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Abstract. The generalized version of the S-procedure, recently introduced by Iwasaki and
co-authors and Scherer independently, has proved to be very useful for robustness analysis and
synthesis of control systems. In particular, this procedure provides a nonconservative way to convert
specific inequality conditions on lossless sets into numerically verifiable conditions represented by
linear matrix inequalities (LMIs). In this paper, we introduce a new notion, one-vector-lossless sets,
and propose a generalized S-procedure to reduce inequality conditions on one-vector-lossless sets
into LMIs without any conservatism. By means of the proposed generalized S-procedure, we can
examine various properties of matrix-valued functions over some regions on the complex plane. To
illustrate the usefulness, we show that full rank property analysis problems of polynomial matrices
over some specific regions on the complex plane can be reduced into LMI feasibility problems. It
turns out that many existing results such as Lyapunov’s inequalities and LMIs for state-feedback
controller synthesis readily follow from the suggested generalized S-procedure.
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1. Introduction. Recently, the generalized version of the S-procedure has been
introduced independently by Iwasaki and Hara [7, 8], Iwasaki, Meinsma, and Fu [9],
Iwasaki and Shibata [10], and Scherer [14, 15, 16, 17]. Basically speaking, this proce-
dure enables us to convert intractable semi-infinite parametrized linear matrix inequal-
ities into numerically verifiable finite-dimensional linear matrix inequalities (LMIs).
The scope of its application is wide and includes a variety of robustness analysis and
synthesis problems in linear control system theory.

Among these recent papers, in [9, 8], the following inequality condition with
respect to a Hermitian matrix Θ and a subset S of Hermitian matrices is discussed:

(1.1) ζ∗Θζ > 0 ∀ζ ∈ G, G := {ζ ∈ Cn : ζ �= 0, ζ∗Sζ ≥ 0 ∀S ∈ S} .
It can be easily seen that a sufficient condition for (1.1) is given by

(1.2) ∃S ∈ S such that Θ � S.

The procedure to replace (1.1) by (1.2) is called the generalized S-procedure in [9,
8]. Generally, this replacement introduces conservatism; the condition (1.2) is only
sufficient for (1.1) and may not be necessary. The significance of the studies in [9, 8]
lies in the fact that the generalized S-procedure has been proved to be nonconservative
if the set S is lossless1 [9, 8]. If the set S is lossless, then the set S is convex and hence
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the LMI condition (1.2) can be verified numerically via sophisticated interior-point
methods [1, 4].

When we deal with linear system analysis and synthesis problems by working with
the generalized S-procedure in [9, 8], the underlying idea is that inequality conditions
on matrix-valued functions G(λ) over curves λ ∈ Λ (Λ ⊂ C) can be reformulated into
a conformable form to the condition (1.1) by considering an appropriate Hermitian
matrix Θ and a lossless set S [9, 8]. When dealing with a linear system, its various
properties can be characterized by inequality conditions on their transfer functions in
the frequency domain [1, 20, 21]. In [9, 8], those frequency domain inequalities are
reformulated in the form of (1.1) so that the generalized S-procedure can be applied.
It follows that we can verify various properties of linear systems without introducing
any conservatism by solving LMIs resulting from the generalized S-procedure.

For linear system analysis and synthesis, however, we also need to verify inequality
conditions on matrix-valued functions G(λ) over region λ ∈ D (D ⊂ C). For example,
full rank property analysis of polynomial matrices over some specific regions on the
complex plane forms an important basis for the stability analysis of linear systems
[1, 6]. In view of these facts, it should be quite natural to pose the following question:
Can we verify various properties of matrix-valued functions G(λ) over region λ ∈ D
(D ⊂ C) by following similar lines to the generalized S-procedure?

