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5 ON EIGENVALUE AND EIGENVECTOR ESTIMATES FOR

NONNEGATIVE DEFINITE OPERATORS

LUKA GRUBIŠIĆ

Abstract. In this article we further develop a perturbation approach to the Rayleigh–
Ritz approximations from our earlier work. We both sharpen the estimates and extend the
applicability of the theory to nonnegative definite operators . The perturbation argument
enables us to solve two problems in one go: We determine which part of the spectrum of
the operator is being approximated by the Ritz values and compute the approximation
estimates. We also present a Temple–Kato like inequality which —unlike the original
Temple–Kato inequality— applies to any test vectors from the quadratic form domain of
the operator.

1. Introduction

A perturbation approach to Rayleigh–Ritz approximation was introduced by Kahan
in [11]. The main idea is to represent the eigenvalues (vectors), which we do not know
(but want to approximate), as perturbations of the Ritz values (vectors) which we have
computed. This concept lies behind the standard subspace approximation theory from
[3, 4]. In our previous paper [9] we have shown a way to apply this concept to less regular
test spaces than those which were considered in [3, 4]. In the present note we continue
this study and both improve and generalize the perturbation estimates from [9].

Let us introduce some preliminary notation. Let h be a positive definite symmetric
form in a possibly infinite dimensional Hilbert space H. The form h generates the positive
definite operator H such that h(u, v) = (H1/2u,H1/2v). The test space for the Rayleigh–
Ritz method will be ran(X), where X : Cn → H is an isometry such that ran(X) ⊂
D(H1/2). Set P = XX∗, P⊥ = I−XX∗ and define:

• the block diagonal part of h as the positive definite form
h′(u, v) = h(Pu, Pv) + h(P⊥u, P⊥v)

• the block diagonal part of H as the operator H ′ such that
h′(u, v) = (H

′1/2u,H
′1/2v)

• the Rayleigh quotient as the matrix Ξ = (H1/2X)∗H1/2X ∈ Cn×n.
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2 On eigenvalue and eigenvector estimates for nonnegative definite operators

The standard theory of [3, 4] uses

(1.1) max
x

|(x,Hx−H
′

x)| = ‖R‖ < ∞, R = HX −XΞ = HX −H ′X

to obtain spectral estimates. The operator R is called the residual of the test subspace
ran(X).

It has already been demonstrated—in [9]—that Kahan’s concept can yield nontrivial
estimates even when H −H ′ is not a bona fide operator, that is to say when ‖R‖ = ∞.
We now continue the study from [9] and both sharpen the estimates and extend the
applicability of the theory to nonnegative H . Our results are generalizations of the known
estimates for finite matrices [6, 14]. A familiarity with the paper [9] is not a prerequisite
for this work.

As a start we review some geometrical results from [6]. Let for the moment H be finite
dimensional. For the forms h and h′ we have

max
x

|(H1/2x,H1/2x)− (H
′1/2x,H

′1/2x)|
(x,H ′x)

= sinΘ(H1/2X,H−1/2X),(1.2)

max
x

|(H1/2x,H1/2x)− (H
′1/2x,H

′1/2x)|
(x,Hx)

=
sinΘ(H1/2X,H−1/2X)

1− sin Θ(H1/2X,H−1/2X)
,(1.3)

where sinΘ(H1/2X,H−1/2X) is the sine of the maximal canonical angle between the sub-
spaces H1/2X and H−1/2X . We will slightly stretch the terminology and (colloquially)
call (1.2) and (1.3) the energy-scaled residual measures.

Eigenvalue estimates obtained from (1.1) are of the “absolute” type, i.e.

(1.4) |λ− µ| ≤ ‖R‖,
whereas the estimates obtained from (1.2)–(1.3) are of the “relative” type

(1.5)
|λ− µ|

µ
≤ sinΘ,

|λ− µ|
λ

≤ sinΘ

1− sinΘ
.

We identify the following building blocks in (1.5):

• H and H ′ are considered as symmetric forms
h(u, v) = (H1/2u,H1/2v) and h′(u, v) = (H

′1/2u,H
′1/2v)

• monotonicity of the spectrum implies the estimates

In [9] the perturbation estimate (1.3) was shown to hold for a positive definite operator
in an infinite dimensional Hilbert space. We now prove the sharper estimate (1.2) for
a nonnegative definite operator in a Hilbert space and give an alternative proof of (1.3)
as a spinoff . We also generalize some further results which were derived from (1.3) in
Reference [9].

The restriction ‖R‖ < ∞, necessary for (1.1) to give useful information in the unbounded
operator setting, incurs ran(X) ⊂ D(H). For (1.2) and (1.3) to be applicable we only need
to assume

sinΘ(H1/2X,H−1/2X) < 1.

This “residual measure” will give nontrivial information even when ran(X) ⊂ D(H1/2) is
such that ran(X) 6⊂ D(H), see [9] and Section 7 of this note.
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Notably, both approaches to measure the “residual” share the property:

• sinΘ(H1/2X,H−1/2X) = 0 if and only if
ran(X) is an invariant subspace of H

• ‖R‖ = 0 if and only if
ran(X) is an invariant subspace of H

An important feature of our theory is that it gives an abstract framework for a consid-
eration of both eigenvalue and eigenvector estimates.

To get a better feeling for the estimate (1.5) consider a simple example. Set

(1.6) Hη =

[
1

100
− 1

100
− 1

100
1 + η2

]
=

[
1 0
−1 1

] [
1

100
0

0 η2

] [
1 −1
0 1

]

and e =
[
1 0

]∗
. We will analyze an approximation of the first eigenvalue of the matrix

Hη by the Ritz value µe = e∗Hηe = 10−2 for η large.
As a starting point for developing a practical procedure to compute the estimates (1.5)

we use the formula

(1.7) sin2Θ(H1/2X,H−1/2X) = max
x∈ran(X)

(x,H−1x)− (x,H
′−1x)

(x,H−1x)
,

which is implicit in [9, Section 4.]. Since

H
′−1 =

[
100 0
0 1

1+η2

]
, H−1 =

[
100 + η−2 η−2

η−2 η−2

]

we compute, with a help of (1.7),

λ1(Hη) =
1 + 50 η2 −

√
1 + 2500 η4

100

λ2(Hη) =
1 + 50 η2 +

√
1 + 2500 η4

100

sinΘ(H1/2e,H−1/2e) =
1√

100η2 + 1
.

As a comparison we will use an estimate which can be obtained from the Temple–Kato
inequality from [16], see (1.8) below. The obtained lower bounds for λ1(Hη) are displayed
in Table 1.

We can observe in Table 1 the same behavior which was showed on an infinite dimen-
sional model problem from [9]. Namely, the estimate

(1− sinΘ)µe ≤ λ1,

which is linear in sinΘ, outperforms the estimate

(1.8) µe −
‖Hηe−H ′

ηe‖2
λ2 − µ

≤ λ1,

which is quadratic in ‖Hηe−H ′
ηe‖.
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η Temple–Kato sinΘ

1 9.998000499860e-7 0.009004962810
2 0.007500015625 0.009500623831
3 0.008888890261 0.009666851698
4 0.009375000244 0.009750078088
5 0.009600000064 0.009800039988

Table 1. Lower estimates for λ1(Hη) which can be obtained from the Ritz
value µe = 10−2 with a use of Temple–Kato estimate and with a use of sinΘ
approach.

As an infinite dimensional analogue of (1.6) we consider the following operator. Let
χ[1,2] be the characteristic function of the interval [1, 2] ⊂ R. We consider Hη which is
defined by

(1.9) (H1/2
η u,H1/2

η v) =

∫ 2

0

(1 + η2χ[1,2])u
′v′ dx.

and we choose

(1.10) u1(x) =

{√
2 sin(πx), 0 ≤ x ≤ 1

0, 1 ≤ x

as a test function. Now u1 ∈ D(H
1/2
η ) but u1 6∈ D(Hη) so neither of Temple–Kato estimates

(for eigenvectors or eigenvalues) does apply since ‖Hηu1 − µu1‖ = ∞.
Improved eigenvalue and eigenvector approximation estimates can be summed up in the

following procedure1:

• LetH be positive definite and let P be an orthogonal projection such that ran(P ) ⊂
D(H1/2) and n = dim ran(P ) < ∞.

