

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 826–837

PARALLEL BIDIAGONALIZATION OF A DENSE MATRIX∗

CARLOS CAMPOS† , DAVID GUERRERO‡ , VICENTE HERNÁNDEZ‡ , AND RUI RALHA§

Abstract. A new stable method for the reduction of rectangular dense matrices to bidiagonal
form has been proposed recently. This is a one-sided method since it can be entirely expressed in
terms of operations with (full) columns of the matrix under transformation. The algorithm is well
suited to parallel computing and, in order to make it even more attractive for distributed memory
systems, we introduce a modification which halves the number of communication instances. In
this paper we present such a modification. A block organization of the algorithm to use level 3
BLAS routines seems difficult and, at least for the moment, it relies upon level 2 BLAS routines.
Nevertheless, we found that our sequential code is competitive with the LAPACK DGEBRD routine.
We also compare the time taken by our parallel codes and the ScaLAPACK PDGEBRD routine. We
investigated the best data distribution schemes for the different codes and we can state that our
parallel codes are also competitive with the ScaLAPACK routine.

Key words. bidiagonal reduction, parallel algorithms

AMS subject classifications. 15A18, 65F30, 68W10

DOI. 10.1137/05062809X

1. Introduction. The problem of computing the singular value decomposition
(SVD) of a matrix is one of the most important operations in numerical linear algebra
and is employed in a variety of applications. The SVD is defined as follows.

For any rectangular matrix A ∈ R
m×n (we will assume that m ≥ n), there exist

two orthogonal matrices U ∈ R
m×m and V ∈ R

n×n and a matrix Σ =
[
ΣA

0

]
∈ R

m×n,
where ΣA = diag (σ1, . . . , σn) is a diagonal matrix, such that A = UΣV t. The values
σ1 ≥ · · · ≥ σn ≥ 0 are called the singular values of A.

To compute the SVD of a dense matrix, an important class of methods starts
with Householder bidiagonalization [11], [12], [14], [15], [19], [20], [21], reducing A to
upper bidiagonal form B ∈ R

n×n, from which the singular values are computed in an
iterative manner [2], [16], [18], [22].

The Householder bidiagonalization computes UB ∈ R
m×m and VB ∈ R

n×n, as
products of Householder matrices, such that

(1) A = UB

[
B

0

]
V t
B , where B =

⎡
⎢⎢⎢⎢⎣

α1 β2

α2
. . .

. . . βn

αn

⎤
⎥⎥⎥⎥⎦ .

The classical method for producing this decomposition is a two-sided algorithm
which employs both premultiplication and postmultiplication by Householder matri-

∗Received by the editors March 30, 2005; accepted for publication (in revised form) by J. L.
Barlow February 1, 2007; published electronically July 25, 2007.

http://www.siam.org/journals/simax/29-3/62809.html
†Departamento de Matemática, Escola Superior de Tecnologia e Gestão (Leiria), Campus 2, Morro

do Lena, Alto do Vieiro, 2401-951 Leiria, Portugal (ccampos@estg.ipleiria.pt).
‡Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia,

Camino de Vera s/n, E-46022 Valencia, Spain (dguerrer@dsic.upv.es, vhernand@dsic.upv.es).
§Departamento de Matemática, Universidade do Minho, 4710-057 Braga, Portugal (r ralha@

math.uminho.pt). The research of this author was supported by the Portuguese Foundation for
Science and Technology through the research program POCI 2010.

826

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL BIDIAGONALIZATION OF A DENSE MATRIX 827

ces. In order to establish an algorithm which is better suited to parallel implemen-
tation than the standard bidiagonalization method, Ralha [25], [26], and Ralha and
Mackiewicz [27] proposed a new technique that uses only multiplication on the right
side of A by Householder matrices. Inspired by Ralha’s method, Barlow, Bosner,
and Drmač [4] proposed a new stable method for the reduction of rectangular dense
matrices to the bidiagonal form.

In this paper we present both methods and propose a modification to the Barlow
method which halves the number of communication instances in the parallel imple-
mentation, making the algorithm even more attractive for distributed memory sys-
tems.

This paper is organized as follows. In section 2 we describe the new bidiagonaliza-
tion methods. Section 3 deals with the sequential and parallel implementations, using
LAPACK [1] and ScaLAPACK [8] routines. In section 4 we analyze the experimental
results of our numerical tests. Section 5 summarizes our conclusions and future work.