To answer this question, in this paper, we first introduce a new notion, one-vector-
lossless sets, and provide a nonconservative generalized S-procedure for inequality
conditions on this set. More precisely, by taking account of the fact that the properties
of lossless sets are fully used to represent curves on the complex plane [9, 8], we first
consider to relax the requirements for the lossless sets and define one-vector-lossless
sets, which enables us to represent regions on the complex plane. Then, we clarify
under what condition the generalized S-procedure for inequality conditions on this
set is nonconservative. It follows that we can provide a counterpart result of [9, 8] in
the case of the one-vector-lossless sets.

To illustrate the usefulness of the proposed generalized S-procedure, we show
that full rank property analysis problems of polynomial matrices over some regions
D ⊂ C can be reduced into LMI feasibility problems. It turns out that the well-
known results such as Lyapunov’s inequalities for stability analysis of linear systems
[1, 5] and LMIs for state-feedback controller synthesis [1, 18] follow immediately from
the full rank property analysis by means of the proposed generalized S-procedure.
Thus, in conjunction with the results in [8, 16], the present paper reveals that most
LMI results in linear system theory can be captured in a unified fashion within the
framework of the generalized S-procedure.

We use the following notation in this paper. For a matrix A, its transpose and
complex conjugate transpose are denoted by AT and A∗, respectively. For a matrix
A ∈ Cn×m with rank(A) = r < n, A⊥ ∈ C(n−r)×n is a matrix such that A⊥A = 0
and A⊥(A⊥)∗ � 0. The symbols Hn and Pn denote the sets of n × n Hermitian
matrices and positive-definite Hermitian matrices, respectively. For matrices Ψ and
P , we denote by Ψ ⊗ P their Kronecker product. For λ ∈ C and Ψ ∈ H2, we define
a function σ : C × H2 → R by

σ(λ,Ψ) :=

[
λ
1

]∗
Ψ

[
λ
1

]
.

2. Generalized S-procedure for inequality conditions on one-vector-
lossless sets. The notion of one-vector-lossless sets plays an important role in this
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paper. In this section, we first describe its precise definition and provide a noncon-
servative generalized S-procedure for inequality conditions on this set.

Definition 2.1 (one-vector-lossless sets). A subset S ⊂ Hn is said to be one-
vector-lossless if it has the following properties:

(a) S is convex.
(b) S ∈ S ⇒ τS ∈ S ∀τ > 0.
(c) For each nonzero matrix H ∈ Cn×n with rank r that satisfies

(2.1) H = H∗ � 0, trace(SH) ≥ 0 ∀S ∈ S,

there exist vectors ζi ∈ Cn (i = 1, . . . , r) such that H =
∑r

i=1 ζiζ
∗
i and the

condition ζ∗j Sζj ≥ 0 (∀S ∈ S) holds for at least one index j.
This definition has been introduced by relaxing the requirements for the lossless

sets given in [9]. Indeed, Definition 2.1 becomes the requirements for the lossless sets
by replacing (c) by (c’) given in the following:

(c’) For each nonzero matrix H ∈ Cn×n with rank r that satisfies (2.1), there
exist vectors ζi ∈ Cn (i = 1, . . . , r) such that

H =

r∑
i=1

ζiζ
∗
i , ζ∗i Sζi ≥ 0 ∀i, ∀S ∈ S.

This property is referred to as rank-one separable in [8]. Detailed analysis on this
property can also be found in [13].

By comparing the conditions (c) and (c’), we see that the condition ζ∗j Sζj ≥ 0
(∀S ∈ S) is required only for one index j in the definition of the one-vector-lossless
sets. Hence, it is obvious that a lossless set is one-vector-lossless.

In the case where the set S is lossless, the condition (1.1) can be converted into
(1.2) without introducing any conservatism. The following theorem gives a counter-
part of this result in the case where the set S is one-vector-lossless.

