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MASS CONCENTRATION PHENOMENON FOR THE QUINTIC

NONLINEAR SCHRÖDINGER EQUATION IN 1D

NIKOLAOS TZIRAKIS

Abstract. We consider the L2-critical quintic focusing nonlinear Schrödinger equation
(NLS) on R. It is well known that H1 solutions of the aforementioned equation blow-up
in finite time. In higher dimensions, for H1 spherically symmetric blow-up solutions of
the L2-critical focusing NLS, there is a minimal amount of concentration of the L2-norm
(the mass of the ground state) at the origin. In this paper we prove the existence of a
similar phenomenon for the 1d case and rougher initial data, (u0 ∈ Hs, s < 1), without
any additional assumption.

1. Introduction

This paper continues the investigation of the quintic nonlinear Schrödinger equation
(NLS) in one dimension that we started in [27].

iut + uxx ± |u|4u = 0

u(x, 0) = u0(x) ∈ Hs(R), t ∈ R.
(1)

The (+) sign in front of the nonlinearity corresponds to the focusing NLS while the (−) sign
to the defocusing. The Cauchy problem for equation (1) is known to be locally well-posed
in Hs(R) for s > 0, [4]. A local result also exists for s = 0, but the time of existence
depends on the profile of the data as well as the norm. NLS is an infinite dimensional
Hamiltonian system with energy space H1. It also has a scaling property. Thus u(x, t) is a
solution of (1) with initial data u0 if and only if

uλ(x, t) =
1

λ1/2
u(
x

λ
,
t

λ2
)

is a solution to the same equation with initial data u0(
x
λ). In [27] we extend the local

existence theorem for the defocusing NLS for all times. We did so by iterating the local
result in the appropriate norms. To iterate the local result by standard limiting arguments
we just need an apriori bound for our solutions in Hs. This bound comes from the next
theorem that we proved in [27]:

Theorem 1. Let u be a global H1 solution to (1) with the (−) sign. Then for any T > 0
and s > 4/9 we have that

sup
0≤t≤T

‖u(t)‖Hs . C(‖u0‖Hs,T )

where the right hand side does not depend on the H1 norm of u.

Date: June 3, 2021.
1991 Mathematics Subject Classification. 35Q55.
Key words and phrases. Nonlinear Schrödinger equation, blow-up, mass concentration.
This material is based upon work supported by the National Science Foundation under agreement No.

DMS-0111298. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author and do not reflect the views of the National Science Foundation.

1

http://arxiv.org/abs/math/0603692v1


2 NIKOLAOS TZIRAKIS

Remark. Note that in the focussing case (where in front of the nonlinearity we have the
plus instead of the minus sign) we can also proved global well-posedness for 4/9 < s ≤ 1/2,
but with the crucial assumption that ‖u0‖L2 < ‖Q‖L2 where Q is the unique positive
solution (up to translations) of

Qxx −Q+ |Q|4Q = 0.

In [29], Q was solved explicity as Q(x) = 3
1
4 /
√

cosh(2x) and then ‖Q‖2L2 =
√
3π
2 . In the

same paper it was also proved a result that we will use below, namely that C = ‖Q‖−4
L2 is

the best constant in the Gagliardo-Nirenberg inequality

1

6
‖u‖6L6 ≤ C

2
‖∇u‖2L2‖u‖4L2 .

We used the “I-method” that was recently introduced by J. Colliander, M. Keel, G. Stafil-
lani, H.Takaoka, and T.Tao, [5, 7, 8, 9]. This method allows us to define a modification of
the energy functional, that is “almost conserved” that is, its time derivative decays with
respect to a very large parameter. Since an implementation of this method gives the main
result of this paper also, the details of the method are delayed until the next section. As
we mentioned above for the focusing case, the solutions blows up in H1, in finite time. An
elementary proof of the existence of blow-up solutions is known since the 60’s, but is based
on energy constraints and is not constructive, [26]. In particular no qualitative information
of any type of the blow-up dynamics is obtained. A lower estimate for the blow-up solutions
in H1 is given by Theorem 2 below using the scaling and the local existence theorem, [3].

Theorem 2. Let [0, T ⋆) is the maximal interval of existence of the following Cauchy prob-
lem:

iut + uxx + |u|4u = 0

u(x, 0) = u0(x) ∈ H1(R), t ∈ R.
(2)

If u0 ∈ H1 is such that T ⋆ <∞, then there exists a C such that

‖ux‖L2 ≥ C

(T ⋆ − t)
1
2

for 0 ≤ t < T ⋆.

This bound is often called the scaling bound. It is also fairly easy to show that ‖u(t)‖Lp

blows up for p > 2. In particular we have

‖u‖Lp ≥ C

(T ⋆ − t)
1
4
− 1

2p

for p > 2.

Because it is related to the scaling symmetry of the problem, the above lower bound has
long been conjectured to be optimal. But in 1988 Landman, Papanicolaou, Sulem, Sulem,
[14], suggested that the correct and stable blow up speed is a slight correction to the scaling
bound:

‖ux‖L2 ∼
√

log | log |T ⋆ − t||
T ⋆ − t
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In this frame Perelman, [24], has constructed a family of blowing up solutions for which

(
log | log |T ⋆ − t||

T ⋆ − t

)− 1
4

‖u(t)‖L∞ → c > 0

as t → T ⋆, which is very close but different than the scaling bound. Moreover for initial
data in some special class, Merle and Raphael, [18, 19], recently showed that for t close to
T ⋆, there is a universal constant C⋆ such that

‖ux‖L2 ≤ C⋆

√
log | log |T ⋆ − t||

T ⋆ − t

as suggested by the numerics in [14]. Finally it is worth noting that an easy application
of the pseudoconformal transformation yields interesting information on the blow up solu-
tions. In particular we can show that some solutions blow-up twice as fast as the scaling
bound. For details see [2] and [28]. The above results show in particular that at least two
different blow up estimates are actually achieved.

Another property of the blow up solutions in the critical case is the phenomenon of mass
concentration, [3] and [26]. For H1 solutions, there is a concentration of a finite amount

of mass in a neighborhood of the focus of width sligtly larger than (T ⋆ − t)1/2. For radial
initial data in dimension d ≥ 2 there is a precise lower bound on the amount of concentrated
mass in terms of the mass of the ground state Q, [20]. More precisely we have:

• Let d ≥ 2 and γ : (0,∞) → (0,∞) be any function such that γ(s) → ∞ and s1/2γ(s) → 0
as s ↓ 0. Finally let u0 ∈ H1(Rd) is radial symmetric. Then if u(x, t) is the maximal
solution of the equivalent of (2) in higher dimensions and T ⋆ <∞ we have

lim inf
t↑T ⋆

‖u(t)‖L2

{|x|<|T⋆−t|1/2γ(T⋆−t)}

≥ ‖Q‖L2 .

where Q is the ground state solution of the elliptic equation Qxx −Q+ |Q|4Q = 0.

