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Abstract. This paper deals with a chemostat model with an inhibitor in the context of competi-
tion between plasmid-bearing and plasmid-free organisms. First, sufficient conditions for coexistence
of the steady-state are determined. Second, the effects of the inhibitor are considered. It turns out
that the parameter μ, which represents the effect of the inhibitor, plays a very important role in
deciding the number of the coexistence solutions. The results show that if μ is sufficiently large this
model has at least two coexistence solutions provided that the maximal growth rate a of u lies in
a certain range and has only one unique asymptotically stable coexistence solution when a belongs
to another range. Finally, extensive simulations are done to complement the analytic results. The
main tools used here include degree theory in cones, bifurcation theory, and perturbation technique.
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1. Introduction. The chemostat is a common model in microbial ecology. It is
used as an ecological model of a simple lake, as a model of waste treatment, and as a
model for commercial production of fermentation processes. It is important in ecology
because the parameters are readily measurable and, thus, the mathematical results are
readily testable. For a general discussion of competitive systems see [29], while a de-
tailed mathematical description of competition in the chemostat can be found in [30].

Our study focuses on a chemostat model in the context of competition between
plasmid-bearing and plasmid-free organisms. This issue has recently received consid-
erable attention. The theoretical literature on this model includes Ryder and DiBiaso
[25], Stephanopoulos and Lapidus [28], Hsu, Waltman, and Wolkowicz [17], Lu and
Hadeler [22], Levin [20], Luo and Hsu [18], and Macken, Levin, and Waldstätter
[23]. In industry, genetically altered organisms are frequently used to manufacture
a desired product, for instance, a pharmaceutical. The alteration is accomplished
by introducing a piece of DNA into the cell in the form of a plasmid. The burden
imposed on the cell by the task of production can result in the genetically altered (the
plasmid-bearing) organism being a less able competitor than the plasmid-free organ-
ism. Unfortunately, the plasmid can be lost in the reproductive process. Thus, it is
possible for the plasmid-free organism to take over the culture. To avoid “capture” of
the process by the plasmid-free organism, the obvious choice is to alter the medium
in such a way as to favor the plasmid-bearing organism. An example of this would be
to introduce an antibiotic into the feed bottle. See [10, 15, 16] for a detailed biological
and chemical background. Models in this direction have been studied in Lenski and
Hattingh [21], Hsu and Waltman [13, 15, 16], Hsu, Luo, and Waltman [12], Nie and
Wu [24], and the references therein.
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This paper is concerned with the competition model between plasmid-bearing
and plasmid-free organisms in the unstirred chemostat in the presence of an inhibitor.
Here the plasmid-bearing organism devotes a partition of its resource to produce an
inhibitor, which diminishes the growth rate of the plasmid-free organism but does not
reduce that of the plasmid-bearing organism. The pioneering work on this model is
that of Hsu and Waltman in [15]. They proposed an ODE model (see [15]) based on the
study of Chao and Levin [1] and Levin [20]. Moreover, they obtained some results on
the global asymptotic behavior. In our current paper, we allow a heterogeneous envi-
ronment and so we remove the well-stirred hypothesis and consider the corresponding
PDE system. Let s(x, t) be the nutrient concentration at time t; let u(x, t) and v(x, t)
be the concentrations of the plasmid-bearing and plasmid-free organisms in the culture
vessel, respectively, and let p(x, t) be the concentration of the inhibitor. Then using
similar arguments as in [6, 14, 34, 32, 24] the model in the unstirred case takes the form

st = dsxx − 1
rauf1(s) − 1

r bvf2(s)e
−μp, x ∈ (0, 1), t > 0,

ut = duxx + a(1 − q − k)uf1(s), x ∈ (0, 1), t > 0,
vt = dvxx + bvf2(s)e

−μp + aquf1(s), x ∈ (0, 1), t > 0,
pt = dpxx + akuf1(s), x ∈ (0, 1), t > 0

with boundary conditions and initial conditions

sx(0, t) = −s0, sx(1, t) + γs(1, t) = 0, t > 0,
ux(0, t) = ux(1, t) + γu(1, t) = 0, t > 0,
vx(0, t) = vx(1, t) + γv(1, t) = 0, t > 0,
px(0, t) = px(1, t) + γp(1, t) = 0, t > 0

s(x, 0) = s0(x) ≥ 0, p(x, 0) = p0(x) ≥ 0, �≡ 0,
u(x, 0) = u0(x) ≥ 0, �≡ 0, v(x, 0) = v0(x) ≥ 0, �≡ 0,

where s0 > 0 is the input concentration of the nutrient, which is assumed to be
constant; d is the diffusion rate of the chemostat; r is the growth yield constant
and a, b are the maximal growth rates of the plasmid-bearing and plasmid-free or-
ganisms (without an inhibitor), respectively. The response functions are denoted by
fi(s) = s/(ki + s), i = 1, 2, where ki are the Michaelis–Menten constants. The term
e−μp used by Lenski and Hattingh in [21] represents the degree of inhibition of p
on the growth rate of v, where μ > 0 is a constant and represents the effect of the
inhibitor on v. The constant q is the fraction of plasmid lost, and k is the fraction
of consumption devoted to the production of the inhibitor. Hence, 0 < q, k < 1,
and 1 − q − k > 0. γ is a positive constant. In this model, the corresponding yield
constants are assumed to be equal, just as in [17, 15, 20].

For the sake of convenience, by nondimensionalizing the parameters, which are
indicated below with bars, s̄ = s/s0, ū = u/rs0, v̄ = v/rs0, p̄ = p/rs0, k̄i = ki/s

0, μ̄ =
rs0μ, fi(s̄) = fi(s

0s̄), we can rewrite this model in the form

st = dsxx − auf1(s) − bvf2(s)e
−μp, x ∈ (0, 1), t > 0,

ut = duxx + a(1 − q − k)uf1(s), x ∈ (0, 1), t > 0,
vt = dvxx + bvf2(s)e

−μp + aquf1(s), x ∈ (0, 1), t > 0,
pt = dpxx + akuf1(s), x ∈ (0, 1), t > 0,
sx(0, t) = −1, sx(1, t) + γs(1, t) = 0, t > 0,
ux(0, t) = ux(1, t) + γu(1, t) = 0, t > 0,
vx(0, t) = vx(1, t) + γv(1, t) = 0, t > 0,
px(0, t) = px(1, t) + γp(1, t) = 0, t > 0,
s(x, 0) = s0(x) ≥ 0, p(x, 0) = p0(x) ≥ 0, �≡ 0,
u(x, 0) = u0(x) ≥ 0, �≡ 0, v(x, 0) = v0(x) ≥ 0, �≡ 0.

(1.1)

For simplicity, we drop the bars over the nondimensional quantities.



1862 JIANHUA WU, HUA NIE, AND GAIL S. K. WOLKOWICZ

Introduce the new variables Φ(x, t) = s + u + v + p and Ψ(x, t) = p − cu into
(1.1), where c = k/(1 − q − k). Then one can argue in exactly the same way as in
[24, 33, 34, 36] to conclude that the limiting system of (1.1) may be written as

(PP)

ut = duxx + a(1 − q − k)uf1(z − (1 + c)u− v), x ∈ (0, 1), t > 0,
vt = dvxx + bvf2(z − (1 + c)u− v)e−μcu

+aquf1(z − (1 + c)u− v), x ∈ (0, 1), t > 0,
ux(0, t) = ux(1, t) + γu(1, t) = 0, t > 0,
vx(0, t) = vx(1, t) + γv(1, t) = 0, t > 0,
u(x, 0) = u0(x) ≥ 0, �≡ 0, v(x, 0) = v0(x) ≥ 0, �≡ 0, x ∈ [0, 1],

where z(x) = (1 + γ)/γ − x, (1 + c)u0(x) + v0(x) ≤ z(x), �≡ z(x).
The purpose of the present paper is to investigate nonnegative steady-state so-

lutions of system (1.1) and the effect of the inhibitor on coexistence states of this
system. Thus we will concentrate on the simplified elliptic system:

(EP)
du

′′
+ a(1 − q − k)uf1(z − (1 + c)u− v) = 0, x ∈ (0, 1),

dv
′′

+ bvf2(z − (1 + c)u− v)e−μcu + aquf1(z − (1 + c)u− v) = 0,
u′(0) = u′(1) + γu(1) = 0, v′(0) = v′(1) + γv(1) = 0,

which is obtained from the steady-state system of (1.1) by introducing the variables
Φ(x) = s+ u+ v + p and Ψ(x) = p− cu. Since the proof is standard, we omit it here.
Interested readers can refer to [14, 24, 32, 33, 34] for details.

We are mainly interested in coexistence states of (EP), that is, the positive solu-
tions of (EP). Hence, we redefine the response functions as follows:

f̄i(s) =

{
fi(s), s ≥ 0,
tan−1(2s/ki + 1) − π/4, s < 0.

It is easily seen that f̄i ∈ C1(−∞,+∞). We will denote f̄i(s) by fi(s) for the sake of
simplicity.

This work is motivated by numerical simulations that seem to indicate that, when
the parameters sit in a certain range, there exists a coexistence solution of (EP). More
interestingly, it is possible that (EP) has exactly two coexistence solutions if v is a
better competitor than u and the parameter μ is suitably large. From the biological
standpoint, the numerical results mean that the inhibitor plays an important role
in determining the number of coexistence solutions of (EP). As mentioned before,
the main purpose of this paper is to determine when the numerical results hold and
confirm them rigorously.

Turning now to a description of the main results, we start by introducing some
notation and recalling some well-known facts. Let λ1, σ1 be, respectively, the principal
eigenvalues of the problems

dϕ
′′

1 + λ1f1(z)ϕ1 = 0 in (0, 1), ϕ′
1(0) = ϕ′

1(1) + γϕ1(1) = 0;

dψ
′′

1 + σ1f2(z)ψ1 = 0 in (0, 1), ψ′
1(0) = ψ′

1(1) + γψ1(1) = 0,

with the corresponding positive eigenfunctions uniquely determined by the normal-
ization max[0,1] ϕ1 = max[0,1] ψ1 = 1. It is well known (see [14, 33]) that, if a ≤
λ1/(1 − q − k), the boundary value problem

du
′′

+ a(1 − q − k)uf1(z − u) = 0, x ∈ (0, 1), u′(0) = u′(1) + γu(1) = 0(1.2)
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has zero as its unique nonnegative solution, and if a > λ1/(1 − q − k), then it has a
unique positive solution, which is denoted by ϑ and satisfies the following properties.

(A) 0 < ϑ < z.
(B) ϑ is continuously differentiable for a ∈ (λ1/(1− q− k),+∞) and is pointwise

increasing when a increases.
(C) lima→λ1/(1−q−k) ϑ = 0 uniformly for x ∈ (0, 1), and lima→∞ ϑ = z(x) for

almost every x ∈ (0, 1).

