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Summary. This work presents a unified analysis of Discontinuous Galerkin meth-
ods to approximate Friedrichs’ systems. A general set of boundary conditions is
identified to guarantee existence and uniqueness of solutions to these systems. A
formulation enforcing the boundary conditions weakly is proposed. This formulation
is the starting point for the construction of Discontinuous Galerkin methods formu-
lated in terms of boundary operators and of interface operators that mildly penalize
interface jumps. A general convergence analysis is presented. The setting is subse-
quently specialized to Friedrichs’ systems endowed with a particular 2×2 structure
in which some of the unknowns can be eliminated to yield a system of second-order
elliptic-like PDE’s for the remaining unknowns. A general Discontinuous Galerkin
method where the above elimination can be performed in each mesh cell is proposed
and analyzed. Finally, details are given for four examples, namely advection–reaction
equations, advection–diffusion–reaction equations, the linear elasticity equations in
the mixed stress–pressure–displacement form, and the Maxwell equations in the
so-called elliptic regime.

1 Introduction

Since their introduction in 1973 by Reed and Hill [20] to simulate neutron
transport, Discontinuous Galerkin (DG) methods have sparked extensive in-
terest owing to their flexibility in handling non-matching grids, heterogeneous
data, and high-order hp-adaptivity. However, the development and analysis of
DG methods has followed two somewhat parallel routes depending on whether
the PDE is hyperbolic or elliptic.

For hyperbolic PDEs, the first analysis of DG methods in an already rather
abstract form was performed by Lesaint and Raviart in 1974 [17, 18] and sub-
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sequently improved by Johnson et al. [16] in 1984. More recently, DG methods
for hyperbolic and nearly hyperbolic equations experienced a significant devel-
opment based on the ideas of numerical fluxes, approximate Riemann solvers,
and slope limiters; see, e.g., Cockburn et al. [8] and the references therein.

For elliptic PDEs, DG methods originated from the early work of Nitsche
on boundary-penalty methods [19] and the use of Interior Penalties (IP) to
weakly enforce continuity on the solution or its derivatives across the inter-
faces between adjoining elements; see, e.g., Babuška [3], Babuška and Zlámal
[4], Douglas and Dupont [10], Baker [5], Wheeler [21], and Arnold [1]. DG
methods for elliptic problems in mixed form were introduced more recently
(see, e.g., Bassi and Rebay [6]) and further extended by Cockburn and Shu
[9] leading to the so-called Local Discontinuous Galerkin (LDG) method. The
fact that several of the above DG methods (including IP methods) share com-
mon features and can be tackled by similar analysis tools called for a unified
analysis. A first important step in that direction has been recently accom-
plished in Arnold et al. [2], where it is shown that it is possible to cast many
DG methods for the Poisson equation with homogeneous Dirichlet boundary
conditions into a single framework amenable to a unified error analysis.

The goal of the present work is to propose a unified analysis of DG methods
that goes beyond the traditional hyperbolic/elliptic classification of PDEs. To
this purpose, we make systematic use of the theory of Friedrichs’ systems [15],
i.e., systems of first-order PDE’s endowed with a symmetry and a positivity
property, to formulate DG methods and to perform the convergence analysis.
For brevity, the main theoretical results are stated without proof; see [12, 13,
14] for full detail.3

This paper is organized as follows. In §2 we revisit Friedrichs’ theory and
formulate a set of abstract conditions ensuring well–posedness of the con-
tinuous problem while avoiding to invoke traces at the boundary. In §3 we
formulate and analyze a general DG method to approximate Friedrichs’ sys-
tems. The design of the method is based on an operator enforcing boundary
conditions weakly and an operator penalizing the jumps of the solution across
the mesh interfaces. All the design constraints to be fulfilled by the boundary
and the interface operators for the error analysis to hold are stated. More-
over, using integration by parts, the DG method is re-interpreted locally by
introducing the concept of element fluxes, thus providing a direct link with en-
gineering practice where approximation schemes are often designed by specify-
ing such fluxes. In §4 we specialize the setting to a particular class of Friedrichs’
systems with a 2×2 structure in which some of the unknowns can be elimi-
nated to yield a system of second-order elliptic-like PDE’s for the remaining
unknowns. For such systems, a general Discontinuous Galerkin method is pro-
posed and analyzed. The key feature of the method is that the unknowns that
can be eliminated at the continuous level can also be eliminated at the dis-
crete level by solving local problems. In §5, we apply the theoretical results to

3 Internal reports available at cermics.enpc.fr/reports/CERMICS-2005
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advection–reaction equations, advection–diffusion–reaction equations, the lin-
ear elasticity equations in the mixed stress–pressure–displacement form, and
the Maxwell equations in the so-called elliptic regime. Concluding remarks
are reported in §6.

2 Friedrichs’ systems

Let Ω be a bounded, open, and connected Lipschitz domain in Rd. We denote
by D(Ω) the space of C∞ functions that are compactly supported in Ω. Let
m be a positive integer. Let K and {Ak}1≤k≤d be (d+1) functions on Ω with
values in Rm,m such that

K ∈ [L∞(Ω)]m,m, (a1)

∀k ∈ {1, . . . , d}, Ak ∈ [L∞(Ω)]m,m and
d∑

k=1

∂kAk ∈ [L∞(Ω)]m,m, (a2)

∀k ∈ {1, . . . , d}, Ak = (Ak)t a.e. in Ω, (a3)

K +Kt −
d∑

k=1

∂kAk ≥ 2µ0Im a.e. on Ω, (a4)

where Im is the identity matrix in Rm,m. Assumptions (a3) and (a4) are,
respectively, the symmetry and the positivity property referred to above.