In the nonradial case and in dimension d = 1 this was generalized by Nawa, [22], us-
ing concentration compactness techniques, [15, 16]. In addition to the scaling properties of
the NLS equation, the main ingredients in the proof that H1 blowup solutions concentrate
at least the mass of the ground state are:

i) The conservation of mass
‖u(t)‖L2 = ‖u0‖L2

and the energy
E(u)(t) = E(u0)

where

E(u) =
1

2

∫
|ux(t)|2dx− 1

6

∫
|u(t)|6dx

ii) a precise Galiardo-Nirenberg inequality which implies that nonzero H1−functions of
non-positive energy have at least ground state mass.
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The purpose of this paper is to investigate the mass concentration phenomenon in Hs,
for s < 1, where the conservation of energy cannot be used. Using the I − method we
show that solutions of (2) with a finite maximal (forward) existence interval are expected
to concentrate at least the L2 mass of the ground state in Hs, for s < 1. More precisely we
have:

Theorem 3. Suppose Hs ∋ u0 7−→ u(t) with s > 0 solves (2) on the maximal interval of
existence [0, T ⋆) with T ⋆ < ∞. Then for any 1 > s > 10

11 there exists a positive function
γ(x) ↑ ∞ arbitrarily slowly as x ↓ 0 and a real function z(t) such that

lim sup
t↑T ⋆

‖u(t)‖L2

{|x−z(t)|<(T⋆−t)
s
2 γ(T⋆−t)}

≥ ‖Q‖L2

Remark 1. In a recent preprint, J. Colliander, S. Raynor, C. Sulem and J .D. Wright,
[11] consider the 2d focusing critical NLS and proved a similar theorem with the additional
assumption of radial symmetry. The radial symmetry assumption is needed in order to pass
from weak to strong convergence since the general embedding H1(Rd) →֒ L2(Rd) is not
compact. But as the four authors note in [11], one can utilize the concentration compact-
ness method of Lions, [15, 16] and prove the analogus theorem in 2d. The 1d case that we
are dealing with, have some similar features but also significant differences. First of all in
the 1d case the radial assumption doesn’t play a role. More precisely in 1d, radial symmetry
is not enough for a bounded sequence in H1 to have a strongly convergent subsequence in
Lp for 2 < p < ∞ although the latter is true if we further assume that the sequence in
question is a nonincreasing function of |x| for every n ≥ 0.(For the above discussion the
reader can also consult [25]). So we have to prove Theorem 3 by implementing different
techniches than the techniques used in [11]. Second the nonlinearity has a fifth power, and
thus the correction terms in the “modified energy” have larger growth. We take advantage
of the fact that at each step we work on [0, δ] and we prove a stronger proposition about
the decay of the “modified energy” and thus somehow we balance the additional correction
terms with the greater decay that we prove. Finally the crucial Lemma 3 that we use in 1d,
is true only if the frequencies of the two solutions are seperated. In higher dimensions the
analogous Lemma holds in general, [1], although we avoid this difficulty in 1d by analyzing
further the correction terms of the “modified energy”, see Proposition 5.

Remark 2. As we mentioned before, to prove the theorem we use a combination of the
concentration compactness and the I −method. Since the energy is infinite for initial data
in Hs we define a “modified energy”, E(Iu) which is finite, where I : Hs → H1 is a mul-
tiplier operator defined below. The crucial step is to prove that the modified total energy
grows more slowly than the modified kinetic energy

1

2

∫
|Iux(t)|2dx.

These two steps are shown in Propositions 5 and 3 respectively. Note that Proposition 5
relys on the local theory that we shall establish in Proposition 1.

Remark 3. Let p(s) be a number that depends on s and for the range of s in Theo-
rem 3, (10/11 < s < 1), it is p(s) < 2. The statement that the modified total energy grows
more slowly than the modified kinetic energy is reflected exactly on p(s) < 2 and is proven

in Proposition 3 below. Note also that our concentration width (T ⋆ − t)
s
2 is larger than

(T ⋆ − t)
1
2 with which ground state mass concentration is conjectured to occur.
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Two quick by-products of the above theorem are the following. The first is the conjec-
ture that tiny L2 mass concentration cannot occur when u0 ∈ L2, a question that was
asked in [21]. See also the relevant result of J. Bourgain, [1]. The second is the following
lemma which as we mention on the first page is basically a result of the work in [27].

Lemma 1. If u0 ∈ Hs, s > 10
11 and ‖u0‖L2 < ‖Q‖L2 , then the initial value problem (2) is

globally well-posed.

We end in this section by introducong some useful notation. In what follows we use
A . B to denote an estimate of the form A ≤ CB for some constant C. If there exist
constants C and D such that DB ≤ A ≤ CB we say that A ∼ B, and A ≪ B to denote
an estimate of the form A ≤ cB for small constant c > 0. In addition 〈a〉 := 1 + |a| and
a± := a± ǫ.

2. Linear and Bilinear Estimates

Before we state the linear and bilinear estimates that we will use throuout this paper we
recall some basic facts about the Xs,b spaces. For an equation of the form

(3) iut − φ(−i∇)u = 0

where φ is a measurable function let Xs,b be the completion of S(Rd+1) with respect to

‖u‖Xs,b = ‖〈ξ〉s〈τ + φ(ξ)〉bû(ξ, τ)‖L2
ξL

2
τ
.

From the above definition it is clear that the dual space of Xs,b
τ==φ(ξ) is X−s,−b

−τ=−φ(ξ). Fur-

thermore for a given interval I, we define

‖f‖Xs,b(I) = inf
f̃|I=f

‖f̃‖Xs,b

In our case, the interval of existence of the local solutions will be [0, δ] and we write

Xs,b
δ = Xs,b

[0,δ]. Since conjugate solutions won’t play any role in our arguments from now on

we ommit any reference to the difference between u and ū. We know that if u is a solution
of (3) with u(0) = f and ψ is a cut-off function in C∞

0 with support of ψ ⊂ (−2, 2), ψ = 1
on [0, 1], ψ(−t) = ψ(t), ψ(t) ≥ 0, ψδ(t) = ψ( tδ ) then if 0 < δ ≤ 1 we have that for b ≥ 0:

(4) ‖ψ1u‖Xs,b ≤ C‖f‖Hs

In addition if ν is a solution of
iνt − φ(−i∇)ν = F

with ν(0) = 0 then for b
′
+ 1 ≥ b ≥ 0 ≥ b

′
> −1

2 :

(5) ‖ψδν‖Xs,b ≤ Cδ1+b
′−b‖F‖

Xs,b
′ .

