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COMPUTATION OF SPIRAL SPECTRA ∗

PAUL WHEELER † AND DWIGHT BARKLEY ‡

Abstract.

A computational linear stability analysis of spiral waves in a reaction-diffusion equation is per-
formed on large disks. As the disk radius R increases, eigenvalue spectra converge to the absolute
spectrum predicted by Sandstede and Scheel. The convergence rate is consistent with 1/R, ex-
cept possibly near the edge of the spectrum. Eigenfunctions computed on large disks are compared
with predicted exponential forms. Away from the edge of the absolute spectrum the agreement is
excellent, while near the edge computed eigenfunctions deviate from predictions, probably due to
finite-size effects. In addition to eigenvalues associated with the absolute spectrum, computations
reveal point eigenvalues. The point eigenvalues and associated eigenfunctions responsible for both
core and far-field breakup of spiral waves are shown.
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1. Introduction. Rotating spiral waves are found in many chemical and biolog-
ical systems and have been the subject of intense study for many years [10, 14, 16, 28].
The equations governing these systems are typically of reaction-diffusion type. Al-
though each system is modeled in detail by specific equations — which are often very
complex — generic features of the spiral waves can be understood from reaction-
diffusion equations with simple nonlinearities. Figure 1.1 shows a spiral wave in a
generic model reaction-diffusion system described in detail in §2. For the model pa-
rameters in figure 1.1 the spiral wave rotates with constant frequency and shape, i.e.
it is a rotating wave.

Fig. 1.1. Rotating spiral wave solution of reaction-diffusion equations described in §2. Colors
indicate the level of the u field with blue used for u near zero and red used for u near 1. The
wave rotates counterclockwise. The domain radius, R = 80, is approximately 10 times the spiral
wavelength. Homogeneous Neumann boundary conditions, corresponding to zero chemical flux, are
imposed at the domain boundary. Model parameters are a = 0.75, b = 0.0006, and ǫ=0.0741

The focus of our work is a computational study of the linear stability spectra of
rotating spiral waves such as those shown in figure 1.1. To explain the motivation
behind this study it is necessary to first recall the recent analysis by Sandstede and
Scheel [21, 22, 23, 24] on the spectra of rotating spiral waves. Their work examines
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2 P. WHEELER AND D. BARKLEY

spectra on large bounded disks and on unbounded domains. The results can be
summarized as follows (see figure 1.2). On large bounded disks, the linear stability
spectrum consists of point eigenvalues and what is called the absolute spectrum. The
absolute spectrum is not actually part of the stability spectrum. However, all but
possibly a finite number of point eigenvalues converge to the absolute spectrum as
the domain size tends to infinity. That is, except for finitely many eigenvalues that
are created through the underlying pattern as a whole, or possibly by the boundary
conditions, all eigenvalues on large bounded domains are expected to be close to the
absolute spectrum. The point eigenvalues have well-defined limits as the domain size
tends to infinity.

In practice the absolute spectrum must be computed numerically for any given
reaction-diffusion equation, e.g. [22]. Such computations require discretization in
only one space dimension and thus are relatively simple compared with computing
eigenvalues of the full stability problem on a large domain, such as in figure 1.1.

For spiral waves on the unbounded plane, the linear stability spectrum consists
of point eigenvalues and the essential spectrum. The essential spectrum is continuous
spectrum and is determined only by the far-field waves trains of the spiral. It too is
relatively easy to compute numerically in one space dimension. The point eigenvalues
again depend on the underlying spiral pattern as a whole.

Fig. 1.2. Illustration of spectra in the complex plane for spirals on bounded and unbounded
domains. Σabs and Σess represent the absolute and essential spectrum respectively. Points represent
eigenvalues on a large bounded domain which approach Σabs as the domain size tends to infinity.
Crosses represent the point spectrum which does not approach Σabs as the domain size tends to
infinity.

To see how these linear stability spectra may be relevant in practice, we show
in figure 1.3 simulations of two instabilities of rotating waves on relatively large do-
mains and the corresponding absolute and essential spectra obtained by Sandstede
and Scheel [22]. In each case a rotating wave becomes unstable in a rather dramatic
fashion and the spiral breaks up. Multiple spiral waves appear in each of these sim-
ulations shortly after the time shown. In figure 1.3(a) the breakup initiates in the
central region of the spiral and is referred to as core breakup [3, 15, 22] whereas in
figure 1.3(b) the breakup first takes place in the outer regions of the spiral and is
called far-field breakup [4, 18, 22, 26, 29].

The case of far-field breakup, figure 1.3 (right), has been the subject of several
past studies [1, 2, 4, 9, 18, 22, 25, 26, 29]. The breakup can be mostly understood from
analysis and simulations of one-dimensional systems. While many of these studies are
based on the complex Ginzburg-Landau equation, results appear to be similar for
the case of reaction-diffusion equations [2, 4, 26]. The typical scenario is that as
a parameter is varied the spiral first becomes convectively unstable. In a bounded
domain the onset of convective instability does not generally lead to breakup because
unstable modes typically propagate away from the core and are not reflected at the



Spiral Spectra 3

Fig. 1.3. Two examples of spiral breakup – core breakup on the left and far-field breakup on the
right. The top plots show the u chemical field at about the time of breakup in numerical simulations
in square geometries with homogeneous Neumann boundary conditions. Domains are of length 160
on a side. The bottom shows the absolute and essential spectrum obtained by Sandstede and Scheel
for the parameter values used in the simulations. Note that these spectra repeat periodically in
the imaginary direction, but this can only be seen in (d). Model parameters are: (left) a = 0.75,
b = 0.0006, and ǫ = 0.0741, (right) a = 0.84, b = −0.045, and ǫ = 0.075.

boundary. As the parameter is varied further the spiral becomes absolutely unstable.
Only at the absolute-instability threshold will instability surely occur in a bounded
domain. Absolute instability corresponds to a growing “global mode” [25, 26], which
here means an eigenfunction on the bounded domain whose eigenvalue has positive
real part.