Theorem 2.2 (the generalized S-procedure for inequality conditions on one-
vector-lossless sets). Let Θ ∈ Hn and a one-vector-lossless set S ⊂ Hn be given. If
Θ = Θ∗ � 0, then the following statements are equivalent:

(i) ζ∗Θζ > 0 ∀ζ ∈ G, G := {ζ ∈ Cn : ζ �= 0, ζ∗Sζ ≥ 0 ∀S ∈ S}.
(ii) There exists S ∈ S such that Θ � S.
Proof. (ii) ⇒ (i). Suppose (ii) holds. Then, there exists S0 ∈ S such that

ζ∗(Θ − S0)ζ > 0 (∀ζ �= 0). This inequality implies that

ζ∗Θζ > 0 ∀ζ ∈ G0, G0 := {ζ ∈ Cn : ζ �= 0, ζ∗S0ζ ≥ 0} .

Since G ⊂ G0, we can conclude that the condition (ii) implies (i).
(i) ⇒ (ii). Suppose (ii) does not hold, i.e., there is no S ∈ S such that Θ � S.

Then, since S is convex, it follows from the separating hyperplane theorem [11] that
there exists a nonzero matrix H ∈ Cn×n such that

(2.2) H = H∗ � 0, trace((Θ − S)H) ≤ 0 ∀S ∈ S.

In view of the property (b) of the one-vector-lossless set, we see that the following
conditions are necessary for the second condition in (2.2) to hold:

(2.3) trace(ΘH) ≤ 0, trace(SH) ≥ 0 ∀S ∈ S.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1550 Y. EBIHARA, K. MAEDA, AND T. HAGIWARA

Since S is one-vector-lossless, it follows from the property (c) of Definition 2.1 that
the second condition from (2.3) implies the existence of the vectors ζi (i = 1, . . . , r)
such that H =

∑r
i=1 ζiζ

∗
i and ζ∗j Sζj ≥ 0 (∀S ∈ S) for some j, where r is the rank of

H. For those vectors ζi, the first condition in (2.3) implies ζ∗i Θζi = 0 (i = 1, . . . , r)
due to the assumption Θ = Θ∗ � 0. These facts in particular imply that ζ∗j Θζj = 0
and ζj ∈ G for at least one index j. This clearly contradicts the condition (i).

We note that, in comparison with the case where the set S is lossless [9], an
additional condition Θ = Θ∗ � 0 has been imposed in Theorem 2.2. This could be
regarded as a price to pay for relaxing the requirements on the set S from a lossless
one to a one-vector-lossless one.

By means of the generalized S-procedure in Theorem 2.2, we can convert the
semi-infinite inequality condition (i) into the numerically verifiable LMI condition
in (ii). Hence, when we deal with control system analysis and synthesis problems
at hand, a crucial step is to reduce those problems into a form conformable to the
condition (i). This step is not obvious in general. When exploring such reduction, it
is indispensable to see concretely what sets are indeed one-vector-lossless. In the next
theorem, we will show a class of one-vector-lossless sets that is relevant to control
system analysis and synthesis.

Theorem 2.3. Let Ψ ∈ H2 with det(Ψ) < 0 and Γ ∈ C2n×l be given. Define a
subset of Hermitian matrices by

(2.4) S := {Γ∗(Ψ ⊗ P )Γ : P ∈ Pn} .

Then the set S is one-vector-lossless.
Proof. The proof is rather technical and thus given in the appendix.
It is meaningful to examine the property of one-vector-lossless set S given by (2.4)

in comparison with the lossless set Sl discussed in [8], where

Sl := {Γ∗(Ψ ⊗ P )Γ : P ∈ Hn} .

To see a significant difference between these two sets, let us take Ψ = diag(−1, 1) and
Γ = I2n for simplicity and consider the following set that concerns the condition (i)
in Theorem 2.2:
(2.5)

G :=

{[
f1

f0

]
∈ C2n : f0, f1 ∈ Cn,

[
f1

f0

]
�= 0,

[
f1

f0

]∗
S

[
f1

f0

]
≥ 0 ∀S ∈ S

}
.