• If sinΘ < 1 (as defined by (1.7)) then there exist n-eigenvalues of the operator H
which are approximated by the n Ritz values from the subspace ran(P ) in the sense
of (1.5).

• If sinΘ
1−sinΘ

< λn+1−µn

λn+1+µn
then the Ritz values from the subspace ran(P ) approximate

first n eigenvalues of H (counting the eigenvalues according to their multiplicities)
and we have an eigenvector estimate. (Analogous estimates hold for any other
contiguous spectral interval.)

1Here we have assumed we are approximating the lower end of the spectrum. Analogous procedures
can be formulated for other contiguous spectral intervals.
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2. The notation and preliminaries

The environment in this article will be a Hilbert space H, with the scalar product (·, ·).
The scalar product is antilinear in the first variable and linear in the second. We start
with a closed symmetric form h(·, ·) which is additionally assumed to be nonnegative

(2.1) h[u] = h(u, u) ≥ 0, u ∈ Q(h).

In the sequel when we say the nonnegative form h, we shall always mean the closed
symmetric form h which satisfies (2.1). The form h shall be called positive definite when
it is closed, symmetric and there exists mh > 0 such that

h[u] = h(u, u) ≥ mh‖u‖2, u ∈ Q(h).

There is also an equivalent operator version of these definitions. The selfadjoint operator
H is called nonnegative if

(u,Hu) ≥ 0, u ∈ D(H).

Subsequently, H is called positive definite if there exists mH > 0 such that

(u,Hu) ≥ mH‖u‖2, u ∈ D(H).

In this chapter we assume Q H
= H, but later we shall also allow Q H

to be any nontrivial
subspace of H. For nonnegative selfadjoint operators one defines, with the help of the
spectral theorem, the usual functional calculus. We write the spectral decomposition of
the selfadjoint operator H as

H =

∫
λ dEH(λ),

where EH(λ) is the right continuous spectral family associated to the operator H. When
there can be no confusion we simply write E(λ).

The representation theorem for nonnegative forms [12, pp. 331] implies that there exists
a selfadjoint operator H such that D(H1/2) = Q(h) and

h(u, v) = (H1/2u,H1/2v), u, v ∈ Q(h)

Following [7] we call D(H) the operator domain of H and Q(H) = D(H1/2) the quadratic
form domain of H. We write D and Q when there can be no confusion. With the help of
the spectral theorem we see that

D(H) = {u ∈ H : ‖Hu‖2 =
∫

λ2 d(E(λ)u, u) < ∞},

Q(H) = {u ∈ H : h[u] = ‖H1/2u‖2 =
∫

λ d(E(λ)u, u) < ∞}.

In general, when dealing with the forms in a Hilbert space we shall follow the terminology
of Kato, cf. [12]. In one point we will depart from the conventions in [12]. A nonnegative
form

h(u, v) = (H1/2u,H1/2v)
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will be called nonnegative definite when λe(H) > 0. Analogously, a nonnegative operator
H such that λe(H) > 0 will be also called nonnegative definite. We will often say nonneg-
ative, meaning the nonnegative definite. Now, we give definitions of some terms that will
frequently be used, cf. [7, 12].

Definition 2.1. A bounded operator A : H → U is called degenerate if ran(A) is finite
dimensional.

Definition 2.2. Let H and A be nonnegative operators. We define the order relation ≤
between the nonnegative operators by saying that

A ≤ H

if Q(H) ⊂ Q(A) and

‖A1/2u‖ ≤ ‖H1/2u‖, u ∈ Q(H),

or equivalently if

a[u] ≤ h[u], u ∈ Q(h),

when a and h are nonnegative forms defined by the operators A and H and A ≤ H.

A main principle we shall use to develop the perturbation theory will be themonotonicity
of the spectrum with regard to the order relation between nonnegative operators. This
principle can be expressed in many ways. The relevant results, which are scattered over
the monographs [7, 12], are summed up in the following theorem, see also [13, Corollary
A.1].

Theorem 2.3. Let A =
∫
λ dEA(λ) and H =

∫
λ dEH(λ) be nonnegative operators in H

and let A ≤ H. By 0 ≤ µ1 ≤ µ2 ≤ · · · < λe(A) and 0 ≤ λ1 ≤ λ2 ≤ · · · < λe(H) denote
the discrete eigenvalues of A and H, then

(1) λe(A) ≤ λe(H)
(2) dim EH(γ) ≤ dim EA(γ), for every γ ∈ R

(3) µk ≤ λk, k = 1, 2, · · · .

We close this introductory section with the well known theorem about the perturbation
of the essential spectrum.

Theorem 2.4. Let H and A be positive definite operators. If the operator

H−1 −A−1

is compact then σess(H) = σess(A).

3. The generalized inverse and angle between the subspaces

There are many ways to express that u ∈ Q(h) is an eigenvector of the operator H. We
will give a geometric characterization of this property. Assume that ‖u‖ = 1 and µ = h[u].
An elementary trigonometric argument yields

(3.1) ‖H1/2u− µH−1/2u‖ = 0 ⇔ sinΘ(H1/2u,H−1/2u) = 0.
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(3.1) implies that u is an eigenvector of H if and only if sinΘ(H1/2u,H−1/2u) = 0. The
ability to assess the size of sinΘ(H1/2u,H−1/2u) will be central to the analysis of the
Rayleigh–Ritz method in this paper.

In this section we give the background information on the angles between two finite
dimensional subspaces of a Hilbert space as given in [3, 12, 17]. Basic results on generalized
inverses of (unbounded) operators defined between two Hilbert spaces will be presented
as well. These results will be applied to the problem of computing sinΘ(H1/2X ,H−1/2X )
for the given positive definite H and some finite dimensional X ⊂ Q(H).

Closed subspaces of the Hilbert space H can be represented as images of the correspond-
ing orthogonal projections. We shall freely speak about the dimension of the projection
P meaning the dimension of the range of the projection P . In the case in which P is
finite dimensional, we have another representation for the subspace ran(P ). For a given
n-dimensional subspace ran(P ) ⊂ Q there exists an isometry X : Cn → H such that
ran(P ) = ran(X), where P = XX∗. Therefore, ran(X) is an alternative representation of
the n-dimensional subspace ran(P ). The isometry X will be called the basis of the sub-
space ran(P ). We shall freely use both representation of the finite dimensional subspace.
PX = XX∗ will generically denote the orthogonal projection on the space ran(X) (for
some isometry X : Cn → H).

Let ran(P ) and ran(Q) be two finite dimensional subspaces of the Hilbert space H. The
function ∠ that measures the separation of the pair of subspaces ran(P ) and ran(Q) will
be called an angle function if it satisfies the following properties

(1) ∠(P,Q) ≥ 0 and
∠(P,Q) = 0 if and only if ran(P ) ⊂ ran(Q) or ran(Q) ⊂ ran(P ).

(2) ∠(P,Q) = ∠(Q,P )
(3) ∠(P,Q) ≤ ∠(P,R) + ∠(R,Q) if

dim(ran(P )) ≤ dim(ran(R)) ≤ dim(ran(Q)) or
dim(ran(P )) ≥ dim(ran(R)) ≥ dim(ran(Q))

(4) ∠(UP, UQ) = ∠(P,Q), for any unitary U .

In what follows we will use the following angle functions, see [17],

Θ(P,Q) = arcsinmax{‖P (I−Q)‖, ‖Q(I− P )‖}(3.2)

Θp(P,Q) = arcsinmin{‖P (I−Q)‖, ‖Q(I− P )‖}(3.3)

The function Θ(P,Q) from (3.2) will be called the maximal canonical angle between the
subspaces P and Q. The function Θp(P,Q) from (3.3) will be called the maximal principal
angle between the subspaces P and Q.