In the analysis of Sandstede and Scheel, convective instability is signaled by the
crossing of the essential spectrum into the right half plane [21, 22]. Figure 1.3(d) shows
that the spiral is convectively unstable. However, the spiral was already convectively
unstable prior to the breakup seen in figure 1.3 and this is not the cause of breakup.
The breakup is caused by an eigenvalue with positive real part and the corresponding
global mode on the finite (bounded) domain. In principle such an eigenvalue could
be associated with the absolute spectrum or it could be a point eigenvalue. In fig-
ure 1.3(d) the absolute spectrum is away from the imaginary axis and thus is not
expected to play a direct role in the far-field breakup. Thus we expect there to be at
least one positive point eigenvalue not contained in figure 1.3(d).

It is worth being clear about potentially confusing terminology. Absolute insta-
bility is not associated only with the absolute spectrum. The union of the absolute
spectrum and the point spectrum determine absolute stability. If part of the absolute
spectrum lies in the right half plane, then the spiral will necessarily be absolutely
unstable. However, the converse is not true, since absolute instability can arise due
to point eigenvalues, even if the absolute spectrum lies entirely in the left-half plane.

We should warn the reader that simulations at the stated parameters in fig-
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ure 1.3(b) are very sensitive to numerical resolution. As we shall see, this is because
the particular parameters considered by Sandstede and Scheel are extremely close to
a transition between far-field and core breakup.

The case of core breakup, figure 1.3(left), has not been extensively analyzed, in
large part because one cannot expect to capture much of the spiral core structure in
one-dimensional studies. (See however [2].) Sandstede and Scheel [22] have raised the
possibility that core breakup may be due to the absolute spectrum. In figure 1.3(c) it
can be seen that the absolute spectrum is very near the imaginary axis, although it is
entirely in the left-half plane. (The argument of Sandstede and Scheel is not simply
that the absolute spectrum is close to the real axis, but the details are not important
here.) The other possibility for core breakup is that the instability is again due to
point eigenvalues. The essential spectrum in 1.3(c) extends into the right-half plane
and so the spiral is convectively unstable.

Computing the eigenvalue spectra of spiral waves on large domains has thus be-
come important. First and foremost, it is desirable to test the absolute spectra of
Sandstede and Scheel in at least a few cases. The primary issue is whether or not
eigenvalues tend to the absolute spectrum for typical domains sizes used in studies of
spiral waves, e.g. domains such as those in figure 1.3. The theory is still developing
and we would like to know whether absolute spectra in fact have any implications
for domains of reasonable size. The other important issue which computations can
address is the abundance and importance of point eigenvalues not predicted by the
absolute spectrum. For example, it is desirable to know how many point eigenvalues
are present within the region shown in 1.3(c)-(d), how many of these eigenvalues have
positive real part, and whether or not these are associated with breakup. For these
reasons we have undertaken the large-scale eigenvalue computation reported here.

Throughout this paper we shall use point eigenvalue to mean those eigenvalues
which remain isolated as the domain radius becomes large, as contrasted with the
eigenvalues associated with the absolute spectrum that approach one another as the
radius becomes large. To simplify discussion we shall use positive eigenvalue to mean
an eigenvalue, or a complex-conjugate pair of eigenvalues, with positive real part.
Similarly we shall use positive eigenfunction to mean an eigenfunction whose corre-
sponding eigenvalue has positive real part.

2. Model and Methods.

2.1. Model. Wewill consider a standard two-component reaction-diffusion model [5]
given by the equations

∂u

∂t
= ∇2u+ f(u, v)(2.1a)

∂v

∂t
= δ∇2v + g(u, v),(2.1b)

where

f(u, v) =
1

ǫ
u(1− u)

(

u−
v + b

a

)

(2.2)

There is freedom in the choice of g(u, v) and our methods will not depend on this
choice. However, the results we report will be for the g proposed by Bär and Eiswirth [3]
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and used by Sandstede and Scheel [22], namely

g(u, v) =







−v, 0 ≤ u < 1/3
1− 6.75u(u− 1)2 − v, 1/3 ≤ u ≤ 1
1− v, 1 < u

(2.3)

The equations are posed on a disk of radius R and with homogeneous Neumann
boundary conditions at r = R:

∂u

∂r
(R, θ) =

∂v

∂r
(R, θ) = 0,

where r, θ are standard polar coordinates. For chemically reacting systems these
are the most natural boundary conditions as they correspond to zero chemical flux
through the boundary of the domain. Other boundary conditions could give different
spiral solutions and linear stability spectra on finite domains, but we do not consider
any other boundary conditions here.

