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A Simply Stabilized Running Model∗

R. M. Ghigliazza†, R. Altendorfer‡, P. Holmes§, and D. Koditschek‡

Abstract. The spring-loaded inverted pendulum (SLIP), or monopedal hopper, is an archetypal model for
running in numerous animal species. Although locomotion is generally considered a complex task
requiring sophisticated control strategies to account for coordination and stability, we show that
stable gaits can be found in the SLIP with both linear and “air” springs, controlled by a simple
fixed-leg reset policy. We first derive touchdown-to-touchdown Poincaré maps under the common
assumption of negligible gravitational effects during the stance phase. We subsequently include and
assess these effects and briefly consider coupling to pitching motions. We investigate the domains
of attraction of symmetric periodic gaits and bifurcations from the branches of stable gaits in terms
of nondimensional parameters.
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1. Introduction. Locomotion, “moving the body’s locus,” is among the most fundamen-
tal of animal behaviors. A large motor science literature addresses gait pattern selection [1],
energy expenditure [2], underlying neurophysiology [3], and coordination in animals and ma-
chines [4]. In this paper, we explore the stabilizing effect of a very simple control policy on a
very simple running model.

Legged locomotion is generally considered a complex task [5] involving the coordination of
many limbs and redundant degrees of freedom [6]. In [7], Full and Koditschek note that “loco-
motion results from complex, high-dimensional, non-linear, dynamically coupled interactions
between an organism and its environment.” They distinguish locomotion models simplified for
the purpose of task specification (templates) from more kinematically and dynamically accu-
rate representations of the true body morphology (anchors). A template is a formal reductive
model that (1) encodes parsimoniously the dynamics of the body and its payload transport ca-
pability, using the minimum number of variables and parameters, and (2) advances an intrinsic
hypothesis concerning the control strategy underlying the achievement of this task. Anchors
are not only more elaborate dynamical systems grounded in the morphology and physiology
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of an animal, but they must also admit the imposition of control policies that result in the
realization of the lower dimensional template dynamics. In this context, Full and Koditschek
suggest that the spring-loaded inverted pendulum (SLIP) model might reasonably provide a
template for sagittal plane motions of the center of mass (COM) of such diverse species as
six-legged trotters (cockroaches), four-legged trotters (dogs), two-legged runners (humans and
birds), and hoppers (kangaroos). The validation of the SLIP template is based on similarities
of ground reaction forces and kinetic and potential energies between these animals running
at steady state and the SLIP model with suitably adjusted parameters (see [8]; for a review,
see [9]). Details of the anchor system such as pitching motion or multiple leg impacts lead to
small deviations from the SLIP predictions, which can be quantified by a more detailed error
analysis (see [10] and the references therein).

In related work, McGeer [11] and, more recently, Ruina and colleagues [12, 13] have
designed, analyzed, and built passive walking machines that are entirely uncontrolled yet
produce stable gaits. These differ from SLIP-type machines in that their rigid legs incur
impacts at touchdown, and stable gaits emerge from a balance between energy supplied by
motion down an inclined plane and energy losses due to impacts. Their mathematical models
are significantly more complicated than the SLIP, and only limited analyses are possible.
Similarly, a recent study of Mombaur et al. [14] relies on numerical optimization methods to
find the “most stable” periodic gaits of a four-degree-of-freedom hopper endowed with a massy
leg and a circular foot. They apply feedforward actuation via programmable leg length and hip
torque and note that damper forces and impact losses “may promote stability.” In contrast,
the SLIP machines investigated in this paper are conservative and operate at constant energy;
no friction forces are present, and no impact occurs at touchdown (see section 2 for details of
the model).

Models as simple and (relatively) analytically tractable as the SLIP can address two key
questions: how much energy and how much information are needed to sustain a gait? With
regard to the second question, many researchers (e.g., [4, 15, 6]) implicitly assume that even
if “passive dynamic” periodic gaits exist, they are (highly [4]) unstable. A surprising answer
to both questions, motivated by hypotheses proposed in [16], was found by Schmitt and
Holmes [17, 18, 19, 20] for the mechanics of a lateral leg spring (LLS) model (essentially a
SLIP without gravity or flight phases), which describes horizontal plane motions of a rigid
body equipped with a pair of massless springy legs that are lifted when leg force drops to
zero, are swung forward, and are set down at fixed angles relative to the body. They showed
that, even without energy dissipation, the LLS model can exhibit stable periodic gaits. Liftoff
events alone trigger the swing phases: continuous (neural) sensing is not required, and stability
derives from angular momentum trading from step to step. Moreover, recent experiments [21]
have suggested that rapidly running insects do employ such mechanical reaction forces to
make heading corrections.

In this paper, we demonstrate and, under simplifying assumptions, prove that stable
periodic gaits exist in very simply controlled SLIP models over a physically useful range of
parameter values. Specifically, we show that a liftoff-event-triggered reset of the leg angle
during flight to achieve a touchdown angle fixed at the same value for each stance phase
(hereafter, fixed-leg reset) suffices for stability. Such self-stabilized SLIP gaits have already
appeared in the literature [10, Figure 2], where periodic SLIP trajectories were compared to
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experimental data, although their stability properties were not discussed. Our present work
also complements a recent paper of Seyfarth et al. [22], in which parameter ranges for stable,
symmetric, periodic SLIP gaits are found by numerical simulation and are compared with
data from human running. Here we derive analytical results, perform detailed bifurcation
and parameter studies (including a second, nonlinear spring model), explain mechanisms
responsible for stable gaits, and elucidate limits to fixed-leg reset stability. We relate our
results to [22] where appropriate and summarize the relationship between that and the present
work in section 5.

Our main results may be summarized as follows. Using conservation laws and simple
geometric relations, we produce closed form approximations (explicit up to the evaluation
of a quadrature integral) for the touchdown-to-touchdown Poincaré map and the “stability
eigenvalue” of its fixed point for a simplified version of the model; see (2.20), (2.24), and
Figures 7 and 11. These allow us to plot branches of stable and unstable periodic gaits
(Figures 8 and 13) and to understand how the domains of attraction of the stable gaits
depend upon parameters. Particular spring laws appear only in the quadrature. We believe
that such explicit approximations have not previously appeared; moreover, exact Poincaré
maps, requiring only numerical evaluation of the leg sweep angle during stance, are implicit in
our derivation. An appropriate notion of stability for such piecewise-holonomic systems [23]
is that of partial asymptotic stability. Due to energy conservation and rotational invariance
(in the case of coincident “hip joint” and mass center), one or three of the eigenvalues of the
linearized Poincaré map are necessarily unity, leaving a single “stability eigenvalue” that may
lie within or outside the unit circle. Thus, at best, the orbits are only Liapunov or neutrally
stable.

The paper is organized as follows. In section 2, we set up the general rigid body model and
then focus on an integrable case, in which pitching motions decouple and gravity is neglected
during the stance phase (2.1). This allows us to derive explicit stride-to-stride (Poincaré)
maps and obtain expressions characterizing periodic gaits, their stability, and bifurcations.
Apart from illustrations, this is all done for general leg-spring laws. We then give convincing
numerical evidence that stable gaits persist under the inclusion of gravity during stance (2.2)
and under coupling to pitching motions (2.3). In section 3, we illustrate our results using the
classical Hooke’s law spring (3.1) and a progressively hardening compressed air spring (3.2).
In section 4, we reformulate the equations of motion in nondimensional variables and include
gravity during stance, thereby clarifying the effects of parameter variations and the resulting
range of behaviors exhibited by the model. Finally, section 5 summarizes the work and notes
possible extensions.

This work has two main goals: to better understand animal locomotion and to stimulate
and enable the creation of “bio-inspired” robots. A significant part of locomotion research
is driven by the desire to exploit the advantages of legged robots as opposed to wheeled and
tracked vehicles. Nature suggests (and engineers are increasingly concerned to demonstrate)
that legged robots can operate over a greater range of environmental and surface conditions,
combining dexterity with mobility and efficiency; cf. [24, 10]. In addition, machines that use
ballistic flight phases do not require continuous support paths [5].

A natural extension of the work presented here is the design of control algorithms that
enlarge the rather small basin of attraction of the SLIP with a constant leg touchdown angle
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Figure 1. The hopping rigid body (a), and the stance and flight phases comprising a full stride (b).

control [25]. A globally attracting “low attention” feedback controller was proposed in [26]
by making the leg angle trajectory time-dependent during flight. However, this controller was
based on a numerically precomputed leg trajectory and required velocity sensing. This raises
the question of how much sensing is required to obtain “large” basins of attraction. A first step
in this direction was undertaken in [27], where a necessary condition for the stability of fixed
points for arbitrary leg angle trajectories was formulated in terms of the sensor requirements
at liftoff. We will further explore this issue in a forthcoming paper [28]. Control enters the
present paper only as the fixed feedforward leg placement strategy used at touchdown to define
the hybrid switching condition.