The following lemma, which is a consequence of [12, Theorem I-6.34], gives an insight
in the behavior of the canonical and the principal angles which were defined by (3.2) and
(3.3).

Lemma 3.1. Let P and Q be two orthogonal projections such that dim(ran(P )) ≤ dim(ran(Q))
and let

‖P (I−Q)‖ < 1

then we have the following alternative. Either
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(1) dim(ran(P )) = dim(ran(Q)) and

sin Θ(P,Q) = sinΘp(P,Q) = ‖P −Q‖ < 1, or

(2) dim(ran(P )) < dim(ran(Q)) and

sinΘp(P,Q) = ‖P (I−Q)‖ < 1.

For most of our needs, Lemma 3.1 describes the relation between the finite dimensional
subspaces ran(P ) and ran(Q) in sufficient detail. However, sometimes it will be necessary
to analyze the structure of the finite dimensional projections PV = V V ∗ and PU = UU∗

in further detail. To this end we define the canonical angles θ1, . . . , θn between the spaces
ran(U) and ran(V ) as

(3.4) θi = arccos σi, i = 1, . . . , n,

where σ1, . . . , σn are the singular values of the matrix

V ∗U ∈ C
m×n.

We have assumed that m = dim ran(V ), n = dim ran(U) and m ≤ n. The canonical angles
are related to the angle function (3.2) through the formula, see [17],

sin Θ(PV , PU) = max
i

sin θi.

We also define the acute principal angles θp1 ≤ θp2 ≤ · · · ≤ θpk, where k ≤ n, as those
canonical angles θi which satisfy the condition 0 < θi < π/2. Subsequently, we obtain a
connection to the angle function (3.3) through the formula

sinΘp(PV , PU) = max
i

sin θpi .

In dealing with the projections and degenerate operators it is useful to have a notion
of the generalized inverse. We will use the definition of the generalized inverse of a closed
densely defined operator in H from [15], see also [12, Chapter IV.5].

Definition 3.2. Let T : H → U be a closed operator such that D(T) = H. The operator
T† : U → H is defined by

D(T†) = ran(T)⊕ ran(T)⊥

T†u = (T |
ker(T)⊥)

−1Pran(T)u, u ∈ D(T†)

and it is called the Moore-Penrose generalized inverse of T .

The properties of the generalized inverse2 are analyzed in the monograph [15]. In par-
ticular we use the following characterization.

2The generalized inverses can also be defined in more general settings. Their properties are also analyzed
in [15].
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Theorem 3.3 (see [15, Theorem I.5.7]). Let T : H → U be the closed operator and let

D(T) = H, then T† is the unique closed operator such that

T†TT† = T†, on D(T†)

TT† = Pran(T)

∣∣
D(T†)

T†T = Pker(T)⊥

∣∣
D(T)

where PM is the orthogonal projection on M. The operator T† is bounded if and only if
T has a closed range.

The nonnegative operator H† has the spectral decomposition

H† =

∫
1

λ
dE(λ), D(H†) = {u ∈ H :

∫
1

λ2
d(E(λ)u, u) < ∞},

and the functional calculus implies

H†1/2 = H1/2†.

Theorem 3.3 shows a relation between the Moore-Penrose generalized inverses and or-
thogonal projections in a Hilbert space. This is precisely the reason why the generalized
inverses will be useful in our study.

A bounded operator W : H → U is called partially isometric if there exists a closed
subspace M ⊂ H such that

‖Wu‖ = ‖PMu‖, u ∈ H.

This is equivalent to
W ∗W = PM.

The setM = ran(W ∗) ⊂ H is called the initial set of the partial isometryW and ran(W ) ⊂
U is called the final set. Since ker(W ∗)⊕ ran(W ) we see

WW ∗ = Pran(W ),

so W ∗ is also the partial isometry with the initial set ran(W ). We shall also use the
notation

W ∗W = PW ∗ , WW ∗ = PW .

It is obvious that
W ∗ = W †

and we have the following lemma.

Lemma 3.4. A bounded operator W : H → U is partially isometric if and only if

WW ∗W = W.

For the proof see [12].

Lemma 3.5. Let V and W be two partial isometries then

‖PV PW‖ = ‖V PW‖ = ‖V ∗W‖.
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Proof. Using Lemma 3.4 we compute

‖PV PW‖2 = spr(PWPV PW ) = spr(WW ∗V V ∗WW ∗)

= spr(W ∗V V ∗WW ∗W ) = spr(W ∗V V ∗W ) = ‖V ∗W‖.
In this computation we have used the identity

spr(ABC) = spr(CAB),

which holds for bounded operators A,B,C. �

4. Geometrical properties of the Ritz value perturbation

In this section we will present a perturbation approach to the Rayleigh–Ritz approx-
imation of the spectrum of a positive definite operator. The nonnegative definite case
is technically more complex and warrants a separate section. Although this chapter is
devoted to the positive definite case, some of the statements and definitions will be given
in full generality in which they will be later used in the text.

Let 0 ≤ h be a nonnegative form and let ran(X) ⊂ Q(h) be the n-dimensional test
space. The matrix

ΞH,X = (H1/2X)∗H1/2X ∈ C
n×n

will be called the Rayleigh quotient associated to the basis X . When there can be no con-
fusion, we shall denote the Rayleigh quotient by Ξ and drop the indices. The eigenvalues
of the matrix Ξ will be numbered in the ascending order

(4.1) µ1 ≤ µ2 ≤ · · · ≤ µn.

We call the numbers µi the Ritz values of the operator H (form h) from the subspace
ran(X). This definition is correct since the eigenvalues of the matrix Ξ do not depend on
the choice of the basis X . In the rest of this chapter we will use P = XX∗ to denote the
projection onto the range of the isometry X : Cn → H.

For the given h and ran(X) ⊂ Q(h), P = XX∗, we define the symmetric forms δh and
h′ using the formulae

δh(u, v) = h(Pu, (I− P )v) + h((I− P )u, Pv), u, v ∈ Q(h)(4.2)

h′(u, v) = h(Pu, Pv) + h((I− P )u, (I− P )v), u, v ∈ Q(h).(4.3)

Obviously, (4.2) and (4.3) imply

(4.4) h′(u, v) = h(u, v)− δh(u, v), u, v ∈ Q(h).

Before we can proceed we need the following definition.

Definition 4.1. If H is a selfadjoint operator and P a projection, to say that P commutes
with H means that u ∈ D(H) implies Pu ∈ D(H) and

HPu = PHu, u ∈ D(H).

In what follows we will describe the properties of the symmetric form h′ and of the
operator H′ it generates.
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Lemma 4.2. Let the nonnegative definite form h and the subspace ran(X) ⊂ Q be given.
Let H be the nonnegative definite operator defined by the form h. The form h′ from (4.3) is
closed and positive and it defines the selfadjoint operator H′. Furthermore, H′ is positive
definite if H is positive definite, σess(H) = σess(H

′) and

(4.5) H′X = XΞ,

for Ξ = (H1/2X)∗H1/2X ∈ Cn×n.

Proof. The operators H1/2P and H1/2(I− P ) are closed and so is the form

h′(u, v) = h(Pu, Pv) + h((I− P )u, (I− P )v).

It is obviously nonnegative, so it defines a nonnegative selfadjoint operator H′. We will
now show that the subspace ran(X) reduces H′. Indeed, for y ∈ Q, x ∈ Cn we have

h′(y,Xx) = (H1/2y,H1/2Xx)− (H1/2(I− P )y,H1/2Xx)

= (H1/2XX∗y,H1/2Xx)

= (ΞX∗y, x).

This is equivalent to

(H
′1/2y,H

′1/2Xx) = (y,XΞx), y ∈ Q, x ∈ C
n.

It implies ran(X) ⊂ D(H′) and

(y,H′Xx−XΞx) = 0,

for all y ∈ H, x ∈ Cn. Hence,

(4.6) H′X = XΞ

which is equivalent to the statement that P commutes with H′ (see Definition 4.1). We
now prove that σess(H) = σess(H

′). Assume h is a positive definite form, then h′ from
(4.3) is positive definite, too. From (4.4) we obtain

δh(H−1u,H
′−1v) = (H

′−1u−H−1u, v), u, v ∈ H.