The parameters of the model are kinetics parameters a, b, and ǫ, and the diffusion
coefficient δ. If b > 0 the equations model an excitable medium. In this case the
homogeneous state with u = v = 0 everywhere is linearly stable and finite amplitude
perturbations are required to initiate waves. The perturbation threshold is set by b/a.
For b < 0 the equations model an oscillatory medium. In both cases ǫ controls the
time-scale ratio between the u- and v-equations. We consider ǫ ≪ 1 corresponding to
a fast time scale for u relative to v. We shall only report results for the case δ = 0.
δ = 1 is the other case commonly considered. As stated at the outset, these equations
model generic features of spiral waves in a variety of excitable and oscillatory media.

2.2. Computational tasks. Consider rotating-wave solutions of (2.1) rotating
at frequency ω. We use (u∗, v∗) to denote such solutions and refer to them as steady
spirals, since these are steady states when viewed in the frame of reference which
is rotating with the spiral. Transforming to a system of coordinates co-rotating at
frequency ω, steady spirals obey the equations

0 = ∇2u∗ + ω
∂u∗

∂θ
+ f(u∗, v∗)(2.4a)

0 = ω
∂v∗

∂θ
+ g(u∗, v∗),(2.4b)

subject to homogeneous Neumann boundary conditions. These steady-state equations
can be written in the form

F

(

u∗

v∗

)

= 0,(2.5)

where F is the nonlinear operator given by the right hand side of (2.4).
Next, given a steady spiral, we seek the leading part of its linear stability spec-

trum. Consider the linearized evolution equations, in the rotating frame, for infinites-
imal perturbations (u′, v′) of the steady solution (u∗, v∗):

∂u′

∂t
= ∇2u′ + ω

∂u′

∂θ
+ fu(u

∗, v∗)u′ + fv(u
∗, v∗)v′(2.6a)

∂v′

∂t
= ω

∂v′

∂θ
+ gu(u

∗, v∗)u′ + gv(u
∗, v∗)v′,(2.6b)
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where fu, . . . , gv denote the derivatives of the kinetic functions. In this frame of
reference the eigenvalue problem is

L

(

ũ
ṽ

)

= λ

(

ũ
ṽ

)

(2.7)

where

(

ũ
ṽ

)

are eigenfunctions, λ are the corresponding eigenvalues, and L is

L =

(

∇2 + ω∂θ + fu(u
∗, v∗) fv(u

∗, v∗)
gu(u

∗, v∗) ω∂θ + gv(u
∗, v∗)

)

.(2.8)

Thus our primary numerical tasks are the solution of steady state problem (2.5) and
the determination of the leading eigenvalues of problem (2.7).

In addition it is necessary to perform a few simulations of the time-dependent
equations (2.1), e.g., the simulations shown in figure 1.3. In the case of figure 1.3
the numerical methods are described fully elsewhere [5, 12] and will not be discussed
here.

2.3. Computational Methods. Equations (2.5) and (2.7) are common in large-
scale numerical bifurcation problems and the computational methods we employ are
more or less standard [11]. For completeness we provide a basic description of our
methods and stress a few points concerning implementation which are essential to the
efficiency of the computations.

The fields are discretized on a regular polar grid (rj , θk) = (j△r, k△θ), where
0 < j ≤ Nr and 0 ≤ k < Nθ, plus the center point (0, 0). There are thus NrNθ + 1
grid points. The r-derivatives in the differential operators are evaluated using second-
order finite differences, taking into account the boundary condition at r = R. The
θ-derivatives are evaluated spectrally using Fourier transforms. In this way (2.5) and
(2.7) become

F(U∗) = 0,(2.9)

LŨ = λŨ(2.10)

where the U’s are vectors of length N = 2(NrNθ + 1), F is a nonlinear function, and
L is an N ×N matrix.

Newton’s method is used to solve steady state problem (2.9). One iteration of
Newton’s method is

DF(Un)△Un = −F(Un)(2.11)

Un+1 = Un +△Un,(2.12)

where DF(Un) is the linearization of F about the current iterate Un. This is the
same matrix as L except it is evaluated at Un rather than at the steady state U∗.

The work of each Newton’s iteration is dominated by the work necessary to solve
the N × N linear system of equations (2.11) for the nth correction △Un. This can
be done by a direct method if care is taken to order variables to keep the matrix
bandwidth of DF as small as possible. Let ujk and vjk be values at grid point
(rj , θk). Then these are ordered in Ui such that the chemical species changes fastest
with index i, followed by the angular index k, followed by the radial index j. This
ordering is not that suggested by (2.8). With the ordering we use the bandwidth is
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Fig. 2.1. Banded structure of matrix DF or L. Solid black represents full blocks of size
2Nθ × 2Nθ mainly due to using spectral representation of θ-derivatives. The lines are due to the
second-order finite-difference representation of r-derivatives.

approximately 4Nθ. See figure 2.1. Even for moderately large discretizations a direct
method can be used to solve (2.11). For example on a grid Nr ×Nθ = 600× 256, N
is approximately 3× 105, while the bandwidth is only about 103.

The only other issue concerning the steady state computations is that the fre-
quency ω must be found in addition to fields u∗ and v∗. The existence of the addi-
tional unknown is consistent with the fact that the solution to (2.4) is not unique due
to the rotational symmetry in θ. One more algebraic equation must be added to (2.9)
to remove the phase degeneracy and thus giving N +1 equations in N +1 unknowns.
The constraint we add is simply to fix u as some point in the domain. While the
constraint destroys the banded structure of DF, a Sherman-Morrison technique [19]
is used to find solutions of the augmented linear system using only the banded DF.