(D) Let La = d d2

dx2 + a(1 − q − k)(f1(z − ϑ) − ϑf ′
1(z − ϑ)) be the linear operator

of the above equation at ϑ. Then La is a differential operator in C2
B([0, 1]) = {u ∈

C2([0, 1]) : u′(0) = u′(1) + γu(1) = 0}, and all eigenvalues of La are strictly negative.
Remark 1. For the other steady-state one-species problem

dv
′′

+ bvf2(z − v) = 0, x ∈ (0, 1), v′(0) = v′(1) + γv(1) = 0,

we have the same outcomes. Since we will need this later, we denote the unique

positive solution by θ and the linear operator by Lb = d d2

dx2 +b(f2(z−θ)−θf ′
2(z−θ)).

Next, we introduce λ̂1 as the principal eigenvalue of

dϕ̂
′′

1 + λ̂1f1(z − θ)ϕ̂1 = 0 in (0, 1), ϕ̂′
1(0) = ϕ̂′

1(1) + γϕ̂1(1) = 0,

with the corresponding eigenfunction ϕ̂1 normalized by max[0,1] ϕ̂1 = 1.
Now we are ready to state the main results of this paper, which give analytic

confirmation of some of the numerical results.
Theorem 1.1. (EP) has a coexistence solution if either (i) a > λ1/(1−q−k), b <

σ1 or (ii) a > λ̂1/(1 − q − k), b > σ1.

Theorem 1.2. Suppose b > σ1. Then for any ε > 0 small and any A ≥ λ̂1

1−q−k ,

there exists M = M(ε, A) large such that for μ ≥ M,

(i) if a ∈ [λ1/(1 − q − k) + ε, λ̂1/(1 − q − k)), there exist at least two coexistence
solutions of (EP);

(ii) if a ∈ [λ̂1/(1 − q − k), A], there exists a unique coexistence solution of (EP),
and it is asymptotically stable.

Theorem 1.3. Suppose b > σ1. Then there exist ε0 > 0 small and M0 > 0
large, both independent of a, such that if a ∈ [λ̂1/(1− q− k)− ε0, λ̂1/(1− q− k)) and
μ ≥ M0, then (EP) has exactly two coexistence solutions, one asymptotically stable
and the other unstable.

The main tools in proving Theorems 1.1–1.3 include degree theory and bifurcation
theory. A crucial point of the proof for Theorems 1.2 and 1.3 is to make use of the
limiting equations of (EP) which are obtained by letting μ → ∞ formally in (EP). It
turns out that one of the limiting problems can be understood fully. For the other
limiting problem, we can also attain some properties. Finally, perturbation theory
leads to the main results of this paper.

The contents of the present paper are as follows: In section 2, some preliminary
results are given which are needed in the later sections. In section 3, we consider the
general case and prove Theorem 1.1. For the case μ large, the uniqueness and non-
uniqueness of the coexistence solutions to (EP) are obtained in section 4. The stability
is also obtained for some cases. Finally, in section 5, some numerical simulations are
given complementing the analytical results.

2. Preliminaries. We begin by providing the following well-known lemmas as
preliminaries without proofs. They are useful for obtaining the results in this paper.
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Lemma 2.1 (see [9, 19]). Suppose q(x) ∈ C(Ω) and q(x) > 0 on Ω in the
eigenvalue problem

	φ + λq(x)φ = 0, x ∈ Ω, ∂φ
∂n + γ(x)φ = 0, x ∈ ∂Ω,(2.1)

where γ(x) ∈ C(∂Ω) and γ(x) ≥ 0. Then all eigenvalues of (2.1) can be listed in order

0 < λ1(q(x)) < λ2(q(x)) ≤ · · · → ∞

with the corresponding eigenfunctions φ1, φ2, . . . , where φ1 > 0 on Ω, and the principal
eigenvalue

λ1(q) = inf
φ

∫
Ω
|∇φ|2dx +

∫
∂Ω

γ(x)φ2ds∫
Ω
q(x)φ2dx

is simple. Moreover, the comparison principle holds: λj(q1) ≤ λj(q2) for j ≥ 1 if
q1 ≥ q2 on Ω, and strict inequality holds if q1(x) �≡ q2(x).

Lemma 2.2 (see [27]). Suppose q∈C(Ω), γ(x)∈C(∂Ω), and γ(x)≥0. Let σ1(q)
be the first eigenvalue of the problem −	ω+qω = λω, x ∈ Ω, ∂ω

∂n +γ(x)ω = 0, x ∈ ∂Ω.
Then σ1(q) depends continuously on q, and q1 ≤ q2, q1 �≡ q2 imply σ1(q1) < σ1(q2).

Lemma 2.3 (see [31]). Let q(x) ∈ C(Ω) and q(x) + p > 0 on Ω with p > 0, and
let η1 be the first eigenvalue of the eigenvalue problem

−	ϕ− q(x)ϕ = ηϕ, x ∈ Ω,
∂ϕ

∂n
+ γ(x)ϕ = 0, x ∈ ∂Ω,

where γ(x) ∈ C(∂Ω) and γ(x) ≥ 0. If η1 > 0 (or η1 < 0), then the eigenvalue problem

−	ϕ + pϕ = t(q(x) + p)ϕ, x ∈ Ω,
∂ϕ

∂n
+ γ(x)ϕ = 0, x ∈ ∂Ω

has no eigenvalue less than or equal to 1 (or has eigenvalues less than 1).
Now, we introduce some more notation that will be used throughout this paper.

Let X be a real Banach space, and let W ⊂ X be a closed convex set. W is called
a wedge provided that αW ⊂ W for all α ≥ 0. A wedge W is said to be a cone if
W ∩ {−W} = 0. Let y ∈ W , and define a wedge

Wy := cl{x ∈ X|y + νx ∈ W for some ν > 0},

where “cl” means the closure of the set. Let Sy be the maximal linear subspace of X
contained in Wy. Assume that T is a compact and Fréchet differentiable operator on
X such that y ∈ W is a fixed point of T and T (W ) ⊆ W. Then the Fréchet derivative
T ′(y) of T at y leaves Wy and Sy invariant (see [4, 26]). If there exists a closed linear
subspace Xy of X such that X = Sy ⊕Xy and Wy is generating, then the index of T
at y can be found by analyzing certain eigenvalue problems in Xy and Sy as follows.
Let Q : X → Xy be the projection operator of Xy along Sy. In view of Theorems 2.1
and 2.2 of [26], indexW (T, y) exists if the Fréchet derivative T ′(y) of T at y has no
nonzero fixed point in Wy. Furthermore,

(1) indexW (T, y) = 0 if Q ◦ T ′(y) has an eigenvalue λ > 1;
(2) indexW (T, y) = indexSy (T ′(y), 0) if Q ◦ T ′(y) has no such eigenvalues.

Here indexSy
(T ′(y), 0) is the index of the linear operator T ′(y) at 0 in the space Sy.
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Next, we derive some a priori estimates for positive solutions of (EP). For an
accurate estimate for positive solutions of (EP), we first consider the boundary value
problem

dv
′′

+ bvf2(z − v) + aqϑ
1+cf1(z − v) = 0, x ∈ (0, 1),

v′(0) = v′(1) + γv(1) = 0.
(2.2)

Lemma 2.4. There exists a unique positive solution of (2.2), denoted by v̄(x),
which satisfies 0 < v̄(x) < z. In particular, θ < v̄(x) < z if b > σ1.

Proof. First, we claim that if v(x) is a positive solution of (2.2), then 0 < v(x) < z
and that, in addition, if b > σ1, then θ < v(x) < z. Indeed, let ω = z − v. Then

dω
′′−bvf2(ω)− aqϑ

1 + c
f1(ω) = 0, x ∈ (0, 1), ω′(0) = −1, ω′(1)+γω(1) = 0.

Suppose infx∈[0,1] ω(x) = ω(x0) < 0. Then x0 �∈ (0, 1). Otherwise, ω
′′
(x0) ≥ 0. By the

previous equation for ω, we have dω
′′
(x0) = bv(x0)f2(ω(x0)) + aqϑ(x0)

1+c f1(ω(x0)) < 0,
a contradiction. If x0 = 0, then ω′(x0) ≥ 0, contradicting the boundary condition
ω′(0) = −1. Similarly, we can see that x0 = 1 is also impossible. Hence, one must
have ω ≥ 0, �≡ 0 on [0, 1].

Assume ω(x0) = 0 for some point x0 ∈ [0, 1]. Then x0 = 0 or 1 by the strong
maximum principle. On the other hand, from the Hopf boundary lemma, it is easy
to see that both x = 0 and 1 are impossible, which implies ω > 0 on [0, 1]. That is,
v < z on [0, 1]. Moreover, since

dv
′′

+ bvf2(z − v) +
aqϑ

1 + c
f1(z − v) > dv

′′
+ bvf2(z − v),

it is easy to see that v > θ if b > σ1. Hence, our assertion holds.
On the other hand, for sufficiently small δ > 0, δϕ1, z are the sub- and super-

solutions of (2.2), respectively. It follows from the existence-comparison theorem for
elliptic systems that the minimal and maximal solutions v1, v2 to (2.2) exist and satisfy
the relation δϕ1 < v1 ≤ v2 < z. Next, we show that v1 ≡ v2, to obtain the uniqueness.
Since v1, v2 are the solutions of (2.2),

dv
′′

1 + bv1f2(z − v1) + aqϑ
1+cf1(z − v1) = 0,

dv
′′

2 + bv2f2(z − v2) + aqϑ
1+cf1(z − v2) = 0.

Multiplying the first equation by v2 and the second equation by v1 and considering

the integral I =
∫ 1

0
d(v

′′

1 v2 − v
′′

2 v1)dx, we have

∫ 1

0

bv1v2(f2(z − v1)− f2(z − v2))dx+
aq

1 + c

∫ 1

0

ϑ[v2f1(z − v1)− v1f1(z − v2)]dx = 0.

By the monotonity of fi(i = 1, 2) and since v1 ≤ v2, we have v1 ≡ v2.
The next lemma gives a priori estimates for positive solutions of (EP).
Lemma 2.5. Assume (u, v) is a nonnegative solution of (EP) with u �≡ 0 and

v �≡ 0. Then
1) 0 < u < ϑ

1+c < z
1+c , 0 < v ≤ v̄ < z on [0, 1], where v̄ defined by Lemma 2.4;

2) (1 + c)u + v < z on [0, 1];
3) a > λ1

1−q−k .
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Proof. Clearly, u > 0 on [0, 1] by the strong maximum principle and Hopf
boundary lemma. Since 0 = du

′′
+ a(1 − q − k)uf1(z − (1 + c)u − v) ≤ du

′′
+ a(1 −

q − k)uf1(z − (1 + c)u), it is easy to check that u ≤ ϑ
1+c and a > λ1

1−q−k . Moreover,

one can find that u < ϑ
1+c because v �≡ 0.