On the other hand

δh(H−1u,H
′−1v) = (H1/2PH−1u,H1/2P⊥H

′−1v) + (H1/2P⊥H
−1u,H1/2PH

′−1v)

defines a compact operator. Theorem 2.4 implies σess(H) = σess(H
′) and the statement of

the theorem is proved for a positive definite h. In the general case, take α > 0. The form

h̃(u, v) = h(u, v) + α(u, v) is positive definite. Furthermore, we establish

h̃′(u, v) = α(u, v) + h′(u, v)

δh̃(u, v) = δh(u, v),

so σess(H̃) = σess(H̃
′). The conclusion σess(H) = σess(H

′) follows by the spectral mapping
theorem. �

Corollary 4.3. Let the nonnegative definite form h and the subspace ran(X) ⊂ Q be
given. The projections P = XX∗ and Pran(H′) commute and ker(H′) ⊂ ker(H).
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Remark 4.4. For positive definite h Lemma 4.2 describes the operator H′ in sufficient
detail. For a general nonnegative h the operatorH′ has somewhat more complex structure.
Further properties of the operator H′, constructed in the case in which h is a general
nonnegative form, will be discussed in Section 4.1.

We now concentrate on the positive definite case.

Theorem 4.5. Let the subspace ran(X) ⊂ Q be given and let h be positive definite. Assume
sinΘ := sinΘ(H1/2X,H−1/2X) < 1, then

(1− sin Θ)h′[u] ≤ h[u] ≤ (1 + sinΘ)h′[u], u ∈ Q(h)(4.7)

(1− sin Θ

1− sin Θ
)h[u] ≤ h′[u] ≤ (1 +

sinΘ

1− sinΘ
)h[u], u ∈ Q(h).(4.8)

Proof. The product H1/2H′−1/2 is well defined since Q = D(H1/2) = D(H′1/2). This
implies that the form

δhs(x, y) = δh(H
′1/2x,H

′1/2y)

defines the bounded operator δHs. After the substitutions u = H′−1/2x, v = H′−1/2y we
obtain

(4.9) max
u,v∈Q(h)

|δh(u, v)|√
h′[u]h′[v]

= ‖δHs‖.

We now show ‖δHs‖ = sinΘ. Set

V = H1/2PH
′−1/2(4.10)

W = H1/2P⊥H
′−1/2,(4.11)

with P⊥ = I− P . Relation (4.4) implies

δh(H
′−1/2u,H

′−1/2v) = h(P⊥H
′−1/2u, PH

′−1/2v) + h(PH
′−1/2u, P⊥H

′−1/2v)

= (Wu, V v) + (V u,Wv),(4.12)

which can be written as

(4.13) δHs = V ∗W +W ∗V.

The equations (4.10)–(4.13) yield

VW ∗ = WV ∗ = 0(4.14)

‖δHs‖ = ‖W ∗V V ∗W + V ∗WW ∗V ‖ = ‖V ∗W‖.(4.15)

As the next step we establish that V and W are partial isometries such that

ran(V ) = ran(H1/2P )(4.16)

ran(W )⊥ = ran(H−1/2P ).(4.17)

The proof will follow from Lemma 4.2. It runs along the same lines in both cases, so
we will only present the proof for W . Take some u, v ∈ H, then

(Wu,Wv) = (H1/2P⊥H
′−1/2u,H1/2P⊥H

′−1/2v)

= h(P⊥H
′−1/2u, P⊥H

′−1/2v) = h′(P⊥H
′−1/2u, P⊥H

′−1/2v) = (P⊥u, v),
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so W ∗W = P⊥. This proves that W is a partial isometry.
Relation (4.16) is obvious, since

ran(H1/2PH
′−1/2) = ran(H1/2P )

is guaranteed by the assumption ran(P ) ⊂ Q(h) and the injectivity of H
′−1/2.

The proof of (4.17) requires a bit more work. One computes

W ∗H−1/2P = H
′−1/2P⊥H

1/2H−1/2P = 0,

which implies

ran(H−1/2P ) ⊂ ker(W ∗) = ran(W )⊥.

On the other hand

(4.18) W ∗ = P⊥A,

where A = H
′−1/2H1/2 : H → H is a homeomorphism (of linear topological vector spaces),

so

dim ker(W ∗) = dim ker(P⊥) = dim ran(P ) = dim ran(H−1/2P )

and (4.17) is established. The assumption sinΘ < 1 and Lemma 3.5 guarantee

sinΘ = ‖V ∗W‖.
Finally, using (4.9) we establish

(1− sin Θ)h′[u] ≤ h[u] ≤ (1 + sinΘ)h′[v],

which is the statement (4.7).
It is a well known fact that given some 0 < λ, µ and 0 < η < 1 the implication

(4.19)
|λ− µ|

µ
≤ η ⇒ |λ− µ|

λ
≤ η

1− η

holds. Since h and h′ are positive definite forms, the relation (4.8) is proved. �

Example 4.6. Let −∂xx be considered as the selfadjoint operator with

D(−∂xx) = {u ∈ H2[0, 1] : u(0) = u(1) = 0}.
The partial integration establishes that −∂xx is defined by the positive definite form

(4.20) h(u, v) =

∫ 1

0

∂xu ∂xv dx, u, v ∈ Q(−∂xx) = H1
0 [0, 1].

The operator ∂xu, u ∈ H1
0 [0, 1] is closed, but not selfadjoint, therefore (4.20) is an alter-

native operator representation (factorization), to the “square root” representation (4.21)
of the form h (the operator −∂xx).

Take any positive definite form h, then

(4.21) h(u, v) = (H1/2u,H1/2v)
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is only one of the possible operator representations of the form h. All of the preceding
results are independent of the choice of the operator representation h(u, v) = (Ru,Rv),
since

(4.22) sinΘ = max
u,v∈Q

|δh(u, v)|√
h′[u]h′[v]

and h′ depends only on h and ran(P ).
Furthermore, all of the representations of the form h are in a sense equivalent. Let

R : H → H′ be a closed operator such that

(4.23) h(x, y) = (Rx,Ry) =
(
H1/2x,H1/2y

)

and Q = D(R) = D(H1/2), then by [12, Ch. VI.7]

(4.24) R = UH1/2, R∗ = H1/2U∗,

where U is the isometry from H′ onto ran(R). Independence of the estimate (4.7) from
the representation (4.23) could have also been proved by the unitary invariance of the
canonical angle and (4.24). Formula (4.22) is an important corollary of Theorem 4.5. In
the next theorem we prove that also,

(4.25)
sinΘ

1− sinΘ
= max

u,v∈Q

|δh(u, v)|√
h[u]h[v]

holds. Equations (4.22) and (4.25) demonstrate that the constants sinΘ and sinΘ
1−sinΘ

in (4.7)

and (4.8) cannot be improved upon.
The following lemma is taken out of the joint paper [9], cf. [5]. We present it here

without a proof.

Lemma 4.7. Let the form h be positive definite and let the forms h′ and δh be as in (4.4),
then

(4.26) max
u,v∈Q

|δh(u, v)|√
h[u]h[v]

=
sinΘ

1− sinΘ

holds. Here sinΘ = sinΘ(H1/2X,H−1/2X), where ran(X) ⊂ Q was the subspace used to
define h′ and δh.

4.1. The nonnegative definite case. In the nonnegative case we have to provide an
alternative definition for a subspace that will play the role of ran(H−1/2X). We have
shown W = H1/2P⊥H

′−1/2 to be a partial isometry such that

W = ran(H1/2P⊥)
⊥ = ran(W )⊥ = ran(H−1/2X).

