on the pressure

(k) (k) (k) (k) (k)
9(a;"p;" e )_6(1@)3(04 Pi )+ (k)p(k)af
ot ¢ ot P Ty
P )
M, F) + a0 50 I 1 o000 glt ’

where

(k) (k)
B = (6@ ) and &M = (—&i ) .
5Pi(k) RO 8/)1(“ p

Then we have
2
p) u®
a®) o) 51@)38_; _EE® o F® £ Y g ® 0 g0
NOROMO 3/%
Pi i "y
(k)2
ZEFi(k) (k)M F(k) 2 Y g F(k) (;k)MaFi(k)
ROMO (M F® (‘k)VFA(k))
that is,
ap™ gr® uM v, FP
N CPOPCEEN OO
4.5 (k)2
4 Ui _ ) ) ()
2 Y (0)2,(5) ()
+ DRGEC) M 4 GRGPG
a; pi B ;"B

The scheme (2.7) is equivalent to (4.4), (4.3), and (4.5).

21

4.2. The projection. Formally, the seven equations numerical scheme in prim-

itive variables is

U & . RU)
o Tar e
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where T is the linear transformation between primitive and conservative variables

(T 0
(0 2)

with
1 0 0 0
i 1
i — 0 0
(67 (673
(4.6) Ti=| o _% ! 0
Lo Qipi
Kipi® % — & — Pikq U 1
a;pi3; a;pi i aipiffi aipifi

The range of DR(M (u)) is spanned by
V:=(1,0,0,—P,—1,0,0, P) and V2 =1(0,0,1,u,0,0,—-1, —u),

and we want to project in the direction of ®

1
_p
0 a
0 0
QP2 Plal2
TV, = 0 and TV, = h a1
0 P2
—a1p1 (%)
0 0.
pP20a2
lo%

A tedious but straightforward calculation shows that the matrix of the projector is

10 0 O‘ldo‘z 0 0 —O‘ldo‘z
(6% (0%
0 1 Oa _/Jld2 0 Oa pldz
an =l 00 e ° L mmtem
(6% a (6% a
0 0 0 % 0 0 %
0 0 0 1;2 1 0 —%

with
d= alpz(a2)2 + 042,01(@1)2-
By putting back the system into the reduced conservative variables
(i, aiipiy pu, pE),

P, — K 2
5Note thatkikpk = aj2.

Brpi?
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the evaluation of (3.3) provides the following scheme for the five equations model:

2
U
(90[2 102 SEQ UQSUQ < 2 = pQHQ)
2 PVt —— ; - + M,
ot azprai +aipza; | azpaB2 aop2fa ap2f32
Wi
p2kaFVe  SE wiSUL p LT
+ - - M,y
azpafB2 aip1Bf aipifh aip1
_ piRFV;
aip1 ’
d (arpr)
=M,
875 ks
9 (pu)
= SU; + SU:
ot 1+ 2,
E
% =SB, + SEs,

where we have used the notations of (4.2).
We conclude this section by noting that this applies to the first order as well as
the second order scheme.

5. Numerical results. In the numerical tests, all the fluids were described by
the Stiffened-gas equation of state (EOS):

P+ P>
(y=1)p’

where v and P*° are constants that depend on the phase under consideration. In this
paper, the fluids used in the numerical tests are the water and the air, which have
coefficients v and P> given in Tables 3 and 6. In some cases, one side of the tube
will be filled with pure fluids, in which case the volume fraction of the fluid that is
not here will be initialized with a. = 1078, All examples are run with a CFL number
of 0.6. The CFL number is computed on the largest wave speed in the flow.

The test cases are chosen so that one can see the influence of the div u terms and
are ordered by increasing difficulty. The last case is a comparison with experimental
data.

We have chosen to use different solvers in the experiments. Several considerations
have motivated our choices: the best possible accuracy and the most possible robust-
ness. In interface-like problems, we need to initialize one of the fluids with a very
small volume fraction, typically of the order of 1078, In that case, the solver “sees”
the fluid as vacuum and might be very sensitive to any numerical error, especially
in the case of complex and stiff wave systems. Because of that, some solvers are not
suited to some cases. In the following, we have chosen to use the acoustic solver in
the tests of section 5.2 (in fact all the solvers are working fine on this case) and the
relaxation solver on the other ones. This choice seems to be the best compromise.

e(P,p) =
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TABLE 3
EOS coefficients for water and air.