2. The model: Equations of motion. Figure 1(a) illustrates our parametrization of the
SLIP model as a schematic representation for the stance phase of a running (or hopping)
biped with at most one foot on the ground at any time. This model incorporates a rigid body
of mass m and moment of inertia I, possessing a massless sprung leg attached at a hip joint,
H, a distance d from the COM, G. The figure depicts the attitude or pitch angle θ, the angle
ψ formed between the line joining foothold O to the COM and the vertical (gravity) axis, and
the distance ζ from foothold to the COM. The quantity

η =
√

d2 + ζ2 + 2dζ cos (ψ + θ)(2.1)

measures the (compressed) leg-spring length: the distance between O and the hip pivot H.
We take frictionless pin joints at O and H. The body is assumed to remain in the vertical
(sagittal) plane, and its state at any point in time is defined by the position of G, (xG, yG)
referred to a Cartesian inertial frame, and the pitch angle θ; during stance we will also use
the generalized polar coordinates ζ, ψ, based at the foothold O, and θ. (Note that ψ increases
clockwise, while θ increases counterclockwise.) Unlike many earlier studies of the SLIP, we
consider a rigid body with distributed mass and allow pitching motions,1 although in the
present paper we focus our attention upon the uncoupled case d = 0 and assume θ ≡ 0, thus
largely restricting ourselves to the point mass case.

1A bipedal walker with the above-described leg and body geometry with arbitrary radial force in the leg
and arbitrary hip torque was considered in [29] in the context of feedback control. However, the investigation
did not include gaits with flight phases.
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A full stride divides into a stance phase, with foothold O fixed, the leg under compression,
and the body swinging forward (ψ increasing), and a flight phase in which the body describes
a ballistic trajectory under the sole influence of gravity. The stance phase ends when the
spring unloads; the flight phase then begins, continuing until touchdown, which occurs when
the landing leg, uncompressed and set at a predetermined angle β, next contacts the ground.
See Figure 1. This defines a hybrid system in which touchdown and liftoff conditions mark
transitions between two dynamical régimes.

Recalling previous robotics research [30] and looking ahead to control studies [28], β could
be adjusted from stride to stride (necessitating at least intermittent active neural feedback),
but here it will be taken as a fixed parameter. The “fixed leg reset angle” policy of stated
interest might be implemented with respect either to the body or to the inertial frame. In the
first case, touchdown occurs when the hip reaches the height η0 sin(β − θ) and in the second
case when the hip reaches the height η0 sinβ. Liftoff occurs automatically when the spring
force drops to zero, requiring no sensing, but in any physical implementation, even a fixed-leg
reset policy requires some state information to initiate the swing phase (e.g., a contact sensor
in the foot or force sensor in the spring).

The kinetic energy of the body is

T =
1

2
m(ζ̇2 + ζ2ψ̇2) +

1

2
Iθ̇2,(2.2)

and its potential energy is

Vtot = mgζ cosψ + V (η (ζ, ψ, θ)) ,(2.3)

where V = Vspr denotes the spring potential. Forming the Lagrangian L = T −V and writing
∂V/∂η = Vη, we obtain the equations of motion for the stance phase:

ζ̈ = ζψ̇2 − g cosψ − Vη (η)

mη
(ζ + d cos (ψ + θ)) ,

ζψ̈ = −2ζ̇ψ̇ + g sinψ + d
Vη (η)

mη
(sin (ψ + θ)) ,

θ̈ = dζ
Vη(η)

ηI
sin (ψ + θ) .(2.4)

The equations of motion during the flight phase are simply the ballistic COM translation and
torque-free rotation equations, which may be integrated to yield

xG (t) = xLO + ẋLOt, yG (t) = yLO + ẏLOt− 1

2
gt2, θ (t) = θLO + θ̇LOt,(2.5)

where (xG, yG) denotes the COM position and θ the pitch angle, and the superscripts LO
refer to the system state at liftoff.

2.1. The case d = 0 neglecting gravitational effects in stance. If the leg is attached at
the COM (H ≡ G), then d = 0, ζ ≡ η, the stance phase dynamics simplifies to the “classical”
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SLIP, and the pitching equation decouples:

ζ̈ = ζψ̇2 − g cosψ − Vζ (ζ)

m
, ζψ̈ = −2ζ̇ψ̇ + g sinψ,

θ̈ = 0 ⇒ θ (t) = θ (0) + θ̇ (0) t.(2.6)

The third equation describes the conservation of angular momentum of the body about its

COM: Iθ̇
�
= pθ = const.

Neglect of gravity in stance yields an integrable system [31]. A detailed analysis of the
validity of this approximation for different spring potentials was performed in [32] using Hamil-
tonian instead of Lagrangian formalism. This simplification was shown to be too crude over
a large range of running gaits, and several closed form approximations to the stance phase
dynamics were proposed, although existence and stability of periodic solutions that can arise
from concatenation of stance and flight phases were not investigated. Despite the limited
accuracy of the gravity-free approximation, we adopt it here in order to gain an analytical
understanding of periodic gaits. We will subsequently compare these results to numerical
simulations of the full stance dynamics with gravity and show that analogous bifurcation
structures persist in the physically more accurate model.

Neglecting gravity, the first two equations of (2.6) simplify to

ζ̈ = ζψ̇2 − Vζ (ζ)

m
, ζψ̈ = −2ζ̇ψ̇.(2.7)

The second of these equations expresses the conservation of the moment of linear momentum

of the COM about the foot: mψ̇ζ2 �
= pψ = const. The first equation is, therefore, integrable:

ζ̈ =
p2
ψ

m2ζ3
− Vζ (ζ)

m
⇒ mζ̈ζ̇ =

p2
ψ

mζ3
ζ̇ − Vζ (ζ) ζ̇ ⇒

H
�
=

(
mζ̇2

2
+

p2
ψ

2mζ2
+ V (ζ)

)
= const.(2.8)

Indeed, in the absence of dissipative forces, the total energy, which coincides here with the
HamiltonianH = T+V = E, is conserved. The original three degrees of freedom reduce to one
due to the conservation of moment of linear momentum pψ and body angular momentum pθ
individually. The phase portrait during stance is then given by the level sets of H in the region
ζ ≤ η0; Figure 2 illustrates this for a linear spring and also includes comparisons to solutions of
the full system (2.6), including gravity. Three cases are shown, with different stiffness/gravity
ratios characterized by the nondimensional parameter γ = kη0

mg ∈ [10, 100]. As expected [33,
34], the integrable portraits are perturbed by the inclusion of gravity, but orbits retain the same
qualitative characteristics. Leg stiffnesses estimated for human running, for example, give
γ ∈ (10, 21) [35, 36] (although Seyfarth et al. propose significantly higher values (γ ∈ (25, 70);
cf. [22, Fig. 2A]). Errors approach 20% at the lower end of this range at midstance (near ζ̇ = 0
in Figure 2(c)) but are smaller at liftoff. Extensive simulation experience confirms that errors
decrease with increasing γ (or k) for initial conditions away from the extremes of the physically
interesting operating regimes; see [32] for a careful discussion of such modeling errors; also see
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Figure 2. Solutions of the integrable system (2.7) (solid) and the full (d = 0) system (dashed) in the stance
phase: m = 1, η0 = 1.5, β = π/4 with linear spring stiffnesses k = 654 (γ = 100) (a), k = 163.5 (γ = 25) (b),
and k = 65.4 (γ = 10) (c). Dimensional units, unless otherwise stated, are MKS.

section 2.2 and Figure 4 below. Moreover, for orbits reflection-symmetric about midstance for
which ψ(t) is an odd function, such as the periodic gaits to be found below, the net angular
impulse delivered during each stance phase is zero so that, while pψ is not conserved, it does
regain its touchdown value at liftoff. This also tends to minimize errors.

In principle, we can integrate (2.8), first solving for time in terms of ζ and then inverting
and solving for ζ(t) and ψ(t). In particular, the quadrature determining the angle swept by
the leg may be written as ∆ψ(vn, δn) =

∫ τ
0

pψ
mζ2dt, where vn and δn denote the COM velocity

magnitude and direction relative to horizontal at the nth touchdown instant. Hence the
moment of linear momentum for the nth stance phase may be computed as pψ = mη0vn sin(β−
δn). Then, from conservation of energy (2.8), we have

ζ̇ =

√
2

m
(E − V (ζ))− p2

ψ

m2ζ2
⇒ dt =

m dζ√
2m (E − V (ζ))− p2

ψ

ζ2

(2.9)

so that the sweep angle may then be expressed as the quadrature

∆ψ (vn, δn) = 2

∫ η0

ζb

η0vn sin(β − δn) dζ

ζ2

√
v2
n − 2V (ζ)

m − η2
0v

2
nsin

2(β−δn)
ζ2

.(2.10)

Here we have set E = 1
2mv2

n, corresponding to the initial energy at touchdown, and ζb ≤ η0

denotes the midstride (compressed) leg length.
Computations of ∆ψ in specific cases of a linear spring and an “air spring” with potential

V (η) = c
2

(
1
η − 1

η0

)2
are given in [17]. Schwind and Koditschek [32] develop an approximate
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expression for this quadrature and compare it with both the exact integral and the analogous
stance sweep angle including gravitational effects. In the present paper, we illustrate the
general model again with a linear Hooke’s law spring but adopt a different version of the
nonlinear air spring model—specifically, that used in [37, 32]. While this potential, V (η) =
c
2(

1
η2 − 1

η2
0
), results in an inverse cubic force law of the form − c

η3 that is nonzero at touchdown

and liftoff, energy is conserved since the leg lengths are the same (η = η0), and velocities are
continuous. The explicit sweep angle expression for this law is given in Appendix A. For
the linear spring, V (ζ) = k

2 (η − η0)
2 = k

2 (ζ − η0)
2, and we have ∆ψ = 2 sin(β−δ)√

k̃
D(k̃;β − δ),

where k̃ =
kη2

0
mv2

n
and the function D(k̃;β − δ) involves elliptic integrals [17, Appendix A.1.2].