The left part of the equality is also well defined in the case in which H1/2 is not invertible,
so we set

W = ran(H1/2P⊥)
⊥.
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The construction (4.4) was performed with the assumption that h is nonnegative definite
and ran(X) ⊂ Q. Lemma 4.2 says σess(H) = σess(H

′) so H
′†1/2 is a bounded operator and

V = H1/2PH
′†1/2,(4.27)

W = H1/2P⊥H
′†1/2,(4.28)

are everywhere defined. Corollary 4.3 enables us to conclude that ran(V ) = ran(H1/2P )
and ran(W ) = ran(H1/2P⊥), so we set

(4.29) V = ran(V ), W = ran(W )⊥.

Lemma 4.2 states that given a positive definite H the constructed operator H′ must
always be positive definite. In general nonnegative situation we have only the result of
Corollary 4.3. It establishes that H′ is a nonnegative definite operator and that ker(H′) ⊂
ker(H). This does not give sufficient information on the structure of H′. Formulae like
(4.7)–(4.8) are meaningful in the nonnegative definite case, too. They, however, invariably
imply ker(H) = ker(H′). We, therefore, proceed is two steps. Firstly, we establish a general
(theoretical) condition on the subspace X = ran(P ) which guarantees that ker(H) =
ker(H′). As the second step we give a practical computational formula.

The subspaces W and V need not have the same dimension, so we will have to use the
principal angle to compare them, cf. Lemma 3.1. In what follows we show that

sinΘp(V,W)

takes the role of sinΘ(H1/2X,H−1/2X) in the nonnegative version of Theorem 4.5. In the
case when H1/2 is invertible (4.17) implies V = ran(H1/2X) and W = ran(H−1/2X). The
subspaces H−1/2X and H1/2X have the same dimension, so Corollary 3.1 yields

sinΘp(V,W) = sinΘ(H1/2X,H−1/2X).

We establish the properties of V and W and give a characterization of the subspace W
in the following lemma.

Lemma 4.8. Let X = ran(P ), V = H1/2PH
′†1/2 and W = H1/2P⊥H

′†1/2 then

V ∗V = Pran(H′P )(4.30)

W ∗W = Pran(H′P⊥)(4.31)

WV ∗ = VW ∗ = 0,(4.32)

W = inv(H1/2)X ,(4.33)

where W is from (4.29) and

inv(H1/2)X = {x : H1/2x ∈ X}
denotes the inverse image of the subspace X under the mapping H1/2.

Proof. The relations (4.30)–(4.32) follow analogously as in the proof of Theorem 4.5. It
only remains to prove (4.33).

We first show that inv(H1/2)X ⊂ W = ran(W )⊥. Take any u ∈ inv(H1/2)X , then

H1/2u = z ∈ X .
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This implies

0 = (z, P⊥H
′†1/2v) = (u,H1/2P⊥H

′†1/2v), v ∈ H
which proves u ∈ ran(W )⊥ = W.

The other inclusion follows in two steps. Take u ∈ W, then

(u,H1/2P⊥H
′†1/2v) = 0, v ∈ H.

On the other hand, the subspace

ran(P⊥H
′†1/2)⊥ = ran(P⊥Pran(H′))

⊥ ⊂ D(H1/2)

is finite dimensional, so we conclude u ∈ D(H1/2). Corollary 4.3 implies

0 = (H1/2u, P⊥Pran(H′)v) = (H1/2u, Pran(H′)P⊥v) = (H1/2u, P⊥v), v ∈ H,

which proves H1/2u ∈ X . With this conclusion we have established (4.33). �

As a direct consequence of Corollary 3.1 and (4.33) we obtain the following result.

Corollary 4.9. Let X = ran(P ), V = H1/2PH
′†1/2 and W = H1/2P⊥H

′†1/2 then

‖PVPW⊥‖ ≤ ‖PV⊥PW‖,
so

(4.34) sinΘp(H
1/2X , inv(H1/2)X ) = ‖V ∗W‖.

It would be pleasing to use H1/2† in the place of inv(H1/2). This is only possible under
additional restrictions on the subspace ran(P ). To get better feeling for the meaning of
sinΘp(H

1/2X , inv(H1/2)X ) consider the following example.

Example 4.10. Take

H =

[
1 1
1 1

]
, X =

[
1
0

]
,

then

H ′ =

[
1 0
0 1

]

is, unlike H , a positive definite matrix. Now,

H1/2 =

[ 1√
2

1√
2

1√
2

1√
2

]
, H1/2† =

[ 1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

]
,

and we compute

ran(V ) = span{[1 1]∗}, ran(W )⊥ = span{[−1 1]∗}
which proves that in this case sinΘp(ran(V ), ran(W )⊥) = 1 and

ran(W )⊥ = ker(H) 6= ran(H1/2†P ).
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Instead of advocating the use of the general formula (4.33) we will establish a “com-
patibility condition” under which we may use the generalized inverse of H1/2 to check the
statement of the theorems.

The next result is a nonnegative analogue of Theorem 4.5. It will enable us to, in effect,
“deflate away” the kernel of the nonnegative form h and reduce the problem to the positive
definite case.

Theorem 4.11. Let the subspace X = ran(P ) ⊂ Q be given and let h be a nonnegative
form. Assume sinΘp(H

1/2X , inv(H1/2)X ) = sinΘp < 1 then

(1− sin Θp)h
′[u] ≤ h[u] ≤ (1 + sinΘp)h

′[u], u ∈ Q(h),(4.35)

(1− sin Θp

1− sinΘp
)h[u] ≤ h′[u] ≤ (1 +

sinΘp

1− sinΘp
)h[u], u ∈ Q(h).(4.36)

Proof. The proof is similar to the proof of Theorem 4.5. Let h′ and δh be as in (4.4). Set
δHs to be the operator defined by the form

δhs(x, y) = δh(H
′†1/2x,H

′†1/2y), x, y ∈ H.

The form δhs is closed and everywhere defined, so δHs is a bounded operator. We obviously
have ker(H

′†1/2) = ker(H′) ⊂ ker(δHs), so Pran(H′) commutes with the operator δHs. With
the use of Corollary 4.3 one computes, analogously as in Theorem 4.5,

δh(H
′†1/2x,H

′†1/2y) = h(P⊥H
′†1/2x, PH

′†1/2y) + h(PH
′†1/2x, P⊥H

′†1/2y)

= (Wx, V y) + (V x,Wy),

so

δHs = V ∗W +W ∗V.

Since H
′1/2H

′†1/2 = Pran(H′) we obtain

(4.37) max
u,v∈ran(H′)∩Q

|δh(u, v)|√
h′[u]h′[v]

= ‖δHs‖ = ‖V ∗W‖.

Corollary 4.9 implies that the assumption sinΘp < 1, in fact, reads

sinΘp = ‖V ∗W‖ < 1.

With this in hand, we have established

(1− sin Θp)h
′[u] ≤ h[u] ≤ (1 + sinΘp)h

′[u], u ∈ Q(h),

which implies ker(H′) = ker(H). The relation (4.36) follows by the same argument as the
one used in Theorem 4.5. �

The main insight into the structure of the operator H′, gained from Theorem 4.11, is
summed up in the following corollary.

Corollary 4.12. Take a nonnegative form h and a subspace X = ran(P ) ⊂ Q. If
sinΘp(H

1/2X , inv(H1/2)X ) < 1 then ran(H′) = ran(H).
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Corollary 4.12 gives precise meaning to the statement “deflate away”. SetR = ran(H) =
ran(H′) and N = ker(H) = ker(H′). The projections PN and P commute, so

PN∩ran(P ) = PNP, P̃ = P − PN∩ran(P )

are both orthogonal projections. A direct calculation shows

X̃ := ran(P̃ ) = ran(P )⊖ (N ∩ ran(P )) = ran(H′) ∩ ran(P ) = ran(H′P ).

The form
h̃(u, v) = h(PRu, PRv)

is positive definite in R and ran(P̃ ) ⊂ Q(h̃)∩R. Now, apply the construction (4.2)—(4.4)

to the form h̃ and the projection P̃ . By H̃ : R → R denote the operator defined by the

form h̃ in R, then ran(P̃ ) ⊂ R and

h̃′(u, v) = h′(PRu, PRv).