The proofs of (4) and (5) can be found in [12]. The Strichartz estimates for the Schrödinger
equation on Rd state that for q, r ≥ 2 such that (d, q) 6= (2, 2) and 0 ≤ 2

q = d(12 − 1
r ) < 1,

we have that

(6) ‖eit∆u0‖Lq
tL

r
x
. ‖u0‖L2(Rd).

In particular, in 1d we have:

‖eit∂2
xu0‖L6

tL
6
x
. ‖u0‖L2(R)
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and

‖eit∂2
xu0‖L∞

t L2
x
. ‖u0‖L2(R)

which by a standard argument gives

(7) ‖u‖L6
tL

6
x
. ‖u‖

X
0,1/2+
δ

and

(8) ‖u‖L∞
t L2

x
. ‖u‖

X
0,1/2+
δ

.

By Sobolev embedding theorem in 1d, (8) implies that

(9) ‖u‖L∞
t L∞

x
. ‖u‖

X
1/2+,1/2+
δ

.

Also by interpolation between (7) and the trivial estimate,

(10) ‖u‖L2
tL

2
x
= ‖u‖X0,0

δ

we get

(11) ‖u‖Lp
tL

p
x
. ‖u‖

X
0,(1/2+)·( 32− 3

p )

δ

for any 2 ≤ p ≤ 6.

The dual version of (6) gives

(12) ‖u‖
X

0,−1/2−
δ

. ‖u‖
Lq

′

t Lr
′

x

where r
′
and q

′
are the conjugate exponents of r and q respectively. Interpolation with the

trivial estimate

(13) ‖u‖
X0,0

δ
= ‖u‖L2

tL
2
x

gives that

(14) ‖u‖
X

0,−1/2+
δ

. ‖u‖
Lq

′
+

t Lr
′
+

x

and also that

(15) ‖u‖
X

1,−1/2+
δ

. ‖u‖
Lq

′
+

t W 1,r
′
+

x

for any 2
q +

1
r = 1

2 .

As we state in the introduction we prove that the modified energy grows more slowly
than the modified kinetic energy in Proposition 3. We can take advantage of the fact that
we work on a small interval [0, δ] and improve the decay of the “modified energy”. To do
so we state the following Lemma that we can find in [12] and [23].

Lemma 2. If 1/2 > b > b′ ≥ 0 and s ∈ R then the following embedding is true:

‖f‖
Xs,b′

δ

. δb−b′‖f‖
Xs,b

δ

The second lemma that we state in this section is an improved bilinear Strichartz type
estimate. It is due to Bourgain, [1]. As we mentioned before a general analog of Lemma 3
holds for d ≥ 2, see for example [10].
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Lemma 3. Let u and v be any two Schwartz functions whose support of Fourier transform
is in |ξ| ∼M and |ξ| ≪M respectively and M ≫ 1.Then

‖(D
1
2
x u)v‖L2

tL
2
x
= ‖(D

1
2
x ū)v‖L2

tL
2
x
. ‖u‖X0,1/2+‖v‖X0,1/2+ .

3. The I-method and the proof of Theorem 3

As we mentioned above, the basic step towards Theorem 3 is the fact that the “modified
total energy” decays more slowly than the “modified kinetic energy”. To prove the last
statement we iterate the local solutions for the new modified system

iIut + Iuxx + I(|u|4u) = 0

Iu(x, 0) = Iu0(x) ∈ H1(R), t ∈ R.
(16)

So let’s define the I-operator. We introduce as in [5, 8], a radial C∞, monotone multiplier,
taking values in [0,1], where:

m(ξ) :=

{
1 if |ξ| < N

( |ξ|N )s−1 if |ξ| > 2N

and we define I : Hs → H1 by Îu(ξ) = m(ξ)û(ξ). The operator I is smoothing of order
1− s and we have that:

(17) ‖u‖
X

s0,b0
δ

. ‖Iu‖
X

s0+1−s,b0
δ

. N1−s‖u‖
X

s0,b0
δ

for any s0, b0 ∈ R.

Remark. It is shown in [8] that if

‖uv‖Xs,b−1 . ‖u‖Xs,b‖v‖Xs,b

then
‖I(uv)‖X1,b−1 . ‖Iu‖X1,b‖Iv‖X1,b

where the constants in the above inequality are intependent of N . From now on we use
this fact and refer to it as the “interpolation lemma”. For details see [8].

Proposition 1. Let s > 10/11 and consider the equation

iIut + (Iu)xx + I(|u|4u) = 0(18)

with initial data Iu(x, 0) = Iu0. Then there exists a

δ ∼ (‖Iu0‖H1)−4−ǫ

such that for all times in [0, δ], the above problem is locally well-posed and

‖Iu‖
X

1,1/2+
δ

. ‖Iu0‖H1 .

Proof. By Duhamel’s formula the equation (18) is equivalent to

Iu(t) = ψ1(t)e
it∂2

x(Iu0) + iψδ(t)

∫ t

0
ei(t−s)∂2

xI(|u|4u)(s)ds

By (4) and (5) and the fact that δ ≤ 1 we have

‖Iu‖
X

1,1/2+
δ

. ‖Iu0‖H1 + ‖I(|u|4u)‖
X

1,−1/2+
δ
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Now recall the dual Strichartz estimate, equation (15)

‖u‖
X

1,−1/2+
δ

. ‖u‖
Lq′+
t W 1,r′+

x

where 2
q = 1

2 − 1
r . Thus for r

′ = 2− we have

‖I(|u|4u)‖
X

1,−1/2+
δ

. ‖I(|u|4u)‖L1+ǫ
t H1

x
. δ1−ǫ‖I(|u|4u)‖L∞

t H1
x
.

Since for s > 1/2, Hs is a Banach algebra we have that

‖|u|4u‖Hs
x
. ‖u‖5Hs

x

which by the interpolation lemma quickly translates to

‖I(|u|4u)‖H1
x
. ‖Iu‖5H1

x
.

But then

‖Iu‖
X

1,1/2+
δ

. ‖Iu0‖H1 + δ1−ǫ‖Iu‖5L∞
t H1

x
. ‖Iu0‖H1 + δ1−ǫ‖Iu‖5

X1,1/2+

and by standard iteration arguments, see [13], we have that the system is locally well-posed
for

δ1−ǫ‖Iu0‖4H1 <
1

2
.