2. New bidiagonalization methods.

2.1. Ralha bidiagonal reduction. Given a rectangular dense matrix A ∈
R

m×n, the bidiagonalization method proposed by Ralha is comprised of two stages.
The first stage consists of a sequence of n− 2 Householder transformations

(2) Ar = Ar−1 · diag (Ir, Hr) (r = 1, . . . , n− 2),

where Ir is the identity matrix of order r, A0 = A, and the columns ai and aj of the
final matrix An−2 satisfy

(3) atiaj = 0 for |i− j| > 1.

This can be understood as an implicit reduction of the symmetric semidefinite positive
matrix AtA to tridiagonal form. In the rth step, the construction of the Householder
vector vr in

(4) Hr = In−r −
2

vtrvr
vrv

t
r

requires the computation of n− r dot products involving the appropriate columns of
Ar−1.

Having produced An−2, the second stage is a variant of the Gram–Schmidt or-
thogonalization method that produces the factorization An−2 = QB, where B is the
required upper bidiagonal matrix.

Representing by ai and qi the columns of An−2 and Q, respectively, we have

(5)
[
a1 · · · ai · · · an

]
=

[
q1 · · · qi · · · qn

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β2

α2
. . .

. . . βi

αi
. . .

. . . βn

αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

(6) q1 =
a1

α1
, qi =

ai − βiqi−1

αi
(i = 2, . . . , n) .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

828 C. CAMPOS, D. GUERRERO, V. HERNÁNDEZ, AND R. RALHA

Each βi is chosen to make qi orthogonal to qi−1, and each αi is such that ‖qi‖2 = 1;
with these conditions, we get from (6)

α1 = ‖a1‖2 ,(7)

βi = atiqi−1 (i = 2, . . . , n) ,

αi = ‖ai − βiqi−1‖2 (i = 2, . . . , n) .

The first stage of this method is perfectly stable in the sense that the computed
Ãn−2 satisfies

(8) Ãn−2 = (A + E)P,

where P is exactly orthogonal and

(9) ‖E‖2 ≤ g(m,n)εM ‖A‖2

for some modestly growing function g(m,n) and machine epsilon εM [24, pp. 94–96].
Furthermore, if A = DX, where D is diagonal and cond(X) � cond(A), then these
one-sided orthogonal transformations preserve the small singular values better than
two-sided transformations [10].

It may happen that some nonadjacent columns of Ãn−2 are not orthogonal to
working precision1 and, even when all those columns are numerically orthogonal, the
process of producing a bidiagonal B from Ãn−2 may bring trouble. To give an insight
into the problem, consider the following triangular matrix:

R =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
0 10−9 1 10−9 10−7

0 0 10−3 10−6 −10−4

0 0 0 1 10−11

0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

We have

RtR =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
1 1 + 10−18 10−9 10−18 10−16

0 10−9 1 + 10−6 2 × 10−9 0
0 10−18 2 × 10−9 1 + O(10−12) O(−10−10)
0 10−16 0 O(−10−10) 1 + O(10−8)

⎤
⎥⎥⎥⎥⎦ ,

which differs from a tridiagonal matrix by quantities not larger than 10−16. If
A = QR, with Q orthogonal, then AtA = RtR and the nonadjacent columns of
A are orthogonal to working precision; however, from the uniqueness of the QR de-
composition, it follows that there is no bidiagonal B satisfying A = QB; in other
words, small perturbations outside the tridiagonal band of AtA cause much larger (as
large as O(10−4) in this case) perturbations in B; i.e., the problem is ill-conditioned.

1See [26] for an example: the Lauchli matrix L(n, μ) with n = 7 and μ = εM .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL BIDIAGONALIZATION OF A DENSE MATRIX 829

2.2. Barlow bidiagonal reduction. Barlow, Bosner, and Drmač [4] recently
proposed a stable algorithm which consists, essentially, in interleaving the two stages
of Ralha’s method. More precisely,

1. the vector qr is computed immediately after applying the Householder trans-
formation Hr; and

2. the Householder vector used in the transformation Hr+1 is computed from
xr = A (:, r + 1 : n)

t
qr.