We conclude that

sinΘ(H̃1/2X̃ , H̃−1/2X̃ ) = sinΘp(H
1/2X , inv(H1/2)X ) < 1

and h̃ and P̃ satisfy the assumptions of Theorem 4.5. If we were to “a priori” assume
ran(H′) = ran(H), then this argument would give an alternative proof of Theorem 4.11.

“Deflate away” means that we assume we were given h̃ and P̃ as input.

Remark 4.13. Another consequence of Corollary 4.12 is that we can invoke Lemma 4.7 to
conclude that the constant sinΘp

1−sinΘp
(in (4.36)) cannot be sharpened. Furthermore, Example

4.10 shows that the assumption

sinΘp(H
1/2X , inv(H1/2)X ) < 1

is a necessary requirement to establish the inequalities (4.35) and (4.36) as well as to
guarantee that ran(H) = ran(H′) (equivalently ker(H) = ker(H′)).

4.1.1. Important special case. The assumption that P and Pker(H) commute and Corollary
4.3 yield ker(H) = ker(H′) and ran(H) = ran(H′). This implies

(4.38) inv(H1/2)X = H1/2†X .

The projections P and Pker(H) certainly commute when ker(H) ⊥ ran(P ) or when3
ker(H) ⊂

ran(P ). This discussion is summed up in the following corollary.

Corollary 4.14. Assume P = XX∗ and Pker(H) commute and let

sinΘp(H
1/2X,H1/2†X) < 1,

then

(1− sinΘp)h
′[u] ≤ h[u] ≤ (1 + sinΘp)h

′[u], u ∈ Q(h)(4.39)

(1− sin Θp

1− sin Θp

)h[u] ≤ h′[u] ≤ (1 +
sinΘp

1− sin Θp

)h[u], u ∈ Q(h).(4.40)

3The other situation when P and Pker(H) commute is when ran(P ) ⊂ ker(H), this situation is however

trivial and we have tacitly left it out.
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Remark 4.15. To assess the restriction that P and Pker(H) should commute, consider the
definition of the relatively accurate approximation of the number λ ∈ R+. µ ∈ R+ is
relatively accurate approximation of λ ∈ R+, if

(1) λ = µ, when λ = 0

(2) |λ−µ|
µ

< 1, when λ 6= 0.

This implies that we can expect to compute “relatively accurate” Ritz value approximation
of the spectrum of the nonnegative definite operator H only in the case when we have
computed a basis for ker(H), cf. [1].

Remark 4.13 implies that we may assume that the condition of Corollary 4.14 were
ker(H) ⊥ ran(P ). To compute the basis of the set inv(H1/2)X we need to repeatedly solve
the equation

H1/2u = xi, i = 1, ..., dim(X ).

The vectors xi are assumed to be a basis for X . The restriction that ker(H) ⊥ ran(P )
amounts to nothing more then to impose a compatibility condition on xi (e.g. think of
the Laplacian with Neumann boundary conditions).

4.2. A first approximation estimate. Theorem 2.3 and Lemma 4.2 yield the first eigen-
value estimates. The next theorem will give an eigenvalue estimate with the minimum
of the restrictions on the subspace ran(X) ⊂ Q. Sharper bounds are possible when we
impose additional assumptions on ran(X). Even this (first order) estimate will compare
favorably with other higher order bounds that can be found in the literature, cf. [9].

Theorem 4.16. Let 0 ≤ h and let the n-dimensional subspace ran(P ) ⊂ Q, P = XX∗,
be given. Define

Ξ = (H1/2X)∗H1/2X, Ξ ∈ C
n×n

and assume µn < λe(H). Here, the Ritz values are numbered as in (4.1). If ran(P ) is such
that sinΘp < 1, then there are n eigenvalues of the operator H, counting the eigenvalues
according to their multiplicities, such that

|λij − µj| ≤ µj sinΘp, j = 1, . . . , n(4.41)

|λij − µj| ≤ λij

sinΘp

1− sinΘp

, j = 1, . . . , n,(4.42)

where i(·) : N → N is a permutation.

Proof. Corollary 4.12 readily implies the conclusion (4.41) for the Ritz values µj = 0,
j = 1, . . . , dim(ker(Ξ)). Therefore, we may safely assume that h is a positive definite form.
Lemma 4.2 implies σess(H) = σess(H

′), so the assumption µn < λe(H) guarantees that µn

is a discrete eigenvalue of H′. Theorem 4.11 established

(1− sinΘp)h
′[u] ≤ h[u] ≤ (1 + sinΘp)h

′[u], u ∈ Q(h)

(1− sinΘp

1− sinΘp

)h[u] ≤ h′[u] ≤ (1 +
sinΘp

1− sinΘp

)h[u], u ∈ Q(h).

The conclusion follows directly from Theorem 2.3. �
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For the numerical evidence concerning the performance of the estimate (4.42) see the
numerical tests from [9].

5. Localizing the approximated eigenvalues

There is a multitude of ways to match the computed Ritz values to a part of the spectrum
of the operator H of the same multiplicity. These approaches usually differ with regard
to the allowed amount of additional information about the spectrum of the operator H.
Here, we present two possible answers to that problem.

Theorem 4.16 can be interpreted as a first localization result. It gives an estimate of
the infimum of

max
j=1,...,n

|λij − µj|
µj

over all of the permutations i(·) : N → N. So, we would be correct in stating that the Ritz
values are approximating the eigenvalues of H that are closest to σ(Ξ).

Having only limited additional infirmation we got a limited answer. We know that there
is a collection of eigenvalues of operator H, having the joint multiplicity n, that is being
approximated by the Ritz values from the subspace ran(X). The information we have on
the location of those eigenvalues in the spectrum of H is only that they are the eigenvalues
closest to computed Ritz values.

Only when we have additional information about the location of the part of the spectrum
we do not want to approximate, we can guarantee that we are approximating the part of the
spectrum we are interested in. A best known example of such estimates is Temple–Kato
inequality. Assume λ1 < λ2 and let u ∈ D(H) be a unit vector such that (u,Hu) < γ ≤ λ2

then

(5.1) (u,Hu) ≥ λ1 ≥ (u,Hu)− (Hu,Hu)− (u,Hu)2

γ − (u,Hu)
.

For a proof see [16]. The estimate (5.1) is valid for a general selfadjoint operator H.
In the following we shall formulate another assumption with the same effect, namely to
separate the “unwanted” component of the spectrum from the Ritz values. Our result,
however, does not need the regularity constraint u ∈ D(H). Moreover, we will obtain
sharp bounds for the matching cluster of eigenvalues. In the last section of this chapter we
will demonstrate that on some examples our bound considerably outperforms the estimate
(5.1).

We now give a theorem that determines those eigenvalues of the operator H, given by
a symmetric form h, which are approximated by the Ritz values associated with the test
subspace ran(X) ⊂ Q. Before we proceed with the formulation of the theorem we state a
well known fact that given 0 < λ, µ and sinΘp < 1 the relation

|λ− µ|
µ

≤ sin Θp < 1

implies the relation

(5.2)
|λ− µ|

λ
≤ sinΘp

1− sinΘp
≤ 2 sinΘp.
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Theorem 5.1. Set γr = min
{
(λp − µk)(λp + µk)

−1|k = 1, ..., n; p = n + 1, ...,∞
}
and

ηΘp = sinΘp(1 − sinΘp)
−1. Take a nonnegative form h and the subspace ran(X) ⊂ Q.

Assume r = dim(ker(H)) ≤ n, set P = XX∗ and let h′ be as in (4.3). By µ1 ≤ · · · ≤ µn,
denote the eigenvalues of the matrix Ξ = (H1/2X)∗H1/2X ∈ Cn×n. If γr ≥ 0 and ηΘp <
min{γr, 1} then

(5.3) |λi − µi| ≤ µi sinΘp, i = 1, ..., n.