For v, we have

0 = dv
′′

+ bvf2(z − (1 + c)u− v)e−μcu + aquf1(z − (1 + c)u− v)

≤ dv
′′

+ bvf2(z − v) + aqϑ
1+cf1(z − v).

By Lemma 2.4 and the strong maximum principle, it follows that 0 < v ≤ v̄ < z. It
remains to show that (1 + c)u + v < z on [0, 1]. This proof is similar to the proof of
Lemma 4.2 in [33] and so is omitted here.

3. Existence of coexistence solutions. The goal of this section is to discuss
the existence of coexistence solutions of (EP) in the general case and to establish
Theorem 1.1.

In order to use the functional analytic framework of degree theory we introduce
the spaces

X = C([0, 1]) × C([0, 1]),
D = {(u, v) ∈ X|u ≤ ϑ

1+c , v ≤ max[0,1] v̄ + 1},
W = {(u, v) ∈ X|u ≥ 0, v ≥ 0 for x ∈ [0, 1]},
D′ = (intD) ∩W.

Then W is a cone of X and D′ is a bounded open set in W.
We consider the system

du
′′

+ τa(1 − q − k)uf1(z − (1 + c)u− v) = 0,

dv
′′

+ τbvf2(z − (1 + c)u− v)e−μcu + τaquf1(z − (1 + c)u− v) = 0,
u′(0) = u′(1) + γu(1) = 0, v′(0) = v′(1) + γv(1) = 0,

(3.1)

where τ ∈ [0, 1]. Assume (uτ , vτ ) is a nonnegative solution of (3.1). Then it is not
hard to show that uτ < ϑ

1+c , vτ ≤ v̄ for all τ ∈ [0, 1].
Since f1(z − (1 + c)u − v) ≥ f1(z − (1 + c)u) − K1v for some positive constant

K1 > 0, we can define Aτ : X → X, τ ∈ [0, 1] as

Aτ (u, v) = (−d d2

dx2 + M)−1(τa(1 − q − k)ug1(u, v) + Mu,
τbvg2(u, v) + τaqug1(u, v) + Mv)

where (−d d2

dx2 +M)−1 is the inverse operator of −d d2

dx2 +M subject to the boundary
conditions u′(0) = u′(1) + γu(1) = 0, g1(u, v) = f1(z − (1 + c)u − v), g2(u, v) =
f2(z−(1+c)u−v)e−μcu, and M is large enough such that M+τa(1−q−k)g1(u, v) > 0
and M + τbg2(u, v) − τaquK1 > 0 for all (u, v) ∈ D′ and τ ∈ [0, 1]. Clearly, Aτ is
compact. Let A = A1. Then A : D′ → W is continuously differentiable. It follows
from Lemma 2.5 that (EP) has nonnegative solutions if and only if the operator A
has a fixed point in D′. Moreover, Aτ has no fixed point on ∂D′. By the homotopic
invariance of the degree, we obtain

index(A, D′,W ) = index(Aτ , D
′,W ) = index(A0, D

′,W ) = indexW (A0, (0, 0)).

By some standard calculations, we can obtain indexW (A0, (0, 0)) = 1. Hence, we have
the following.
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Lemma 3.1. index(A, D′,W ) = 1.
Lemma 3.2. (i) Suppose a �= λ1

1−q−k and b �= σ1. Then indexW (A, (0, 0)) = 1 if

a < λ1

1−q−k and b < σ1, and indexW (A, (0, 0)) = 0 if a > λ1

1−q−k or b > σ1.

(ii) indexW (A, (0, θ)) = 1 if a < λ̂1

1−q−k , and indexW (A, (0, θ)) = 0 if a > λ̂1

1−q−k .
Since the proof of this Lemma is very lengthy and quite standard, we include the

proof in Appendix A. Now, we turn to prove Theorem 1.1.
Proof of Theorem 1.1. (i) If a > λ1/(1 − q − k) and b < σ1, then (EP) has no

semitrivial nonnegative solution. In view of Lemmas 3.1 and 3.2, indexW (A, D′) = 1
and indexW (A, (0, 0)) = 0, which implies that A must have a positive fixed point in
D′. That is, (EP) has a positive solution in D′.

(ii) If a > λ̂1/(1− q−k), b > σ1, then (EP) has a semitrivial nonnegative solution
(0, θ). Suppose A has no positive fixed point in D′. Then by Lemma 3.1 and the
additivity of index,

indexW (A, (0, 0)) + indexW (A, (0, θ)) = indexW (A, D′) = 1.

However, by Lemma 3.2, indexW (A, (0, 0)) = 0, and indexW (A, (0, θ)) = 0 in this
case, a contradiction. Hence there must exist a positive solution of (EP) in D′. This
completes the proof.

4. The effect of inhibitor. The purpose of this section is to examine the effect
of the inhibitor on the multiple coexistence states. In view of the model, the effect
of the inhibitor increases as the parameter μ increases. Motivated by the numerical
simulations, we consider only the case of b > σ1 and μ large enough. Using a pertur-
bation technique, we show that the system has two positive solutions if μ is sufficiently
large and the other parameters sit in some suitable range.

First of all, we observe that if a is bounded away from λ1/(1−q−k) and μ is large,
positive solutions to (EP) are of two types. More precisely, let (u, v) be any positive
solution of (EP); then either (u, v) is close to a positive solution of the problem

du
′′

+ a(1 − q − k)uf1(z − (1 + c)u− v) = 0, x ∈ (0, 1),

dv
′′

+ aquf1(z − (1 + c)u− v) = 0, x ∈ (0, 1),
u′(0) = u′(1) + γu(1) = 0, v′(0) = v′(1) + γv(1) = 0,

(4.1)

or (μu, v) is close to a positive solution of the problem

dω
′′

+ a(1 − q − k)ωf1(z − v) = 0, x ∈ (0, 1),

dv
′′

+ bvf2(z − v)e−cω = 0, x ∈ (0, 1),
ω′(0) = ω′(1) + γω(1) = 0, v′(0) = v′(1) + γv(1) = 0.

(4.2)

Since the above two equations play an important role in determining the coexis-
tence solutions of (EP), we first study positive solutions of (4.1) and (4.2).

Lemma 4.1. Assume a > λ1/(1 − q − k). Then there exists a unique positive
solution ((1 − q − k)ϑ, qϑ) of (4.1), and it is linearly asymptotically stable.

Proof. Suppose that (u, v) > 0 solves (4.1). Let ω = qu− (1 − q − k)v. Then we
have

dω
′′

= 0, ω′(0) = ω′(1) + γω(1) = 0,

which implies ω ≡ 0. That is, v = q
1−q−ku. Substituting v = q

1−q−ku into the first
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equation of (4.1), we obtain that

du
′′

+ a(1 − q − k)uf1

(
z − u

1 − q − k

)
= 0, x ∈ (0, 1),

u′(0) = u′(1) + γu(1) = 0.

Then u = (1 − q − k)ϑ due to a > λ1/(1 − q − k), and v = qϑ. That is, (4.1) has a
unique positive solution ((1 − q − k)ϑ, qϑ). It remains to establish the stability. For
this purpose, noting that c = k/(1 − q − k), we consider the linearized eigenvalue
problem

dφ
′′

+ a(1 − q − k)[f1(z − ϑ) − (1 − q)ϑf ′
1(z − ϑ)]φ

−a(1 − q − k)2ϑf ′
1(z − ϑ)ψ = −ηφ,

dψ
′′

+ aq[f1(z − ϑ) − (1 − q)ϑf ′
1(z − ϑ)]φ− aq(1 − q − k)ϑf ′

1(z − ϑ)ψ = −ηψ,
φ′(0) = φ′(1) + γφ(1) = 0, ψ′(0) = ψ′(1) + γψ(1) = 0.

(4.3)

Let ω = qφ− (1 − q − k)ψ. Then

dω
′′

= −ηω, ω′(0) = ω′(1) + γω(1) = 0.

If ω �≡ 0, then η > 0. If ω ≡ 0, then ψ = qφ
1−q−k , which leads to

dφ
′′

+ a(1 − q − k)(f1(z − ϑ) − ϑf ′
1(z − ϑ))φ = −ηφ,

φ′(0) = φ′(1) + γφ(1) = 0.

From Lemma 2.2, σ1(a(1−q−k)(f1(z−ϑ)−ϑf ′
1(z−ϑ))) < σ1(a(1−q−k)f1(z−ϑ)) = 0.

Hence, we can claim that η > 0. Therefore, (4.3) has no eigenvalue η with Reη ≤ 0
and so the stability follows.

Lemma 4.2. Suppose b > σ1 fixed. Then (4.2) has a positive solution if and only

if λ1

1−q−k < a < λ̂1

1−q−k . Moreover, all positive solutions of (4.2) are unstable.

Proof. Suppose (ω, v) is a positive solution of (4.2). Then a(1−q−k) = λ1(f1(z−
v)) > λ1(f(z)) = λ1. On the other hand,

0 = dv
′′

+ bvf2(z − v)e−cω < dv
′′

+ bvf2(z − v),

which means v < θ. Thus, a(1 − q − k) = λ1(f1(z − v)) < λ1(f1(z − θ)) = λ̂1. Hence,

if (4.2) has a positive solution, then λ1

1−q−k < a < λ̂1

1−q−k .

Next, we show that (4.2) has a positive solution if λ1/(1 − q − k) < a < λ̂1/(1 −
q − k). To this end, we first prove that for any given A > λ̂1/(1− q − k), there exists
a constant C > 0 such that ‖ω‖∞ < C for any nonnegative solution of (4.2) with a ∈
(λ1/(1−q−k), A]. At first, one can find that (4.2) has only two nonnegative solutions

(0, 0) and (0, θ) if a ≥ λ̂1/(1−q−k). It remains to show that any positive solution (ω, v)

of (4.2) with λ1

1−q−k < a < λ̂1

1−q−k satisfies ‖ω‖∞ < C. Suppose this is not true. Then

we may assume that there exists ai → a ∈ [λ1/(1−q−k), λ̂1/(1−q−k)], (ωi, vi) positive
solutions of (4.2) with a = ai and ‖ωi‖∞ → ∞. Set ṽi = vi/‖vi‖∞, ω̃i = ωi/‖ωi‖∞.
Then

dω̃
′′

i + ai(1 − q − k)ω̃if1(z − ‖vi‖∞ṽi) = 0,

dṽ
′′

i + bṽif2(z − vi)e
−c‖ωi‖∞ω̃i = 0,

ω̃′
i(0) = ω̃′

i(1) + γω̃i(1) = 0, ṽ′i(0) = ṽ′i(1) + γṽi(1) = 0.
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By Lp estimates and the Sobolev embedding theorem, we may assume ω̃i → ω̃ ≥ 0, �≡
0, ṽi → ṽ ≥ 0, �≡ 0 in C1([0, 1]), and ω̃ satisfies

dω̃
′′

+ a(1 − q − k)ω̃f1(z −Bṽ) = 0, ω̃′(0) = ω̃′(1) + γω̃(1) = 0,

where B = limi→∞ ‖vi‖∞ < ∞. (In view of the equation for vi and 0 < vi < θ, this
limit exists by passing to a subsequence.) Thus ω̃ > 0 on [0, 1] by the strong maximum
principle and Hopf boundary lemma. Hence e−cωi = e−c‖ωi‖∞ω̃i → 0 as i → ∞, which
implies vi → 0, and ṽ satisfies

dṽ
′′

= 0, ṽ′(0) = ṽ′(1) + γṽ(1) = 0.