Set L = [L2(Ω)]m. A function z in L is said to have an A-weak derivative
in L if the linear form [D(Ω)]m 3 φ 7−→ −

∫
Ω

∑d
k=1 z

t∂k(Akφ) ∈ R is bounded
on L. In this case, the function in L that can be associated with the above
linear form by means of the Riesz representation theorem is denoted by Az.
Clearly, if z is smooth, e.g., z ∈ [C1(Ω)]m, Az =

∑d
k=1Ak∂kz. Define the

so-called graph space W = {z ∈ L; Az ∈ L} equipped with the graph norm
‖z‖W = ‖Az‖L+‖z‖L. The spaceW is endowed with a Hilbert structure when
equipped with the scalar product (z, y)L + (Az,Ay)L. Define the operators
T ∈ L(W ;L) and T̃ ∈ L(W ;L) as

Tz = Kz +
d∑

k=1

Ak∂kz, T̃ z = Ktz −
d∑

k=1

∂k(Akz). (1)

Assumption (a4) implies that T + T̃ is L-coercive on L.
Let f ∈ L and consider the problem of seeking z ∈ W such that Tz = f

in L. In general, boundary conditions must be enforced for this problem to be
well–posed. In other words, one must find a closed subspace V of W such that
T : V → L is an isomorphism. Let D ∈ L(W ;W ′) be the operator defined by

∀(z, y) ∈W ×W, 〈Dz, y〉W ′,W = (Tz, y)L − (z, T̃ y)L. (2)
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Let W0 be the closure of [D(Ω)]m in W . For every subspace Z ⊂ W , let Z⊥

denote the polar set of Z, i.e., the set of linear forms on W that vanish on Z
and use a similar notation for the polar sets of subspaces of W ′. A key result
concerning the operator D is the following

Lemma 1. The operator D is self-adjoint. Moreover, the following holds:

Ker(D) = W0 and Im(D) = W⊥
0 . (3)

To enforce boundary conditions, a simple approach inspired from Friedrichs’
work consists of assuming that there is an operator M ∈ L(W ;W ′) such that

M is positive, i.e., 〈Mz, z〉W ′,W ≥ 0 for all z in W, (m1)
W = Ker(D −M) + Ker(D +M). (m2)

Then by setting V = Ker(D − M) and V ∗ = Ker(D + M∗) where M∗ ∈
L(W ;W ′) is the adjoint of M and equipping V and V ∗ with the graph norm,
the following theorem can be proved:

Theorem 1. Assume (a1)–(a4) and (m1)–(m2). Then, the restricted opera-
tors T : V → L and T̃ : V ∗ → L are isomorphisms.

The proof of Theorem 1 relies on the following fundamental result, the
so-called Banach–Nečas–Babuška (BNB) Theorem, that is restated below for
completeness (see, e.g., [11]).

Theorem 2 (BNB). Let V and L be two Banach spaces, and denote by
〈·, ·〉L′,L the duality pairing between L′ and L. Then, T ∈ L(V ;L) is bijective
if and only if

∃α > 0, ∀w ∈ V, sup
y∈L′\{0}

〈y, Tw〉L′,L
‖y‖L′

≥ α‖w‖V , (4)

∀y ∈ L′, (〈y, Tw〉L′,L = 0, ∀w ∈ V ) =⇒ (y = 0). (5)

Remark 1. It is possible to formulate an intrinsic criterion for the bijectivity
of the operators T and T̃ that circumvents the somewhat ad hoc operator M
by introducing the concept of maximal boundary conditions. To this purpose,
introduce the cones C± = {w ∈ W ; ± 〈Dw,w〉W ′,W ≥ 0}. Let V and V ∗ be
two subspaces of W such that

V ⊂ C+ and V ∗ ⊂ C−, (v1)

V = D(V ∗)⊥ and V ∗ = D(V )⊥. (v2)

Then, under the assumptions (a1)–(a4) and (v1)–(v2), the conclusions of
Theorem 1 still hold. Furthermore, one can prove that if V and V ∗ are two
subspaces of W satisfying (v1)–(v2), then V is maximal in C+ (there is no
x ∈W such that Vx := V + span(x) ⊂ C+ and V is a proper subspace of Vx)
and V ∗ is maximal in C− (there is no y ∈W such that V ∗y := V ∗+span(y) ⊂
C− and V ∗ is a proper subspace of V ∗y ). In this sense, the boundary conditions
embodied in V and V ∗ are maximal.
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Owing to Theorem 1, the following problems are well-posed:

Seek z ∈ V such that Tz = f , (6)

Seek z∗ ∈ V ∗ such that T̃ z∗ = f . (7)

The boundary conditions in (6) and (7) are enforced strongly by seeking the
solutions in V and V ∗, respectively. A key feature of Friedrichs’ systems is
that it is possible to enforce boundary conditions naturally, thus leading to
a suitable framework for developing a DG theory. To see this, introduce the
following bilinear forms on W ×W ,

a(z, y) = (Tz, y)L + 1
2 〈(M −D)z, y〉W ′,W , (8)

a∗(z, y) = (T̃ z, y)L + 1
2 〈(M

∗ +D)z, y〉W ′,W . (9)

It is clear that a and a∗ are in L(W ×W ; R). Consider the following problems:

Seek z ∈W such that a(z, y) = (f, y)L, ∀y ∈W , (10)
Seek z∗ ∈W such that a∗(z∗, y) = (f, y)L, ∀y ∈W . (11)

Contrary to (6) and (7), the boundary conditions in (10) and (11) are weakly
enforced. For this reason, problem (10) will constitute our working basis for
designing DG methods. The key result of this section is the following

Theorem 3. Assume (a1)–(a4) and (m1)–(m2). Then, there is a unique so-
lution to (10) (resp., (11)) and this solution solves (6) (resp., (7)).

3 Design and analysis of DG methods

The purpose of this section is to design and analyze a general DG method to
approximate the unique solution to (10).