Those authors also noted that the computation of the dot product βr = qtr−1A (:, r)
may be avoided (this is also the case with Ralha’s algorithm); in [4], an extensive er-
ror analysis of the proposed algorithm is carried out which shows that the method is
always able to compute an upper bidiagonal matrix B in a backward stable manner.
That is, we have, for each k = 1, . . . , n,

(10) |σk(B) − σk(A)| ≤ f(m,n)εM ‖A‖2 + O
(
ε2
M

)
for some modestly growing function f(m,n). As was already the case with Ralha’s
bidiagonalization, there are ill-conditioned matrices where this algorithm obtains
small relative errors for all the singular values [26], [10]. Furthermore, the orthogo-
nality of the columns of U is similar to that of the matrix Q in the QR factorization
by the modified Gram–Schmidt method [6], [7]; that is, U may be far from orthogonal
(see [4, Example 3.1]). Nevertheless, the leading left singular vectors of A can be
recovered with good orthogonality (see [4, Corollary 3.20]).

The algorithm may be stated simply as follows (for a more complete statement
see [4]).

Algorithm 1 (Barlow bidiagonal reduction).
for r = 1 : n− 2

αr = ‖A (:, r)‖2

qr = A(:,r)
αr

xr = A (:, r + 1 : n)
t
qr

compute Hr such that Ht
rxr = βr+1e1

A (:, r + 1 : n) = A (:, r + 1 : n)Hr

A (:, r + 1) = A (:, r + 1) − βr+1qr
end
αn−1 = ‖A (:, n− 1)‖2

qn−1 = A(:,n−1)
αn−1

βn = qtn−1A (:, n)
A (:, n) = A (:, n) − βnqn−1

αn = ‖A (:, n)‖2

qn = A(:,n)
αn

2.3. Modified Barlow bidiagonal reduction. The advantages of one-sided
transformations for parallel bidiagonalization on a multiprocessor system with dis-
tributed memory were first discussed in [25]. The best data decomposition consists
in assigning to each one of p processors a number of rows of the matrix under trans-
formation, that is, a segment of length m/p of each column (we are assuming, for
simplicity, that p is a divisor of m; if this is not the case, then each processor should
get either floor(m/p) or floor(m/p) + 1 rows). According to the ideas proposed in
[25], in the rth step, each processor gets a copy of the entire vector xr and computes
its own copy of the corresponding Householder vector. So, there is some redundancy

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

830 C. CAMPOS, D. GUERRERO, V. HERNÁNDEZ, AND R. RALHA

in the computation, but its negative effect in the overall efficiency is not dramatic
when m/p is large (see [25]). The reward for this approach is two-fold: the load bal-
ancing is optimal and interprocessor communication is required only for the n− r+ 1
dot products involved in the computation of the norm αr and the vector xr.

Following this strategy, in the parallel implementation of Barlow’s method, a
communication event, involving all processors, is required to compute αr alone. Then,
a normalization is carried out to produce qr, and this will be followed by a second
communication event involving the processors in the computation of the n − r dot
products xr = A (:, r + 1 : n)

t
qr.

These two communication events may be reduced to only one if we postpone the
normalization of the rth column of Ar; that is, the processors cooperate in the global
task of computing the n− r+1 dot products xr = A (:, r : n)

t
A (:, r) and, from these,

each processor will compute locally αr =
√
xr (1), where xr (1) = A (:, r)

t
A (:, r), and

the local segment of qr = A (:, r) /αr. Observe that xr(2 : n− r + 1) differs from the
vector xr computed in Barlow’s method by a factor equal to αr, but there is no need
to perform a scaling of xr(2 : n − r + 1) since the resulting Householder reflector in
(4) is invariant under such a scaling. However, in the computation of the off-diagonal
element we must take into account that the relation

(11) βr+1 =
‖xr(2 : n− r + 1)‖2

αr

holds in each step.
An essential ingredient in the proof presented in [4] for the error bound given in

(10) is the fact that, in each step, the computed Ar is the exact product (Ar−1 +Er) ·
diag (Ir, Hr), where Hr is the exact Householder reflector corresponding to the vector
xr of the inner products and ‖Er‖2 ≤ O(εM) ‖Ar−1‖2. This matrix Er encapsulates
the errors in the approximation v̂r computed for the exact vector vr and also the
errors produced in the update Ar−1 · diag(Ir, Ĥr), with Ĥr = In−r − 2

v̂t
r v̂r

v̂rv̂
t
r. In the

modified method, a slightly different approximation ṽr will be produced (for a detailed
error analysis in the computation of the Householder vector see [30, pp. 152–157]),
but, similarly to v̂r, ṽr defines a Householder reflector, say, H̃r, that is very close to
the exact one; i.e., we have ‖H̃r −Hr‖2 = O(εM). We therefore claim that the error
analysis given in [4] also applies to our modified method.