Thus ṽ ≡ 0. This is a contradiction to ṽ �≡ 0 and ‖ṽ‖∞ = 1.
Let D̃ = {(ω, v) ∈ W : ‖ω‖∞ ≤ C + 1, ‖v‖∞ ≤ sup[0,1] z + 1},

Bτ (ω, v) =

(
−d

d2

dx2
+ M

)
−1

(
τ(1 − q − k)ωf1(z − v) + Mω, bvf2(z − v)e−cω + Mv

)
,

where W defined in section 3 is the positive cone of X and M is sufficiently large such
that M + τ(1 − q − k)f1(z − v) > 0 and M + bf2(z − v)e−cω > 0 for all (ω, v) ∈ D̃
and τ ∈ (λ1/(1 − q − k), A].

By virtue of our a priori estimates and the homotopic invariance property of the
fixed point index, we obtain indexW (Bτ , D̃) ≡ const for τ > λ1/(1 − q − k). On the

other hand, if a > λ̂1/(1− q− k), then (4.2) has only two nonnegative solutions (0, 0)

and (0, θ). Hence for τ ∈ (λ̂1/(1 − q − k), A], indexW (Bτ , D̃) = indexW (Bτ , (0, 0)) +
indexW (Bτ , (0, θ)). Next, we calculate the index of the two nonnegative solutions.

Let B′
τ (0, 0) be the Fréchet derivative of Bτ at (0, 0). Then

B′
τ (0, 0)(ω, v) =

(
−d

d2

dx2
+ M

)−1

(τ(1 − q − k)ωf1(z) + Mω, bvf2(z) + Mv)

for each (ω, v) ∈ X. Therefore, an eigenvector (ω, v) of B′
τ (0, 0) satisfies

−dω
′′

+ Mω = 1
λ (τ(1 − q − k)f1(z) + M)ω,

−dv
′′

+ Mv = 1
λ (bf2(z) + M)v,

ω′(0) = ω′(1) + γω(1) = 0, v′(0) = v′(1) + γv(1) = 0.

Since b > σ1, τ > λ1/(1 − q − k), it is easy to check that I − B′
τ (0, 0) is invertible in

W(0,0) = {(ω, v) ∈ X : ω ≥ 0, v ≥ 0}. Moreover, a similar argument as in the proof
of Lemma 3.2 (see Appendix A) shows that B′

τ (0, 0) has eigenvalues larger than 1. It
follows from Theorem 2.2 of [26] that indexW (Bτ , (0, 0)) = 0 for τ > λ1/(1 − q − k).

Let B′
τ (0, θ) denote the Fréchet derivative of Bτ at (0, θ). Then B′

τ (0, θ)(ω, v) =

(−d d2

dx2 +M)−1(τ(1− q − k)ωf1(z − θ) +Mω, b(f2(z − θ)− θf ′
2(z − θ))v − bcθf2(z −

θ)ω + Mv) for each (ω, v) ∈ X. In order to apply Theorem 2.2 of [26], we introduce
the notation y = (0, θ),Wy = {(ω, v) ∈ X : ω ≥ 0}, Sy = {(0, v) : v ∈ CB([0, 1])}, and
Xy = {(ω, 0) ∈ X : ω ∈ CB([0, 1])}. Then X = Sy ⊕Xy with projection Q given by
(ω, v) → (ω, 0).

Suppose (ω, v) ∈ Wy is a fixed point of B′
τ (0, θ). Then (ω, v) satisfies

dω
′′

+ τ(1 − q − k)ωf1(z − θ) = 0,

dv
′′

+ b(f2(z − θ) − θf ′
2(z − θ))v − bcθf2(z − θ)ω = 0,

ω′(0) = ω′(1) + γω(1) = 0, v′(0) = v′(1) + γv(1) = 0.
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It is easy to check that I −B′
τ (0, θ) is invertible in Wy as long as τ �= λ̂1/(1− q − k).

Hence, indexW (Bτ , (0, θ)) is well defined if τ �= λ̂1/(1−q−k). Next, we determine the
index of Bτ at (0, θ). In view of the definition Q(ω, v) = (ω, 0), every eigenfunction of
Q ◦B′

τ (0, θ) has the form (ω, 0), where ω is a nonzero solution of the equation

−dω
′′

+ Mω =
1

λ
(τ(1 − q − k)f1(z − θ) + M)ω, ω′(0) = ω′(1) + γω(1) = 0.

We can proceed further as in the proof of Lemma 3.2 (see Appendix A) to show that

indexW (Bτ , (0, θ))=0 if τ >λ̂1/(1−q−k) and indexW (Bτ , (0, θ))=1 if τ<λ̂1/(1−q−k).

Hence, for any τ ∈ (λ̂1/(1 − q − k), A], indexW (Bτ , D̃) = indexW (Bτ , (0, 0)) +
indexW (Bτ , (0, θ)) = 0. Meanwhile, by the homotopic invariance property of the
fixed point index, we can claim that indexW (Bτ , D̃) ≡ 0 for any τ ∈ (λ1/(1 − q −
k), A]. However, for λ1/(1 − q − k) < τ < λ̂1/(1 − q − k), indexW (Bτ , (0, 0)) +
indexW (Bτ , (0, θ)) = 1 �= indexW (Bτ , D̃), which implies Bτ has at least a positive

fixed point in D̃ for λ1/(1 − q − k)<τ <λ̂1/(1 − q − k). Namely, (4.2) has a positive

solution when a ∈ (λ1/(1 − q − k), λ̂1/(1 − q − k)).
It remains to prove the instability of any positive solution (ω0, v0) of (4.2). To

this end, let us consider the eigenvalue problem

dϕ
′′

+ a(1 − q − k)f1(z − v0)ϕ− a(1 − q − k)ω0f
′
1(z − v0)ψ + ηϕ = 0,

dψ
′′

+ b[f2(z − v0) − v0f
′
2(z − v0)]e

−cω0ψ − cbv0f2(z − v0)e
−cω0ϕ + ηψ = 0,

ϕ′(0) = ϕ′(1) + γϕ(1) = 0, ψ′(0) = ψ′(1) + γψ(1) = 0.

(4.4)

It is well known (see, e.g., [11]) that one can put this eigenvalue problem in the context
of spectral theory of compact strongly positive operators with respect to the order
cone P = {(ϕ,ψ) ∈ X : ϕ ≥ 0, ψ ≤ 0}. In particular, by the Krein–Rutman theorem
[5, 11], one can show (4.4) has an eigenvalue η1, which has the following properties:
it is real, algebraically simple, and all other eigenvalues have their real part greater
than η1. Moreover, η1 corresponds to an eigenfunction (ϕ,ψ) in the interior of P , and
it is the only eigenvalue with an eigenfunction in P. Thus it is called the principal
eigenvalue of (4.4). The linearized stability criterion for (ω0, v0) can be expressed
in terms of the principal eigenvalue: (ω0, v0) is asymptotically stable if η1 > 0; it is
unstable if η1 < 0. On the other hand, multiplying the first equation of (4.4) by ω0

and integrating, we obtain

η1

∫ 1

0

ϕω0dx = a(1 − q − k)

∫ 1

0

ω2
0f

′
1(z − v0)ψdx.

Noting that (ϕ,ψ) belongs to the interior of P , we must have η1 < 0, which implies
the instability.

The rest of this section is devoted to the proof of Theorems 1.2 and 1.3, which are
important in understanding the effect of the inhibitor on the number of the coexistence
solutions. In order to establish Theorem 1.2, we need the following technical results.

Lemma 4.3. For any ε > 0 small, there exists M = M(ε) large such that if
a ≥ λ1/(1 − q − k) + ε, μ ≥ M, (EP) has a positive solution (ũ, ṽ) which satisfies

(1 − δ)(1 − q − k)ϑ ≤ ũ ≤ (1 − q − k)ϑ, (1 − δ)qϑ ≤ ṽ ≤ (q + δ)ϑ,(4.5)

where ϑ are the unique positive solutions of (1.2), and 0 < δ ≤ δ0, where δ0 > 0 is
small such that (1 + δ0)ϑ < z on [0, 1].
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Proof. Suppose that (u, v) solves (EP). Let χ = (1 − q − k)v − qu. Then (u, χ)
satisfies

du
′′

+ a(1 − q − k)uf1(z − u+χ
1−q−k ) = 0,

dχ
′′

+ b(χ + qu)f2(z − u+χ
1−q−k )e−μcu = 0,

(4.6)

with the usual boundary conditions. Since 0 < ϑ < z on [0, 1], we can claim that
there exists δ0 > 0 small such that (1 + δ0)ϑ < z on [0, 1]. Set

Σ = {(u, χ) ∈ X : (1 − δ0)(1 − q − k)ϑ ≤ u ≤ (1 − q − k)ϑ, 0 ≤ χ ≤ δ0(1 − q − k)ϑ}.

Next, we show (4.6) is quasi-monotone decreasing [35] on Σ provided that μ is large
enough. Clearly, h1(u, χ) = a(1− q− k)uf1(z− u+χ

1−q−k ) is quasi-monotone decreasing

on Σ. On the other hand, let h2(u, χ) = b(χ + qu)f2(z − u+χ
1−q−k )e−μcu. Then

∂h2(u,χ)
∂u = be−μcu[qf2(z − u+χ

1−q−k ) − χ+qu
1−q−kf

′
2(z − u+χ

1−q−k ) − μc(χ + qu)f2(z − u+χ
1−q−k )].

Recalling that (1+ δ0)ϑ < z on [0, 1], it is easy to see that ∂h2(u,χ)
∂u < 0 on Σ provided

that μ is large enough. That is, h2(u, χ) is quasi-monotone decreasing on Σ provided
that μ is large enough.

Let (ū, χ) = ((1− q−k)ϑ(a), 0) and (u, χ̄) = ((1− δ)(1− q−k)ϑ, δ(1− q−k)ϑ).
By the super- and subsolution method, it suffices to show that (ū, χ) and (u, χ̄) are
pairs of super-sub solutions of (4.6) for large μ. That is, we need to show that the
inequalities

dū
′′

+ a(1 − q − k)ūf1(z −
ū+χ

1−q−k ) ≤ 0,

dχ
′′

+ b(χ + qū)f2(z −
ū+χ

1−q−k )e−μcū ≥ 0

and

du
′′

+ a(1 − q − k)uf1(z − u+χ̄
1−q−k ) ≥ 0,

dχ̄
′′

+ b(χ̄ + qu)f2(z − u+χ̄
1−q−k )e−μcu ≤ 0

hold. It is trivial to check the inequalities for ū, χ, and u. For χ̄ to satisfy the above
inequality, it suffices to have

e−μc(1−δ)(1−q−k)ϑ ≤ δa(1 − q − k)(k2 + z − θ)

b((1 − q)δ + q)(k1 + z − θ)
.