Then, we can show that the above set defined from the one-vector-lossless set S
coincides with

(2.6) L :=

{[
f1

f0

]
∈ C2n : f1 = sf0 for some s ∈ D

}
,

where D denotes the closure of the open unit disc D on the complex plane. On the
other hand, if we replace the one-vector-lossless set S in (2.5) by the lossless set Sl,
then the resulting set Gl coincides with the set Ll obtained by replacing D in (2.6)
by ∂D. These observations clearly indicate that the lossless sets are related to curves
on the complex plane, while the one-vector-lossless sets are related to regions on the
complex plane. This is the key observation to develop the generalized S-procedure
for inequality conditions on the one-vector-lossless sets. We show in the next section
that full rank property analysis problems of polynomial matrices over some regions
on the complex plane can be dealt with by the proposed generalized S-procedure.
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3. Linear system analysis using generalized S-procedure. For given com-
plex matrices Mk ∈ Cn×m (k = 0, . . . , N) with n ≥ m, let us consider the n × m

complex polynomial matrix represented by M(s) =
∑N

k=0 s
kMk. We assume that the

normal rank of M(s) is m. Following the discussions in [6, 19], we define a (finite)
zero of M(s) as a complex value z ∈ C for which the rank of M(s) drops from its
normal value, i.e., rank(M(z)) < m. In linear system analysis and synthesis, it is of
great importance to determine whether the zeros of given polynomial matrix M(s)
belong to a specific region D ⊂ C. This can be restated equivalently in the way that
the polynomial matrix M(s) is of full-column rank for all s ∈ Dc, where Dc denotes
the complement of the region D in C. In the subsequent discussions, we restrict our
attention to the regions defined below.

Definition 3.1. For given Ψ ∈ H2 with det(Ψ) < 0, we define a set DΨ and its
complement Dc

Ψ by

(3.1) DΨ := {λ ∈ C : σ(λ,Ψ) < 0} , Dc
Ψ := {λ ∈ C : σ(λ,Ψ) ≥ 0} .

By selecting the Hermitian matrix Ψ in (3.1) appropriately, we can obtain several
important regions in linear system analysis and synthesis. In particular, by letting

(3.2) Ψc :=

[
0 1
1 0

]
, Ψd :=

[
1 0
0 −1

]
,

we see that DΨc
and DΨd

coincide with the open left half plane C− and the open unit
disc D, respectively. These regions are particularly important for stability analysis of
continuous- and discrete-time linear systems.

We are now in the right position to show that the full rank property analysis
problems of polynomial matrices can be reduced into LMI feasibility problems by
means of the proposed generalized S-procedure. We note that such reduction into
LMIs is also investigated in the preceding studies, and similar results to the next
theorem can also be found in the literature; see, for example, [6].

Theorem 3.2. Let complex matrices Mk ∈ Cn×m (k = 0, . . . , N) with n ≥ m

and Ψ =
[ ψ11 ψ12

ψ∗
12 ψ22

]
∈ H2 with det(Ψ) < 0 be given, and define M(s) :=

∑N
k=0 s

kMk,

M := [ MN · · · M0 ]. Suppose either of the following assumptions holds:
1. MN is of full-column rank.
2. ψ11 < 0.

Then, the following conditions are equivalent:
(i) The polynomial matrix M(s) is of full-column rank for all s ∈ Dc

Ψ.
(ii)

f∗M∗Mf > 0 ∀f ∈ L,
L :=

{
f ∈ C(N+1)m : f �= 0, f∗Sf ≥ 0 ∀S ∈ SW

}
,

SW := {W ∗(Ψ ⊗ P )W : P ∈ PNm} ,

W :=

[
W1

W2

]
, W1 :=

[
INm

0m,Nm

]∗
, W2 :=

[
0m,Nm

INm

]∗
.

(iii) There exists P ∈ PNm such that

(3.3) M∗M−W ∗(Ψ ⊗ P )W � 0.