We now describe our computations of the leading eigenvalue spectrum of L. The
basis of our approach is to employ a Cayley transformation to transform the eigenval-
ues we seek (those with largest real part) to dominant eigenvalues (of largest magni-
tude), and then to find iteratively dominant eigenvalues of the transformed operator.
Reference [17] gives a nice review of such methods. Specifically, we consider the matrix
A defined by the Cayley transform

A = (ξI+ L)−1(ηI+ L),(2.13)

where ξ and η are real parameters and I is the identity. Letting the µ and λ be the
eigenvalues of A and L respectively, we have the relation

µ =
η + λ

ξ + λ
.(2.14)

The parameters ξ and η can be adjusted so as to map the regions of interest in the
λ-plane to large magnitude in the µ-plane. Using the predicted absolute spectra of
Sandstede and Scheel it is easy to find appropriate values of ξ and η. Figure 2.2
shows the effect of the Cayley transform on the absolute spectrum for one of the cases
predicted by Sandstede and Scheel [22] (the other case is similar) for the values of ξ
and η used in our computations: ξ = −0.4 and η = 4.0. In the µ-plane we include
transforms of two periodic repeats of the absolute spectrum, one corresponding to
the larger imaginary part and one to smaller imaginary part (in the λ-plane ). These
repeats are outside the region of the λ-plane shown. Most of the eigenvalues of L lie
far to the left in the λ-plane (outside the range of the figure). These are all mapped
to near the origin by (2.13).

There is no need to form or store the matrix A in order to iteratively calculate
its eigenvalues. All one needs is the ability to compute AU for arbitrary U. This
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Fig. 2.2. Plot showing the effect of the Cayley transform on the absolute spectrum in 1.3(c).
Left is the original and right is transformed spectrum. The right includes two periodic repeats of the
absolute spectrum which are outside of the region shown on the left. Shading indicates magnitude
of eigenvalues after the transformed.

is accomplished using the same basic technique as in Newton’s method. Letting
U′ = AU we see that U′ obeys

(ξI+ L)U′ = (ηI+ L)U.(2.15)

However, (ξI + L) has the same structure, in particularly the same bandwidth, as L
and (ηI + L) requires mostly the same computations as evaluating F. Thus we act
with A on U by computing (ηI + L)U to form a right-hand side and then solving a
linear system with matrix (ξI+L). Since this is a fixed matrix, for any given L, it is
factored only once for all actions of A.

Dominant eigenvalues A are easily found by subspace iteration [17, 27]. This
method guarantees that we can obtain any required number of dominant eigenvalues
to arbitrarily high precision. While Arnoldi’s method generally converges faster, in
practice we find that with this method all eigenvalues we require are not found with
high enough precision. While there are methods, such as block Arnoldi, which could
probably address this, we have used subspace iteration. From the eigenvalues µ of A
we invert (2.14) to find the required eigenvalues λ.

2.4. Accuracy. We conclude this section by considering the accuracy of our
computations and providing details of numerical parameters used in the results re-
ported. The sources of error are the following:

1. Discretization error of the steady state problem, i.e. approximation of (2.5)
by (2.9).

2. Residual error arising from determining the roots of (2.9) to a finite accuracy.
3. Discretization error of the eigenvalue problem, i.e. approximation of (2.7) by

(2.10).
4. Residual error arising from computing eigenvalue/eigenfunction pairs (2.10)

to finite accuracy.
The two residual errors are least important. We always iterate sufficiently to

reduce these to negligible size. The following hold for all reported results. Solutions
U∗ of (2.9) are found such that ‖F(U∗)‖ < 10−8. Solutions of (2.10) are found such
that ‖LŨ − λŨ‖ < 10−8, where ‖Ũ‖ = 1. The norm is the vector 2-norm. The
dimension k of the subspaces used in subspace iteration are: k = 30 for R = 20 and
R = 40, and k = 75 for R = 80. In all cases we stop iterations when ∼ 0.7k of the
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Fig. 2.3. Graphs illustrating the convergence of steady states (top) and eigenvalues (bottom)
as function of grid resolution △r2, where ω is the spiral frequency and λc is a complex eigenvalue.
The domain radius is R = 40. Crosses are with Nθ = 256. For △r = 0.1333 computations have been
repeated with Nθ = 128 are results are shown with circles. Parameters are a = 0.75, b = 0.0006,
and ǫ = 0.0741.

eigenvalue-eigenvector pairs have residual less than 10−8. In the case of R = 80, we
thus obtain 53 pairs with the required residual. We initially start with a subspace
generated from k random vectors, but we restart iterations from previous runs when
necessary.

The discretization errors are dominated, in both the steady state and eigenvalue
computations, by the second-order finite-derivative approximation to the r-derivatives
in the Laplacian operator. This is expected since the θ-derivatives are computed with
spectral accuracy. Thus the dominant error in the computations depends on △r in
a well-understood way. Figure 2.3 shows examples of how results from steady state
and eigenvalue computations scale with △r2. The domain radius is R = 40, half the
maximum considered in our work. For the steady states we show the frequency ω
and for the eigenvalues we show the magnitude of λc, a complex eigenvalue associated
with core breakup that will be considered in detail later in the paper. In both cases
the second-order convergence is evident. We are interested only in leading eigenvalues
(roughly 102 out of 105) all of which correspond to eigenfunctions with variation on
approximately the same spatial scale (roughly the wavelength of the underlying spiral)
so that the effects of the finite-difference discretization will be approximately the same
for all eigenvalues we report.