It is well known that there exists B > 1 large enough such that Bk1 > k2. Hence,
k2+z−θ
k1+z−θ > k2

Bk1
. Since a ≥ λ1/(1 − q − k) + ε and ϑ = ϑ(a) ≥ ϑ( λ1

1−q−k + ε), we need
to have only

e−μc(1−δ)(1−q−k)ϑ(
λ1

1−q−k+ε) ≤ δ[λ1 + ε(1 − q − k)]k2

b((1 − q)δ + q)Bk1
,

where ϑ( λ1

1−q−k +ε) is the unique positive solution of (1.2) with a = λ1

1−q−k +ε. Clearly,
this inequality holds as long as μ is sufficiently large. Namely, as long as μ is large
enough, we have

dχ̄
′′

+ b(χ̄ + qu)f2

(
z − u + χ̄

1 − q − k

)
e−μcu ≤ 0.
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Thus (ū, χ) and (u, χ̄) are the order upper and lower solutions of (4.6). It follows
the existence-comparison theorem for elliptic systems that (4.6) has a solution (ũ, χ̃),
which satisfies

(1 − δ)(1 − q − k)ϑ ≤ ũ ≤ (1 − q − k)ϑ, 0 ≤ χ̃ ≤ δ(1 − q − k)ϑ.

Noting that v = χ+qu
1−q−k , we know that (EP) has a positive solution (ũ, ṽ), which

satisfies (4.5).
Lemma 4.4. For any ε > 0 small and any A > λ1/(1 − q − k), there exists

M = M(ε, A) > 0 large such that if a ∈ (λ1/(1 − q − k) + ε, A] and μ ≥ M, then any
positive solution of (EP) that satisfies (4.5) is nondegenerate and linearly stable.

Proof. If a ∈ (λ1/(1− q− k) + ε, A] and (u, v) satisfies (4.5), then it is easy to see
that (EP) is a regular perturbation of (4.1) when μ is large. Since (4.1) has a unique
positive solution ((1− q− k)ϑ, qϑ) which is linearly stable, this lemma follows from a
standard regular perturbation argument.

As noted before, the next lemma shows rigorously that the positive solutions to
(EP) are of two types.

Lemma 4.5. Suppose ai → a ∈ ( λ1

1−q−k ,+∞), μi → ∞, and (ui, vi) is a positive

solution of (EP) with (a, μ) = (ai, μi). Then for large i, either (ui, vi) is close to
((1− q− k)ϑ, qϑ) or (μiui, vi) is close to (ω, v) in C1([0, 1])×C1([0, 1]), where (ω, v)

is a positive solution of (4.2). Moreover, if ai ≥ λ̂1

1−q−k for all large i and ai → a,

then (ui, vi) converges to ((1 − q − k)ϑ, qϑ) in the C1 norm.
Proof. We argue by contradiction. Suppose we can find ai → a ∈ ( λ1

1−q−k ,+∞),

μi → ∞, and positive solution (ui, vi) bounded away from ((1− q − k)ϑ, qϑ) and any
positive solution of (4.2). First, by Lemma 2.5, 0 ≤ (1 + c)ui + vi < z(x). Hence, by
elliptic regularity and the Sobolev embedding theorems, we may assume the existence
of a subsequence (if necessary), such that ui → u and vi → v in C1([0, 1]) for some
u, v ∈ C1

B([0, 1]). Set ωi = μiui and χi = (1 − q − k)vi − qui. Then (ωi, χi) satisfies

dω
′′

i + ai(1 − q − k)ωif1(z − (1 + c)ui − vi) = 0,

dχ
′′

i + b(1 − q − k)vif2(z − (1 + c)ui − vi)e
−cωi = 0,

(4.7)

with the usual boundary conditions. By passing to a subsequence, we have two
possibilities.

Case a: μi‖ui‖∞ → ∞. In this case, one must have χi → 0. Indeed, it suffices to
show e−cωi → 0 almost everywhere in (0, 1) as i → ∞. Let ω̃i = ωi/‖ωi‖∞. Then ω̃i

satisfies

−dω̃
′′

i = ai(1 − q − k)ω̃if1(z − (1 + c)ui − vi), ω̃′
i(0) = ω̃′

i(1) + γω̃i(1) = 0.

By Lp estimates and the Sobolev embedding theorem, we may assume ω̃i → ω̃ ≥ 0, �≡ 0
in C1([0, 1]), and ω̃ satisfies

−dω̃
′′

= a(1 − q − k)ω̃f1(z − (1 + c)u− v), ω̃′(0) = ω̃′(1) + γω̃(1) = 0.

Here 0 ≤ (1 + c)u + v ≤ z because 0 < (1 + c)ui + vi < z. Therefore, ω̃ > 0 on
[0, 1] by the strong maximum principle and Hopf boundary lemma. Thus e−cωi =
e−c‖ωi‖∞ω̃i → 0 as i → ∞, which implies χi → 0. Hence, (1 − q − k)v = qu, and

du
′′

+ a(1 − q − k)uf1

(
z − u

1 − q − k

)
= 0, u′(0) = u′(1) + γu(1) = 0.
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This implies u ≡ 0 or u = (1 − q − k)ϑ. If u ≡ 0, then v = q
1−q−ku ≡ 0. That is,

(ui, vi) → (0, 0) as i → ∞. Hence, ũi = ui/‖ui‖∞ satisfies

dũ
′′

i + ai(1 − q − k)ũif1(z − (1 + c)ui − vi) = 0, ũ′
i(0) = ũ′

i(1) + γũi(1) = 0.

Similarly, by Lp estimates and the Sobolev embedding theorem, we may assume that
ũi → ũ ≥ 0, �≡ 0 in C1, and in view of the strong maximum principle, ũ > 0 and
satisfies

dũ
′′

+ a(1 − q − k)ũf1(z) = 0, ũ′(0) = ũ′(1) + γũ(1) = 0,

which means a = λ1/(1− q− k), a contradiction. Hence u = (1− q− k)ϑ and v = qϑ,
which contradicts our assumption.

Case b: μi‖ui‖∞ is uniformly bounded, which implies ui → 0 as i → ∞. Hence,
χi = (1−q−k)vi−qui → (1−q−k)v. Since ωi is uniformly bounded, by the equation
for ωi, we may assume that ωi → ω in C1([0, 1]). It follows from (4.7) that (ω, v)
satisfies (4.2). If ω ≥ 0, �≡ 0, then the strong maximum principle tells us that ω > 0.
On the other hand, we claim that v > 0 on [0, 1]. Otherwise,

dω
′′

+ a(1 − q − k)ωf1(z) = 0, x ∈ (0, 1), ω′(0) = ω′(1) + γω(1) = 0,

which implies a = λ1/(1−q−k), a contradiction. Hence, (a, ω, v) is a positive solution
of (4.2), which contradicts our assumption that (ai, ωi, vi) is bounded away from any
positive solution of (4.2). Therefore, we must have ω ≡ 0. It follows that v ≡ 0 or
v = θ. Suppose v ≡ 0. Then vi → 0 and ω̃i = ωi/‖ωi‖∞ satisfies

dω̃
′′

i + ai(1 − q − k)ω̃if1(z − (1 + c)ui − vi) = 0, ω̃′
i(0) = ω̃′

i(1) + γω̃i(1) = 0.

By Lp estimates and the Sobolev embedding theorem, we may assume ω̃i → ω̃ ≥ 0, �≡ 0
in C1([0, 1]), and by virtue of the strong maximum principle, ω̃ > 0 satisfies

dω̃
′′

+ a(1 − q − k)ω̃f1(z) = 0, ω̃′(0) = ω̃′(1) + γω̃(1) = 0,

which means a = λ1/(1 − q − k), a contradiction. Thus (ωi, vi) → (0, θ), and hence

ai(1 − q − k) = λ1(f1(z − (1 + c)ui − vi)) → λ1(f1(z − θ)) = λ̂1. That is, ai →
λ̂1/(1 − q − k). On the other hand, we can show that (4.2) has a positive solution

branch bifurcating from (a, ω, v) = (λ̂1/(1 − q − k), 0, θ) (see Lemma 4.7). Hence, we

can find a = ãi → λ̂1/(1 − q − k) such that (4.2) with a = ãi has a positive solution
(ω̃i, ṽi) converging in L∞ to (0, θ). Thus (ai, μiui, vi) is close to (ãi, ω̃i, ṽi) for i large.
This again contradicts our assumption. This finishes the proof of the first part of this
lemma.

Now, we prove that if ai ≥ λ̂1/(1−q−k) for all large i and ai → a as i → ∞, then
(ui, vi) → ((1 − q − k)ϑ, qϑ). Again we use an indirect argument. We suppose that
this is not true. Then by the first part of this lemma and by choosing a subsequence
if necessary, we may assume that (μiui, vi) is close to a positive solution of (4.2). This

implies ui → 0 as i → ∞. We divide the arguments into two cases: (i) a > λ̂1/(1−q−k)

and (ii) a = λ̂1/(1 − q − k).
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In case (i), suppose for any ε > 0, there exists ai → a ≥ λ̂1/(1 − q − k) + ε such
that ui → 0 as μi → ∞. Then ωi = μiui, χi = (1−q−k)vi−qui satisfy (4.7). Passing
to a subsequence, we have two possibilities.

Case a: ‖ωi‖∞ = μi‖ui‖∞ → ∞. Noting Lemma 2.5, we claim that χi → 0 as
before, which means vi = χi+qui

1−q−k → 0. Let ũi = ui/‖ui‖∞. Then by Lp estimates and

the Sobolev embedding theorem, we may assume ũi → ũ in C1([0, 1]), and by the
strong maximum principle, ũ > 0. Moreover, ũ satisfies

dũ
′′

+ a(1 − q − k)ũf1(z) = 0, ũ′(0) = ũ′(1) + γũ(1) = 0,

which implies a = λ1/(1 − q − k), a contradiction.
Case b: ‖ωi‖∞ = μi‖ui‖∞ ≤ C. Then by using a priori estimates for vi (see

Lemma 2.5), we may assume that (ωi, vi) → (ω, v) in C1([0, 1]), where ω, v ≥ 0 on [0,
1]. Noting that χi = (1−q−k)vi−qui and ui → 0, one has χi → (1−q−k)v. It follows
from the equations in (4.7) that (ω, v) satisfies (4.2). Namely, (ω, v) is exactly the
nonnegative solution of (4.2). If ω ≥ 0, �≡ 0, then by the strong maximum principle,

ω > 0. Hence, (λ̂1 <)a(1 − q − k) = λ1(f1(z − v)), which implies v �≡ 0. It follows
from the strong maximum principle that v > 0. This contradicts Lemma 4.2; that is,
(4.2) has no positive solution provided that a > λ̂1/(1− q− k). Therefore, ω ≡ 0 and
v = θ (the possibility v ≡ 0 can be ruled out by similar arguments as in the proof
of the first part of this lemma). Set ũi = ui/‖ui‖∞. A similar argument shows that

a = λ̂1/(1 − q − k), a contradiction. Therefore, our assertion holds.