3.1 The discrete setting

Let {Th}h>0 be a family of meshes of Ω. The meshes are assumed to be affine
to avoid unnecessary technicalities, i.e., Ω is assumed to be a polyhedron.
However, we do not make any assumption on the matching of element inter-
faces. Let p be a non-negative integer and set

Ph,p = {vh ∈ L2(Ω); ∀K ∈ Th, vh|K ∈ Pp}, (12)

where Pp denotes the vector space of polynomials with real coefficients and
total degree less than or equal to p. Define

Wh = [Ph,p]m, W (h) = [H1(Ω)]m +Wh. (13)



84 Alexandre Ern and Jean-Luc Guermond

We denote by F i
h the set of interior faces (or interfaces), i.e., F ∈ F i

h

if F is a (d−1)-manifold and there are K1(F ), K2(F ) ∈ Th such that F =
K1(F )∩K2(F ). We denote by F∂

h the set of the faces that separate the mesh
from the exterior of Ω, i.e., F ∈ F∂

h if F is a (d−1)-manifold and there is
K(F ) ∈ Th such that F = K(F ) ∩ ∂Ω. Finally, we set Fh = F i

h ∪ F∂
h . Since

every function v in W (h) has a (possibly two-valued) trace almost everywhere
on F ∈ F i

h, it is meaningful to set vn(x) = lim y→x
y∈Kn(F )

v(y), n ∈ {1, 2}, for a.e.
x ∈ F and

[[v]] = v1 − v2, {v} = 1
2 (v1 + v2), a.e. on F . (14)

Nothing that is said hereafter depends on the arbitrariness in the sign of [[v]].
For any measurable subset of Ω, say E, (·, ·)L,E denotes the usual L2-

scalar product on E. The same notation is used for scalar- and vector-valued
functions. For K ∈ Th (resp., F ∈ Fh), hK (resp., hF ) denotes the diameter
of K (resp., F ). The mesh family {Th}h>0 is assumed to be shape-regular so
that the usual inverse and trace inverse inequalities hold on Wh. Henceforth,
we use the notation A . B to represent the inequality A ≤ cB where c is
independent of h.

3.2 The design of the DG bilinear form

Set D =
∑d

k=1 nkAk, where n = (n1, . . . , nd)t is the outward unit normal to
Ω, and assume that there is a matrix-valued field M : ∂Ω −→ Rm,m such
that for all functions y, w smooth enough (e.g., y, w ∈ [H1(Ω)]m),

〈Dy,w〉W ′,W =
∫

∂Ω

wtDy, 〈My,w〉W ′,W =
∫

∂Ω

wtMy. (15)

To enforce boundary conditions weakly, we introduce for all F ∈ F∂
h a linear

operator MF ∈ L([L2(F )]m; [L2(F )]m) such that for all y, w ∈ [L2(F )]m,

(MF (y), y)L,F ≥ 0, (dg1)
(My = Dy) =⇒ (MF (y) = Dy), (dg2)
|(MF (y)−Dy, w)L,F | . |y|M,F ‖w‖L,F , (dg3)
|(MF (y) +Dy, w)L,F | . ‖y‖L,F |w|M,F , (dg4)

where for all y ∈W (h), |y|2M =
∑

F∈F∂
h
|y|2M,F with |y|2M,F = (MF (y), y)L,F .

For K ∈ Th, define the matrix-valued field D∂K : ∂K → Rm,m as

D∂K(x) =
d∑

k=1

nK,kAk(x) a.e. on ∂K, (16)

where nK = (nK,1, . . . , nK,d)t is the unit outward normal to K on ∂K. We
extend the matrix-valued field D on Fh = F i

h ∪ F∂
h as follows. On F∂

h , D is
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defined as above. On F i
h, D is two-valued and for all F ∈ F i

h, its two values
are D∂K1(F ) and D∂K2(F ). Note that {D} = 0 a.e. on F i

h. To control the jumps
of functions in Wh across mesh interfaces, we introduce for all F ∈ F i

h a linear
operator SF ∈ L([L2(F )]m; [L2(F )]m) such that for all y, w ∈ [L2(F )]m,

(SF (y), y)L,F ≥ 0, (dg5)
|(SF (y), w)L,F | . |y|S,F |w|S,F , (dg6)
|(D∂K(F )y, w)L,F | . |y|S,F ‖w‖L,F , (dg7)

where F ⊂ ∂K(F ) and where for all y ∈ W (h), |y|2S =
∑

F∈F i
h
|y|2S,F with

|y|2S,F = (SF (y), y)L,F . A simple way of enforcing (dg5)–(dg7) consists of
setting SF (y) = |D∂K(F )|y.

Introduce the bilinear form ah such that for all z, y in W (h),

ah(z, y) =
∑

K∈Th

(Tz, y)L,K +
∑

F∈F∂
h

1
2 (MF (z)−Dz, y)L,F

−
∑

F∈F i
h

2({Dz} , {y})L,F +
∑

F∈F i
h

(SF ([[z]]), [[y]])L,F .
(17)

Observe that owing to (dg2), the second term in the definition of ah weakly
enforces the boundary conditions in a way which is consistent with (8). The
purpose of the third term is to ensure that an L-coercivity property holds on
Wh. The last term controls the jump of the discrete solution across interfaces.
Some user-dependent arbitrariness appears in the second and fourth term
through the definition of the operators MF and SF . An equivalent definition
of the DG bilinear form obtained by integration by parts is the following:

ah(z, y) =
∑

K∈Th

(z, T̃ y)L,K +
∑

F∈F∂
h

1
2 (MF (z) +Dz, y)L,F

+
∑

F∈F i
h

1
2 ([[Dz]], [[y]])L,F +

∑
F∈F i

h

(SF ([[z]]), [[y]])L,F .
(18)

3.3 Convergence analysis

An approximation to the solution of (10) is constructed as follows: For f ∈ L,{
Seek zh ∈Wh such that
ah(zh, yh) = (f, yh)L, ∀yh ∈Wh.