Air Water
y=14 y=4.4
P> =0Pa | P>® =6.10%Pa

11001~ B

-0 Computed
— exact

0l 4
L 1 L 1 L 1 L 1 L
0 02 04 06 08 1
position (meter)
Density
" 1e+093 ——
-6 computed
— Bxat
20 7 8e+08|- g
6e+08— =

G- Computed [
1001 — B — 4e+08]

2et08— -

L | L 1 L 5 0 L | L | L | L .
N 02 04 06 08 1 0 02 04 06 0§ 1
position (meter) position (m)

Velocity Pressure

Fi1c. 3. Single fluid problem: approzimated solution (circles) and exact solution (solid).

5.1. Single fluid test. In that case, the shock tube is filled with water only.
At time t = 0, the left part of the tube is at rest, with a pressure of 10° Pa, and the
right side is at rest too but with a pressure of 10° Pa. The separation between both
sides is at x = 0.5m, and the profiles are shown at ¢ = 150 us. The approximated
solution is computed with a 1000 point grid mesh and is compared with the analytical
solution in Figure 3. The second order scheme has been run. The exact solution and
the numerical one are in good agreement.

5.2. Pure interface advection. A one meter long tube is filled on the right
with air and on the left with water. The pressure is uniform, equal to 10° Pa, and
the velocity is uniform too, equal to 1000m.s~!. At time ¢t = 0, the discontinuity
is localized at = = 0.5m. The exact solution consists in the advection of mass at
1000 m.s~!, and the pressure and the velocity remain uniform. The results are shown
at time t = 200 us when the exact discontinuity is located at = 0.7 m. The solution

is computed with a 1000 cell mesh and is shown in Figure 4. The results show that
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the velocity and the pressure remain uniform, and the density and volume of fluids
are simply advected, as expected.

10201 -

L L L L L L L L L
0 02 04 06 08 1 0 02 04 06 08 1

position (m) position (m)
Volume of Fluids Velocity
10351 B
100de+05 —
920
-y
100205~ —
690
5751
ol
g
99800 —
20
15
99600 —
| | | | i | | | | ]
0 02 04 06 08 1 0 02 04 06 08 1
position (m) position (m)
Pressure Density

Fic. 4. Pure fluid advection: the interface is diffused and centered around x = 0.7m. The
pressure and velocity are left unchanged.

5.3. Liquid-gas shock tube. Here we study the evolution of a tube filled on
the left with high-pressure water (10 Pa) and on the right with atmospheric-pressure
air (10°Pa). The discontinuity is initially at z = 0,7m. The details of the initial
conditions are given in Table 4. The computed solutions of the present scheme and
of [2] are compared in Figure 5.
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TABLE 4
Details of the conditions for the liquid-gas shock tube of section 5.3.

Fluid 1: air

] = Qe a1 =1 — ae

p1 = 50kg.m~3 p1 = 50kg.m—3
Fluid 2: water

az =1 — ae a9 = Qe

p2 = 1000kg.m™3 | py = 1000 kg.m—3
Global variables

P =10% Pa P =10° Pa

u=0m.s"1! u=0m.s"1!

Note that these solutions are computed with the second order scheme. In Figure 6,
we display the first and second order accurate solutions for this problem. Clearly, the
second order results are much more accurate than the first order ones, as expected.

5.4. Two phase flow problem. In that case, the left and the right part of
the shock tube are filled with water and air at the same volume fraction of 0.5. The
pressure is of 10 Pa on the left and of 10° Pa on the right. The discontinuity is initially
at x = 0.5 m. The details of the initial conditions are given in Table 5. The computed
solutions of the present scheme and of [2] are compared in Figure 7. The results are
in good agreement, but we note some discrepancies. The main difference between the
present schemes and that of [2], as it can be seen in Figure 7, consists in the density
levels between the contact and the shock wave. The location of the discontinuities as
well as the extreme points of the fan coincide exactly up to numerical errors of course.
Note, however, that the average densities almost coincide between the contact and
the shock and do coincide elsewhere. The pressure and velocity plots superimpose up
to numerical errors. In our opinion, the fact that the discontinuities move at the same
speed is a good indication that we are computing the same system: our experience
indicates that in the case of nonconservative systems, as here, a small modification
in the approximation of nonconservative terms implies a large modification of the
numerical wave speeds. These are certainly a consequence of the different techniques
in time integration: in the original scheme, the relaxation terms are integrated by
a splitting technique, but one has to remember that the relaxation terms originate
from fluxes. Omn the contrary, in the present technique, no splitting technique is
used. The asymptotic expansion we use has some features of a direct integration of
the relaxation terms inside the solver, which is probably better in principle. These
algorithmic differences seem here to have a large impact on the volume fraction, but
we have no clear explanation why. In Figure 8, we have represented a zoom of the
average density between the contact discontinuity and the shock wave for the first
and second order versions of the present scheme and the original one. We clearly see
the (small) differences. The most interesting phenomenon is that, first, the two first
order solutions are very close and, second, the second order solution for the present
scheme is much closer from the first order ones than is the second order version of
the original scheme. From the algorithmic point of view, the original second order
scheme uses a predictor corrector method, and the predicted quantities are projected
onto the equilibrium manifold after the predictor and the corrector steps. In the
present scheme, this is translated into the choice of the states that are needed in
the computation of the projector II defined in (4.7). In the second order version of
the present scheme, II is evaluated after each substep. Hence, there is no reason
why the two sets of results should coincide exactly. It appears, however, that the
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Comparison between the solutions obtained by the original