Based on these plots, we use △r = 0.1333 for all results reported in § 3. At
this value of △r we have performed computations at both Nθ = 128 and Nθ = 256.
These results show clearly that Nθ = 128 gives sufficient resolution for domain radius
R = 40. Therefore, for radii up to at least R = 80, Nθ = 256 should produce smaller
errors than the already small errors due to the radial discretization. In summary, for
all results in § 3 we use △r = 0.1333 and Nθ = 256.

3. Results.

3.1. Spectra. We begin with results for the eigenvalue spectra. Figure 3.1 shows
leading eigenvalues of L for the two cases considered by Sandstede and Scheel. The
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spectrum corresponding to core breakup is at the top and the spectrum corresponding
to far-field breakup is at the bottom. In each figure eigenvalues computed for three
domain radii, R = 20, R = 40, and R = 80, are plotted as points with dashed lines
connecting eigenvalues associated with the absolute spectrum. For comparison, the
absolute and essential spectra obtained by Sandstede and Scheel are shown as solid
curves.

(a)

(b)

Fig. 3.1. Eigenvalue spectra. (a) Spectrum corresponding to core breakup and (b) spectrum
corresponding to far-field breakup. In each case eigenvalues are shown for three domain radii:
R = 20 (green diamonds), R = 40 (red crosses), and R = 80 (blue circles). For each radius, the
eigenvalues associated with the absolute spectrum are connected with lines. Point eigenvalue are not.
Parameters for (a): a=0.75, b=0.0006, ǫ=0.0741, ω=1.71. Parameters for (b): a=0.84, b=-0.045,
ǫ=0.0751, ω=1.50.
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Before considering either case in detail, we note that the predominant feature
in both is the presence of many eigenvalues which approach the predicted absolute
spectra as the domain radius increases. Each doubling of R results in approximately
a halving of the distance of eigenvalues to the absolute spectrum, thus supporting
1/R convergence to the absolute spectrum. Furthermore the density of eigenvalues
approximately doubles with each doubling of R. We return to this while considering
each case in more detail. It should be noted that in the far-field case we have not
obtained all eigenvalues associated with the periodic repeats of the absolute spectrum
for R = 80 due to the difficulties of computing these with sufficient accuracy. This
results in an abrupt termination of the eigenvalue branches for R = 80 at the top and
bottom of figure 3.1(b).

Consider first the spectrum in figure 3.1(a) corresponding to core breakup. Within
the region of the complex plane shown, there are three point eigenvalues. All other
eigenvalues are associated with the absolute spectrum. Specifically, we find three
eigenvalues which are insensitive to the domain radius and which are separated from
the absolute spectrum. Of these, one is the zero eigenvalue arising due to rotational
symmetry. There are three points indistinguishable from zero in figure 3.1(a) corre-
sponding to the three domain radii studied. The other two point eigenvalues are a
complex-conjugate pair at approximately 0.050 ± 0.543i. As we shall show in § 3.3,
these eigenvalues are associated with core breakup. We will denote them by λc.
(These are the eigenvalues considered in the convergence study in figure 2.3.) All
other eigenvalues vary with domain radius and approach the absolute spectrum as
the radius becomes large.

The enlargement in figure 3.1(a) clarifies the situation around the complex point
eigenvalues. Even on the enlarged scale the point eigenvalues for R = 40 and R = 80
coincide. At R = 20, however, there are two nearby eigenvalues. The lower one cor-
responds to the absolute spectrum (indicated by the connecting dashed line) because
it moves, as R is increased, toward the absolute spectrum. The other eigenvalue con-
verges, as the R is increased, to the point eigenvalue. Note that while the edge of the
eigenvalue branch associated with the absolute spectrum is near the point eigenvalue
at R = 20, the branch does not approach the point eigenvalue as the domain becomes
small. It is nevertheless interesting that the point eigenvalue is near the edge of the
absolute spectrum. We find this throughout and return to this in the conclusion.

As already noted, the distance of eigenvalues to the absolute spectrum is approx-
imately proportional to 1/R and the density of eigenvalues is approximately propor-
tional to R. Because we are not able to extend the computations significantly beyond
the radius R = 80 (already quite large) there is not enough data to draw strong con-
clusions about the these scalings. In particular it is not clear from the data whether
or not the scaling in the vicinity of the edge of the absolute spectrum is different from
elsewhere. Near the edge of the spectrum the eigenvalues are more dense and closer
to the absolute spectrum than elsewhere. More importantly we observe a curving
and perhaps folding, at the edge of the eigenvalue branch as the radius becomes large.
This would again suggest a different scaling at the spectrum’s edge, but the numerical
results are inconclusive.

We have focused our study on the eigenvalues within the region shown in fig-
ure 3.1(a), but we have computed some eigenvalues out side of this region. In partic-
ular our iterative technique frequently finds eigenvalues associated with the periodic
repetition of the absolute spectrum in the complex plane. We have not attempted to
resolve the details of the other eigenvalue branches. Also there is a complex-conjugate



12 P. WHEELER AND D. BARKLEY

pair of point eigenvalues near 0± iω due to approximate translational symmetry.