(19)

The error analysis uses the following discrete norms on W (h),

‖y‖2h,A = ‖y‖2L + |y|2J + |y|2M +
∑

K∈Th

hK‖Ay‖2L,K , (20)

‖y‖2h, 1
2

= ‖y‖2h,A +
∑

K∈Th

[h−1
K ‖y‖2L,K + ‖y‖2L,∂K ], (21)
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where for all y ∈ W (h), |y|2J =
∑

F∈F i
h
|y|2J,F with |y|J,F = |[[y]]|S,F . The

convergence analysis is performed in the spirit of Strang’s Second Lemma.
The main result is the following

Theorem 4. Let z solve (10) and let zh solve (19). Assume that for all k ∈
{1, . . . , d}, Ak ∈ [C0, 1

2 (Ω)]m,m. Then,

‖z − zh‖h,A . inf
yh∈Wh

‖z − yh‖h, 1
2
, (22)

if z ∈ [H1(Ω)]m, and limh→0 ‖z − zh‖L = 0 if z ∈ V only, assuming there is
γ > 0 such that [H1+γ(Ω)]m ∩ V is dense in V .

Using standard interpolation results on Wh, the above result implies that

‖z − zh‖h,A . hp+ 1
2 ‖z‖[Hp+1(Ω)]m (23)

whenever z is in [Hp+1(Ω)]m. In particular, ‖z−zh‖L converges to order hp+ 1
2 ,

and if the mesh family {Th}h>0 is quasi-uniform, (
∑

K∈Th
‖A(z − zh)‖2L,K)

1
2

converges to order hp. These estimates are identical to those that can be
obtained by other stabilization methods like Galerkin/Least-Squares, subgrid
viscosity, etc.

3.4 Localization and the notion of fluxes

The purpose of this section is to discuss briefly some equivalent formulations of
the discrete problem (19) in order to emphasize the link with other formalisms
derived previously for DG methods based on the notion of fluxes (see, e.g.,
Arnold et al. [2]). Let K ∈ Th. For v ∈ W (h) and x ∈ ∂K, set vi(x) =
lim y→x

y∈K
v(y), ve(x) = lim y→x

y 6∈K
v(y) (with ve(x) = 0 if x ∈ ∂Ω), and

[[v]]∂K(x) = vi(x)− ve(x), {v}∂K (x) = 1
2 (vi(x) + ve(x)). (24)

The element flux of a function v on ∂K, say φ∂K(v) ∈ [L2(∂K)]m, is defined
on a face F ⊂ ∂K by

φ∂K(v)|F =

{
1
2MF (v|F ) + 1

2Dv, if F ⊂ ∂K∂ ,

SF ([[v]]∂K |F ) +D∂K{v}∂K , if F ⊂ ∂K i,
(25)

where ∂K i denotes that part of ∂K that lies in Ω and ∂K∂ that part of ∂K
that lies on ∂Ω. The relevance of the notion of flux is clarified by the following

Proposition 1. The discrete problem (19) is equivalent to each of the follow-
ing two local formulations:{

Seek zh ∈Wh such that ∀K ∈ Th and ∀yh ∈ [Pp(K)]m,

(zh, T̃ yh)L,K + (φ∂K(zh), yh)L,∂K = (f, yh)L,K ,
(26)

{
Seek zh ∈Wh such that ∀K ∈ Th and ∀yh ∈ [Pp(K)]m,

(Tzh, yh)L,K + (φ∂K(zh)−D∂Kz
i
h, yh)L,∂K = (f, yh)L,K .

(27)
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In engineering practice, approximation schemes such as (26) are often de-
signed by specifying the element fluxes. The above analysis then provides a
practical means to assess the properties of the scheme. Indeed, once the ele-
ment fluxes are given, the boundary operators MF and the interface operators
SF can be directly retrieved from (25). Then, properties (dg1)–(dg7) provide
sufficient conditions for convergence.

Remark 2. The element fluxes are conservative in the sense that for all F =
K1(F ) ∩ K2(F ) ∈ F i

h, φ∂K1(F )(v) + φ∂K2(F )(v) = 0 on F . The concept of
conservativity as such does not play any role in the present analysis of DG
methods. It plays a role when deriving improved L2-error estimates by using
the Aubin–Nitsche lemma; see, e.g., Arnold et al. [2] and §4.3.

4 DG approximation of block Friedrichs’ systems

In this section the setting is specialized to Friedrichs’ systems endowed with
a 2×2 block structure in which some of the unknowns can be eliminated to
yield a system of elliptic-like PDE’s for the remaining unknowns. A general
DG method to approximate such systems is proposed and analyzed. The key
feature is that the unknowns that can be eliminated at the continuous level
can be also eliminated at the discrete level by solving local problems. To
achieve this goal we will see that at variance with the DG method formulated
in §3, where jumps and boundary values are equally controlled among the
unknowns, the boundary values and jumps of the discrete unknowns to be
eliminated must no longer be controlled whereas the boundary values and
jumps of the remaining discrete unknowns must be controlled with an O(h−1)
weight.