The stance phase dynamics described above must be composed with the ballistic dynamics
of the flight phase of (2.5), and the overall dynamics and the stability of this piecewise-
holonomic system [31] are best described via Poincaré or return maps [34]. It is convenient to
choose as generalized coordinates to describe the map the magnitude of touchdown and liftoff
velocities vTDn and vLOn , respectively, and the relative angles δTDn and δLOn between the velocity
vectors and the horizontal datum; see Figure 1b. The full map is obtained by composition of
the stance phase map

Pst :

[
vTDn
δTDn

]
�→
[

vLOn
δLOn

]
(2.11)

and the flight map

Pfl :

[
vLOn
δLOn

]
�→
[

vTDn+1

δTDn+1

]
(2.12)

as

P = Pfl ◦ Pst :

[
vTDn
δTDn

]
�→
[

vTDn+1

δTDn+1

]
.(2.13)

Since Iθ̇ = Iθ̇0 = const implies that θ(t) = θ0 + θ̇0t, and at touchdown in the first protocol
the leg is placed at a fixed angle relative to the body, to obtain “sensible” periodic gaits we
henceforth assume θ̇ = θ̇0 = 0. In this case, since d = 0 and θ ≡ 0, there is no distinction
between the two leg placement protocols.

We now describe the maps in detail, deriving explicit formulae. We shall frequently
drop the superscript TD and write vTDn = vn and δTDn = δn, it being understood that
(vn, δn) �→ P (vn, δn) denotes the touchdown-to-touchdown map.

2.1.1. Stance phase map. The spring is fully extended and stores no potential energy
at the beginning or the end of each stance phase. Choosing the reference height for zero
gravitational energy at y = η0 sinβ, the energy at touchdown is therefore purely kinetic,
ETD
n = 1

2m(vTDn )2, while at liftoff the energy has in general a gravitational component,
ELO
n = 1

2m(vLOn )2 +mgη0 (sin (β +∆ψ)− sinβ), the last term being positive, zero, or nega-
tive. Appealing to overall energy conservation ELO

n = ETD
n , the liftoff velocity is therefore

vLOn =
√

v2
n + 2gη0 (sinβ − sin (β +∆ψ)).(2.14)

As noted earlier, if the spring is sufficiently stiff so that gravity is negligible, the moment
of linear momentum pψ is conserved throughout stance in what is effectively a central force
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problem [31]: pψ = mrn × vn = mrLOn × vLOn . Since |rn × vn| = η0vn sin(δn − β) and
|rLOn × vLOn | = η0v

LO
n sin(δLOn − π +∆ψ + β), we obtain

δLOn = π −∆ψ − β + sin−1

(
vn
vLOn

sin(δn − β)

)
.(2.15)

However, since gravity is ignored in the sweep angle computation of (2.10), for consistency we
must also ignore it in assigning a liftoff velocity magnitude in (2.15) and set vLOn = vn so that
(2.15) simplifies to

δLOn = δn + π −∆ψ(vn, δn)− 2β,(2.16)

as in the LLS computations of [17]. Thus the effects of gravity are included in computing
liftoff velocity magnitude (2.14) but not in approximating liftoff velocity direction (2.16). This
“mixed approximation” has the advantage of retaining global energy conservation. Equations
(2.14)–(2.16), with (2.10), specify Pst. Note that (2.14), along with a (numerical) calculation
of the leg sweep angle ∆ψ and the change in pψ due to gravitational moment, defines the
exact stance phase map including gravity. We use this in section 4.

We note that pψ is reset on each touchdown and that this “trading” of angular momentum
from stride to stride will be responsible for asymptotic stability; cf. [17].

2.1.2. Flight phase and overall Poincaré map P . Using similar arguments based on
conservation of energy,

ELO
n =

1

2
m(vLOn )2 +mgη0 (sin (β +∆ψ)− sin (β)) = ETD

n+1 =
1

2
m(vTDn+1)

2,

and on conservation of linear momentum in the horizontal direction,

vLOn cos(δLOn ) = vTDn+1 cos(δ
TD
n+1),(2.17)

we find the flight phase map. For convenience, both maps are specified here:

Pst :

[
vLOn
δLOn

]
=

[ √
v2
n + 2gη0 (sinβ − sin (β +∆ψ))

δn + π −∆ψ − 2β

]
,(2.18)

Pfl :

[
vn+1

cos (δn+1)

]
=



√
(vLOn )2 + 2gη0 (sin (β +∆ψ)− sinβ)

vLOn
vn

cos(δLOn )


 .(2.19)

The last equation should more properly read vTDn+1 cos(δ
TD
n+1) = vLOn cos(δLOn ), but provided

β and η0 remain constant, conservation of energy enforces, without approximations, that
vn+1 = vn because the energy at the beginning and the end of each full stance + flight stride
is entirely kinetic. The flight map is only implicitly defined, and it is not evident that one
can find an expression in terms of vLOn , δLOn above, especially because ∆ψ = ∆ψ (vn, δn) is a
complicated function of the touchdown conditions; see (2.10). Nonetheless, using vn+1 = vn,
the full map simplifies considerably:

P :

[
vn+1

cos (δn+1)

]
=

[
vn√

1− 2gη0

v2
n

(sin (β +∆ψ)− sinβ) cos (δn + π −∆ψ − 2β)

]
.(2.20)
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Figure 3. The first column shows the function ∆ψ computed for a linear spring with k = 100,m =
1, η0 = 1.5, and β = 1.25. For cases (a) through (d), we set v̄ = 1.75, 3.5, 5, and 6, respectively. The conditions
∆ψ = π−2β (dotted) and ∆ψ = π

2
−β (dashed) are also shown. The second column shows the left-hand (dotted)

and right-hand (solid) sides of inequality (2.26): see sections 2.1.4–2.1.5. The third column shows β and ∆ψ in
physical space: solid lines indicate angles at touchdown (β) and liftoff (β+∆ψ). When β+∆ψ < π−∆ψ− 2β
(cases (a) and (b)), the body leaves the ground at an angle closer to vertical than at touchdown. Note that
(2.26) is violated for part of the domain in (d).

This expression is explicit apart from the sweep angle ∆ψ(vn, δn), which must be computed
from the quadrature of (2.10). Only here does the specific spring potential enter; the rest of
the expression for P is derived purely from conservation laws and stance and flight path
geometry. Note that, although we have approximated ∆ψ and hence Pst by neglecting the
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effect of gravitational torque in changing the COM angular momentum about the foot, the
overall composed map P conserves energy, as would the exact solutions of (2.6).

We postpone quantitative analyses of specific spring potentials to sections 3–4; however,
we note that analysis of special cases and numerical evidence indicates that for linear and
stiffening springs, ∆ψ has a single maximum. This will suffice for the analysis of the present
section. In particular, it is clear that for δn = β − π/2 (glancing contact), τ = ∆ψ = 0,
and for δn = β (running directly into the leg), ∆ψ = 0. Thus ∆ψ = 0 at both limits of
the admissible δ range, while for any vn �= 0, ∆ψ > 0 ∀ δn ∈ (β − π/2, β), so there must
be at least one maximum. We suspect that any physically reasonable spring law will give a
∆ψ with a unique maximum. The left column of Figure 3 shows ∆ψ for the linear spring
evaluated numerically for several v̄ values; they are indistinguishable from those obtained via
the analytical expressions of [17].

We remark that, in view of energy conservation and the resulting constancy of vn, (2.20)
defines a one-dimensional map for the touchdown angle δn. One could specify the system’s
state in terms of any other convenient variable, such as the COM height at the apex, which
was the choice adopted in [22]; cf. Figure 3(A) of that paper. We prefer to use the touchdown
angle and retain the velocity as a second state variable so that, when d �= 0, we may more
conveniently couple in the attitude dynamics in terms of θ and θ̇, as was done for yawing
motions in the LLS models of [17, 19]. Also, as demonstrated below, branches of periodic
orbits and their domains of attraction are conveniently presented in terms of δn (cf. Figure 8).

2.1.3. Periodic gaits. The simplest sustained forward motions, in which the hopper main-
tains a constant average forward speed and lands with the same angle between the velocity
vector and the horizontal datum on each step, are period one orbits given by vn+1 = vn and
δn+1 = δn. As we see from (2.20), the first condition is always satisfied, whereas the second
condition holds if and only if ∆ψ (vn,δn) = π − 2β.

To verify this, we first check sufficiency. Let ∆ψ(vn,δn) = π − 2β. Then sin (β +∆ψ) −
sinβ = sin (π − β)− sinβ = 0, and the map (2.20) reduces to

P :

[
vn+1

cos (δn+1)

]
=

[
vn

cos (δn)

]
.(2.21)

At touchdown following a flight phase, δn ∈ [0, π] (for both locomotion directions). In that
range, cos δn is invertible; hence δn+1 = δn.