In case (ii), since ai → λ̂1/(1− q− k) and ui → 0, one can assert that vi → θ and
μiui → 0 in C1 norm. Indeed, let ũi = ui/‖ui‖∞. Then ũi satisfies

dũ
′′

i + ai(1 − q − k)ũif1(z − (1 + c)ui − vi) = 0, ũ′
i(0) = ũ′

i(1) + γũi(1) = 0.

Similarly, we may suppose ũi → ũ in C1([0, 1]) and ũ > 0 satisfies

dũ
′′

+ λ̂1ũf1(z − v) = 0, ũ′(0) = ũ′(1) + γũ(1) = 0,(4.8)

which implies v �≡ 0; otherwise, λ̂1 = λ1, a contradiction. Noting that ai → λ̂1/(1 −
q − k), ui → 0, vi → v �≡ 0, and

dv
′′

i + bvif2(z − (1 + c)ui − vi)e
−cμi‖ui‖∞ũi + aiquif1(z − (1 + c)ui − vi) = 0,

we can show that μi‖ui‖∞ is uniformly bounded. Hence we may assume that μiui → ω
in C1([0, 1]) for some ω ≥ 0. Letting i → ∞, we must have dv

′′
+ bvf2(z − v) ≥ 0,

which means v ≤ θ. Multiplying (4.8) by ϕ̂1, integrating over [0, 1], and applying
Green’s formula, we obtain

λ̂1

∫ 1

0

ũϕ̂1(f1(z − v) − f1(z − θ))dx = 0,

which implies v = θ since v ≤ θ. Moreover, ũ = ϕ̂1. That is, vi → θ. Next, we show
ω ≡ 0. If ω ≥ 0, �≡ 0, then ω > 0 by the strong maximum principle. Noting that
ai → λ̂1/(1 − q − k), ui → 0, vi → θ, μiui → ω, we have

dθ
′′

+ bθf2(z − θ)e−cω = 0, θ′(0) = θ′(1) + γθ(1) = 0.

This means b = λ1(f2(z − θ)e−cω) > λ1(f2(z − θ)) = b, a contradiction. Hence our
assertion holds. Next, we show (1 + c)ui + vi < θ for large i. Let Qi = (1 + c)ui + vi.
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Clearly, Qi → θ, and

dQ
′′

i + aiuif1(z −Qi) + bvif2(z −Qi)e
−cμiui = 0, Q′

i(0) = Q′
i(1) + γQi(1) = 0.

Hence

dQ
′′

i + bQif2(z −Qi)
= ui[b(1 + c)f2(z −Qi) − aif1(z −Qi)] + bvif2(z −Qi)[1 − e−cμiui ]
= ui[b(1 + c)f2(z −Qi) − aif1(z −Qi) + bvif2(z −Qi)cμi + O(μ2

iui)]
= ui[b(1 + c)f2(z −Qi) − aif1(z −Qi) + (bcvif2(z −Qi) + O(μiui))μi].

Since μiui → 0 and μi → ∞, we have dQ
′′

i + bQif2(z − Qi) > 0 for large i, which
implies Qi < θ for large i.

Now multiplying the equation for ui by ϕ̂1 and integrating over [0, 1], we obtain

∫ 1

0

[ai(1 − q − k)f1(z −Qi) − λ̂1f1(z − θ)]ϕ̂1uidx = 0.

Since ai(1 − q − k) ≥ λ̂1 and f1(z − Qi) > f1(z − θ) for large i,
∫ 1

0
[ai(1 − q −

k)f1(z−Qi)− λ̂1f1(z−θ)]ϕ̂1uidx > 0 for all large i, a contradiction. Hence (ui, vi) →
((1 − q − k)ϑ, qϑ) in the C1 norm when ai ≥ λ̂1

1−q−k for all large i, ai → a, and
μi → ∞.

Lemma 4.6. (i) For any A ≥ λ̂1

1−q−k , there exists M > 0 large such that if μ > M

and a ∈ [ λ̂1

1−q−k , A], then any positive solution (u, v) of (EP) is nondegenerate and

linearly asymptotically stable, and indexW (A, (u, v)) = 1.
(ii) For any ε, δ > 0 small, there exists Mε,δ > 0 large such that if a ∈ [ λ1

1−q−k +

ε, λ̂1

1−q−k ) and μ ≥ Mε,δ and if (u, v) is a positive solution of (EP), then either (a)

‖u− (1− q−k)ϑ‖C1 +‖v− qϑ‖C1 < δ or (b) ‖μu− ω̃‖C1 +‖v− ṽ‖C1 +‖a− ã‖C1 < δ,
where (ω̃, ṽ) is a positive solution of (4.2) with a = ã. Moreover, if (a) occurs, then
(u, v) is nondegenerate linearly asymptotically stable and indexW (A, (u, v)) = 1.

Proof. (i) We prove the nondegeneracy and linear stability first. For this purpose,
we consider the linearized eigenvalue problem

dφ
′′

+ a(1 − q − k)[f1(z − (1 + c)u− v) − (1 + c)uf ′
1(z − (1 + c)u− v)]φ

−a(1 − q − k)uf ′
1(z − (1 + c)u− v)ψ = −ηφ,

dψ
′′

+ [b(f2(z − (1 + c)u− v) − vf ′
2(z − (1 + c)u− v))e−μcu

−aquf ′
1(z − (1 + c)u− v)]ψ

−bv[f ′
2(z − (1 + c)u− v)(1 + c) + μcf2(z − (1 + c)u− v)]e−μcuφ

+aq[f1(z − (1 + c)u− v) − (1 + c)uf ′
1(z − (1 + c)u− v)]φ = −ηψ,

φ′(0) = φ′(1) + γφ(1) = 0, ψ′(0) = ψ′(1) + γψ(1) = 0.

By Lemma 4.5, (EP) has no positive solution with a small u component when a ∈
[ λ̂1

1−q−k , A] and μ is large. Therefore, we can establish this assertion by a simple
variant of the proof of Lemma 4.4.

Next, we prove the statement concerning the fixed point index. Since any positive
solution (u, v) to (EP) is nondegenerate, we have

indexW (A, (u, v)) = indexX(A, (u, v)) = indexX(A′(u, v), (0, 0)).
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Let Qt(φ, ψ) = (−d d2

dx2 + M)−1(f, g), where 0 ≤ t ≤ 1 and

f = a(1 − q − k)[f1(z − (1 + c)u− v) − (1 + c)uf ′
1(z − (1 + c)u− v)]φ + Mφ

−ta(1 − q − k)uf ′
1(z − (1 + c)u− v)ψ,

g = [b(f2(z − (1 + c)u− v) − vf ′
2(z − (1 + c)u− v))e−μcu

−taquf ′
1(z − (1 + c)u− v)]ψ + Mψ

−bv[(1 + c)f ′
2(z − (1 + c)u− v) + μcf2(z − (1 + c)u− v)]e−μcuφ

+aq[f1(z − (1 + c)u− v) − (1 + c)uf ′
1(z − (1 + c)u− v)]φ.

Then there exists a neighborhood Uδ ⊂ X of (0, 0) such that Qt has no fixed point on
∂Uδ provided μ is large enough. Moreover, we can choose Uδ such that A′(u, v)(φ, ψ) =
(φ, ψ) has only the solution (φ, ψ) = (0, 0) in Uδ. By similar arguments as in
Lemma 2.5 in [7] and Theorem 3.1 in [8], we can show indexX(A′(u, v), (0, 0)) =
indexX(A′(u, v), Uδ) = indexX(Q1, Uδ) = indexX(Q0, Uδ) = indexX(Q0, (0, 0)) = 1.
Hence indexW (A, (u, v)) = 1.

(ii) The statement on the location of the positive solutions follows directly from
Lemma 4.5. The other statements are proved in the same way as in (i) above.

Proof of Theorem 1.2. (i) For any ε > 0 small, let M = max{M(ε),M(ε, λ̂1/(1 −
q − k))}, where M(ε),M(ε, λ̂1/(1 − q − k)) are given by Lemmas 4.3 and 4.4, respec-

tively. Assume that for μ ≥ M and a ∈ [λ1/(1− q − k) + ε, λ̂1/(1− q − k)), (EP) has
only a unique positive solution (ũ, ṽ) as shown in Lemma 4.3. In view of Lemma 4.4,
I − A′(ũ, ṽ) is invertible in X and A′(ũ, ṽ) has no real eigenvalue greater than one,
where A′(ũ, ṽ) is the Fréchet derivative of A at (ũ, ṽ). We can argue in the same way
as in the proof of Theorem 3.1 in [8] to draw a conclusion that indexW (A, (ũ, ṽ)) = 1.
By virtue of Lemmas 3.1 and 3.2, it follows that

1 = indexW (A, D′) = indexW (A, (0, 0)) + indexW (A, (0, θ)) + indexW (A, (ũ, ṽ)) = 2.

This contradiction completes the proof.

(ii) It follows from Lemma 4.6 that for any A ≥ λ̂1

1−q−k , there exists M > 0

large such that any positive solution (u, v) of (EP) is nondegenerate and linearly

asymptotically stable for a ∈ [ λ̂1

1−q−k , A] and μ ≥ M . Hence, it suffices to show the

uniqueness. Set D1 = {(u, v) ∈ X : (1−q−k)
2 ϑ < u < ϑ

1+c ,
q
2ϑ < v < max[0,1] v̄ + 1},

and define Fτ : D1 → W by

Fτ (u, v) =

(
−d

d2

dx2
+ K

)−1

(a(1−q−k)ug1(u, v)+Ku, τbvg2(u, v)+aqug1(u, v)+Kv),

where τ ∈ [0, 1], g1(u, v) = f1(z−(1+c)u−v), g2(u, v) = f2(z−(1+c)u−v)e−μcu, and
K is large enough such that K+a(1−q−k)g1(u, v) > 0 and K+τbg2(u, v)−aquK1 > 0
(K1 is given in section 3) for all (u, v) ∈ D1 and τ ∈ [0, 1]. Clearly, Fτ is a compact
and continuously differentiable operator. Moreover, it follows from Lemma 4.5 that
there exists M > 0 large such that if μ ≥ M and a ∈ [λ̂1/(1 − q − k), A], then any
positive solution (u, v) of (EP) is close to ((1−q−k)ϑ, qϑ). Hence, (u, v) ∈ D1 for a ∈
[λ̂1/(1−q−k), A] and μ ≥ M. Namely, if a ∈ [λ̂1/(1−q−k), A] and μ ≥ M, then (u, v) is
a positive solution of (EP) if and only if it is a fixed point of F1 in D1. Again by Lemma

4.5, Fτ has no fixed point on ∂D1 for a ∈ [λ̂1/(1 − q − k), A] and μ ≥ M. Therefore,
indexW (Fτ , D1) ≡ const. In particular, indexW (F1, D1) = indexW (F0, D1). It is easy
to show that F0 has a unique fixed point ((1−q−k)ϑ, qϑ) in D1 and indexW (F0, D1) =
indexW (F0, ((1 − q − k)ϑ, qϑ)) = 1. Hence, indexW (F1, D1) = 1.
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As mentioned before, from Lemma 4.6, we know that, for μ > M and a ∈
[λ̂1/(1− q− k), A], all fixed points of F1 in D1 are nondegenerate and linearly stable.
Hence by a compactness argument it is easy to show that there are at most finitely
many fixed points of F1, which are denoted by {(ui, vi)}ni=1. By Lemma 4.6 again,
indexW (A, (ui, vi)) = 1. In view of the additivity property of the fixed point index,

we have for a ∈ [λ̂1/(1 − q − k), A]

n =
n∑

i=1

indexW (F1, (ui, vi)) = indexW (F1, D1) = 1.