�

We also need an analog of Theorem 2 for the I-system (16). Let ∇s denote the operator

which on the Fourier side is given by ∇̂su(ξ) = |ξ|sû(ξ). It then follows by the definition
of the Japanese bracket that on the Fourier side the < ∇ >u is given by (1 + |ξ|)û(ξ).
Proposition 2. If Hs ∋ u0 7−→ u(t) with s > 10/11 solves (2) for all t close enough to T ⋆

in the maximal finite interval of existence [0, T ⋆) then

‖I〈∇〉u(t)‖L2 ≥ C(T ⋆ − t)−
s
2

Proof. Since we know that

‖I〈∇〉u(t)‖L2 ≥ ‖u(t)‖Hs

it suffices to show that

‖∇su(t)‖L2 ≥ C(T ⋆ − t)−
s
2 .

We assume that ‖∇su(t)‖L2 > 1 since otherwise we can change variables to put the time
origin near to T ⋆. Now fix t ∈ [0, T ⋆) and consider

vt(τ, x) = λ−1/2u(t+
τ

λ2
,
x

λ
)

where λ = ‖∇su(t)‖
1
s

L2 . By scaling invariance vt(τ, x) is a solution to (2). Moreover an easy
calculation shows that

‖vt(0, x)‖L2 = ‖u0‖L2

and that

‖∇svt(0, x)‖L2 = λ−s‖u(t, x)‖Ḣs = 1

Thus ‖vt(t, x)‖Hs < C and by the local theory that means that there exists a τ0 > 0,
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independent of t, such that vt(t, x) is defined on [0, τ0] and therefore

t+
τ0

‖∇su(t)‖
2
s

L2

≤ T ⋆ =⇒ ‖∇su(t)‖L2 ≥ C(T ⋆ − t)−
s
2 .

�

The last step for the proof of Theorem 3 is the following proposition that for the moment
we assume and prove later.

Proposition 3. For s > 10
11 there exists p(s) < 2 such that the following hold true:

If Hs ∋ u0 7−→ u(t) solves (2) on [0, T ⋆) then for all T < T ⋆ there exists N = N(T ) such
that

|E[IN(T )u(T )]| ≤ C0Λ(T )
p(s)

with C0 = C0(s, T
⋆, ‖u0‖Hs), and Λ(T ) is given in terms of N(T ) by N(T ) = C(Λ(T ))

p(s)
2(1−s) .

We prove Theorem 3 by using the concentration compactness method that was developed
by Lions in [15, 16].We will need a series of Lemmas. The proof of the first two Lemmas
are easy and can be found in [3] on pages 21 and 24 respectively.

Lemma 4. Let u ∈ L2 and let the concentration function be defined by

ρ(u, t) = sup
y∈R

∫

{|x−y|<t}
|u(x)|2dx

for t > 0. Then ρ is a nondecreasing function of t and there exists y(u, t) ∈ R such that

ρ(u, t) =

∫

{|x−y(u,t)|<t}
|u(x)|2dx.

Moreover if u ∈ Lr(R) for some r > 2, then for all s, t > 0 and C = C(r) we have

|ρ(u, t)− ρ(u, s)| ≤ C‖u‖2Lr |t− s| r−2
r

Lemma 5. There exists a constant K such that for all u ∈ H1, all t > 0 and ρ defined
above we have ∫

|u|6 ≤ Kρ(u, t)2
(∫

|∇u|2 + t−2

∫
|u|2
)

Lemma 6. Let (un)n≥0 ⊂ H1 be such that

‖un‖L2 ≤ a <∞

sup
n≥0

‖∇un‖L2 <∞

and let ρ(un, t) defined as before. Set

µ = lim
t→∞

lim inf
n→∞

ρ(un, t).

Then there exist a subsequence (unk
)nk≥0, a nondecreasing function γ(t), and a sequence

tk → ∞ with the following properties:

i) ρ(unk
, .) → γ(.) ∈ [0, a] as k → ∞ uniformly on bounded sets of [0,∞).
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ii)µ = limt→∞ γ(t) = limk→∞ ρ(unk
, tk) = limk→∞ ρ(unk

, tk/2).

Proof. Since
µ = lim

t→∞
lim inf
n→∞

ρ(un, t)

there exists a tk → ∞ such that

(19) µ = lim
k→∞

ρ(unk
, tk)

and thus one part of ii) is evident. To prove the first part note that

ρ(un, t) ≤ ‖un‖L2 ≤ a <∞.

In addition since H1(R) →֒ Lr(R) for some r, by the last property of the previous Lemma
ρ(un, ·) is Hölder continuous. Therefore i) follows from Ascoli’s theorem (after renaming
the sequence nk). Notice that property (19) is still true after passing to a subsequence. For
the rest of ii) by (19) and the fact that ρ(un, ·) is nondecreasing we deduce that

(20) lim sup
k→∞

ρ(unk
,
tk
2
) ≤ lim sup

k→∞
ρ(unk

, tk) = µ.

Next for every t > 0 we have

lim inf
k→∞

ρ(unk
, t) ≥ lim inf

n→∞
ρ(un, t).

Now by letting t→ ∞ and using part i) of the Lemma and the definition of µ we get that

(21) lim
t→∞

γ(t) ≥ µ.

Finally, given t > 0 we have tk
2 > t for k large, so that

ρ(unk
,
tk
2
) ≥ ρ(unk

, t)

and by letting k → ∞ by part i) we get

(22) lim inf
k→∞

ρ(unk
,
tk
2
) ≥ µ.

By (20) and (22) we have that

µ = lim
k→∞

ρ(unk
, tk/2)

Similarly

ρ(unk
,
tk
2
) ≥ ρ(unk

, t) ⇒ sup ρ(unk
,
tk
2
) ≥ ρ(unk

, t).

and by taking k → ∞ and use (20) we get

(23) µ ≥ lim
t→∞

γ(t).

�

Lemma 7. Let (un)n≥0 ⊂ H1 be such that

‖un‖L2 ≤ a <∞,

lim
n→∞

‖un‖2L2 = b > 0

and
sup
n≥0

‖∇un‖L2 <∞.
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Then there exists a subsequence (unk
)k≥0 which satisfies the following:

There exist (qk)k≥0, (wk)k≥0 ⊂ H1(R) such that

(24) suppqk ∩ suppwk = ∅,

(25) |qk|+ |wk| ≤ |unk
|,

(26) ‖qk‖H1 + ‖wk‖H1 ≤ C‖unk
‖H1 ,

(27) lim
k→∞

‖qk‖2L2 = µ, lim
k→∞

‖wk‖2L2 = b− µ

(28) lim inf
k→∞

{
∫

|∇unk
|2 −

∫
|∇qk|2 −

∫
|∇wk|2} ≥ 0,

(29) lim
k→∞

∣∣∣
∫

|unk
|p −

∫
|qk|p −

∫
|wk|p

∣∣∣ = 0

for all 2 ≤ p <∞.