Now let δn+1 = δn. For sustained forward motion, ∆ψ(vn, δn) ∈ [π/2 − β, π − β] and
δLOn ∈ [0, π/2]. Assume ∆ψ(vn, δn) > π − 2β. Then δLOn = δn + π − ∆ψ − 2β < δn and
cos δLOn > cos δn ∀δn, δLOn ∈ [0, π/2]. Also, β + ∆ψ > π − β and sin(β + ∆ψ) < sin(π − β)
∀β ∈ [0, π/2] and ∀∆ψ ∈ [π/2− β, π− β] ⇒ sin (β +∆ψ)− sinβ < 0 ∀β ∈ [0, π/2]. Hence we
conclude that

cos (δn+1) >

[
1− 2gη0

v2
n

(sin(β +∆ψ)− sinβ)

] 1
2

cos(δn) > cos(δn),(2.22)

which is a contradiction. A similar argument holds for ∆ψ(vn, δn) < π − 2β. Therefore,
∆ψ(vn,δn) = π− 2β is also necessary. Hence δLOn = δn, and in the gravity-free approximation
with d = 0, all one-periodic gaits are reflection-symmetric about midstance [38].
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Note that, within limits to be determined below, vn+1 = vn = v̄ can be chosen arbitrarily,
and the expression ∆ψ (v̄, δn) = π−2β can be solved to obtain the fixed point that we denote
by δ̄. Here we appeal to the fact that a parabolic segment of the flight trajectory can always
be matched to connect reflection-symmetric stance phases (i.e., those having δLOn = δn; see
Figure 1), yielding a fixed point of P . Thus, there is a one-parameter (v̄-) family of steady
periodic gaits for each β and all other parameters fixed. Also see [17] and Figure 8.

We may linearize the general expression (2.20) at a fixed point of the map to obtain the
Jacobian matrix

DP |δn=δ̄ =

[
1 0

−
(
1 + gη0 cosβ cot δn

v̄2

)
1−

(
1 + gη0 cosβ cot δn

v̄2

)
∂∆ψ
∂δn

]∣∣∣∣∣
δn=δ̄

,(2.23)

the eigenvalues of which are λ1 = 1 and

λ2 = 1−
(
1 +

gη0cosβ cot δn
v̄2

)
∂∆ψ

∂δn

∣∣∣∣
δn=δ̄

.(2.24)

The first eigenvalue, λ1, lies on the unit circle, corresponding to conservation of energy, but
|λ2| may take values either greater than or less than 1. We require δ̄ ∈ (0, β) and β ∈ (0, π2 )
for physically admissible gaits; thus the quantity in parentheses in (2.24) is strictly positive,
and a key factor in determining λ2 is the sign of ∂∆ψ

∂δn
. If ∂∆ψ

∂δn
< 0, then |λ2| > 1, and the

fixed point is unstable; if ∂∆ψ
∂δn

> 0, |λ2| may be less than or greater than 1, and stability or
instability may ensue [39, 34] (see below).

As in [17], recognizing that energy is conserved, stability can only be partially asymp-
totic, since perturbations in the direction of the eigenvector of λ1 neither grow nor decay. As
noted at the close of section 2.1.1, both here and in [17], the physical mechanism for stabi-
lization appears to be the trading of angular momentum from stride to stride. As noted by
Ruina [23] (cf. [40]), such piecewise-holonomic systems can yield asymptotic stability much
like nonholonomically constrained conservative systems [41].

2.1.4. Domain of definition of P . We must recall that the map was derived under the
tacit assumption that unimpeded leg motion is possible over the entirety of the configuration
space of the kinematic model. This is not true in general, as the toe must not be allowed to
penetrate the ground. The touchdown angle β is held constant, and since the spring has a
fixed length at rest η0, the hip height at touchdown is also fixed: yTD = η0 sinβ. For a gait
to exist, this height must be reached during the flight phase, i.e., yGmax ≥ η0 sinβ; otherwise,
the hopper will “stumble.” Integrating the ballistic equations (2.5), the time of flight to reach
the apex is tmax = vLOn sin δLOn /g, and the maximum height is given by (2.5):

yGmax = yG (tmax) = η0 sin (β +∆ψ) +
(vLOn sin δLOn )2

2g
.

Hence the map P is defined if and only if

sin2 δLOn ≥ 2gηo (sinβ − sin (β +∆ψ))

v2
n + 2gη0 (sinβ − sin (β +∆ψ))

(2.25)
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or, using (2.16),

sin2 (δn + π −∆ψ − 2β) ≥ 2gηo (sinβ − sin (β +∆ψ))

v2
n + 2gη0 (sinβ − sin (β +∆ψ))

.(2.26)

Inequality (2.26), which may be implicitly written in the form

f (v̄, δn;β, η0, g,m, V (·)) ≥ 0,

specifies the domain of definition of P (admissible values of (v̄, δn)) for each choice of physical
parameters (β, η0, g,m) and spring potential V . It appears difficult to give explicit bounds,
but we observe that, when max∆ψ (v̄, δn) ≥ π−2β and reflection-symmetric stance paths with
δn = δ̄ exist, we have sin (β +∆ψ) = sin (π − β), and the right-hand side of (2.26) vanishes.
For physically relevant gaits, δ̄ ∈ [0, β] and β < π

2 ; hence the left-hand side is strictly positive
at fixed points unless δ̄ = 0. However, since the spring remains compressed during stance,

providing a positive radial force, we see that d2ζ
dψ2 > 0, which implies d2ŷ

dx̂2 > 0, where x̂ and ŷ
are the axes of a rotated orthogonal coordinate system that has its ŷ-axis aligned with the
symmetry axis of the COM path. Hence the COM path is convex (cf. Figure 1), and δ̄ = 0
cannot be a fixed point. (The COM path need not be convex when gravity is included; indeed,
one may find orbits with δTDn < 0.) The second column of Figure 3 shows the two sides of
inequality (2.26).

We may therefore conclude via continuous dependence on initial data that the domain of
definition of P contains open sets around each fixed point, and, if |λ2| < 1 (resp., > 1), local
asymptotic stability (resp., instability) holds in the usual sense.

2.1.5. Bifurcations and stability of fixed points of P . To introduce the range of dy-
namical behaviors of P and better understand its domain of definition, we consider four
representative cases depending on the maximum sweep angle ∆ψmax:

(a) ∆ψmax < π
2 − β;

(b) π
2 − β < ∆ψmax < π − 2β;

(c) π − 2β < ∆ψmax and (2.26) is satisfied everywhere;
(d) π − 2β < ∆ψmax and (2.26) is not satisfied everywhere.

When ∆ψmax ≤ π/2 − β, the leg is vertical or directed forward at liftoff, so δLOn+1 > δn
and the direction of locomotion reverses once δLOn > π/2, even though the map may be well
defined; see Figures 3(a) and 6(a).

For π/2 − β < ∆ψmax < π − 2β, a domain appears in which ψLO
n = ψTD

n + ∆ψmax > 0
and continuing forward motion is possible. However, the hopper still lifts off and touches
down “more vertically” on each step until it eventually bounces backward in this case, too; see
Figures 3(b) and 6(b). Indeed, from (2.16) we have δLOn = δn+π−∆ψ−2β, and by assumption

(b) δLOn > δn. From (2.17) we know that cos(δn+1) =
vLOn
vn

cos(δLOn ). Now δLOn ∈ (0, π2 ), and
the cosine function is monotonically decreasing. Since the hip position at liftoff is higher than
at touchdown, the body has gained gravitational energy at the expense of kinetic energy. This

means that vLOn < vn, and therefore cos δn+1 = vLOn
vn

cos δLOn < cos δLOn < cos δn. However,
this implies that δn+1 > δn. Thus, starting with an initial angle δn, after the stance phase,
δLOn > δn, and after the flight phase, δn+1 > δLOn > δn. Hence succeeding touchdown angles
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increase until progress is reversed; the dynamics is globally unstable, and the Poincaré map
has no fixed points.

Cases (c) and (d) are of greater physical interest. In (c), inequality (2.26) is satisfied
everywhere, so the domain of definition covers the interval [β − π/2, β]. Moreover, two fixed
points exist, one of which may be stable, while the other (with higher values of δ̄) is unstable.
These fixed points appear in a saddle-node bifurcation [34] at a critical speed v = vSN .
Indeed, for the smaller δ̄ fixed point, ∂∆ψ

∂δn
> 0 (see Figure 3(c)), δ̄ > 0 ⇒ cot δ̄ > 0, and

λ2 = 1− (1 + gη0 cosβ cot δ̄
v̄2 )∂∆ψ

∂δn

�
= 1− a∂∆ψ

∂δn
. For the parameter values chosen here, a ≈ 3 > 0;

thus for ∂∆ψ
∂δn

∈ (0, 2
3), −1 < λ2 < 1, and we have established asymptotic stability. More

generally, since the term ∂∆ψ
∂δn

= 0 when ∆ψmax = π − 2β, by continuous dependence on

parameters ∂∆ψ
∂δn

is necessarily arbitrarily small for nearby parameter values, implying stability

of the fixed point with smaller δ̄ in a neighborhood of the saddle-node bifurcation point. See
Figures 3(c) and 6(c).