Hence for μ ≥ M and a ∈ [λ̂1/(1−q−k), A], (EP) has only a unique positive solution
and it is stable. The proof of Theorem 1.2 is completed.

Next we wish to establish Theorem 1.3, but first we give the following lemma,
which is crucial in proving Theorem 1.3.

Lemma 4.7. There exists ε > 0 small such that if λ̂1/(1 − q − k) − ε ≤ a <

λ̂1/(1 − q − k), then (4.2) has a unique positive solution.
Proof. Here, we prove this lemma by the local bifurcation theorem of Crandall

and Rabinowitz [3]. We regard a as the bifurcation parameter and try to construct a
positive solution branch from the semitrivial nonnegative solution branch {(a, 0, θ) :
a ∈ R+}.

After some standard calculations, we obtain that (λ̂1/(1−q−k), 0, θ) is a bifurca-
tion point. Close to this bifurcation point, (4.2) has a positive solution (a(s), s(ϕ̂1 +

Φ(s)), θ+s(χ1 +Ψ(s))) (0 < s � 1), where a(0) = λ̂1/(1−q−k), χ1 = bcL−1
b (θf2(z−

θ)ϕ̂1) < 0,Φ(0) = Ψ(0) = 0. Putting this positive solution into the first equation of
(4.2), dividing by s, and differentiating with respect to s, it follows that the derivative
of a(s) with respect to s at s = 0 is less than 0. That is, a′(0) < 0, which implies
the positive solution bifurcation branch is to the left. Namely, there exists ε > 0
sufficiently small such that if λ̂1/(1− q− k)− ε ≤ a < λ̂1/(1− q− k), then (4.2) has a
positive solution with the form of (a(s), s(ϕ̂1 + Φ(s)), θ + s(χ1 + Ψ(s))) (0 < s � 1).
Furthermore, it is unique as long as ε is sufficiently small. In fact, it is also unstable.
We leave the proof of this assertion to the reader.

Proof of Theorem 1.3. First we show that for large μ (EP) has a unique asymp-
totically stable positive solution which is close to ((1 − q − k)ϑ, qϑ). In fact, if we
choose δ > 0 small enough in Lemma 4.6, then by Lemma 4.6 any positive solution
of (EP) close to ((1 − q − k)ϑ, qϑ) is nondegenerate and linearly stable. Next, by a
simple variant of the proof of part (ii) of Theorem 1.2, we can find that (EP) has only
one positive solution of type (a), and it is asymptotically stable.

On the other hand, we can show that (EP) has a unique unstable positive solution
of type (b). If this assertion holds, then by Lemma 4.6 our proof is completed. Hence,
our main task is to establish this assertion.

Suppose (u, v) is a positive solution of type (b) of (EP). It follows from Lemmas
4.6 and 4.7; (μu, v) is close to (ω, v), where (ω, v) is the unique positive solution of

(4.2). Hence to prove the uniqueness, it suffices to show that, for a ∈ [λ̂1/(1 − q −
k) − ε0, λ̂1/(1 − q − k)) and μ ≥ M0, there is a unique pair (μu, v) close to (ω, v) for
certain ε0 and M0.

Set û = μu, ε = 1
μ , and consider the following problem with the usual boundary

conditions

dû
′′

+ a(1 − q − k)ûf1(z − (1 + c)εû− v) = 0, x ∈ (0, 1),

dv
′′

+ bvf2(z − (1 + c)εû− v)e−cû + aqεûf1(z − (1 + c)εû− v) = 0.
(4.9)
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Clearly, (u, v) is a solution of (EP) if and only if (μu, v) is a solution of (4.9) with
ε = 1/μ. Thus it suffices to prove the uniqueness of (4.9). For fixed ε ≥ 0, regarding

a as a bifurcation parameter, we see that (λ̂1/(1− q− k), 0, θ) is a simple bifurcation
point of (4.9). By virtue of a variant of Theorem 1 in Crandall and Rabinowitz [2],
there exists δ1 > 0 and C1 curves

Γε = {(a(ε, s), û(ε, s), v(ε, s)) : 0 < s < δ1}, 0 ≤ ε ≤ δ1,

such that if 0 ≤ ε ≤ δ1, then all positive solutions of (4.9) close to (λ̂1/(1−q−k), 0, θ) =
(a(0, 0), û(0, 0), v(0, 0)) lie on the curve Γε. Hence, we need show only that for fixed

ε, Γε uniformly cover an a-range: a ∈ [λ̂1/(1 − q − k) − ε0, λ̂1/(1 − q − k)) only once
for suitably chosen ε0. It is easy to obtain

∂a

∂s
(0, 0) =

λ̂1

∫ 1

0
ϕ̂1f

′
1(z − θ)χ1

(1 − q − k)
∫ 1

0
ϕ̂2

1f1(z − θ)
< 0

based on χ1 = L−1
b (bcθf2(z − θ)ϕ̂1) < 0. By taking δ1 small, we may assume that

∂a
∂s (ε, s) < 0 for 0 ≤ ε, s ≤ δ1. Hence λ̂1/(1 − q − k) − a(0, δ1) = a(0, 0) − a(0, δ1) > 0.

Since a(ε, s) is continuous, there exists δ ∈ (0, δ1] such that ε0 = min0≤ε≤δ(λ̂1/(1 −
q − k) − a(ε, δ1)) > 0. Therefore, if a ≥ λ̂1/(1 − q − k) − ε0, then a(ε, δ1) ≤ a for

any ε ∈ [0, δ]. This shows that for each ε ∈ [0, δ], Γε covers the a-range [λ̂1/(1 −
q − k) − ε0, λ̂1/(1 − q − k)). Moreover, since ∂a

∂s (ε, s) < 0 for 0 ≤ ε, s ≤ δ1, each
curve covers the range only once. By taking M0 = 1/δ, we see that, for μ ≥ M0 and

λ̂1/(1 − q − k) − ε0 ≤ a < λ̂1/(1 − q − k), (EP) has exactly one positive solution of
type (b).

It remains to show the instability. A simple computation shows that η is an
eigenvalue of the linearization of (EP) at (u, v) with eigenfunction (φ, ψ) if and only if
it is an eigenvalue of that of (4.9) with ε = 1/μ at (μu, v) with eigenfunction (μφ, ψ).
Hence it suffices to show that the linearization of (4.9) has a negative eigenvalue at
any point on the bifurcation curves Γε. This follows from a simple application of a
variant of Theorem 1.16 in Crandall and Rabinowitz [3]. More precisely, by Lemma
1.3 in [3], we can obtain a variant of Corollary 1.13 there. That is, there exist τ > 0

and C1 functions γ : (λ̂1/(1 − q − k) − τ, λ̂1/(1 − q − k) + τ) × (−τ, τ) → R1 and
β : (−τ, τ)× (−τ, τ) → R1 such that γ(a, ε) is a simple eigenvalue of the linearization
of (4.9) at (a, 0, θ) and β(s, ε) is a simple eigenvalue of the linearization of (4.9) at

(a, u, v) = (a(ε, s), û(ε, s), v(ε, s)) with 0 ≤ ε, s ≤ τ. Moreover, γ(λ̂1/(1 − q − k), ε) =
β(0, ε) = 0. It is easy to check that, in fact, γ(a, ε) is a simple eigenvalue of

dφ
′′

+ a(1 − q − k)φf1(z − θ) = −γ(a, ε)φ

with the usual boundary conditions. Hence, ∂γ
∂a (λ̂1/(1 − q − k), ε) < 0 because of

the monotone property. Then it follows from Theorem 1.16 in [3] that β(s, 0) ∼
−s∂a

∂s (0, s)∂γ∂a (λ̂1/(1 − q − k), 0) for 0 < s � 1, which implies β(s, 0) < 0 and
the positive solution of type (b) of (EP) is unstable. This completes the proof of
Theorem 1.3.

5. Numerical simulation. In this section, we present some results of our nu-
merical simulations that complement the analytic results of the previous sections. All
computations in this section are performed with Matlab.
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Fig. 1. Effect of μ: (a) and (b) are the bifurcation diagrams of u and v, respectively, with
respect to μ with the parameters a = 4, b = 1.5. Here the two solid lines in (a) and (b) represent
the L1 norm of components u and v of the stable coexistence solution (u, v), respectively. The two
dashed lines in (a) and (b) represent the L1 norm of components 0 and θ of the unstable semitrivial
nonnegative solution (0, θ), respectively. Similarly, the pair of (c) and (d) and the pair of (e) and
(f) are the bifurcation diagrams of u and v, respectively, with respect to μ all with a = 2.5, b = 5.
Here solid lines denote the stable solutions and dashed lines represent the unstable solutions. Note
that μ ∈ [10, 15] in (c) and (d) and that μ ∈ [100, 500] in (e) and (f). The aim of plotting in the
above domain is to explicitly show the change tendency of u and v.

Several parameters are common for all simulations: the diffusion rate d = 1.0 and
parameters k1 = 1, k2 = 1.1, γ = 1, q = 0.1, and k = 0.2. The other parameters are
varied in order to illustrate different outcomes. In Figures 1 and 2, the vertical axis
is the L1 norm of u or v. In Figures 3 and 4, the coexistence solutions to (PP) are
plotted.
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Fig. 2. Bifurcation diagrams with respect to a: (a) and (b) with μ = 50, b = 5 and (c) and (d)
with μ = 100, b = 5 also represent the bifurcation graphs of u and v with respect to a, respectively.
Here solid lines denote the stable solutions and dashed lines represent the unstable solutions.
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Fig. 3. Two coexistence solutions of (PP) with μ = 1, a = 6.4, b = 5. This indicates (PP) also
has two coexistence solutions when μ is not large.