If the matrices Mk (k = 0, . . . , N) and Ψ are all real, then the equivalence still holds
when we restrict P to be real.
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Proof. The proof for the equivalence of (i) and (ii) is given in the appendix. The
main step of the proof, the equivalence of (ii) and (iii), follows immediately from
Theorems 2.2 and 2.3. Indeed, the set SW is one-vector-lossless by Theorem 2.3
while it is clear that M∗M � 0. Hence the generalized S-procedure in Theorem 2.2
establishes the equivalence of (ii) and (iii). Noting that the real case results can be
shown by following similar arguments to [9], we complete the proof.

From this theorem, we see that full rank property of polynomial matrices can
be assessed by simply solving the LMI (3.3), provided that either assumption 1 or 2
is satisfied. From the definition of Dc

Ψ in (3.1), we see that the assumption ψ11 < 0
enforces the region Dc

Ψ to be bounded. To put it another way, our assumption requires
that the matrix MN is of full-column rank if the region Dc

Ψ is unbounded. When
studying the full rank property of polynomial matrices over unbounded regions, it is
well-known that we have to take a special care on zeros at infinity [2, 3, 6, 19], and the
assumption 1 is surely a sufficient condition for the absence of the zeros at infinity.
Hence, under the assumption 1, delicate problems stemming from zeros at infinity
have been excluded from our discussions.

It is obvious that the result in Theorem 3.2 forms an important basis for dealing
with stability related issues in linear system analysis. In particular, the (generalized)
Lyapunov’s inequality [1, 5] is surely a special case of (3.3). In addition, existing
LMI results for D-stabilizability also follow from Theorem 3.2, where a matrix pair
A ∈ Cn×n, B ∈ Cn×m is said to be D-stabilizable iff there exists K ∈ Cm×n such
that sI − (A+BK) is nonsingular for all s ∈ Dc. From the Popov–Belevitch–Hautus
(PBH) tests [20, 21], this condition can be restated equivalently as [ sI −A B ]∗ is
of full-column rank for all s ∈ Dc. Hence, for the region DΨ, we can conclude from
Theorem 3.2 that the pair (A,B) is DΨ-stabilizable iff there exists P ∈ Pn such that

[
In −A∗

0m,n B∗

]∗ [
In −A∗

0m,n B∗

]
− ΨT ⊗ P � 0.

From Finsler’s lemma [1], this LMI can be rewritten as

(3.4) B⊥ [
A I

]
(ΨT ⊗ P )

[
A∗

I

]
(B⊥)∗ ≺ 0.

The condition (3.4) is known as the elimination-of-variables type LMI condition
for state-feedback stabilizing controller synthesis with respect to the stability re-
gion DΨ [18]. In this way, we can derive existing stability-related LMI conditions
straightforwardly by means of the generalized S-procedure for inequality conditions
on one-vector-lossless set.

4. Conclusion. In this paper, we first introduced a new notion, one-vector-
lossless sets, and provided a nonconservative generalized S-procedure for inequality
conditions on the one-vector-lossless sets. We next showed that full rank property
analysis problems of polynomial matrices over some regions on the complex plane
can be reduced into LMI feasibility problems by means of the proposed generalized
S-procedure. It turned out that many existing results such as Lyapunov’s inequalities
for stability analysis of linear systems and LMIs for state-feedback controller synthesis
can be viewed as particular cases of this result. To summarize, in conjunction with
[8, 16], this paper clarified that most LMI results in linear control system theory can
be grasped within the unified framework of the generalized S-procedure.
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5. Appendix.

5.1. Proof of Theorem 2.3. We need the following lemma for the proof.
Lemma 5.1. For given F,G ∈ Cn×m, and Ψ =

[ ψ11 ψ12

ψ∗
12 ψ22

]
∈ H2 with det(Ψ) < 0,

suppose

(5.1) ψ11FF ∗ + ψ∗
12FG∗ + ψ12GF ∗ + ψ22GG∗ � 0.