In case (d), ∆ψmax ≥ π−2β, but the map P is not everywhere defined: Figure 3(d) shows
that inequality (2.26) fails in the interior of [β−π/2, β]. A gap opens between the fixed points
and while a (stable) fixed point still exists to the left of the gap, many orbits, including that
shown in Figure 6(d), enter the gap and “stumble.”

We now summarize key aspects of the behaviors described above. More detailed analyses
for specific spring potentials are given in sections 3–4.

Saddle-node bifurcation. As noted above, a saddle-node bifurcation occurs between regimes
(b) and (c). Specifically, for parameter values such that

∆ψmax

(
v̄SN , δ̄SN

)
= π − 2β and

∂∆ψ

∂δn

∣∣∣∣
(v̄SN ,δ̄SN)

= 0,(2.27)

the fixed points coalesce, and λ2 = 1. For fixed physical parameters and v̄ < v̄SN , no
fixed points exist, and periodic gaits are impossible; for a (possibly small) range of velocities
v > v̄SN , a stable fixed point exists, corresponding to symmetric one-periodic gaits. See
Figures 7 and 11.

Gaps. Increases in v̄ and the consequent increases in the sweep angle ∆ψmax lead to a
violation of (2.26), giving birth at a second critical speed v̄ = v̄GP to a gap—an interior
domain in which the map is not defined. With further increases in v̄, the gap progressively
expands to occupy a larger interval between the fixed points; see, e.g., Figure 8. Gaps may
also appear in the range δn < 0 for values of v̄ small enough that ∆ψmax < π − 2β, although
these are of less physical importance, since sustained gaits do not exist in this range (below
v̄SN ). See the discussion of section 3.1 and Figure 7.

Period doubling. We recall expression (2.24) for the second eigenvalue of DP :

λ2 = 1−
(
1 +

gη0 cosβ cot δn
v̄2

)
∂∆ψ

∂δn

∣∣∣∣
δn≡δ̄

.(2.28)

The quantity in parentheses is strictly positive for δn = δ̄ ∈ (0, β) (symmetric periodic gaits),
and ∂∆ψ

∂δn
|δn=δ̄ is zero at the saddle-node bifurcation at v̄ = v̄SN and thereafter positive at

the stable fixed point of P . This suggests that, as the magnitude of ∂∆ψ
∂δn

|δn=δ̄ increases with
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increasing v̄, λ2 may pass through −1. For general (differentiable) maps, the instability arising
from crossing the unit circle at λ2 = −1 represents a loss of stability via period-doubling and
the birth of a period two orbit [34].

Explicit computations are awkward due to the difficulty of evaluating the sweep angle
quadrature (2.10), but we may estimate λ2 and hence obtain a sufficient condition for period-
doubling to occur at high velocities v̄ by appealing to the limiting behavior of the ∆ψ as
v̄ → ∞. In the next section and in Appendix B, we estimate ∆ψ(v̄, δn) and the fixed-point
location δn = δ̄ in terms of the small parameter 1

v̄ . This permits us to calculate ∂∆ψ
∂δn

|f.p. in
this limit, which in turn yields the estimate

λ2 = −1− η0 cosβ [4mg + V ′(η0 sinβ)]

v̄
√
2mV (η0 sinβ)

+O
(

1

v̄2

)
.(2.29)

Since V (η) is decreasing on the interval (0, η0) for physically reasonable spring laws, the
condition λ2 = −1 can indeed be met. Indeed, to guarantee it, bearing in mind the fact
that for “low” v̄ = v̄SN , λ2 = +1, it suffices to require [4mg + V ′(η0 sinβ)] > 0 so that λ2

approaches −1 from below as v̄ → ∞, having previously passed down through −1. Thus one
would expect period-doubling to occur for relatively soft springs or touchdown angles close to
90o, e.g., for kη0(1 − sinβ) < 4mg in the case of the linear spring of section 3.1. However,
we recall that the approximate computation of the sweep angle employed in this section is
carried out under the assumption that spring forces dominate gravitational effects, whereas
(2.29) indicates that they should be comparable for period-doubling. Evidently, the true
behavior of λ2 depends in a subtle manner on the precise spring law and the other physical
parameters.

Nonetheless, numerical evidence suggests that period-doubling does occur for reasonable
parameter values and, moreover, that it can occur at relatively low speeds. This observation
corrects the misleading claim in [22]: “Bistable solutions do not exist as only symmetric contact
phases may result in a periodic movement pattern (Schwind, 1998),” and “More recently,
Schwind (1998) showed that for a running spring-mass system only symmetric stance phases
with respect to the vertical axis might result in cyclic movement trajectories.”2 Figure 9 shows
an example of an attracting period two orbit born in such a bifurcation. Also see section 3.2.
We remark that we have not found period-doubling for the Hooke spring with gravity in
stance, since whenever we observe λ2 ≤ −1, the gap has already opened, which destroys any
attracting behavior (see also Figure 3(A) of [22], where the gap opens at α0 = 68.70◦, whereas
the slope of the left fixed point becomes −1 at α0 = 68.85◦).

We note that this behavior is markedly different from the LLS dynamics discussed in [17,
19], in which no flight phase occurs, and the bound ∂∆ψ

∂δn
< 2 (see section 2.1.6) implies that

period-doubling cannot occur.

2.1.6. The limiting case v̄ → ∞. It was noted in [17] that there is a critical value v̄ above
which the touchdown kinetic energy exceeds the potential energy stored by a linear spring at
zero length. When this happens, ∆ψ(v̄, δn) no longer has a quadratic shape but approaches

2The reader should note that the symmetry of orbits associated with period 1 return maps [36] has no
bearing on the existence or properties of higher period discrete time behavior.
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the straight line: ∆ψ = π − 2(β − δ) as v̄ → ∞. The unstable fixed point is lost, and the
(previously stable) fixed point δ → 0+, as shown in Figures 7 and 8. (As we shall see, this
“change of type” does not occur for the air spring model, which has the physically desirable
property that the spring force increases without bound as it is compressed to zero length.)
However, for sufficiently large v̄ and any spring law having bounded energy at nonzero length,
kinetic energy dominates both gravitational and elastic energy at finite compression, and the
COM follows an almost-straight “ballistic” horizontal path.

In this limit, the quadrature integral of (2.10) can be asymptotically estimated, as shown
in Appendix B, leading to the following sweep angle expression:

∆ψ(v̄, δn) = (π − 2β + 2δn)− 1

v̄

√
2V (η0 sin(β − δn))

m
+O

(
1

v̄2

)
.(2.30)

This allows us to determine the limiting trajectory in physical space. Clearly the stance
phase limits to a horizontal motion over the distance 2η0 cosβ (the top of an inverted isosce-
les triangle). To compute the flight phase, we note that the fixed-point condition specifies
∆ψ(v̄, δ̄) = π − 2β. Calculating δ̄ ∼ 1

v̄ from the O( 1
v̄ ) term of (2.30) (see Appendix B), we

obtain an O(1) vertical component of liftoff velocity:

vLOvert = v̄ sin δ̄ ≈
√

V (η0 sinβ)

2m
; vLOhoriz = v̄ cos δ̄ ≈ v̄.(2.31)

Hence the flight duration approaches a constant, and the flight distance grows linearly with
v̄. The limiting behavior is well defined, but resolution of the flight phase requires an O( 1

v̄ )
calculation.

We note that (2.30) also shows that, as v̄ → ∞, the sweep angle approaches the straight
line ∆ψ = (π − 2β + 2δn) from below, within its domain of definition; in fact, the O( 1

v̄ )
correction to ∆ψ is the square root of the ratio of potential energy at midstance to kinetic
energy at touchdown.

2.2. Gravitational effects during stance. We have argued that, for sufficiently stiff leg
springs, elastic force dominates gravitational force during the stance phase. In this situation,
their inclusion represents a small perturbation of the idealized case studied above. Order of
magnitude estimates indicate that, for the mass and leg length chosen here, a relatively stiff
spring (e.g., k = 2000Nm , γ = 306) is required to justify the neglect of g. Typical apex heights
are one to two orders of magnitude larger than η0 in this case. However, even with springs
as soft as k = 100Nm (γ = 15.3), chosen so that flight phase displacements are comparable to
those in the stance phase, the hopper exhibits asymptotically stable gaits similar to those of
the idealized case. Figure 4 shows four examples of COM trajectories in physical space. Also
see Figure 2.