scheme of [2] (circles) and the present scheme (solid). Both solutions differ only on the densities,
in zones where they have few meaning because the corresponding volume fractions are nearly zero.

present technique, based on an asymptotic expansion, is a more stable technique than
a simple fractional step method. The lack of exact solution does not enable more
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Fi1a. 6. Comparison between the first and second order accurate schemes.

TABLE 5
Details of the conditions for the two phase flow problem of section 5.4.

p2 = 1000 kg.m_3

Fluid 1: air
a1 = 0.5 a1 = 0.5
p1 = 50kg.m~3 p1 = 50kg.m—3
Fluid 2: water
az = 0.5 as = 0.5

p2 = 1000 kg.m_3

Global variables
P =10° Pa
uw=0m.s"!

P =10%Pa
w=0m.s!

accurate comments.

5.5. Comparison with experiment. We make a simulation on an alloy made
of epoxy and spinel for which experimental data exist. The tube is impacted with a
piston, so that a shock propagates. The experimental setup is sketched in Figure 9.
There exists a linear relation between the shock speed u. and the impact velocity w;:
ue = ag + su;. Epoxy and spinel are described by the stiffened-gas EOS with the
coefficient of Table 6.

Initially, both of the solids are at atmospheric pressure, and their densities are
p1 = 1185 kg.m ™ and p2 = 3622 kg.m >, Their respective volume fractions are a; =
0.595 and as = 0,405. We measure the different variables in x = 0.1m and in
2 = 0.6m. Thanks to these measures (shown in Figure 10) we can compute the
shock speed. In Figure 11, we compare our results with the experimental measures
taken from [6], those of [8], and those obtained by the original scheme and the present
scheme.

We see that our results are very close to those of the original scheme and in good
agreement with the experimental results. In particular, we see that there is an excel-
lent agreement between the results of the seven equation model with instantaneous
relaxation and the present scheme. The agreement is much better than with the Mur-
rone and Guillard scheme for which the div u terms are discretized independently
because

e our results are closer from the experimental ones,
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Fic. 7. Two phase flow problem: the present scheme (circles) is compared with the original

scheme of [2] (solid lines).

e there is very little difference between the results with the complete seven
equation model and the reduced five equations model discretized with our

technique.



30 REMI ABGRALL AND VINCENT PERRIER

1000

OO Present scheme, firgt order
&~ Origindl scheme, firgt order
=% Present scheme, second order

920 -—- Original scheme, second order 7

| | | |
90%7 075 08 085 09

Fic. 8. Comparison of the first and second order version of the original scheme and the present
one for the averaged density. Zoom between the contact discontinuity and the shock wave for the
data of Table 5.
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Fic. 9. Ezperimental setup.

TABLE 6
EOS coefficients for epoxy and spinel.

Epoxy Spinel
v =294 v =1.62
P> =32x 109PaPa | P> =141 x 108 Pa

6. Conclusions. We have presented a numerical scheme able to compute com-
pressible multiphase schemes that relies on a multiscale description of the flow. Three
types of terms can be identified in the scheme in addition to the temporal terms. One
is a conservative term, the second one plays the role of a nonconservative term that is
related to interfacial quantities, and the last one is a relaxation term that is associated
with acoustic phenomena. The key feature of the scheme is that it is locally conserva-
tive, contrarily to many other schemes devoted to compressible multiphase problems.
The scheme is developed for several Riemann solvers. A second order extension is
also described.

In many physical situations, it is reasonable to assume that the relaxation is
instantaneous: either the bubbles are very small or, more generally, the interfacial
area between phases is large. We present an asymptotic expansion of the scheme
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F1G. 10. Ewolution of the variables at © = 0.1m and x = 0.6 m between the initial time and

t=210"%s.
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Fic. 11. Shock velocity, comparison between

several approaches.
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that keeps the local conservation properties of the original scheme. The asymptotic
expansion relies on the understanding of an equilibrium variety. Its structure depends,
in principle, on the Riemann solver. We show that for several standard solvers that
this is not the case, and hence this variety is characterized by the local pressure and
velocity of the flow.

Several numerical test cases are presented in order to demonstrate the potential

of this technique.
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