Now consider the spectrum corresponding to far-field breakup. In figure 3.1(b)
we find four complex-conjugate eigenvalue pairs that we can clearly classify as point
eigenvalues. One of these pairs has small positive real part and hence the spiral
wave is absolutely linearly unstable, see section § 3.3. Again we observe that the
point eigenvalues, except for the zero eigenvalue, appear near the edge of the absolute
spectrum.

We observe approximately 1/R convergence of eigenvalues to the absolute spec-
trum. The only apparent deviation is again at the edge of the spectrum. In this case
we do not observe any curving of the eigenvalue branch seen in the enlargement in
figure 3.1(a); however, we do find that the right-most point of the computed branch
does not appear to approach the edge of the predicted absolute spectrum. One pos-
sibility is that this last eigenvalue is in fact a point eigenvalue very close to the edge
of the absolute spectrum.

3.2. Eigenfunctions. In figures 3.2 and 3.3 we plot eigenfunctions for a repre-
sentative selection of eigenvalues. All eigenfunctions have been obtained on a domain
with R = 80, the largest we consider. Each eigenfunction is shown in two formats. In
the left column eigenfunctions are visualized on the computational domain. Specifi-
cally the ũ-field of the real part of the eigenfunction is plotted with black used where
the field values are near zero. The imaginary parts of the eigenfunctions and not fun-
damentally different. In the right column the modulus of each eigenfunction is shown
as a function of radius. Specifically, we generate 16 radial sections |ũ(r, θs)| where
θs = sπ/8 and s = 0, 1, . . . , 15 and plot all 16 sections simultaneously as a function of
r. The envelope of these sections gives a simple representation of the modulus of the
eigenfunction as a function of r.

The technique used by Sandstede and Scheel [23] to obtain absolute and essen-
tial spectra also predict large-r behavior of eigenfunctions. The main prediction is
that if an eigenvalue is to the left of the essential spectrum then the corresponding
eigenfunctions will be exponentially growing at large r, whereas if an eigenvalue is
to the right of the essential spectrum then the corresponding eigenfunctions will be
exponentially decaying at large r. In addition to the general prediction, the numerical
technique employed by Sandstede and Scheel to obtain spectra for specific problems
also provides the growth/decay rates for eigenfunctions. These rates [20] are indicated
by the (red) lines in the right column of figures 3.2 and 3.3. For eigenfunctions corre-
sponding to the absolute spectrum, the predicted exponential growth rates have been
taken from the point on the absolute spectrum nearest to the computed eigenvalue.
Only the slope of the lines is relevant. The intercept is chosen for ease of comparison
with the eigenfunctions.

Consider first the eigenfunctions in figure 3.2 corresponding to the case of core
breakup. The top eigenfunction is the zero mode due to rotational symmetry. This
eigenfunction is given by the θ-derivative of the underlying spiral wave and hence
closely resembles the spiral. The eigenfunction neither grows nor decays at large r.

Figure 3.2(b) shows the eigenfunction corresponding to the positive complex-
conjugate point eigenvalues λc. Since the eigenvalues are to the right of the essential
spectrum the eigenfunction decays with r. While there is generally good agreement
between the computed eigenfunction and prediction, there is some deviation from
prediction that is more pronounced at larger r.

Figures 3.2(c)-(e) show three eigenfunctions associated with the absolute spec-
trum. The agreement between the computed eigenfunctions and predictions is ex-
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Fig. 3.2. Representative eigenfunctions for parameters corresponding to core breakup. The left
column shows the real part of the each eigenfunction. The ũ-field is plotted with black used where
the field is near zero. Right column shows the r dependence of |ũ| with predicted growth/decay rate
also shown with lines (see text). Plot at the far right is a guide to the corresponding eigenvalues.
(a) zero (rotational) eigenvalue, (b) positive eigenvalue λc, and (c), (d), (e) three representative
eigenvalues associated with the absolute spectrum. Parameters as in figure 3.1(a).

tremely good away from the edge of the absolute spectrum. Near the edge the agree-
ment is less good. In particular, eigenfunctions are not pure exponential, even at large
r, and the computed eigenfunctions systematically grow more slowly than prediction.
While not shown, we find that the eigenfunctions computed on smaller domains and
show even slower growth as a function of r. This would suggest that the deviation
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Fig. 3.3. Representative eigenfunctions for parameters corresponding to far-field breakup. Same
format is used as in figure 3.2. The rotational eigenfunction is not shown. Two eigenfunctions
corresponding to point eigenvalues are shown with (a) slightly positive eigenvalue and (b) slightly
negative eigenvalue. (c), (d), (e) are three representative eigenvalues associated with the absolute
spectrum. Parameters as in figure 3.1(b).