2.3. On pitching dynamics: d �= 0. We have found numerical evidence of periodic gaits
even when the leg is not attached at the COM so that the (freely pivoted) body pitches in
response to the combined moments due to gravity and the leg-spring force, according to the
last equation of (2.4). Figure 5 shows examples of symmetric 1:1 motions in which the pitching
angle is periodic with the same (least) period as the COM translation dynamics; note that in
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Figure 4. Stable gaits with gravity included in the stance phase, showing the effect of spring stiffness.
m = 1, η0 = 1.5, k = 2000 (γ = 306) (a); k = 1000 (γ = 153) (b); k = 250 (γ = 38.2) (c); and k = 100
(γ = 15.3) (d). Here β = 0.95 for the upper graphs, and β = 1.0 for the lower ones. vn was 45, 35, 15, 8,
respectively. Stance phases are shown chain dotted, and flight phases are shown solid; note the differing vertical
scales.
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Figure 5. Periodic gaits of the model with pitching included (d �= 0). The left-hand panels show COM
and hip paths in physical space, and the right-hand panels show pitch angle and angular velocity. Computed
for parameter values k = 100,m = 1, η0 = 1.5, β = 1, and (a) d = 0.015, I = 2.25 × 10−2, v̄ = 7.93; (b)
d = 0.15, I = 2.25× 10−4, v̄ = 8.26. Note that θ̇ scales differ in right-hand panels.

(b) the pitch angle oscillates several times during each stance phase. We have also seen higher
order resonances in which the pitching pattern repeats once every n strides and quasi-periodic
motions in which the pitch angle remains bounded but is not precisely locked to the stride
dynamics. We defer a detailed analysis of these “acrobatic” motions, which appear to include
partially asymptotically stable orbits having three eigenvalues of modulus 1 and one inside
the unit circle, to a future publication.
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3. Two examples. In section 2.1.3, we discussed general conditions for stability, saddle-
node bifurcations, period-doubling, and the appearance of a gap, and we classified the solutions
in terms of ∆ψmax, the maximum leg angle swept during stance, assuming only that the
function ∆ψ(v, δ) has a unique maximum but without specifying any particular spring law.
In the following section, we consider two specific and commonly used spring models: a linear
Hooke’s law spring and an air spring that mimics the compressed air strut used in certain
hopping robots. Throughout this section, we employ the approximation of section 2.1, ignoring
gravity during stance.

3.1. The Hooke’s law spring. To further illustrate the four cases discussed in section 2.1
(Figure 3), we numerically evaluate the Poincaré map for a system with spring potential
V (η) = k

2 (η − η0)
2 and parameters k = 100,m = 1, η0 = 1.5, β = 1.25. As before, we employ

increasing initial speeds v0 = 1.75, 3.5, 5, 6, corresponding to cases (a) to (d), respectively; see
Figure 6. A somewhat larger set of touchdown-to-touchdown Poincaré maps P2 is shown in
Figure 7, where we plot the second component δn �→ δn+1 implicit in (2.20).

Note that, as v̄ increases, the map first intersects the identity δn+1 = δn at v̄ = v̄SN , and
fixed points appear in a saddle-node bifurcation. We illustrate this in Figure 8(a) in the form
of bifurcation diagrams [34], plotting δ̄ vs. v̄. No qualitative changes with β are apparent; this
is a general feature that will be discussed in further detail in section 4, where we also assess
the effects of gravity in the stance phase. We note that the domain of attraction of the stable
fixed point opens and grows following v̄ = v̄SN until it is invaded by the gap; thereafter, it
shrinks as v̄ increases. Also note that the larger δn fixed point disappears at a finite speed
v̄ ≈ 5.9 due to the change of type of ∆ψ and the stance map when δ → β, and kinetic energy
at touchdown exceeds the potential energy stored in the spring at zero length (cf. [17], and
also see Figure 7).

We have also seen gaps in the domain of definition of P2 for low velocities v̄ < v̄SN (before
the saddle-node), but these are of less concern since there are no sustained gaits in this range.

As noted in section 2.1.5, period-doubling bifurcations may occur as v̄ increases, depending
upon the spring potential and other parameters. Figure 9 shows an example of a period two
gait born in such a bifurcation for a linear spring system.

3.2. An air spring. The four cases discussed in section 2.1.5 can also be illustrated with
an air spring model. As noted above, we adopt the potential c

2(
1
η2 − 1

η2
0
). We compute orbits

and Poincaré maps for a system with the parameters c = 23,m = 1, η0 = 1.5, β = 1.25
and increasing initial speeds v0 = 1.75, 3.5, 5, 6 shown as cases (a) to (d), respectively, in
Figure 10; these should be compared with Figure 6. The corresponding Poincaré maps are
shown in Figure 11 for comparison with Figure 7. For small values of speed v̄, the map
has no fixed points or periodic orbits, and, as for the linear spring, fixed points appear in a
saddle-node bifurcation at a critical speed v̄ = v̄SN . Figure 8b shows a bifurcation diagram
for the air spring hopper. For this spring law, which requires infinite energy and force for
compression to zero length, no change of type occurs, and the upper, unstable branch of fixed
points continues to arbitrarily high velocities.

3.2.1. Period-doubling and chaos. In section 2.1.5, we showed that period-doubling may
occur as v̄ → ∞. On the other hand, there is also a critical speed v̄GP above which the return
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Figure 6. Motions of the linear spring hopper in physical space (left column) and Poincaré maps (right col-
umn). Physical parameters k,m, η0, β were taken as for Figure 3. Trajectories in physical space were computed
from initial condition δ0 = 0.1, and initial speed was increased from v0 = 1.75 to 3.5, 5, and 6 for cases (a) to
(d), respectively. Touchdown height is shown by dotted horizontal lines. Poincaré maps were computed for the
same speeds. Fixed points occur at intersections of the curves and the line δn = δn+1. Both the stance map Pst
(solid) and the full map P (dotted) are shown. In (d), note the gap in which the full map is not defined.
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Figure 7. The Poincaré map P2 for a linear spring hopper with k = 10,m = 1, η0 = 1.5, β = π/4, and
speeds v̄ ranging from 3.2 to 8. Note how the two fixed points appear in a saddle-node bifurcation, and a gap
then opens as v̄ increases. For very high speeds, only one fixed point exists.

a)

8 8.5 9 9.5 10 10.5 11 11.5 12 12.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

δ

4 5 6 7 8 9 10 11 12 13

0

0.2

0.4

0.6

0.8

1

1.2

v

b)

δ

v

Figure 8. Bifurcation diagrams for the linear spring hopper with m = 1, k = 50, η0 = 1.5, and touchdown
angle β = 0.8 in (a) and for the air spring hopper with m = 1, c = 23, η0 = 1.5, and β = 1.25 in (b). Stable
branches of fixed points are shown solid, unstable branches are dashed, and cross-hatching identifies the region
in which the map is not defined. Saddle-node bifurcations occur at v̄SN = 8.12 in (a) and v̄SN = 3.95 in (b);
below these no periodic gaits exist.
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Figure 9. A period two gait of the linear spring hopper with k = 10,m = 1, η0 = 1.5, β = π/4, and v̄ = 3.95.
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Figure 10. Physical space motions (left column) and Poincaré maps (right column) for the air spring
hopper. Parameter values were chosen as for Figure 3 except for the air spring stiffness c = 23 and leg length
ζ0 = 1.25. The physical space trajectories were computed from initial condition δ0 = 0.1 and initial speeds from
v0 = 1.75 to 3.5, 5, and 6 for cases (a) to (d), respectively. Touchdown height is shown by dotted horizontal
lines. The maps were computed for the same speeds and angles δ ∈ [0, β]. Fixed points are identified with
the intersection of the curves and the line δn = δn+1. Both the stance map Pst (solid) and the full map P
(dash-dotted) are shown. The region in which the full map is not defined is apparent in (d).
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Figure 11. The Poincaré map P2 for an air spring hopper with c = 23,m = 1, and ζ0 = 1.25. The speed v̄
ranges from 1.75 to 12.2. Note the gap and the fact that the upper (larger δ̄) fixed point persists.
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Figure 12. Lyapunov exponents for β = 0.961, c/m = 0.01839, g = 9.81, and η0 = 0.173. The speed range
where the exponent becomes positive is magnified in (b).

map is not defined over the whole range δn ∈ [0, β]. The question then arises whether the gap
always opens before period-doubling occurs or whether period two and higher period orbits
or even chaotic behavior is observed for gap-free return maps. This is not only of theoretical
importance; the onset of higher period orbits and chaotic behavior for gap-free return maps
would place additional constraints on feedforward control policies that simply keep the leg
touchdown angle at β = const [28].

To identify period-2n orbits and chaos, we numerically approximate the Lyapunov expo-
nent [34] λ of the one-dimensional return map P2 : δn �→ δn+1(δn), implicitly defined by the
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Figure 13. Bifurcating fixed points for β = 0.961, c/m = 0.01839, g = 9.81, and η0 = 0.173. The region
between the lower blue line and the upper dashed line is the basin of attraction.

second component of (2.20):

λ = lim
N→∞

1

N

N−1∑
i=0

ln

∣∣∣∣dP2

dδn
(δi)

∣∣∣∣ =: lim
N→∞

λN .(3.1)

Specifically, we set

λ ≈
{

λK if |λK − λK−1| < ε and K < N̄,
λN̄ else (with N̄ = 10000 and ε = 10−6)

(3.2)

and take a range of leg touchdown speeds v̄ ∈ [1.515, 7.162]; other parameters are β = 0.961,
c/m = 0.01839, g = 9.81, and η0 = 0.173. In this case, the return map develops a gap at
v̄GP = 1.7162.