Our proposal does not change the arithmetic complexity of Barlow’s method
and does not reduce the volume of data to be transferred but halves the number
of communication events, therefore reducing the overhead caused by the latency in
the communications. The total cost of communication depends upon the parallel
computation of the inner products only; in [25] it is shown that, on a simple chain of
processors, this cost is approximately given by

(12) p
n2

2
(tflop + 2tcom) ,

where tflop represents the time taken by one floating point operation and tcom stands
for the time required to pass a floating point number from one processor to another.
The factor p in (12) essentially reflects the diameter of the network and may be
replaced by

√
p in the case of a square grid.

The computation of αn−1 and βn may also be arranged in a way that saves one
communication event in the parallel implementation. As in the previous steps, we
may use communication to get xn−1 = A (:, n− 1 : n)

t
A (:, n− 1) in each processor;

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL BIDIAGONALIZATION OF A DENSE MATRIX 831

then, we have

(13) αn−1 =
√
xn−1 (1) and βn = xn−1 (2) /αn−1.

In practical implementations of these algorithms, qr may overwrite A(:, r) to
reduce the volume of the storage required. In the next section we do so.

3. Sequential and parallel implementations. In this section we describe the
methodology used to develop our sequential and parallel implementations. The same
methodology was applied to all implementations, but from now on we will refer only
to the sequential and parallel implementations of the modified Barlow method.

In order to obtain high portability and efficiency, all our implementations use,
as much as possible, LAPACK and ScaLAPACK routines. It must be stressed that
our implementations rely on level 2 BLAS routines [17]. A block organization of the
Barlow method has been under development by Bosner and Barlow (see [9]), who
have reported significant reduction in the execution time of the sequential algorithm,
depending upon the size of the matrices. However, those authors also found that for
parallel processing the nonblocked algorithm is preferred due to large overheads in
the block version.

From our sequential codes we obtained the corresponding parallel codes by trans-
lating the BLAS and the LAPACK routines into calls of the equivalent parallel rou-
tines of PBLAS [13] and ScaLAPACK. This translation process takes into account the
data distribution and the corresponding rules to convert sequential LAPACK-based
programs into parallel ScaLAPACK-based programs.

Our parallel implementation of the modified Barlow method, including the cor-
responding PBLAS and ScaLAPACK routines, is stated as follows.

Algorithm 2 (parallel implementation).

Get the context of ScaLAPACK’s process grid BLACS GRIDINFO
Create ScaLAPACK’s descriptor for xr DESCINIT
for r = 1 : n− 2

xr = A (:, r : n)
t
A (:, r) PxGEMV

αr =
√
xr (1)

A (:, r) = A(:,r)
αr

PxSCAL

compute Hr such that Ht
rxr (2 : n− r + 1) = φre1 PxLARFG

A (:, r + 1 : n) = A (:, r + 1 : n)Hr PxLARF
βr+1 = φr

αr

A (:, r + 1) = A (:, r + 1) − βr+1A (:, r) PxAXPY
end
xn−1 = A (:, n− 1 : n)

t
A (:, n− 1) PxGEMV

αn−1 =
√
xn−1 (1)

βn = xn−1 (2) /αn−1

A (:, n− 1) = A(:,n−1)
αn−1

PxSCAL

A (:, n) = A (:, n) − βnA (:, n− 1) PxAXPY
αn = ‖A (:, n)‖2 PxNRM 2

A (:, n) = A(:,n)
αn

PxSCAL
With the ScaLAPACK data distribution, which follows a two-dimensional block

cyclic scheme, we manage to assign m/p rows (not contiguous) to each processor by
reducing the grid to a single column of processors. We emphasize that, as a direct con-
sequence of the use of the routines from ScaLAPACK, we have not fully implemented
the parallel algorithm as presented in the previous section. In our implementation,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

832 C. CAMPOS, D. GUERRERO, V. HERNÁNDEZ, AND R. RALHA

the computation of the inner products is carried out with PxGEMV and, as follows
from the array descriptor that we have used, the resulting vector xr is stored on a
single processor (processor 0, say). As a consequence of this distribution, during the
execution of PxLARFG, the computation of φr is carried out on processor 0 only and
no communication is required. The application of the Householder reflectors (with
PxLARF) requires communication to make the value φr available on each processor.