Proof. We use the sequences (unk
)k≥0 and (tk)k≥0 constructed in the previous Lemma. We

fix θ, φ ∈ C∞([0,∞)) such that 0 ≤ θ, φ ≤ 1 and

θ(t) = 1 for 0 ≤ t ≤ 1
2 , θ(t) = 0 for t ≥ 3

4

φ(t) = 0 for 0 ≤ t ≤ 3
4 , φ(t) = 1 for t ≥ 1,

and we set

qk = θkunk
, wk = φkunk

where

θk = θ

(
|x− y(unk

, tk2 )|
tk

)
φk = φ

(
|x− y(unk

, tk2 )|
tk

)
.

Now (24), (25) and (26) are immediate. To prove (27) we estimate

ρ(unk
,
tk
2
) =

∫

|x−y(unk
,
tk
2
)|≤ tk

2

|unk
|2 ≤

∫
|qk|2 ≤

∫

|x−y(unk
,
tk
2
)|≤tk

|unk
|2

≤
∫

|x−y(unk
,tk)|≤tk

|unk
|2 ≤ ρ(unk

, tk).

Applying the second part of Lemma 6 we immediatelly get

(30) lim
k→∞

‖qk‖2L2 = µ.

We now set zk = unk
− qk − wk. Note that in particular |zk| ≤ |unk

|. We have
∫

|zk|2 ≤
∫

tk
2
≤|x−y(unk

,
tk
2
)|≤tk

|unk
|2 =

∫

|x−y(unk
,
tk
2
)|≤tk

|unk
|2 −

∫

|x−y(unk
,
tk
2
)|≤ tk

2

|unk
|2
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≤
∫

|x−y(unk
,tk)|≤tk

|unk
|2 −

∫

|x−y(unk
,
tk
2
)|≤ tk

2

|unk
|2 = ρ(unk

, tk)− ρ(unk
,
tk
2
)

and again by Lemma 6 we have

(31) lim
k→∞

‖zk‖2L2 = 0.

By Cauchy-Schwartz inequality and the above we have that

lim
k→∞

∫
unk

z̄k = 0

But now by (24), (30), (31) and some trivial algebra we get after integration that

lim
k→∞

‖wk‖2L2 = b− µ

and (27) follows. Also note that zk is bounded in H1 and converges to 0 in L2, and by
Gagliardo-Nirenberg inequality, in Lp for any 2 ≤ p <∞. Moreover one can easily verifies
that ∣∣∣|unk

|p − |qk|p − |wk|p
∣∣∣ ≤ C|unk

|p−1|zk|
and by Cauchy-Schwartz since zk tends to 0 in Lp, (29) follows. Finally (28) follows easily
from the initial assumptions, Cauchy-Schwartz inequality and the easy calculation

|∇unk
|2 − |∇qk|2 − |∇wk|2 = |∇unk

|2(1− θ2k − φ2k)− |unk
|2(|∇θk|2 + |∇φk|2)

−Re(ūnk
∇unk

) · ∇(θ2k + φ2k) ≥ −C
t2k
|unk

|2 − C

tk
|unk

| |∇unk
|.

�

Proof of Theorem 3.

Proof. Define the blowup parameters:

λ(t) = ‖u(t)‖Hs , Λ(t) = sup
0≤τ≤t

λ(τ)

σ(t) = ‖IN 〈∇〉u(t)‖L2 , Σ(t) = sup
0≤τ≤t

σ(τ)

Let {tn}∞n=1 be a sequence such that tn ↑ T ⋆ and for each tn we have

‖u(tn)‖Hs = Λ(tn)

and with u(tn) = un we define

INun = IN(tn)u(tn).

We rescale these as follows

vn(x) =
1√
σn
INun(

x

σn
)

where

σn = ‖IN 〈∇〉un‖L2 = σ(tn)

Note that for these sequences(let’s call them maximizing) we have that

Λ(tn) ≤ σn
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where σn → ∞ as n → ∞. It is important to note that we are in the blow-up regime and
thus

‖u0‖L2 ≥ ‖Q‖L2 .

Moreover the L2 part of vn is bounded uniformly in n. This is because

‖vn‖L2 = ‖INun‖L2 ≤ ‖un‖L2 = ‖u(tn)‖L2 = ‖u0‖L2 .

Thus in the limit as n→ ∞ we have

lim
n→∞

‖∇vn‖L2 = 1

Also since N(tn) goes to infinity as n→ ∞
lim
n→∞

‖vn‖L2 = lim
n→∞

‖INun‖L2 = lim
n→∞

‖u(tn)‖L2 = ‖u0‖L2 ≥ ‖Q‖L2 .

In addition by Proposition 3 we have that

|E(vn)| =
1

σ2n
|E(INun)| ≤ Cσ−2

n Λp(s)(tn) ≤ CΛp(s)−2(tn)

and thus
lim
n→∞

E(vn) = 0.

since p(s) < 2. This allows another way to prove that

lim
n→∞

‖vn‖L2 ≥ ‖Q‖L2

since by the optimality of Gagliardo-Nirenberg inequality we have

E(vn) ≥
1

2
(1− ‖vn‖4L2

‖Q‖4
L2

)‖∇vn‖2L2

and in the limit as n→ ∞ we get

lim
n→∞

‖vn‖L2 ≥ ‖Q‖L2 .

We collect the three important relations that we have

(32) lim
n→∞

‖vn‖L2 = ‖u0‖L2 ≥ ‖Q‖L2 ,

(33) lim
n→∞

‖∇vn‖L2 = 1,

(34) lim
n→∞

E(vn) = 0.

With the help of (32), (33), and (34) we will conclude that

Claim:

µ({vn}n≥0) ≥ ‖Q‖2L2 .

First assuming the claim and revisiting the statement of the theorem it is enough to prove
that for any ǫ > 0 we have

lim
n→∞

‖u(tn)‖L2

{|x−zn|<(T⋆−tn)
s
2 γ(T⋆−tn)}

≥ ‖Q‖L2 − ǫ

Note that since N(tn) goes to ∞ we have

lim
n→∞

‖u(tn)‖L2 = lim
n→∞

‖IN(tn)u(tn)‖L2
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Now given ǫ > 0, the relation

µ({vn}n≥0) ≥ ‖Q‖2L2

by Lemma 6 implies that there exist a T ∈ R such that

ρ(vn, T ) ≥ ‖Q‖2L2 − ǫ

for large n. Note that ρ is a nondecreasing function of t and it is crucial to find a fixed
T such that ρ(vn, T ) ≥ ‖Q‖2L2 − ǫ holds for any large n, for the given ǫ. That this T is
independent of all the n′s after some n large, up to a subsequence is guaranteed by the two
parts of Lemma 6. Thus the same T works for all large n.