However, it can be seen from Figure 12(a) that λ crosses to positive values at v̄Chaos ≈
1.713 (magnified in Figure 12(b)). Similar behavior has been observed for the air spring
potential with gravity in stance for parameter values β = 0.961, c/m = 0.03839, g = 9.81,
and η0 = 0.17. Here, the Lyapunov exponent becomes positive at v̄Chaos = 1.6932, whereas
the gap opens at v̄GP = 1.697. This is strong numerical evidence for chaotic behavior in the
corresponding SLIP. Chaotic behavior has not been observed for the linear spring.

In Figure 13, the corresponding bifurcating branches of fixed points are plotted as a
function of the touchdown speed v̄ up to the gap at v̄GP . Bifurcations of period eight and
higher are omitted. The lower boundary of attraction is also shown; this deviates from δn = 0
whenever δn+1(0) > δn+1(δ̄

us
1 ), where δ̄us1 denotes the unstable fixed point of the period one

bifurcation.

4. Nondimensional parameter studies. Parameters intrinsic to the model are the mass
m of the body, the moment of inertia I, the gravitational acceleration g, the uncompressed
leg length η0, the leg touchdown angle β, the distance d from hip to the COM, and the
stiffnesses k or c. These, together with initial conditions v0, δ0, provide a variety of solutions
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with different stance and flight phases and basins of attraction. The seven physical parameters
can be reduced to a minimal set of nondimensional parameters necessary to characterize the
model. Rescaling time and lengths by defining t̃ = t

t0
, ζ̃ = ζ

η0
, d̃ = d

η0
, and η̃ = η

η0
, we can

rewrite the equations of motion (2.4) as

ζ̃ ′′ = ψ′2ζ̃ − gt20
η0

cosψ −
Vζ̃(η0η̃)t

2
0

mη2
0 η̃

(ζ̃ + d̃ cos(ψ + θ)),

ζ̃ψ′′ = −2ψ′ζ̃ ′ +
gt20
η0

sinψ + d̃
Vζ̃ (η0η̃)t

2
0

mη2
0 η̃

sin (ψ + θ) ,

θ′′ = d̃
Vζ̃ (η0η̃) ζ̃t

2
0

Iη̃
sin (ψ + θ) ,(4.1)

where the differentiation ()′ ≡ d
dt̃

is with respect to the nondimensional time t̃, and Vζ̃ (η̃) =

Vη̃ (η̃) = ∂
∂η̃V (η̃). It seems physically reasonable to define the characteristic time t0 = η0

v0
,

where v0 is a characteristic speed, such as the COM speed at touchdown, and η0 is the
uncompressed length of the leg spring.

4.1. Hooke’s law spring. If we assume a linear spring with V (η0η̃) =
kη2

0
2 (η̃ − 1)2 and

define the nondimensional parameter groups

k̃
�
=

kt20
m

=
kη2

0

mv2
0

, g̃
�
=

gt20
η0

=
gη0

v2
0

, and Ĩ
�
=

I

mη2
0

,(4.2)

the equations of motion, expressed in nondimensional coordinates, become

ζ̃ ′′ = ψ′2ζ̃ − g̃ cosψ − k̃

(
1− 1

η̃

)
(ζ̃ + d̃ cos(ψ + θ)),

ζ̃ψ′′ = −2ψ′ζ̃ ′ + g̃ sinψ + k̃d̃

(
1− 1

η̃

)
sin (ψ + θ) ,

θ′′ =
k̃d̃ζ̃

Ĩ

(
1− 1

η̃

)
sin (ψ + θ) .(4.3)

Here the parameter k̃ =
kη2

0

mv2
0
=

Espr
Ekin

expresses the ratio between the potential energy storable

by the spring at maximum compression (i.e., to zero length) and the touchdown kinetic energy,
whereas g̃ = gη0

v2
0
, a Froude number, expresses the ratio of gravitational energy to kinetic energy.

Note also that the ratio k̃
g̃ = kη0

mg

�
= γ is fixed for a given physical system and is independent

of initial conditions and, in particular, of the characteristic speed. Seven physical parameters
m, I, d, η0, β, g, k have been reduced to five: Ĩ , d̃, β, g̃, k̃. In the special case of the hip attached
at the COM d̃ = 0, θ = const and only three parameters play a role: β, g̃, k̃. This facilitates a
parametric analysis of the system. Since β does not appear to change the qualitative behavior
of the solutions of (4.3), we represent the “sheets” of periodic solutions in (k̃, g̃, δ̄)-space.

Since we wish to assess the influence of gravity via g̃, here and for the air spring calcula-
tions below, we include gravity in the stance phase and make our fixed-point computations
numerically.
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Figure 14. Bifurcation diagrams for the linear spring in nondimensional (k̃, g̃, δ̄)-parameter space. Upper
panels show the cases β = 1.25 (a) and β = 1 (b), respectively; lower panels show three bifurcation diagrams
(cross sections of (a)) for β = 1.25 (c) and a single bifurcation diagram for β = 1.25 and g̃ = 0.5 (d). Unstable
branches are shown dashed, stable branches are shown solid, period-doubling bifurcation points are indicated by
triangles, and boundaries of the gap are indicated by thick black curves.

Figures 14(a)–(b) show how the stable and unstable branches of the fixed point δn = δ̄
over (k̃, g̃)-space change as β varies. The general shape of the surface of equilibria is preserved,
although the influence of g̃ on the saddle-node location k̃SN lessens as β decreases and k̃SN
itself decreases, corresponding to higher velocities. Also, for fixed β, increases in g̃ cause the
lower (stable) branch to shrink until it disappears so that when gravity plays a dominant role
(low speed and/or long leg), there is only one unstable fixed point; cf. Figure 14(c) with g̃ ≈ 1.
It can also happen, as noted in section 3.1 (Figure 8(a)), that the upper branch terminates
and only one (potentially) stable fixed point exists, e.g., near β = 1.25, k̃ ≈ 1, g̃ ≈ 0.01 in
Figure 14(c). Increasing β has the effect of expanding the domain of attraction both in the
k̃ and δ̄ directions. This suggests a choice of high ratios γ (e.g., relatively hard springs) and
high values of β in order to maximize the domains of attraction of the stable fixed points.



212 GHIGLIAZZA, ALTENDORFER, HOLMES, AND KODITSCHEK

0.5 1 1.5 20

0.5

1
0

0.5

1

c

g

δ

~ 

~ 

− 

c) 

0.5 1
0

0.5

1

c

δ

~ 

− 

d) 

Figure 15. Bifurcation diagrams for the air spring in nondimensional (c̃, g̃, δ̄)-parameter space. Upper
panels show the cases β = 1.25 (a) and β = 1 (b), respectively; lower panels show three bifurcation diagrams
(cross sections of (a)) for β = 1.25 (c) and a single bifurcation diagram for β = 1.25 and g̃ = 0.5 (d). Unstable
branches are shown dashed, stable branches are shown solid, period-doubling bifurcation points are indicated by
triangles, and boundaries of the gap are indicated by thick black curves.

We note that, for fixed (k̃, g̃, β), the saddle-node and other bifurcations occur at particular
velocities v̄SN , etc. It therefore follows from (4.2) that, as k and/or m vary and other physical
parameters remain fixed,

v̄SN = η0

√
k

mk̃SN
∝
√

k

m
.(4.4)

This is presumably the type of scaling mentioned in [22, section 4.1]. See [19] for extensive
analyses of this type for the LLS model.
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4.2. Air spring. If we assume an air spring with V (η0η̃) = c
2η2

0
( 1
η̃2 − 1) and define the

nondimensional parameter groups

c̃
�
=

ct20
mη4

0

=
c

mv2
0η

2
0

, g̃
�
=

gt20
η0

=
gη0

v2
0

, and Ĩ
�
=

I

mη2
0

,(4.5)

the equations of motion, expressed in nondimensional coordinates, become

ζ̃ ′′ = ψ′2ζ̃ − g̃ cosψ +
c̃

η̃4
(ζ̃ + d̃ cos(ψ + θ)),

ζ̃ψ′′ = −2ψ′ζ̃ ′ + g̃ sinψ − c̃

η̃4
d̃ sin (ψ + θ) ,

θ′′ = − c̃d̃ζ̃

η̃4Ĩ
sin (ψ + θ) .(4.6)

Note that with these choices, c̃ = c
mη2

0v
2
0
=

Espr
Ekin

expresses the ratio between the potential

energy stored at infinite spring length and the kinetic energy, whereas g̃ = gη0

v2
0

is again the

Froude number. Note also that the ratio c̃
g̃ = c

mgη3
0

�
= γ̊ is fixed for a given physical system

and, like γ above, is independent of initial conditions and of the characteristic speed. Again,
seven physical parameters m, I, d, η0, β, g, c have been reduced to five: Ĩ , d̃, β, g̃, c̃. In the
special case of the hip attached at the COM d̃ = 0, θ = const and only three parameters play
a role: β, g̃, c̃. The resulting surface plots are generally similar to those of Figure 14 for the
linear spring, but they reveal that stable branches persist for large g̃ and that period-doubling
occurs “earlier” (for higher c̃ and hence lower v̄); see Figure 15.