shown in figure 3.2(c) is due to finite domain size.
Figure 3.3 shows eigenfunctions corresponding to parameters for which far-field

breakup occurs. We plot eigenfunctions corresponding to two of the complex-conjugate
point eigenvalues and show three representative eigenfunction associated with the ab-
solute spectrum. The eigenfunction corresponding to the zero eigenvalue is similar to
figure 3.2(a) and is not shown.
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The eigenfunctions corresponding to the point eigenvalues agree very well with
prediction. The growth rate of the positive eigenfunction in figure 3.3(a) is very small
since the corresponding eigenvalue is almost exactly on the essential spectrum (fig-
ure 3.1(b)). This is a fortuitous situation which illustrates nicely that the essential
spectrum delimits the crossover from growth to decay of eigenfunctions. While quan-
titatively the agreement is very good, there is a qualitative disagreement between the
computed eigenfunction and prediction. Our computed eigenfunction is growing with
r, indicating that the eigenvalue is actually slightly to the left of the essential spec-
trum, whereas in figure 3.1(b) the eigenvalue it slightly to the right of the essential
spectrum and the predicted exponent is slightly negative. The quantitatively the dif-
ference is very small and is likely due to a small numerical difference, e.g. a difference
in the value of ω found in our computations and that used by Sandstede and Scheel.
The closeness of this eigenvalue to the essential spectrum is just by chance. If parame-
ters are changed the eigenvalue moves away from the essential spectrum. It is because
of this closeness to the eigenvalue to essential spectrum that numerical simulations at
these parameter values are so sensitive to numerical resolution (as noted in § 1).

The eigenfunction in figure 3.3(b) is exponentially growing since the corresponding
eigenvalue is to the left of the essential spectrum. There are no observable deviations
from pure exponential growth at large r and the agreement with prediction is very
good.

The three eigenfunctions associated with the absolute spectrum show the same
trend as in figure 3.2. The agreement between the computed eigenfunctions and
predictions is extremely good away from the edge of the absolute spectrum while
near the edge eigenfunctions are not pure exponential and systematically grow more
slowly than prediction. This case is even more striking than figure 3.2 for the following
reasons. The growth rates in figure 3.2 are much larger than figure 3.3. (Note the scale
change.) The numerical values representing the eigenfunctions span a larger range and
yet the computed eigenfunctions away from the edge agree very well with predictions.
There is every reason to believe that these eigenfunctions are numerically well resolved
within the finite domain. Unlike the case in figure 3.2(c), here the eigenfunction closest
to the edge of the spectrum, figure 3.3(c), deviates from exponential growth only at
large r. There is a clear range r, up to approximately r = 40, where the eigenfunction
agrees well the predicted exponential growth. This strongly suggests that the lack
of agreement is due to finite-size effects. It is nevertheless interesting that these are
more pronounced near the edge of the spectrum.

3.3. Implications for breakup. We now return to the issue of spiral breakup
discussed at the outset (figure 1.3). We begin with the case of core breakup. Recall
that while this was treated by Sandstede and Scheel [22, 23], they were not able to
draw definite conclusions about the role of the absolute and essential spectrum in core
breakup. It is already clear from the spectra in figure 3.1 that the steady spiral is
linearly unstable due to the presence of positive point eigenvalues λc. Here we present
additional nonlinear simulations of the breakup.

Figure 3.4 shows the time evolution from two different initial conditions each com-
posed of the steady spiral plus a small amount of one of the computed eigenfunctions.
The amplitude plotted is defined as A = min θ ‖U

∗−RθU‖, where Rθ is a rotation by
angle θ. The norm is the vector 2-norm. Essentially A is the norm of the difference
between the u-field of the steady spiral, U∗, and the u-field of the nonlinear solution
U . The minimization over rotation is included to take into account the small drift of
the nonlinear solution relative to the steady spiral.
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Fig. 3.4. Two time series showing the evolution starting from different perturbations of the
steady spiral with parameters leading to core breakup. In one case (solid green) the perturbation is
the eigenfunction corresponding to positive eigenvalue λc [(b) in figure 3.2]. In the other (dashed
red) the perturbation is the eigenfunction corresponding to right-most eigenvalue associated to the
absolute spectrum [(c) in figure 3.2]. The dotted blue curve shows exponential growth at rate given
by λc. Parameters are as in figure 3.1(a).

Consider the evolution starting from the initial condition formed from the posi-
tive eigenfunction corresponding to λc. Accompanying visualizations are presented in
figure 3.5. The dynamics is initially linear, obeying the exponential growth dictated
by the real part of λc. After a short time the growth becomes nonlinear and almost
immediately core breakup occurs [figure 3.5(c); time 25]. Beyond this time the am-
plitude A loses most of its meaning. Visualizations at much later times are shown.
One of the more striking aspects of the breakup is that it occurs at r ≃ 20, not at the
center of the spiral. This radius is near where the unstable eigenfunction has maximal
magnitude. Visually one sees the similarity between the nonlinear breakup and the
unstable eigenfunction in figure 3.5.

The initial nonlinear growth in figure 3.4 is faster than linear. This means that, at
lowest order, the effect of nonlinearity on the instability is destabilizing. Such behavior
occurs, for example, sufficiently close to a subcritical bifurcation, e.g. [13]. This
nonlinear destabilization is consistent with the fact that small positive eigenvalues
lead to the dramatic breakup of the spiral wave. If nonlinearity were stabilizing, one
would expect the linear instability to saturate in a state resembling a superposition
of the original spiral and a small amount of the unstable eigenmode (as occurs for
example in spiral meandering [6, 7, 8]). We note that in systems such as this one the
behavior can change very rapidly with parameters following a bifurcation [25, 26], and
hence we are not able to conclude that the nonlinear growth follows from a subcritical
bifurcation, only that at these parameter values it is destabilizing.

For completeness we have also computed the nonlinear evolution from an initial
condition formed from the eigenfunction corresponding to the right-most eigenvalue
of the absolute spectrum [(c) in figure 3.2]. Figure 3.4 shows the initial dynamics from
this simulation. Not surprisingly A does not change much on the scale of figure 3.4
because the associated eigenvalue is very near zero. The simulation eventually leads
to core breakup if run long enough. However, this is simply because the steady
spiral is linearly unstable. When breakup does eventually occur, it follows the same
route (e.g. same exponential growth) as for the initial condition based on the positive
eigenfunction.