Now setting yn = y(vn, T ) defined by Lemma 4 we have that

lim inf
n→∞

‖v(tn)‖L2
{|x−yn|<T}

≥ ‖Q‖2L2 − ǫ

and up to a subsequence

(35) lim
n→∞

‖v(tn)‖L2
{|x−yn|<T}

≥ ‖Q‖2L2 − ǫ

But

lim
n→∞

‖v(tn)‖L2
{|x−yn|<T}

= lim
n→∞

‖ 1√
σn
INun(

x

σn
)‖L2

{|x−yn|<T}
=

lim
n→∞

‖Inun(x)‖L2

{|x−
yn
σn

|< T
σn

}

= lim
n→∞

‖un(x)‖L2

{|x−
yn
σn

|< T
σn

}

= lim
n→∞

‖un(x)‖L2

{|x−zn|< T
σn

}

where zn = yn
σn

. Moreover note that T
σn

→ 0 and that σn goes to infinity at least as fast as

(T ⋆ − t)−
s
2 . Thus there exists a funtion γ(x) ↑ ∞ as x ↓ 0 such that

lim
n→∞

‖u(tn)‖L2

{|x−zn|<(T⋆−tn)
s
2 γ(T⋆−tn)}

≥ lim
n→∞

‖un(x)‖L2

{|x−zn|< T
σn

}

= lim
n→∞

‖v(tn)‖L2
{|x−yn|<T}

≥ ‖Q‖2L2 − ǫ

by equation (35) and the proof is complete.

Proof of Claim

We prove the claim by contradiction. We claim that there exists δ > 0 with the following
property. If (vn)n≥0 ∈ H1 is such that

(36) lim
n→∞

‖vn‖2L2 = ‖u0‖2L2

(37) 0 < lim inf
n→∞

‖∇vn‖L2 ≤ lim sup
n→∞

‖∇vn‖L2 <∞
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(38) lim sup
n→∞

E(vn) ≤ 0

and

(39) µ({vn}n≥0) < ‖Q‖2L2

then there exists a sequence (ṽn)n≥0 ∈ H1 satisfying (37),(38),(39) and such that

lim
n→∞

‖ṽn‖2L2 = ‖u0‖2L2 − β

for some β > δ. Clearly the sequence vn of Theorem 3 satisfies (36), (37), and (38). But
then by Galiardo-Nirenberg and (37),(38),(39) we have that

µ({vn}n≥0) < ‖u0‖2L2 − δ

If we apply the above proceedure k−times we get µ({vn}n≥0) < ‖u0‖2L2 −kδ which for large
k is absurd. Thus it suffices to prove the claim. We apply Lemmas 6 and 7 to the sequence
(vn)n≥0 and we consider the corresponding sequences (qn)n≥0 and (wn)n≥0.We set

δ = (
3

K
)
1
2 > 0

where K is given in Lemma 5. We first show that

µ({vn}n≥0) ≥ δ.

By Lemma 5 and the definition of δ we have that

E(vnk
) ≥ 1

2

(
1− (

ρ(vnk
, tk)

δ
)2
)∫

|∇vnk
|2 − K

6t2k
ρ(vnk

, tk)
2

Now if we assume by contradiction that µ < δ, then we obtain by letting k → ∞, applying
the second part of Lemma 6, and (37) that up to a subsequence

lim sup
n→∞

E(vn) ≥
1

2

(
1− (

µ

δ
)2
)
lim inf
n→∞

∫
|∇vn|2 > 0

which is absurd. Now since by (25) we know that |wk| ≤ |vnk
| we have by the second part

of Lemma 6 and (39)

µ((wk)k≥0) ≤ µ < ‖Q‖2L2 .

This proves that (wk)k≥0 satisfies (39). Also by (27), (39) and Gagliardo-Nirenberg in-
equality we know that there exists a σ > 0 such that for k large

(40) E(qk) ≥ σ‖∇qk‖2L2

On the other hand by (28) and (29) we have that

(41) lim inf
k→∞

{E(vnk
)− E(qk)− E(wk))} ≥ 0

and thus
lim sup
k→∞

E(wk) ≤ 0.

This proves that (wk)k≥0 satisfies (38). By (26) and (37) we easily get that

‖∇wk‖L2 ≤ C‖vnk
‖H1 <∞

Finally we show the last property (37), namely that

lim inf
k→∞

‖∇wk‖L2 > 0
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We argue again by contradiction and assume that there exists a sequence which we still
denote by (wk)k≥0 such that limk→∞ ‖∇wk‖L2 = 0. But then trivially follows that E(wk) →
0 as k → ∞ and thus by (38), (40), and (41) we get that

lim
k→∞

‖∇qk‖L2 = 0

But then by (29) and the fact that ‖wk‖L6 , ‖qk‖L6 → 0 we deduce that limk→∞ ‖vnk
‖L6 = 0

and thus

lim sup
k→∞

E(vnk
) > 0

which contradicts (38). Now setting

ṽk =

√
‖u0‖2L2 − µ

‖wk‖L2

wk

we see that with the help of (27) the sequence (ṽn)n≥0 satisfies (37), (38), (39) and that

lim
k→∞

‖ṽk‖2L2 = ‖u0‖2L2 − µ ≤ ‖u0‖2L2 − δ

and we are done. �

Remark. In dimensions n ≥ 2 with the additional assumption of radial symmetry on
the initial data, the solution of the equivalent L2 critical Schrödinger equation, satisfies the
conclusion of Theorem 3 with z(t) ≡ 0.

We define the “modified energy” for the system (16) as

E(Iu)(t) =
1

2

∫
|Iux(t)|2dx− 1

6

∫
|Iu(t)|6dx

This “energy” functional is not conserved but we can show that its time derivative decays
with respect to a large parameter N . The next proposition quantifies the increament of
this functional on [0, δ].

Proposition 4. Let u be an H1 solution of (2). Then

E(Iu)(δ) −E(Iu)(0) =

Im

(∫ δ

0

∫
Iūxx

(
I(|u|4u)− Iu|Iu|4

)
dxdt

)
+Im

(∫ δ

0

∫
I(|u|4u)

(
I(|u|4u)− Iu|Iu|4

)
dxdt

)
.

Proof. The derivative of the “modified energy” is:

dE

dt
(Iu) = Im

(∫
Iūxx

(
I(|u|4u)− Iu|Iu|4

)
dx

)
+Im

(∫
I(|u|4u)

(
I(|u|4u)− Iu|Iu|4

)
dx

)
.

But then Proposition 4 follows immediately by applying the fundamental theorem of cal-
culus. �

By the previous formal identity we can deduce the desired decay of the “modified energy”.