The simulations presented below illustrate the following major outcomes of the
plasmid-bearing and plasmid-free competition in the unstirred chemostat with an
internal inhibitor.

(1) If u is a better competitor than v, there exists only a unique globally stable
coexistence state of (PP) for any μ > 0 (see Figures 1(a) and 1(b)). That is, if u is a
better competitor, then it cannot eliminate its competitor but forces the existence of
a coexistence state. This reflects the difference between the plasmid model and the
standard competition model in the chemostat.
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Fig. 4. The difference between the plasmid model and the standard chemostat competition
model in the presence of inhibitor: (a) and (b) with q = 0, (c) and (d) with q = 0.01, (e) and (f)
with q = 0.1, and (g) and (h) with q = 0.2. Here a = 2.5, b = 5, μ = 50. The simulations suggest
that for large μ the plasmid model (q > 0) has two coexistence solutions; one asymptotically stable,
(c), (e), and (g) with q = 0.01, 0.1, 0.2, respectively, and the others unstable, (d), (f) and (h) with
q = 0.01, 0.1, 0.2, respectively. However, the basic chemostat model (q = 0) seems to have only one
unstable coexistence solution, (b). Moreover, when q → 0+, the stable coexistence solution of (PP)
goes to the semitrivial nonnegative solution (ϑ, 0), (a).
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(2) If u is a weaker competitor than v, then there exists a unique number μ∗ > 0
such that if μ < μ∗ there is no coexistence state of (PP) and the semitrivial non-
negative solution (0, θ) is globally stable; if μ > μ∗ there are exactly two coexistence
states of (PP) (see Figures 1(c)–(f)). One is asymptotically stable, and the theoretical
results and plenty of numerical analysis strongly suggest the other coexistence state
is the most possibly unstable. Namely, if v is the better competitor, then it will elim-
inate u unless the effect of the inhibitor is sufficiently large, reflected by the condition
μ > μ∗. This result exactly indicates that the inhibitor can help the genetically al-
tered (plasmid-bearing) organism to avoid capture of the process by the plasmid-free
organism.

(3) If μ is sufficiently large and b suitably large, then there exists a unique constant

aμ > λ1

1−q−k such that (PP) has exactly two coexistence states for aμ < a < λ̂1

(1−q−k) :

one asymptotically stable and the other (most possibly) unstable. Meanwhile, the

semitrivial nonnegative solution (0, θ) is stable as well. But for a ≥ λ̂1

(1−q−k) , (PP)

has only a unique coexistence state, and it is asymptotically stable (see Figure 2).
The simulations indicate that it is also globally stable, but we cannot give a rigorous
proof. Furthermore, aμ goes to λ1

1−q−k when μ → ∞, which is just consistent with our
analytic outcomes.

(4) In fact, (PP) may also have two coexistence states in the case that μ is not large
enough. For example, taking the parameters μ = 1, a = 6.4, and b = 5 and the same
parameters as above, (PP) has two positive solutions; see Figure 3. Moreover, the
simulations also suggest that the coexistence solution in Figure 3(a) is asymptotically
stable and the coexistence solution in Figure 3(b) is (most possibly) unstable.

(5) We discuss the difference between the plasmid model and the standard chemo-
stat competition model in the presence of inhibitor. In (1), we mention the difference
between the above two kinds of chemostat models when the plasmid-bearing organism
is a better competitor. Here, we mainly concentrate on the case that the plasmid-
bearing organism is a weaker competitor than the plasmid-free organism. It is easy to
see that the introduction of the plasmid-free organism destroys the competitive prop-
erty of the system. However, it is this property of the plasmid model that leads to the
complex dynamical behavior. Now, numerical simulations help us understand this; see
Figure 4. Take the parameters a = 2.5, b = 5, and μ = 50 and the same parameters
as before except that q = 0, 0.01, 0.1, 0.2 for Figures 4(a)–(h). Simulations convince
us that when the effect of the inhibitor is very large, represented by large μ, if q = 0,
that is, for the standard chemostat model with inhibitor, there is only one positive
coexistence solution (see Figure 4(b)). Moreover, both the analytic results and many
numerical simulations convince us that it is unstable. But once q > 0, the plasmid
model has one asymptotically stable coexistence solution (see Figures 4(c), 4(e), 4(g))
and one (most likely) unstable coexistence solution (see Figures 4(d), 4(f), 4(h)).

Appendix A. In this section, we give the proof of Lemma 3.2.
Proof. (i) Let y = (0, 0). By computation Wy = {(u, v) ∈ X : u ≥ 0, v ≥ 0},

Sy = (0, 0). Hence Xy = X, and Q = I (I is the identity operator in X). We first
examine the eigenvalues of A′(0, 0), where A′(0, 0) is the Fréchet derivative of A with
respect to (u, v) at (0, 0). By direct computation,

A′(0, 0)(u, v) =

(
−d

d2

dx2
+ M

)−1

× (a(1 − q − k)uf1(z) + Mu, bvf2(z) + Mv + aquf1(z))
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for each (u, v) ∈ X. Hence an eigenvector (u, v) of A′(0, 0) satisfies

−du
′′

+ Mu = 1
λ (a(1 − q − k)f1(z) + M)u,

−dv
′′

+ Mv = 1
λ ((bf2(z) + M)v + aquf1(z)),

u′(0) = u′(1) + γu(1) = 0, v′(0) = v′(1) + γv(1) = 0.

It is easy to see that I − A′(0, 0) is invertible in Wy since a �= λ1/(1 − q − k) and
b �= σ1.

If u ≡ 0, then λ is an eigenvalue of

−dv
′′

+ Mv =
1

λ
(bf2(z) + M)v, v′(0) = v′(1) + γv(1) = 0.(A.1)

Let η1 be the principal eigenvalue of

−dω
′′ − bf2(z)ω = η1ω, ω′(0) = ω′(1) + γω(1) = 0.

Then η1 > 0 if b < σ1, and η1 < 0 if b > σ1. It follows from Lemma 2.3 that
if b < σ1, then (A.1) has no eigenvalue larger than or equal to 1; if b > σ1, then
(A.1) has eigenvalues larger than 1. Namely, A′(0, 0) has no eigenvalue larger than
or equal to 1 with the corresponding eigenvector of the form (0, v) if b < σ1; A′(0, 0)
has eigenvalues larger than 1 with the corresponding eigenvector of the form (0, v) if
b > σ1.

If u �≡ 0, then λ is an eigenvalue of

−du
′′

+ Mu =
1

λ
(a(1 − q − k)f1(z) + M)u, u′(0) = u′(1) + γu(1) = 0.

By Lemma 2.3, we know that if a < λ1/(1 − q − k), then A′(0, 0) has no eigenvalue
larger than or equal to 1 with the associated eigenfunction (u, v), where u �≡ 0; if
a > λ1/(1 − q − k), then A′(0, 0) has eigenvalues larger than 1 with the associated
eigenfunction (u, v)(u �≡ 0). Hence, by Theorem 2.2 in [26], indexW (A, (0, 0)) = 1 if
a < λ1/(1 − q − k) and b < σ1, and indexW (A, (0, 0)) = 0 if a > λ1/(1 − q − k) or
b > σ1.

(ii) Let y = (0, θ). By computation,

Wy = {(u, v) ∈ X : u ≥ 0}, Sy = {(0, v) : v ∈ CB([0, 1])}.

Define Xy = {(u, 0) : u ∈ CB([0, 1])}. Then X = Sy ⊕ Xy with projection Q given
by (u, v) → (u, 0). We first determine the existence of indexW (A, (0, θ)). Let A′(0, θ)
denote the Fréchet derivative of A with respect to (u, v) at (0, θ). Then

A′(0, θ)(u, v) =

((
−d

d2

dx2
+ M

)−1

g(u, v),

(
−d

d2

dx2
+ M

)−1

(h1(u, v) + h2(u, v))

)

for (u, v) ∈ X, where

g(u, v) = (a(1 − q − k)f1(z − θ) + M)u,
h1(u, v) = (−b(1 + c)θf ′

2(z − θ) − bμcθf2(z − θ) + aqf1(z − θ))u,
h2(u, v) = (b(f2(z − θ) − θf ′

2(z − θ)) + M)v.

Let (u, v) ∈ Wy be a fixed point of A′(0, θ). Then (u, v) satisfies

du
′′

+ a(1 − q − k)uf1(z − θ) = 0,

dv
′′

+ b(f2(z − θ) − θf ′
2(z − θ))v

= (b(1 + c)θf ′
2(z − θ) + bμcθf2(z − θ) − aqf1(z − θ))u.
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Clearly, if a �= λ̂1/(1 − q − k), then u ≡ v ≡ 0. That is, I − A′(0, θ) is invertible
in Wy, and indexW (A, (0, θ)) is well defined. Next, we consider the eigenvalues of
Q ◦ A′(0, θ). By virtue of definition Q(u, v) = (u, 0), every eigenvector of Q ◦ A′(0, θ)
has the form (u, 0), where u is a nonzero solution of the equation

−du
′′

+ Mu =
1

λ
(a(1 − q − k)f1(z − θ) + M)u, u′(0) = u′(1) + γu(1) = 0.

Let η1 be the first eigenvalue of

−dω
′′ − a(1 − q − k)ωf1(z − θ) = η1ω, ω′(0) = ω′(1) + γω(1) = 0.

Then η1 > 0 if a < λ̂1/(1 − q − k); η1 < 0 if a > λ̂1/(1 − q − k). It follows from
Lemma 2.3 that Q ◦ A′(0, θ) has no eigenvalue larger than or equal to 1 if a <

λ̂1/(1 − q − k); Q ◦ A′(0, θ) has an eigenvalue larger than 1 if a > λ̂1/(1 − q −
k). In view of Theorem 2.2 in [26], indexW (A, (0, θ)) = 0 if a > λ̂1/(1 − q − k);

indexW (A, (0, θ)) = indexSy (A′(0, θ), (0, 0)) = (−1)σ if a < λ̂1/(1 − q − k). Here σ
is the sum of multiplicities of the eigenvalues λ of A′(0, θ) restricted in Sy such that
λ > 1.

It remains to prove that indexW (A, (0, θ)) = 1 for a < λ̂1/(1 − q − k). It suffices
to show σ = 0. Suppose λ is an eigenvalue of A′(0, θ) in Sy with the corresponding
eigenvector (u, v). Then u = 0 and v is a nonzero solution of the equation

−dv
′′
+Mv =

1

λ
(b(f2(z−θ)−θf ′

2(z−θ))+M)v, v′(0) = v′(1)+γv(1) = 0.(A.2)

It follows from Lemma 2.3 that (A.2) has no eigenvalue larger than or equal to 1,
which implies σ = 0 and indexW (A, (0, θ)) = indexSy (A′(0, θ), (0, 0)) = 1. The proof
of this lemma is completed.
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