The conclusion is that, in this case, core breakup is due to nonlinear effects
following from linear instability due to a complex-conjugate pair of point eigenvalues.
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Fig. 3.5. Snapshots of evolution from the perturbed steady spiral leading to far-field breakup
(solid green curve in figure 3.4). The u-field is shown with u ≃ 0 blue and u ≃ 1 red. (a) t = 0,
(b) t = 20 (≃ 5 periods), (c) t = 25, (d) t = 85 (≃ 23 periods), (e) t=120 (≃ 33 periods), (f)
eigenfunction. Parameters are as in figure 3.1(a).

The absolute spectrum plays no direct role in the spiral breakup.
Next we briefly consider far-field breakup. We have directly computed the eigen-

function associated with absolute instability causing far-field breakup, figure 3.3(a).
The leading eigenfunction shows exactly the long wavelength modulation of the steady
spiral expected for this instability [1, 4, 9, 18, 26, 29]. Figures 3.6 and 3.7 show the
dynamics following from the steady spiral perturbed by the unstable eigenfunction.
The dynamics are initially that of exponential growth with the expected growth rate.
The growth becomes nonlinear and long-wavelength modulation of spiral becomes
visible (time 80 in figure 3.7). Shortly thereafter the spiral breaks near the domain
boundary. At these parameter values the eigenfunction grows weakly with radius, as
seen in figure 3.3(a), and for this reason one would expect a preference for breakup
near the domain boundary. However, in this case the qualitative character of eigen-
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Fig. 3.6. Two time series showing the evolution starting from different perturbations of the
steady spiral with parameters leading to far-field breakup. In one case (solid green) the perturbation
is the eigenfunction corresponding to positive eigenvalue [(a) in figure 3.3]. In the other (dashed
red) the perturbation is the eigenfunction corresponding to the weakly stable point eigenvalue [(b) in
figure 3.3]. The dotted blue curve shows exponential growth at rate given by the positive eigenvalue.
Parameters are as in figure 3.1(b).

function depends sensitively on parameters and for slightly different parameters the
eigenfunction may decay weakly with radius.

The far-field case is similar to the core breakup case in most other respects. The
nonlinear growth in figure 3.6 is faster than linear. No other eigenvalues appear
to play a direct role in the far-field breakup. Figure 3.6 shows the evolution from
an initial condition formed from the eigenfunction corresponding to the complex-
conjugate point eigenvalues near the imaginary axis [(b) in figure 3.3].

4. Conclusions. In this paper we have examined in detail the linear stability
spectra and associated eigenfunctions for spiral waves in large domains. Everywhere,
except possibly near the edges of the absolute spectra, numerically computed eigenval-
ues and eigenfunctions agree extremely well with the results of Sandstede and Scheel.
Our results answer the question posed at the outset. Absolute spectra can be rele-
vant and predictive for typical domain sizes used in studies of spiral waves. Even in
domains containing only a few spiral wavelengths (the case R = 20) eigenvalues show
signs of the absolute spectrum - they lie along curves located roughly in the correct
part of the complex plane. For domains containing five spiral wavelengths or more
(R & 40) eigenvalues lie quite close to the absolute spectra. Of course these results
are for the particular equations and parameters studied here and absolute spectra
will not necessarily be such good predictors for domains of these sizes in other sys-
tems. Nevertheless, in at least two cases, one with excitable dynamics and one with
oscillatory dynamics, absolute spectra are predictive.

The computed eigenvalues support convergence to the absolute spectrum inversely
with the domain radius, at least away from the edge of the absolute spectrum. In
most cases eigenfunctions agree with the exponential forms deduced by Sandstede
and Scheel. This is even the case for point eigenvalues not associated with the abso-
lute spectrum. Near the edges of the absolute spectrum, however, eigenfunctions do
not exhibit exponential growth at large radius, even in the largest domains we have
considered. While results suggest that this is due to finite-size effects, more work is
necessary to understand the behavior of eigenvalues and eigenfunction near the edges
of the spectrum.

We have computed the positive point eigenvalues giving rise to both core and
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Fig. 3.7. Snapshots of evolution from the perturbed steady spiral leading to far-field breakup
(solid green curve in figure 3.6). The u-field is shown. (a) t = 0, (b) t = 50 (≃ 12 periods), (c)
t = 80 (≃ 19 periods), (d) t = 85, (e) t=120 (≃ 29 periods), (f) eigenfunction. Parameters are as
in figure 3.1(b).

far-field breakup of spiral waves. The essential difference between the two cases is the
form of the eigenfunctions. For core breakup the eigenfunction has a maximum not
far from the core of the spiral and decays at large radius. For far-field breakup the
eigenfunction grows with radius. Moreover, the far-field eigenfunction shows long-
wavelength modulation known to precede far-field breakup. Nonlinearity also plays a
role in breakup and we have presented nonlinear simulations showing the destabilizing
effects of nonlinearity in each case.

The most intriguing aspect of this work is that all point eigenvalues we have found
appear near edges of the absolute spectra. This may be a coincidence, but it would
not seem so from figure 3.1. We leave this as an open problem.
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