4.1 The setting

We now assume that there are two positive integers mσ and mu with m =
mσ +mu such that the (d+1) Rm,m-valued fields K and {Ak}1≤k≤d have the
following 2×2 block structure:

K =
[
Kσσ Kσu

Kuσ Kuu

]
, Ak =

[
0 Bk

[Bk]t Ck

]
, (28)

with obvious notation for the blocks of K and where for all k ∈ {1, . . . , d}, Bk

is an mσ×mu matrix field and Ck is a symmetric mu×mu matrix field. Define
the operators B =

∑d
k=1 Bk∂k, B̃ =

∑d
k=1[Bk]t∂k, and C =

∑d
k=1 Ck∂k. The

two key hypotheses on which the present work is based are the following:

∃k0 > 0, ∀ξ ∈ Rmσ , ξtKσσξ ≥ k0‖ξ‖2Rmσ a.e. on Ω, (a5)

∀k ∈ {1, . . . , d}, the mσ×mσ upper-left block of Ak is zero. (a6)
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Set Lσ = [L2(Ω)]mσ and Lu = [L2(Ω)]mu . Consider the PDE system
Tz = f with f ∈ L = Lσ×Lu and partition z and f into (zσ, zu) and (fσ, fu),
respectively. Assumption (a5) (which implies that the matrix Kσσ is invert-
ible) together with assumption (a6) allow for the elimination of zσ from the
PDE system, yielding zσ = [Kσσ]−1(fσ − Kσuzu − Bzu), and it comes that
zu solves the following second-order PDE:

− B̃[Kσσ]−1Bzu + (C − B̃[Kσσ]−1Kσu −Kuσ[Kσσ]−1B)zu

+ (Kuu −Kuσ[Kσσ]−1Kσu)zu = fu − (Kuσ + B̃)[Kσσ]−1fσ. (29)

The leading order term in this PDE has a very particular structure since the
matrices (Bk)t[Kσσ]−1Bk are positive semi-definite. Hence, the PDE’s covered
hereafter are elliptic-like.

4.2 The design of the DG bilinear form

Let p and pσ be two non-negative integers such that p − 1 ≤ pσ ≤ p. Define
the vector spaces

Uh = [Ph,p]mu , Σh = [Ph,pσ
]mσ , Wh = Uh×Σh. (30)

Consider the DG bilinear form defined in (17) and the discrete problem (19).
Partition the discrete unknown into zh = (zσ

h , z
u
h). We now want to design a

DG method in which zσ
h can be eliminated by solving local problems. It is

then readily seen from (26) that this is possible only if the σ-component of
the flux φ∂K(zh) solely depends on zu

h . Owing to (25), it is inferred that the
boundary operators MF and the interface operators SF must be such that

Mσσ
F = 0 and Sσσ

F = 0. (31)

Let U(h) = [H1(Ω)]mu + Uh. We define the mapping θ1h : U(h) −→ Σh such
that for all zu ∈ U(h) and for all K ∈ Th, θ1h(zu)|K solves the following
problem: For all qσ ∈ [Ppσ (K)]mσ ,

(Kσσθ1h(zu), qσ)Lσ,K = − (Kσuzu +Bzu, qσ)Lσ,K

− (φσ
∂K(zu)−Dσu

∂K(zu)i, qσ)Lσ,∂K . (32)

Owing to (a5), this problem is well–posed. Similarly, we define the mapping
θ2h : Lσ −→ Σh such that for all fσ ∈ Lσ and for all K ∈ Th, θ2h(fσ)|K solves
the following local problem: For all qσ ∈ [Ppσ (K)]mσ ,

(Kσσθ2h(fσ), qσ)Lσ,K = (fσ, qσ)Lσ,K . (33)

Finally, define the bilinear form φh on U(h)× U(h) by

φh(zu, yu) = ah((θ1h(zu), zu), (0, yu)), (34)

and the linear form ψh on U(h) by ψh(yu) = ah((θ2h(fσ), 0), (0, yu)). This
readily leads to the following
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Proposition 2. If the pair (zσ
h , z

u
h) solves (19), then,

zσ
h = θ1h(zu

h) + θ2h(fσ), (35)

and zu
h solves the following problem:{

Seek zu
h ∈ Uh such that

φh(zu
h , y

u
h) = (fu, yu

h)Lu − ψh(yu
h), ∀yu

h ∈ Uh.
(36)

Conversely, if zu
h solves (36) and if zσ

h is defined by (35), then the pair (zσ
h , z

u
h)

solves (19).

For the convergence analysis of §4.3 to hold, the boundary operators MF

and the interface operators SF must comply with certain design criteria that
are formulated in [13]. This set of conditions simplifies into the following
whenever Dirichlet-type boundary conditions are enforced on zu: For all F ∈
F∂

h and for all y = (yσ, yu) ∈ [L2(F )]m, we assume that

(My −Dy = 0) =⇒ (MF (y)−Dy = 0), (ldg1)

(Mty +Dy = 0) =⇒ (M∗
F (y) +Dy = 0), (ldg2)

Mσσ
F = 0, Mσu

F (yu) = −Dσuyu, Muσ
F (yσ) = Duσyσ, (ldg3)

Muu
F is self-adjoint, (ldg4)

hF ‖Duuyu‖2Lu,F + h−1
F ‖Dσuyu‖2Lσ,F . |yu|2M,F . h−1

F ‖yu‖2Lu,F , (ldg5)

where M∗
F denotes the adjoint operator of MF and where for all yu ∈ U(h),

|yu|2M,F = (Muu
F (yu), yu)Lu,F . Similarly, for all F ∈ F i

h and for all y =
(yσ, yu) ∈ [L2(F )]m, we assume that

Sσσ
F = 0, Sσu

F = 0, Suσ
F = 0, (ldg6)

Suu
F is self-adjoint, (ldg7)

hF ‖Duuyu‖2Lu,F + h−1
F ‖Dσuyu‖2Lσ,F . |yu|2S,F . h−1

F ‖yu‖2Lu,F , (ldg8)

where for all yu ∈ U(h), |yu|2S,F = (Suu
F (yu), yu)Lu,F .

Remark 3. Assumption (ldg1) is a consistency assumption similar to (dg2).
Assumption (ldg2) is an adjoint-consistency assumption needed to obtain
an improved error estimate for zu

h in the Lu-norm. Assumption (ldg3) is
suitable to enforce Dirichlet boundary conditions and must be modified if
other boundary conditions are considered. In this case, assumption (ldg5)
must also be modified: Muu

F no longer scales as h−1
F , but is of order 1.