Proposition 5. For any Schwartz function u we have that

E(Iu)(δ) − E(Iu)(0) . δ
1
4
−N− 3

2
+‖Iu‖6

X
1,1/2+
δ

+ δ
1
2
−N−2+‖Iu‖10

X
1,1/2+
δ
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Proof. First we establish

|
∫ δ

0

∫
Iūxx

(
I(|u|4u)− Iu|Iu|4

)
dxdt| . δ

1
4
−N− 3

2
+‖Iu‖6

X
1,1/2+
δ

or by Plancherel’s theorem that

|
∫ δ

0

∫

Γ6

ξ21
< ξ1 >

(
m(ξ2 + ...+ ξ6)−m(ξ2)...m(ξ6)

m(ξ2)...m(ξ6)
)û(ξ1, t)...ˆ̄u(ξ6, t)dξdt|

(42) . δ1/4−N− 3
2
+‖u‖5

X1,1/2+‖u1‖X0,1/2+

where Γ6 denotes the hyperplane ξ1 + ξ2 + ... + ξ6 = 0, and u1 is the function that corre-
sponds on the Fourier side to the frequency ξ1.

Remarks.

1. Let us denote Ni ∼ |ξi| and Nmax ∼ |ξ|max, Nmed ∼ |ξ|med where |ξ|max, |ξ|med is
the largest and second largest of the |ξi|. If all |ξi| ≪ N then the parenthesis above is zero
and there is nothing to prove. Thus since the ξi are related by ξ1+ ξ2+ ...+ ξ6 = 0 we have
that |ξ|max ∼ |ξ|med & N. We also write mi for m(ξi) and mij for m(ξi + ξj).

2. Our strategy from now on is to break all the functions into a sum of dyadic constituents
ψj , each with frequency support < ξ >∼ 2j , j = 0, ... Then we pull the absolute value of
the symbols out of the integral, estimating it pointwise. After bounding the multiplier,
the remaining integrals involving the pieces ψj are estimated by reversing the Plancherel
formula and using duality, Hölder’s inequality and Strichartz’s estimates. We can sum over
all the frequency pieces ψj as long as we keep always a factor N−ǫ

max inside the summation.

3. Since in all of the estimates that we establish from now on, the right hand side is
in terms of the Xs,b norms and the Xs,b spaces depend only on the absolute value of the
Fourier transform, we can assume without loss of generality that the Fourier transform of
all the functions in the estimates are real and positive.

4. Note also that
N2

1
〈N1〉 ≤ N1.

Since our analysis as we mentioned before do not rely upon the complex conjugate structure
of the left hand side, there is a symmetry under the interchange of the indices and thus we
can assume that

N2 ≥ N3 ≥ ... ≥ N6

Case 1: Let N ≫ N2. Then

m(ξ2 + ...+ ξ6)−m(ξ2)...m(ξ6)

m(ξ2)...m(ξ6)
= 0

and there is nothing to prove.

Case 2: N2 & N ≫ N3 ≥ ... ≥ N6. This forces N1 ∼ N2 on Γ6.
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But then by the mean value theorem we have

∣∣∣m(ξ2 + ...+ ξ6)−m(ξ2)...m(ξ6)

m(ξ2)...m(ξ6)

∣∣∣ =
∣∣∣m(ξ2)−m(ξ1)

m(ξ2)

∣∣∣ .

∣∣∣∇m(ξ2) · (ξ3 + ...+ ξ6)

m(ξ2)

∣∣∣ . N3

N2

Now by undoing Plancherel’s theorem, using Cauchy-Schwartz inequality, apply the Strichartz
estimates and using Lemmas 2 and 3 we have that the left hand side of (42) is

.
N1N3

N2N
1/2
1

‖(D1/2u1)u3‖L2
tL

2
x
‖u2u4u5u6‖L2

tL
2
x

.
N3

N
1/2
1

‖u1‖X0,1/2+
δ

‖u3‖X0,1/2+
δ

6∏

j=4

‖uj‖L∞
t L∞

x
‖u2‖L2

tL
2
x

. δ1/2−
N3

N
1/2
1

3∏

j=1

‖uj‖X0,1/2+
δ

6∏

j=4

‖uj‖X1/2,1/2+
δ

where in the last inequality we also used equation (9) in its dyadic form. Comparing with
(42) we see that it is enough to have

δ1/2−
N3(N4N5N6)

1/2

N
1/2
1

. δ1/4−N− 3
2
+N−ǫ

max〈N2〉...〈N6〉

which is true. Note that in the process we summed the Littlewood-Paley pieces, using the
factor N−ǫ

max.

Case 3: N2 ≥ N3 & N .

In this case we use the crude estimate

|1− m1

m2...m6
| . m1

m2...m6

Since it is impossible to have N1 ≫ Nmed = N2, we can divide this case into two subcases.

a) N1 ∼ N2 ≥ N3 & N . Now we are starting comparing the different frequencies in
order to be able to apply Lemma 3. Note that m1 ∼ m2.

i) Suppose first that N2 ≫ N3. Without loss of generality we can assume that N4 ≤ N .
This is because in case that one of the N4, N5, N5 are & N the estimate is even easier and
the decay is greater. For the suspicious reader that might object the previous argument
because of the presence of m4m5m6 in the denominator we comment that for Nj & N we
have that

1

mjN
1/2
j

.
1

N1/2

and indeed we can get a better decay. From now on we will use this heuristic without any
comment. Thus we can apply Cauchy-Schwartz and Lemma 3 and the left hand side of
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(42) is

.
N1

m3N
1/2
1

‖(D1/2u1)u3‖L2
tL

2
x
‖u2‖L2

tL
2
x

6∏

j=4

‖uj‖L∞
t L∞

x

. δ1/2−
N1N

1/2
3

m3N
1/2
3 N

1/2
1

3∏

j=1

‖uj‖X0,1/2+
δ

·
6∏

j=4

‖uj‖X1/2,1/2+
δ

. δ1/2−
N1N

1/2
3

N1/2N
1/2
1

3∏

j=1

‖uj‖X0,1/2+
δ

·
6∏

j=4

‖uj‖X1/2,1/2+
δ

.

Comparing with (42) we see that it is enough to have

δ1/2−
N1N

1/2
3

N1/2N
1/2
1

. δ1/4−N− 3
2
+N−ǫ

max(〈N4〉...〈N6〉)1/2〈N2〉〈N3〉

which is true.

ii) Now assume that N2 ∼ N3 and by the comment in case i) the worst case is when
N5, N6 ≤ N which we assume without loss of generality. . In this case we compare N3 with
N4. In case that N3 ∼ N4 the estimate is easy since

N1m1

m2...m6
.

N1N
1/2
3

m3m4N
1/2
3

.
N1N

1/2
3

N1/2

and thus the left hand side of (42) is

.
N1N

1/2
3

N1/2

4∏

j=1

‖uj‖L4
tL

4
x
· ‖u5‖L∞

t L∞
x
‖u6‖L∞

t L∞
x

. δ1/2−
N1N

1/2
3

N1/2

4∏

j=1

‖uj‖X0,1/2+
δ

· ‖u5‖X1/2,1/2+
δ

‖u6‖X1/2,1/2+
δ

.