Proof. The assumption ηΘp < min{γr, 1} and Theorem 4.11 imply ker(H) ⊂ ran(X).
Also, by Theorem 4.11 we have ker(H) = ker(H′), so we are allowed to “deflate away” the
kernel of H. Therefore, set P1 = Pran(H′P ) and proceed as if h were positive definite and
P = P1.

The rest of the proof is completely analogous to the proof of [9, Theorem 5.1]. The only
difference is that in the place of η = sinΘp/(1 − sinΘp) from [9, Theorem 5.1] one uses a
sharper quantity sinΘp.

If we are provided with the information that

(5.4) ηΘp =
sinΘp

1− sin Θp
< γc := min

{
min

k=1,...,n
p=1,...,q−1

µk − λp

λp + µk
, min

k=1,...,n
p=q+n,...,∞

λp − µk

λp + µk
, 1
}

then µ1 ≤ · · · ≤ µn approximate the “inner” eigenvalues

λq ≤ λq+2 · · · ≤ λq+n−1 .

This statement is made precise in the following theorem.

Theorem 5.2. Take a nonnegative definite form h and a subspace ran(X) ⊂ Q. By
µ1 ≤ · · · ≤ µn denote the eigenvalues of the matrix Ξ = (H1/2X)∗H1/2X ∈ Cn×n. If
ηΘp < γc, where γc is as in (5.4), then ran(P ) ⊂ ran(H′) and

|λi+q−1 − µi| ≤ µi sin Θp, i = 1, ..., n .

Proof. The assumption (5.4) and Theorem 4.11 and Corollary 4.12 imply

ran(H′) = ran(H) and ran(P ) ⊂ ran(H).

The rest of the proof follows analogously as in the proof of Theorem 5.1. �

Remark 5.3. Theorems 5.1 and 5.2 imply that the spectrum of the operator H can stably
(sensibly) be divided in two disjoint parts: the part that is being approximated by the σ(Ξ)
and the rest of the spectrum. To understand this statement assume that the conditions
of Theorem 5.1 hold. In this case both of the “block diagonal” forms

h(u, v) = h(E(λn)u,E(λn)v) + h(E(λn)⊥u,E(λn)⊥v) ≃
[
Λ

Λc

]

h′(u, v) = h(Pu, Pv) + h(P⊥u, P⊥v) ≃
[
Ξ

Ξc

]

have “diagonal blocks” with disjoint spectra. We have assumed Λ = diag(λ1, . . . , λn) and
Ξ = diag(µ1, . . . , µn) and Ξc and Λc were unbounded operators defined by the forms h′

and h in the spaces ran(P⊥) and ran(E(λn)⊥). In fact, we will colloquially call h′ the
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block diagonal part of the operator H with respect to the subspace ran(P ). We will use the
notation hP to denote h′ in situations when it is not clear with respect to which test space
ran(P ) was this construction performed.

6. Eigenvector approximation estimates

For the computed Ritz values

0, 0, . . . , 0, µr+1, µr+2, . . . , µn

Theorem 4.16 guarantees the existence of the eigenvalues

λi1 ≤ λi2 ≤ · · · ≤ λin ,

that are being approximated by the Ritz values (provided sinΘp < 1) in the sense of

|λij − µj| ≤ µj sin Θp, j = 1, . . . , n.

Assume v1, . . . , vn are mutually orthogonal eigenvectors that belong to the eigenvalues
λi1 ≤ λi2 ≤ · · · ≤ λin . If the conditions of Theorems 5.1 and 5.2 are satisfied Remark 5.3
assures us that

span{v1, ..., vn} = ran(E({λi1 , λi2, · · · , λin})).
Here we have assumed that H =

∫
λ dE(λ). To ease the presentation we generically use

Ê = E({λi1, λi2, · · · , λin})
to denote the projection on the subspace that is selected by a result like Theorem 5.1.

The central role in the analysis of the eigenvector approximations will be played by the
following lemma.

Lemma 6.1. Let h be a nonnegative form and let H† be bounded. Take ran(P ) ⊂ Q such
that sinΘp < 1 and define

s(x, y) = δh(H†1/2x,H
′†1/2y), x, y ∈ H.

The form s defines a bounded operator S and

S = H1/2H
′†1/2 −H†1/2H′1/2(6.1)

|(x, Sy)| = |s(x, y)| ≤ sin Θp√
1− sin Θp

‖x‖‖y‖, x, y ∈ H.(6.2)

Proof. The closed graph theorem implies that the operator

S = H1/2H
′†1/2 −H†1/2H′1/2

is bounded. Also, ker(H) = ker(H′) = ker(S) and Pker(S) commutes with S. It is sufficient
to prove the estimate for x, y ∈ ran(H). The inequality (4.37) gives

|δh(H†1/2x,H
′†1/2y)| ≤ sin Θp‖y‖ h′[H†1/2x]1/2.

Analogously, (4.35) implies

(6.3) ‖H′1/2H†1/2‖ ≤ 1√
1− sinΘp

.
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Altogether, the estimate (6.2) follows. �

The operator S has the special structure. Assume H′u = µu and Hv = λv, then

(v, Su) = λ1/2(v, u)µ1/2 − λ−1/2(v, u)µ1/2

=
λ− µ√

λµ
(v, u) .(6.4)

The equation (6.4) introduces the distance function

λ− µ√
λµ

that measures the distance between the Ritz values and the spectrum of the operator
H. This distance function will feature in the important role in the estimates that follow.
The next theorem extends the scope, as well as strengthens the eigenvector estimate from
[9, 14] and is even new in the matrix case. It can be seen as the eigenvector companion
result of Theorem 4.16.

Theorem 6.2. Let h be a nonnegative form, and let ran(P ) ⊂ Q be such that it satisfies the
assumptions of Theorem 4.16. Let u1, . . . , un the mutually orthogonal eigenvectors belong-
ing the eigenvalues µ1, . . . , µn of H′P , then there exist mutually orthogonal eigenvectors
v1, . . . , vn of H, belonging to the eigenvalues λi1 , . . . λin and

(6.5) ‖vj − uj‖ ≤
√
2 sinΘp√
1− sin Θp

max
k 6=j

√
µjλik

|λik − µj |
.

The eigenvalues λij , j = 1, . . . , r are numbered in the ascending order as given by Theorem
4.16.

Proof. Assume µ1 = · · · = µr = 0. Corollary 4.12 implies that ui ∈ ker(H) for i = 1, . . . , r
so we take

vi = ui, i = 1, · · · , r.
For vj , j = r+1, . . . n take any orthonormal set of eigenvectors belonging to the eigenvalues
λij , j = r+1, . . . , n. Since both ui and vi, for i = r+1, . . . , n are perpendicular to ker(H)
we may assume that H is positive definite and we are only given ui, i = r+1, . . . n as test
vectors. Take s from Lemma 6.1 and use (6.1) to compute

s(vk, uj) = δh(H−1/2vk,H
′−1/2uj) =

(
vk,H

1/2H
′−1/2uj

)
−

(
H

′1/2H−1/2vk, uj

)

= (λ
1/2
ik

µ
−1/2
j − λ

−1/2
ik

µ
1/2
j ) (vk, uj)

and
∑

k 6=j

| (vk, uj) |2 ≤ max
k 6=j

λikµj

(λik − µj)2

∑

k 6=j

|s(vk, uj)|2 ≤ max
k 6=j

λikµj

(λik − µj)2
‖S∗uj‖2

≤ max
k 6=j

λikµj

(λik − µj)2
sin2Θp

1− sin Θp
.
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Scaling vj , uj so that (vj , uj) ≥ 0, we obtain

‖vj − uj‖ =
√
2
[
1− (vj , uj)

]1/2
=

√
2
[
1−

[
1−

∑

k 6=j

| (vk, uj) |2
]1/2]1/2

≤
√
2
[
1−

[
1−max

k 6=j

λikµj

(λik − µj)2
sin2Θp

1− sinΘp

]1/2]1/2

≤
√
2 sinΘp√
1− sin Θp

max
k 6=j

√
µjλik

|λik − µj |
.