4.3 Convergence analysis

The error analysis uses the following discrete norms on W (h),



90 Alexandre Ern and Jean-Luc Guermond

‖y‖2h,A′ = ‖yσ‖2Lσ
+ ‖yu‖2Lu

+ |yu|2J + |yu|2M +
∑

K∈Th

‖Byu‖2Lσ,K , (37)

‖y‖2h,1 = ‖y‖2h,A′+
∑

K∈Th

[h−2
K ‖yu‖2Lu,K +h−1

K ‖yu‖2Lu,∂K +hK‖yσ‖2Lσ,∂K ],(38)

where for all yu ∈ U(h), |yu|2M =
∑

F∈F∂
h
|yu|2M,F and |yu|2J =

∑
F∈F i

h
|[[yu]]|2S,F .

The main result is the following

Theorem 5. Let z solve (10) and let zh solve (19). Assume that for all k ∈
{1, . . . , d}, Bk ∈ [C0,1(Ω)]m,m. Then

‖z − zh‖h,A′ . inf
yh∈Wh

‖z − yh‖h,1, (39)

if z ∈ [H1(Ω)]m, and limh→0(‖z − zh‖2L +
∑

K∈Th
‖B(zu − zu

h)‖2Lσ,L) = 0 if
z ∈ V only, assuming there is γ > 0 s.t. [Hγ(Ω)]mσ×[H1+γ(Ω)]mu ∩ V is
dense in V .

Using standard interpolation results on Wh and since p− 1 ≤ pσ ≤ p, the
above result implies

‖z − zh‖h,A′ . hp
(
‖zσ‖[Hpσ+1(Ω)]mσ + ‖zu‖[Hp+1(Ω)]mu

)
. (40)

whenever z is in [Hpσ+1(Ω)]mσ×[Hp+1(Ω)]mu . In particular, ‖z − zh‖L

converges to order hp and if the mesh family {Th}h>0 is quasi-uniform,
(
∑

K∈Th
‖B(zu − zu

h)‖2Lσ,K)
1
2 also converges to order hp. If pσ = p, the L-

norm error estimate is suboptimal when compared with that obtained using
the DG method analyzed in §3. The reason for this optimality loss is that the
interface jumps of the σ-component are no longer controlled to allow for this
component to be locally eliminated, and the jumps of the u-component are
penalized with an O(h−1) weight. If pσ = p− 1, the L-norm error estimate is
still suboptimal for the u-component, but is optimal for the σ-component.

To derive an optimal error estimate for the u-component in the Lu-norm,
we use a duality argument. Let ψ ∈ V ∗ solve

T̃ψ = (0, zu − zu
h). (41)

Assuming the above problem yields elliptic regularity, i.e., ‖ψu‖[H2(Ω)]mu +
‖ψσ‖[H1(Ω)]mσ . ‖zu − zu

h‖Lu , the main result is the following

Theorem 6. The following holds:

‖zu − zu
h‖Lu . h inf

yh∈Wh

‖z − yh‖h,1+ , (42)

where ‖y‖2h,1+ = ‖y‖2h,1 +
∑

K∈Th
[h2

K‖yσ‖2[H1(K)]mσ + hK‖yσ‖2Lσ,∂K ]. In par-
ticular, if z ∈ [Hpσ+1(Ω)]mσ×[Hp+1(Ω)]mu , then

‖zu − zu
h‖Lu . hp+1

(
‖zσ‖[Hpσ+1(Ω)]mσ + ‖zu‖[Hp+1(Ω)]mu

)
. (43)
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5 Examples

In this section we apply the methods formulated in §3 and §4 to various
Friedrichs’ systems encountered in engineering applications. To alleviate no-
tation, an index h indicates that the norm is broken on the mesh elements
and h denotes the piecewise constant function equal to hK on each K ∈ Th.

5.1 Advection–reaction

Let µ ∈ L∞(Ω), let β ∈ [L∞(Ω)]d with ∇·β ∈ L∞(Ω), and assume that there
is µ0 > 0 such that µ(x)− 1

2∇·β(x) ≥ µ0 a.e. in Ω. Let f ∈ L2(Ω). The PDE

µu+ β·∇u = f (44)

is recast as a Friedrichs’ system by setting m = 1, K = µ, and Ak = βk for k ∈
{1, . . . , d}. The graph space is W = {w ∈ L2(Ω); β·∇w ∈ L2(Ω)}. To enforce
boundary conditions, define ∂Ω± = {x ∈ ∂Ω; ± β(x)·n(x) > 0}, and assume
that ∂Ω− and ∂Ω+ are well-separated, i.e., dist(∂Ω−, ∂Ω+) > 0. Then, the
boundary operator D has the following representation: For all v, w ∈W ,

〈Dv,w〉W ′,W =
∫

∂Ω

vw(β·n). (45)

Letting 〈Mv,w〉W ′,W =
∫

∂Ω
vw|β·n|, then (m1)–(m2) hold and V = {v ∈

W ; v|∂Ω− = 0}, i.e., homogeneous Dirichlet boundary conditions are enforced
at the inflow boundary.

Let α > 0 (α can vary from face to face) and for all F ∈ Fh, set

MF = |β·n| and SF = α|β·nF |, (46)

where nF is a unit normal vector to F (the orientation is irrelevant). Then,
letting MF (v) = MF v and SF (v) = SF v, assumptions (dg1)–(dg7) hold.
Hence, if β ∈ [C0, 1

2 (Ω)]d and the exact solution is smooth enough,

‖u− uh‖L2(Ω) + ‖h 1
2β·∇(u− uh)‖h,L2(Ω) . hp+ 1

2 ‖u‖Hp+1(Ω). (47)

Remark 4. The specific value α = 1
2 leads to the so-called upwind scheme. This

coincidence has lead many authors to believe that DG methods are methods
of choice to solve hyperbolic problems. Actually DG methods, as presented
herein, are merely stabilization techniques tailored to solve symmetric positive
systems of first-order PDEs.