5. Conclusions. In this paper, we studied the SLIP model of a hopping rigid body in
the vertical plane. Exploring suitable limiting cases, we proved the existence of asymptoti-
cally stable periodic gaits for a fixed leg-angle (feedforward) touchdown protocol by studying
the touchdown-to-touchdown Poincaré map in its exact form and under the approximation
that gravity is negligible during stance. Numerical simulations including gravitational effects
corroborated this result, revealing regions in the parameter and phase spaces where stable
gaits exist. We considered two representative spring laws: a linear spring and a hardening air
spring, and we studied bifurcations from the branch of stable gaits, the domains of attraction
of those gaits, and the domains of definition of the Poincaré map, picking parameter values
appropriate to illustrating key behaviors rather than for comparison with specific animals or
machines. Throughout we focused on the classical SLIP, but our formulation includes full
rigid body dynamics in the sagittal plane, and we displayed some coupled translation and
pitching motions. Future work will include a broader analysis of these aspects.

As noted in the introduction, our work complements the study of [22], which addresses
parameter ranges relevant to human running. Using direct numerical solution of the point
mass SLIP equations (equivalent to the first two of (2.6)), [22] identifies parameters for which
potentially stable period one gaits exist and shows that models with masses, leg lengths, and
stiffnesses estimated from human data fall within a narrow range [22, Figure 2(A)]. A set of
apex height Poincaré maps and some COM trajectories are also shown [22, Figures 3(A–B)].
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It is noted that there is a minimum speed below which periodic gaits do not exist, that “larger
variations in leg stiffness and angle of attack are tolerated [for] increasing speed,” and that
“higher . . . velocities require either higher leg stiffness assuming constant angle of attack, or
flatter angles of attack for constant leg stiffness” [22, Figures 2(B–C)].

We believe that the present analytical work, with the associated limiting integrable limit-
ing cases, illuminates those observations. Specifically, our bifurcation studies reveal limits to
stable parameter ranges bounded by saddle-node and period-doubling bifurcations, the former
being responsible for [22]’s minimum speed requirement; our nondimensional analysis shows
clear speed/stiffness relations (e.g., (4.4) for the linear spring) and reveals the relative impor-
tance of elastic and gravitational effects; and our study of gaps in the domain of definition of
P ([22]’s apex/touchdown height constraint) shows that, while stable fixed points or higher
period orbits continue to high velocity, their domains of attraction become extremely small.
This shows that, with increasing speed, the system is less tolerant to dynamical perturbations,
even though parameter variations are less restricted, as observed in [22] (see also Figure 2(b)
in [25]). However, the bifurcation diagrams of Figures 8 and 14 show that, if the nondimen-
sional parameters are maintained in a “good” location (e.g., between the saddle-node and
gap of Figure 8) as v̄ changes, by suitable tuning of stiffness or touchdown angle, then robust
stability can be achieved with simple fixed-leg reset control. This viewpoint is guiding our
development of “low attention” feedback controllers, to be described in a future paper [28].

Appendix A. Air spring sweep angle. The sweep angle ∆ψ (vn, δn) can be obtained
explicitly in terms of elementary functions for an air spring model with V (η) = c

2(
1
η2 − 1

η2
0
).

For d = 0 (hip attached to the COM), η ≡ ζ. Solving first for the midstance compressed
length using conservation of energy and angular momentum, we obtain

1

2
mv2

0 =
1

2

p2
ψ

mζ2
min

+
c

2

(
1

ζ2
min

− 1

ζ2
0

)
⇒ ζmin = ζ0

√
p2
ψ +mc

m2v2
nζ

2
0 +mc

.(A.1)

Using this in the quadrature (2.10) with vn = v0 and pψ = mζ0v0 sin(β− δn), the sweep angle
may be computed as

∆ψ(v0, δn) =
2pψ√

mc+ p2
ψ

arccos



√

p2
ψ +mc

m2v2
0ζ

2
0 +mc


 .(A.2)

Finally, redefining c̃ = c
mζ2

0v
2
0
, z = sin(β − δn), ĉ =

c̃
1+c̃ , and ẑ =

√
z2+c̃
1+c̃ , ∆ψ can be rewritten

as

∆ψ(v0, δn) = 2
z√
1 + c̃

arccos

(√
z2+c̃
1+c̃

)
√

z2+c̃
1+c̃

= 2

√
1− ĉ

ẑ2
arccos(ẑ).(A.3)

Appendix B. Limiting behavior as v̄ → ∞. We recall the quadrature integral (2.10)

∆ψ = 2η0 sin(β − δn)

∫ η0

ζb

dζ

ζ
√

ζ2 − 2ζ2V (ζ)
mv̄2 − η2

0 sin
2 (β − δn)

,(B.1)
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where ζb is the compressed leg length at midstance, satisfying the energy balance[
1− 2V (ζb)

mv̄2

]
ζ2
b = η2

0 sin
2(β − δn).(B.2)

(Note that we do not (yet) assume the fixed-point condition δn = δ̄.) Under the standing
assumption of analyticity of V in (0, η0), we first estimate the relevant solution of (B.2) and
then examine the asymptotics of ∆ψ as v̄ → ∞.

We introduce the small (dimensional) parameter ε = 1
v̄2 and expand solutions of (B.2) in

the form ζb ≈ ζb0 + εζb1 + · · · , obtaining

ζb0 = η0 sin (β − δn) , ζb1 =
ζb0V (ζb0)

m
.(B.3)

The integral (B.1) may then be written

∆ψ ≈ 2ζb0

∫ η0

ζb0+εζb1

dζ

ζ

√
ζ2
(
1− 2εV (ζ)

m

)
− ζ2

b0

≈ 2ζb0

∫ η0

ζb0+εζb1

dζ

ζ
√

ζ2 − ζ2
b0

+
2εζb0
m

∫ η0

ζb0+εζb1

ζV (ζ)dζ

(ζ2 − ζ2
b0
)

3
2

.(B.4)

The first integral of (B.4) yields leading terms of O(1) and O(
√
ε )

2

[
arccos (sin(β − δn))− arccos

(
ζb0

ζb0 + εζb1

)]
≈ π − 2β + 2δn − 2

√
2εζb1
ζb0

,(B.5)

where the O(
√
ε ) term is computed by setting arccos (

ζb0
ζb0+εζb1

) ≈ k0 + εαk1 and solving for

k0, k1, and α.
Integrating the second term of (B.4) twice by parts, we obtain

2εζb0
m

([
−V (ζ)√
ζ2 − ζ2

b0

+ V ′(ζ) ln
(
ζ +

√
ζ2 − ζ2

b0

)]∣∣∣∣∣
η0

ζb0+εζb1

−
∫ η0

ζb0+εζb1

V ′′(ζ) ln
(
ζ +

√
ζ2 − ζ2

b0

)
dζ

)
.(B.6)

The upper limit of the first term and both logarithmic boundary terms give contributions of
O(ε). Successive integrations by parts of the third term produce a convergent series [42], so it
is also of O(ε). To obtain the dominant O(

√
ε ) contribution, we therefore need only include

the lower limit of the first term:

2εζb0
m

V (ζb0 + εζb1)√
2εζb0ζb1 + ε2ζ2

b1

≈
√

2εζb0
ζb1

V (ζb0)

m
.(B.7)
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Combining (B.5) and (B.7) and using (B.3), we therefore obtain

∆ψ = (π − 2β + 2δn)−
√

2εζb1
ζb0

+O(ε).(B.8)

We note that ∆ψ → (π − 2β + 2δn) from below as ε → 0. Substituting the expressions (B.3)
once more, (B.8) yields (2.30).

The fixed-point condition δn = δ̄ requires that ∆ψ
(
δ̄, vn

)
= π − 2β, implying

δ̄ ≈
√

εζb1
2ζb0

=

√
εV (ζb0)

2m
.(B.9)

Now (B.9) defines δ̄ only implicitly since ζb0 = η0 sin(β−δ̄), but setting ζb0 ≈ η0

(
sinβ − δ̄ cosβ

)
for δ̄ = O(

√
ε) and expanding V (ζb0) ≈ V (η0 sinβ)− V ′(η0 sinβ)δ̄ cosβ, we obtain

δ̄ =

√
V (η0 sinβ)

2mv̄2
+O

(
1

v̄2

)
.(B.10)

Thus δ̄ → 0+ linearly with 1
v̄ as v̄ → ∞. We use this in (2.31).

Appendix C. Asymptotic behavior of λ2. We recall that the second eigenvalue of the
stride-to-stride map is given by

λ2 = 1−
(
1 + gη0 cosβ

cot δ̄

v̄2

)
∂∆ψ

∂δn

∣∣∣∣
f.p.

.(C.1)

Evaluating the derivative of the sweep angle at the fixed point (v̄, δ̄) using the expressions
developed in Appendix B, and noting that δ̄ ∼ √

ε = 1
v̄ , we obtain

∂∆ψ

∂δn
= 2 +

η0 cosβ V ′(η0 sinβ)

v̄
√
2mV (η0 sinβ)

+O
(

1

v̄2

)
.(C.2)

Then using cot δ̄ ≈ 1
δ̄
∝ v̄ and substituting (C.2) into (C.1) yield the expression (2.29):

λ2 = −1− η0 cosβ [4mg + V ′(η0 sinβ)]

v̄
√
2mV (η0 sinβ)

+O
(

1

v̄2

)
.(C.3)
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