Then, there exists a unitary matrix U ∈ Cm×m such that

(5.2) ψ11f̃1f̃
∗
1 + ψ∗

12f̃1g̃
∗
1 + ψ12g̃1f̃

∗
1 + ψ22g̃1g̃

∗
1 � 0,

where

(5.3)
[
f̃1 · · · f̃m

]
:= FU,

[
g̃1 · · · g̃m

]
:= GU, f̃i, g̃i ∈ Cn (i = 1, . . . ,m).

Proof. We give the proof only for the case ψ11 > 0. Other cases can be proved
similarly. If ψ11 > 0, then the condition (5.1) can be rewritten equivalently as(

F +
ψ12

ψ11
G

)(
F +

ψ12

ψ11
G

)∗
� −ψ−2

11 det(Ψ)GG∗.

From [12], this condition holds iff there exists a matrix W ∈ Cm×m such that

(5.4)

√
−ψ−2

11 det(Ψ)G =

(
F +

ψ12

ψ11
G

)
W, ||W || ≤ 1.

Since ||W || ≤ 1, for each eigenvalue λ of W and its associated eigenvector ξ, we have
Wξ = λξ, |λ| ≤ 1, ξ∗ξ = 1. Taking one such ξ, we can construct a unitary matrix U
of the form U =

[
ξ U

]
, U ∈ Cm×(m−1). Then, we see from (5.4) that the vectors f̃1

and g̃1 defined by (5.3) with this unitary matrix U satisfy√
−ψ−2

11 det(Ψ)g̃1 =

(
f̃1 +

ψ12

ψ11
g̃1

)
λ (|λ| ≤ 1).

This implies (5.2).
Now we are ready to prove Theorem 2.3.
Proof. It is obvious that the set S given in (2.4) has the properties (a) and (b)

in Definition 2.1. To prove the property (c), let H ∈ Cl×l be a nonzero matrix that
satisfies (2.1). In addition, we denote the full rank factorization of H by

(5.5) H = LL∗, L ∈ Cl×r, r := rank(H).

With this L, define

(5.6)

[
F
G

]
:= ΓL, F,G ∈ Cn×r.

Then, the second condition in (2.1) can be rewritten as

trace((ψ11FF ∗ + ψ∗
12FG∗ + ψ12GF ∗ + ψ22GG∗)P ) ≥ 0 ∀P ∈ Pn.

It can be seen that this condition holds iff (5.1) holds. Hence, from Lemma 5.1, there
exists a unitary matrix U ∈ Cr×r that satisfies (5.2) with f̃i, g̃i ∈ Cn (i = 1, . . . ,m)
given by (5.3). Here, note that (5.2) is equivalent to

(5.7) trace((ψ11f̃1f̃
∗
1 + ψ∗

12f̃1g̃
∗
1 + ψ12g̃1f̃

∗
1 + ψ22g̃1g̃

∗
1)P ) ≥ 0 ∀P ∈ Pn.

By defining [ ζ1 · · · ζr ] := LU , we have H =
∑r

i=1 ζiζ
∗
i . On the other hand, from

(5.6) and (5.3), it is apparent that [ f̃∗
1 g̃∗1 ]∗ = Γζ1. Hence, we see from (5.7) that the
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condition ζ∗1Γ∗(Ψ⊗P )Γζ1 ≥ 0 (∀P ∈ Pn) holds or, equivalently, ζ∗1Sζ1 ≥ 0 (∀S ∈ S).
This clearly shows that the set S satisfies the property (c) of Definition 2.1.

5.2. Proof of the equivalence of (i) and (ii) in Theorem 3.2. The condi-
tion (i) can be restated equivalently as

f∗M∗Mf > 0 ∀f ∈ K,
K :=

{
f = [ f∗

N · · · f∗
0 ]∗ ∈ C(N+1)m : f0 �= 0,

∃s ∈ Dc
Ψ such that fk+1 = sfk (k = 0, . . . , N − 1)} .