This proves the lemma in the case in which σe(H) = ∅. In the general case we use the
formula

√
λeµj

λe − µj

∣∣∣
(
EH1/2(

[√
λe,∞

〉
)uj, Suj

)∣∣∣ ≥
∣∣∣
(
EH1/2(

[√
λe,∞

〉
)uj, uj

)∣∣∣

and analogous argument. �

7. A simple model problem

We will now present an application of our theory to the singularly perturbed Sturm-
Liouville eigenvalue problem (1.9). Estimates (5.1) and [2, Theorem 6.21(Kato–Temple
eigenvector estimate)] do not apply due to overly stringent regularity assumptions on the
test vector, cf. (1.9)–(1.10).

Consider the family of positive definite forms

(7.1) hη(u, v) = hb(u, v) + η2he(u, v) =

∫ 2

0

u′v′ dx+ η2
∫ 2

1

u′v′ dx, u, v ∈ H1
0 [0, 2].

By Hη denote the positive definite operator which is defined by the form hη from (7.1).
We are interested in eigenvalues and eigenvectors of the operator Hη for large η. Here,
H1

0 [0, 2] denotes the first order Sobolev space with zero trace on the boundary.
This is the eigenvalue problem for the vibration of a highly inhomogeneous string. We

are only considering an academic example where we can efficiently compute all information
we need. For more realistic applications see [8].

If we identify the functions from H1
0 [0, α], α > 0, with their extension by zero to the

whole of [0, β] for β ≥ α, then we can write

(7.2) H1
0 [0, α] ⊂ H1

0 [0, β], 0 < α < β.

Let χ[0,1] be the characteristic function of the interval [0, 1] and let χ[0,1]c = 1 − χ[0,1].
Keeping (7.2) in mind, we conclude that

Hη = −∂x(1 + η2χ[0,1]c)∂x, D(Hη) = H2[0, 2] ∩H1
0 [0, 2].

It is known that the forms hη converge to the form

h∞(u, v) =

∫ 1

0

u′v′ dx, u, v ∈ H1
0 [0, 1]
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Figure 1. Various test functions for H∞ and Hη, η large.

in the norm resolvent sense4. Operators Hη and H∞ have discrete spectra and all the
eigenvalues are nondegenerate, cf. [19]. Since we will be considering the whole family of
operators Hη, additional notation will be introduced to ease the understanding. By

λη
1 < · · · < λη

n < · · ·
we denote the increasingly ordered eigenvalues of the operator Hη and by

λ∞
1 < · · · < λ∞

n < · · ·
the eigenvalues of the operator H∞.

The eigenpairs of the operator H∞—which is defined in L2[0, 1]— are
(n2π2,

√
2sin(nπx)), n ∈ N. The functions

(7.3) un(x) =

{√
2 sin(nπx), 0 ≤ x ≤ 1

0, 1 ≤ x
, n ∈ N

are in H1
0 [0, 1] and also in H1

0 [0, 2]. Therefore, they can be used as test functions for an
approximation of the eigenvalues of Hη ( for large η). Furthermore, according to (1.7) we
obtain

sin2Θη(ui) := sin2Θ(H−1/2
η ui,H

1/2
η ui) =

(ui,H
−1
η ui)− (ui,H

†
∞ui)

(ui,H−1
η ui)

.

Let us now concentrate on the approximation of the lowest eigenvalue. We compute the
Ritz value

hη(u1, u1) = π2.

When sinΘη(u1) < 1, Theorem 4.16 guarantees the existence of an eigenvalue λη
i1
such that

|λη
i1
− λ∞

1 |
λ∞
1

≤ sinΘη(u1) .

4More on the properties of this convergence can be found in [10, 18].
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A direct computation shows that

(u1,H
−1
η u1 −H†

∞u1)

=

∫ 1

0

[∫ x

0

2

(
y (1 + (1 + η2) (1− x))

2 + η2
− y (1− x)

)
sin(π y) sin(π x) dy

+

∫ 1

x

2

(
x (1 + (1 + η2) (1− y))

2 + η2
− x (1− y)

)
sin(π y) sin(π x) dy

]
dx

=
2

(2 + η2)π2
= O(η−2).(7.4)

This establishes that sinΘη(u1) → 0, so Theorem 4.16 will be applicable for η ≥ 1 such
that

(u1,H
−1
η u1)− (u1,H

†
∞u1)

(u1,H−1
η u1)

=
2

4 + η2
< 1.

Furthermore, based on [10] and [18] we conclude that the assumptions of Theorem 6.2
must be satisfied for η large. We will now investigate this claim further.

The eigenvalues of the operator Hη satisfy the equation

(7.5)
√

1 + η2 cot(
√
λη) + cot

(
√

λη

1 + η2
)
= 0.

and the nonnormalized eigenvectors are

v̂ηi (x) =





sin(
√
λη
i x), 0 ≤ x ≤ 1

sin(
√

λη
i )

sin
(√ λη

i

1+η2

) sin
(
√

λη
i

1 + η2
x
)
, 1 ≤ x

Set vηi = ‖v̂ηi ‖−1 v̂ηi then Theorems 5.1 and 6.2 imply

sin∠(vη1 , u1) = ‖vη1 − u1‖ ≤ π
√

λη
2

λη
2 − π2

2√
4 + η2 −

√
8 + 2η2

.

From (7.4) we establish the uniform estimate

‖vη1 − u1‖ ≤ 1.333334√
4 + η2 −

√
8 + 2η2

, η ≥ 2.

This illustrate a way to obtain rigorous eigenvector estimates. First, we have localized
the approximated eigenvalue by an application of Theorem 5.1. This has selected the
approximated eigenvector. Theorem 6.2 then yields an accuracy of that approximation.

Let us note that

h∞(un, un) = hη(un, un) = n2π2

sin Θη(un) =
(un,H

−1
η un)− (un,H

†
∞un)

(un,H−1
η un)

=
2

4 + η2
.
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This implies that we can get estimates for all λη
i and vηi by an analogous procedure. In es-

tablishing the convergence results for higher eigenvalues and eigenvectors it was important
that we a priory new that all λη were nondegenerate. Our theory has successfully been
applied to similar singularly perturbed operators which were defined in L2(Ω), Ω ⊂ Rn,
see [8]. For those operators such a claim does not hold. There it is important to gener-
alize the subspace results from [9] as well as to obtain higher order estimates (in sinΘη)
for eigenvalues. These results were obtained in the PhD. Thesis [8] and will be reported
elsewhere.

8. Conclusion

Amethod to compute an estimate of the accuracy of the subspace approximation method
is presented. It can also be used to obtain accurate lower estimates of a desired group
of eigenvalues. The bounds have to be viewed as a combination of the Ritz value bound,
which gives an existence of the matching of the Ritz values and eigenvalues, and the
subspace bound, which describes the nature of that matching.

The case study that was just performed can be described as leading to a “pseudo spec-
tral” method. We have used the completely solvable (“well behaved”) operator

(H1/2
∞ u,H1/2

∞ v) = h∞(u, v) =

∫ 1

0

u′v′ dx, u, v ∈ H1
0 [0, 1] ,

to analyze the singularly perturbed operator Hη. Since the eigenvalue problem for the
operator H∞ was completely solvable, we have used the eigenfunctions of the operator
H∞ to define a test space for the operator Hη. Analogously, we could have used other test
functions from H1

0 [0, 1] to analyze the operator Hη. For instance, assume we have used
the linear finite elements to compute an approximation ũi of the function ui, see Figure 1.

Theorem 4.16 can be invoked if we find a way to estimate sinΘ(H
−1/2
η ũi,H

1/2
η ũi). The study

of singularly perturbed eigenvalue problems and finite element spectral approximations has
been performed in [8]. The results will be presented in subsequent reports.
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The author would like to thank Prof. Dr. Krešimir Veselić, Hagen for helpful discussions
and support during the research and the preparation of this manuscript. The author also
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[5] Z. Drmač. On relative residual bounds for the eigenvalues of a Hermitian matrix. Linear Algebra
Appl., 244:155–163, 1996.
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