5.2 Advection–diffusion–reaction

Let µ, β, and f be as in §5.1. Then, the PDE −∆u+ β·∇u+ µu = f written
in the mixed form
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σ +∇u = 0,
µu+∇·σ + β·∇u = f,

(48)

falls into the category of Friedrichs’ systems by setting m = d+ 1 and

K =
[
Id 0
0 µ

]
, Ak =

[
0 ek

(ek)t βk

]
, (49)

where Id is the identity matrix in Rd,d and ek is the k-th vector in the canonical
basis of Rd. The graph space is W = H(div;Ω)×H1(Ω).

The boundary operator D is such that for all (σ, u), (τ, v) ∈W ,

〈D(σ, u), (τ, v)〉W ′,W = 〈σ·n, v〉− 1
2 , 1

2
+ 〈τ ·n, u〉− 1

2 , 1
2

+
∫

∂Ω

(β·n)uv, (50)

where 〈, 〉− 1
2 , 1

2
denotes the duality pairing between H− 1

2 (∂Ω) and H
1
2 (∂Ω).

Dirichlet boundary conditions are enforced by setting 〈M(σ, u), (τ, v)〉W ′,W =
〈σ·n, v〉− 1

2 , 1
2
− 〈τ ·n, u〉− 1

2 , 1
2
, yielding V = H(div;Ω)×H1

0 (Ω). Neumann and
Robin boundary conditions can be treated similarly.

Let α1 > 0, α2 > 0, and η > 0 (these design parameters can vary from
face to face) and for all F ∈ Fh, set

MF =

[
0 −n
nt η

]
, SF =

[
α1nF⊗nF 0

0 α2

]
. (51)

Then, letting MF (σ, u) = MF (σ, u) and SF (σ, u) = SF (σ, u), assump-
tions (dg1)–(dg7) hold. Hence, if β ∈ [C0, 1

2 (Ω)]d and the exact solution is
smooth enough,

‖u− uh‖L2(Ω) + ‖σ − σh‖[L2(Ω)]d + ‖h 1
2∇(u− uh)‖h,[L2(Ω)]d

+ ‖h 1
2∇·(σ − σh)‖h,L2(Ω) . hp+ 1

2 ‖(σ, u)‖[Hp+1(Ω)]d+1 . (52)

The above Friedrichs’ system can be equipped with the 2×2 block structure
analyzed in §4 by setting zσ := σ and zu := u. Take

MF =

[
0 −n
nt ηh−1

F

]
, SF =

[
0 0
0 α2h

−1
F

]
. (53)

Then, letting MF (σ, u) = MF (σ, u) and SF (σ, u) = SF (σ, u), assump-
tions (ldg1)–(ldg8) hold. If the exact solution is smooth enough,

‖u− uh‖L2(Ω) + h‖σ − σh‖[L2(Ω)]d + h‖∇(u− uh)‖h,[L2(Ω)]d

. hp+1‖(σ, u)‖[Hp(Ω)]d×Hp+1(Ω). (54)

Remark 5. Other choices for the operators MF and SF are possible. In par-
ticular, one can show that the DG method of Brezzi et al. [7], that of Bassi
and Rebay [6], that of Douglas and Dupont [10], and that of Cockburn and
Shu [9] fit into the present framework.
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5.3 Linear elasticity

Let ς and γ be two positive functions in L∞(Ω) uniformly bounded away from
zero. Let f ∈ [L2(Ω)]d. Let u be the Rd-valued displacement field and let σ
be the Rd,d-valued stress tensor. The PDE’s σ = 1

2 (∇u+ (∇u)t) + 1
γ (∇·u)Id

and −∇·σ + ςu = f can be written in the following mixed stress–pressure–
displacement form 

σ + πId − 1
2 (∇u+ (∇u)t) = 0,

tr(σ) + (d+ γ)π = 0,

− 1
2∇·(σ + σt) + ςu = f.

(55)

The tensor σ in Rd,d can be identified with the vector σ ∈ Rd2
by setting

σ[ij] = σij with 1 ≤ i, j ≤ d and [ij] = d(j − 1) + i. Then, (55) falls into the
category of Friedrichs’ systems by setting m = d2 + 1 + d and

K =

 Id2 Z 0

(Z)t (d+γ) 0
0 0 ςId

 , Ak =

 0 0 Ek

0 0 0
(Ek)t 0 0

 , (56)

where Z ∈ Rd2
has components given by Z[ij] = δij , and for all k ∈ {1, . . . , d},

Ek ∈ Rd2,d has components given by Ek
[ij],l = − 1

2 (δikδjl + δilδjk); here, i, j, l ∈
{1, . . . , d} and the δ’s denote Kronecker symbols. The graph space is W =
Hσ×L2(Ω)×[H1(Ω)]d with Hσ = {σ ∈ [L2(Ω)]d

2
; ∇·(σ + σt) ∈ [L2(Ω)]d}.