Hence, to prove the equivalence of (i) and (ii), it suffices to show that K = L. To this
end, we first note that K = L′, where

L′ := {f = [ f∗
N · · · f∗

0 ]∗ ∈ C(N+1)m :
fk ∈ Cm (k = 0, . . . , N),
f0 �= 0, f∗Sf ≥ 0 ∀S ∈ SW }.

To see this, suppose f = [ f∗
N · · · f∗

0 ]∗ ∈ K, and define fu, fl ∈ CNm by

(5.8) fu := [ f∗
N · · · f∗

1 ]∗ = W1f, fl := [ f∗
N−1 · · · f∗

0 ]∗ = W2f.

Then, from the definition of K, the following inequality holds for all P ∈ PNm:

f∗W ∗(Ψ ⊗ P )Wf =

[
fu
fl

]∗
(Ψ ⊗ P )

[
fu
fl

]

=

[
sfl
fl

]∗
(Ψ ⊗ P )

[
sfl
fl

]
= σ(s,Ψ)f∗

l Pfl ≥ 0.

This shows that f ∈ L′, and hence K ⊂ L′. On the other hand, suppose f =
[ f∗

N · · · f∗
0 ]∗ ∈ L′, and define fu and fl by (5.8). Then, from the definition of L′, we

have

trace ((ψ11fuf
∗
u + ψ∗

12fuf
∗
l + ψ12flf

∗
u + ψ22flf

∗
l )P ) ≥ 0 ∀P ∈ PNm.

It can be easily seen that the above condition implies

(5.9) ψ11fuf
∗
u + ψ∗

12fuf
∗
l + ψ12flf

∗
u + ψ22flf

∗
l � 0.

Moreover, under the assumption f0 �= 0, we have fl �= 0, and hence (5.9) holds iff
fu = sfl for some s ∈ Dc

Ψ [12]. This clearly shows that f ∈ K and hence L′ ⊂ K.
Thus we can conclude K = L′.

To complete the proof, note that L = L′ ∪ J ′, where

J ′ := {f = [ f∗
N · · · f∗

0 ]∗ ∈ C(N+1)m :
fk ∈ Cm (k = 0, . . . , N), f �= 0, f0 = 0, f∗Sf ≥ 0 ∀S ∈ SW }.

Moreover, we can show that the set J ′ is equivalent to

J := {f = [ f∗
N · · · f∗

0 ]∗ ∈ C(N+1)m :
fk ∈ Cm (k = 0, . . . , N),
fN �= 0, fk = 0 (k = 0, . . . , N − 1), f∗Sf ≥ 0 ∀S ∈ SW }.

To see the equivalence of J ′ and J , let us take a vector f ∈ J ′. Furthermore, define
fu and fl by (5.8) and suppose fl �= 0. Then, the vectors fu and fl should satisfy
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(5.9), and thus fu = sfl holds for some s ∈ Dc
Ψ. Since f0 = 0, however, fu = sfl

implies fl = 0. This clearly contradicts the assumption fl �= 0. Hence, we have fl = 0
and thus f ∈ J . This shows that J ′ ⊂ J . On the other hand, it is apparent that
J ⊂ J ′, and hence we have J ′ = J .

Summarizing the above arguments, L = K ∪ J holds. Hence, the equivalence of
(i) and (ii) can be verified by showing that the condition f∗M∗Mf > 0 holds for all
f ∈ J under either assumption 1 or 2. If ψ11 < 0, however, it can be easily seen
that the set J is empty. On the other hand, if ψ11 ≥ 0, then we have M∗

NMN � 0
from the assumption. This indicates that f∗M∗Mf = f∗

NM∗
NMNfN > 0 (∀f ∈ J ).

Hence, we can conclude that the conditions (i) and (ii) are equivalent under either
assumption 1 or 2. This completes the proof.
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