Comparing with (42) it is enough to have

δ1/2−
N1N

1/2
3 (N5N6)

1/2

N1/2
. δ1/4−N− 3

2
+N−ǫ

max〈N2〉...〈N6〉

which is true. If N3 ≫ N4 again without loss of generality we assume that N4 ≤ N and we
apply Lemma 3. Moreover

∣∣∣ N1m1

m2...m6

∣∣∣ . N1N
1/2
3

m3N
1/2
3

.
N1N

1/2
3

N1/2

and thus the left hand side of (42) is

.
N1N

1/2
3

N1/2N
1/2
1

‖(D1/2u1)u4‖L2
tL

2
x
‖u2u3‖L2

tL
2
x
‖u5‖L∞

t L∞
x
‖u6‖L∞

t L∞
x
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.
N1N

1/2
3

N1/2N
1/2
1

‖u1‖X0,1/2+
δ

‖u4‖X0,1/2+
δ

‖u2‖L6
tL

6
x
‖u3‖L3

tL
3
x
‖u5‖X1/2,1/2+

δ

‖u6‖X1/2,1/2+
δ

. δ1/4−
N1N

1/2
3

N1/2N
1/2
1

4∏

j=1

‖uj‖X0,1/2+
δ

‖u5‖X1/2,1/2+
δ

‖u6‖X1/2,1/2+
δ

.

where we used Lemmas 2 and 3 and equations (7), (9) and (11). Comparing with (42) it is
enough to have

δ1/4−
N1N

1/2
3 (N5N6)

1/2

N1/2N
1/2
1

. δ1/4−N− 3
2
+N−ǫ

max〈N2〉...〈N6〉

which is true.

b) N2 ∼ N3 & N and N2 ≫ N1. Since N1 is in the numerator on the left hand side
of equation (20) this case is easier than the previous and similar analysis gives the same
(or ever better) bounds as in a). The details are omitted.

To conclude the proof of Proposition 5 it remains to show that

∣∣∣
∫ δ

0

∫
I(|u|4u)

(
I(|u|4u)− Iu|Iu|4

)
dxdt

∣∣∣ . δ
1
2
−N−2+‖Iu‖10

X
1,1/2+
δ

By Plancerel’s theorem

(43) |
∫ δ

0

∫

Γ10

m12345{m678910 −m6...m10}û(ξ1, t)...ˆ̄u(ξ10, t)dξdt| . δ
1
2N−2+‖Iu‖10

X
1,1/2+
δ

As we noted before if Nmax ≪ N the multiplier is zero so we assume that

Nmax ∼ Nmed & N.

In addition since m(ξ) ≤ 1 we have that

|m12345{m678910 −m6...m10}| . C.

Finally the last pointwise estimate that we use is the following

1

mmaxNmax
. N−1

which follows easily since Nmax & N . The left hand side of (21) is

.

∫ δ

0

∫

Γ10

10∏

j=1

û(ξj , t)dξdt .

∫ δ

0

∫

Γ10

mmaxNmaxûmax ·mmedNmedûmed

mmaxNmaxmmedNmed

∏

j 6=jmax,jmed

û(ξj, t)dξdt

. N−2+N−ǫ
max

∫ δ

0

∫

Γ10

D̂Iumax · D̂Iumed

∏

j 6=jmax,jmed

û(ξj, t)dξdt.

Now reversing Prancherel’s Theorem and use the the following estimates

‖u‖L6
tL

6
x
. ‖u‖

X
0,1/2+
δ
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‖u‖L3
tL

3
x
. δ1/4−‖u‖

X
0,1/2+
δ

‖u‖
X

0,1/2+
δ

. ‖Iu‖
X

1,1/2+
δ

‖u‖
X

1/2,1/2+
δ

. ‖Iu‖
X

1,1/2+
δ

we get that the left hand side of (43) is

. N−2+N−ǫ
max‖JIumax‖L6

tL
6
x
· ‖JIumed‖L6

tL
6
x
‖u‖2L3

tL
3
x
‖u‖6L∞

t L∞
x

.

δ1/2−N−2+N−ǫ
max‖JIu‖2X0,1/2

δ

‖u‖2
X

0,1/2
δ

‖u‖6
X

1/2,1/2
δ

. δ
1
2
−N−2+‖Iu‖10

X
1,1/2+
δ

where in the process we sum the different Littlewood-Paley pieces, taking advantage of the
factor N−ǫ

max. �

Now we are finally ready to prove Proposition 3.

Proof. When s = 1 we can choose N(T ) = +∞ and thus IN(T ) = 1 and the proposition is
true with p(s) = 0 since the energy is conserved and the kinetic energy blows up as time
approaches T ⋆. Therefore we can fix 10/11 < s < 1 and take T near T ⋆. Now let N = N(T )
to be chosen later in the argument. Recall that δ ∼ (Σ(T ))−4−ǫ gives the time of the local
well-posedness. Thus if we divide the interval [0, T ] into T

δ -subintervals of size ∼ δ, the local
well-posedness result uniformly applies. Moreover for any t in this subinterval we have that

‖I〈∇〉u(t)‖L2 = σ(t) ≤ Σ(T )

The next step is to iterate the almost conservation of the energy. It is apparent that after
T
δ -steps the growth of the modified energy is

E(Iu(T )) . E(Iu(0)) +
T ⋆

δ
{δ 1

4
−N− 3

2
+Σ(T )6 + δ

1
2
−N−2+Σ(T )10}

≤ N2(1−s)λ(0) +
T ⋆

δ
{δ 1

4
−N− 3

2
+Σ(T )6 + δ

1
2
−N−2+Σ(T )10}

. N2(1−s) + {δ− 3
4
−N− 3

2
+Σ(T )6 + δ−

1
2
−N−2+Σ(T )10}

. N2(1−s) +N− 3
2
+Σ(T )9+ +N−2+Σ(T )12+

where in the third inequality we dismiss the irrelevant constants. Now if we switch from
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Σ(T ) to Λ(T ) we have

E(Iu(T )) . N2(1−s) +N− 3
2
+N9(1−s)+Λ(T )9+ +N−2+N12(1−s)+Λ(T )12+.

We know choose N = N(T ) so that

N2(1−s) ∼ N−2+N12(1−s)+Λ(T )12+

N(T ) ∼ Λ(T )
12

10s−8
+.

This establishes Proposition 3 with

p(s) =
2 · 12(1 − s)

10s − 8
< 2

thus for s > 10/11. We emphasize that for 1 > s > 10/11 the second term in the conserva-
tion of the modified energy formula produces a smaller correction. �
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