The boundary operator D is s.t. for all (z := (σ, π, u), y := (τ , ρ, v)) ∈W ,

〈Dz, y〉W ′,W = −〈 1
2 (τ + τ t)·n, u〉− 1

2 , 1
2
− 〈 1

2 (σ + σt)·n, v〉− 1
2 , 1

2
. (57)

Letting 〈Mz, y〉W ′,W = 〈 1
2 (τ+τ t)·n, u〉− 1

2 , 1
2
−〈1

2 (σ+σt)·n, v〉− 1
2 , 1

2
, then (m1)–

(m2) hold and V = Hσ×L2(Ω)×[H1
0 (Ω)]d, i.e., homogeneous Dirichlet bound-

ary conditions are enforced on the displacement.
Let α1 > 0, α2 > 0, and η > 0 (these design parameters can vary from

face to face) and for all F ∈ Fh, set

MF =

 0 0 −H
0 0 0
Ht 0 ηId

 , SF =

α1HF ·Ht
F 0 0

0 0 0
0 0 α2Id

 , (58)

whereH =
∑d

k=1 nkEk ∈ Rd2,d andHF is defined similarly by substituting nF

to n. Then, letting MF (σ, π, u) = MF (σ, π, u) and SF (σ, π, u) = SF (σ, π, u),
assumptions (dg1)–(dg7) hold. Hence, if the exact solution is smooth enough,

‖u− uh‖[L2(Ω)]d + ‖π − πh‖L2(Ω) + ‖σ − σh‖[L2(Ω)]d,d

+ ‖h 1
2∇(u− uh)‖h,[L2(Ω)]d,d + ‖h 1

2∇·((σ + σt)− (σh + σt
h))‖h,[L2(Ω)]d

. hp+ 1
2 ‖(σ, π, u)‖[Hp+1(Ω)]d2+1+d . (59)
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The above Friedrichs’ system can be equipped with the 2×2 block structure
analyzed in §4 by setting zσ := (σ, π) and zu := u. Take

MF =

 0 0 −H
0 0 0
Ht 0 ηh−1

F Id

 , SF =

 0 0 0
0 0 0
0 0 α2h

−1
F Id

 . (60)

Then, letting MF (σ, π, u) = MF (σ, π, u) and SF (σ, π, u) = SF (σ, π, u), as-
sumptions (ldg1)–(ldg8) hold. Hence, if the exact solution is smooth enough,

‖u− uh‖[L2(Ω)]d + h‖π − πh‖L2(Ω) + h‖σ − σh‖[L2(Ω)]d,d

+ h‖∇(u− uh)‖h,[L2(Ω)]d,d . hp+1‖(σ, π, u)‖[Hp(Ω)]d2+1×[Hp+1(Ω)]d . (61)

5.4 Maxwell’s equations in the elliptic regime

Let σ and µ be two positive functions in L∞(Ω) uniformly bounded away from
zero. A simplified form of Maxwell’s equations in R3 in the elliptic regime,
i.e., when displacement currents are negligible, consists of the PDE’s

µH +∇×E = f, σE −∇×H = g, (62)

with data f, g ∈ [L2(Ω)]3. The above PDE’s fall into the category of Friedrichs’
systems by setting m = 6 and

K =
[
µI3 0
0 σI3

]
, Ak =

[
0 Rk

(Rk)t 0

]
, (63)

with Rk
ij = εikj for i, j, k ∈ {1, 2, 3}, εikj being the Levi–Civita permuta-

tion tensor. The graph space is W = H(curl;Ω)×H(curl;Ω). The boundary
operator D is such that for all (H,E), (h, e) ∈W ,

〈D(H,E), (h, e)〉W ′,W = (∇×E, h)[L2(Ω)]3 − (E,∇×h)[L2(Ω)]3

+ (H,∇×e)[L2(Ω)]3 − (∇×H, e)[L2(Ω)]3 .
(64)

Letting 〈M(H,E), (h, e)〉W ′,W = −(∇×E, h)[L2(Ω)]3 + (E,∇×h)[L2(Ω)]3 +
(H,∇×e)[L2(Ω)]3−(∇×H, e)[L2(Ω)]3 , then (m1)–(m2) hold and V = {(H,E) ∈
W ; (E×n)|∂Ω = 0}, i.e., homogeneous Dirichlet boundary conditions are en-
forced on the tangential component of the electric field.

Let α1 > 0, α2 > 0, and η > 0 (these design parameters can vary from
face to face) and for all F ∈ Fh, set

MF =

[
0 −N
N t ηN tN

]
, SF =

α1N t
FNF 0

0 α2N t
FNF

 , (65)
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where N =
∑d

k=1 nkRk ∈ R3,3 and NF is defined similarly by substituting
nF to n. Then, letting MF (H,E) = MF (H,E) and SF (H,E) = SF (H,E),
assumptions (dg1)–(dg7) hold. Hence, if the exact solution is smooth enough,

‖E − Eh‖[L2(Ω)]3 + ‖H −Hh‖[L2(Ω)]3 + ‖h 1
2∇×(E − Eh)‖h,[L2(Ω)]3

+ ‖h 1
2∇×(H −Hh)‖h,[L2(Ω)]3 . hp+ 1

2 ‖(H,E)‖[Hp+1(Ω)]6 . (66)

The above Friedrichs’ system can also be equipped with the 2×2 block
structure analyzed in §4 by setting zσ := H and zu := E. Take

MF =

[
0 −N
N t ηh−1

F N tN

]
, SF =

[
0 0
0 α2h

−1
F N t

FNF

]
. (67)

Then, letting MF (H,E) = MF (H,E) and SF (H,E) = SF (H,E), assump-
tions (ldg1)–(ldg8) hold. Hence, if the exact solution is smooth enough,

‖E − Eh‖[L2(Ω)]3 + h‖H −Hh‖[L2(Ω)]3 + h‖∇×(E − Eh)‖h,[L2(Ω)]3

. hp+1‖(H,E)‖[Hp(Ω)]3×[Hp+1(Ω)]3 . (68)

6 Concluding remarks

In this paper we have presented a unified analysis of DG methods by making
systematic use of Friedrichs’ systems. As already pointed out by Friedrichs,
such systems go beyond the traditional hyperbolic/elliptic classification of
PDE’s. Furthermore, DG methods as presented herein appear to be merely
stabilization methods where the boundary operators MF and the interface
operators SF have to be set (tuned) by the user so as to comply with the
design criteria (dg1)–(dg7) or (ldg1)–(ldg8).
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