Finally, we note that, in applications where it is not necessary to produce a matrix
Q with normalized columns, we may change Algorithm 2 in a way that reduces the
number of floating point divisions. This consists of removing the scaling operations
A(:, r) = A(:, r)/αr (PxSCAL) for r = 1, . . . , n and rewriting the PxAXPY operations

as A(:, r + 1) = A(:, r + 1) − βr+1

αr
A(:, r) for r = 1, . . . , n − 1, with a total savings of

mn− (n− 1) divisions.

4. Experimental results.

4.1. Introduction. In this section we analyze the execution times of our im-
plementations, obtained on a cluster with 20 biprocessor nodes where each node is
a Pentium Xeon at 2GHz, 1GB of RAM, and Redhat Linux operating system. The
nodes are connected through a SCI network, organized in a 4× 5 2D torus grid. Each
node has been treated as a single processor machine and the biprocessor feature has
not been exploited. Unfortunately, only 10 nodes of the cluster were available for our
computational tests.

All experiments were performed using Fortran 90 and IEEE standard double
precision floating point arithmetic [23]. As already said, we made use of LAPACK and
ScaLAPACK routines in order to ensure a high level of portability and efficiency of our
implementations. The communications in ScaLAPACK were carried out using Scali
MPI [28], which is an optimized implementation of the standard MPI communication
library [29] for SCI networks.

In all experiments, the execution times were measured in seconds, and the test
matrices (rectangular matrices with sizes ranging from 10000× 1000 to 10000× 4500
and square matrices with sizes ranging from 1000×1000 to 4500×4500) were generated
randomly.

The execution times that will be reported are strictly for the process of producing
the bidiagonal; i.e., no accumulation of the orthogonal transformations was carried
out.

4.2. Sequential codes. In Figure 1 we compare the execution times of the
LAPACK routine DGEBRD and our sequential codes for the case of rectangular
matrices. If m is much larger than n, it is more efficient to carry out an initial QR
decomposition [11]. In our tests we have not done this, mainly because PDGEBRD
(from ScaLAPACK) also does not perform such a decomposition. As can be seen,
the new bidiagonalization methods have similar execution times, and, in general, our
sequential codes are competitive with DGEBRD.

The number of flops involved in the new methods is approximately equal to 3mn2

flops and the operation count for DGEBRD is 4mn2 − 4/3n3; therefore, the new
methods require fewer flops whenever m > 4

3n [4], [25]. For m fixed, the new methods
are less competitive as n grows. For m = 10000 and n = 4000, DGEBRD uses about
4
3 the number of flops required by the new method. However, looking at Figure 1,
we see that the execution times are almost equal. This is because DGEBRD applies
block updates of the form A−UXt−Y V t using two calls to the level 3 BLAS routine
DGEMM; these calls account for about half the work [1] and make the code more

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL BIDIAGONALIZATION OF A DENSE MATRIX 833

Fig. 1. DGEBRD versus new methods (rectangular matrices).

efficient. The new methods are based upon level 2 BLAS routines; i.e., the ratio of
floating point operations to memory references is lower.

4.3. Parallel codes. In this section we compare, in terms of the execution times
measured, the ScaLAPACK routine PDGEBRD and our parallel codes. We have
observed that there is a nonnegligible influence of the sizes of the rectangular grid used
for the configuration of the processors. Unlike the ScaLAPACK routine, our parallel
implementations perform better on a grid with a single column. In the following
comparisons we will always use the best execution time.

In Figure 2 we report the execution times of the Barlow and the modified Barlow
parallel codes running on 2, 4, 6, 8, and 10 processors for rectangular matrices. For
each n (number of columns), there are five pairs of consecutive bars, one pair for
each value of p (number of processors). On each pair, the dark bar corresponds to
the Barlow method, and the white bar corresponds to the modified method. The
gain that can be observed for the parallel implementation of the modified method
is not impressive. This is not surprising because our computational platform has
efficient communication, as one can conclude from the high efficiency obtained for
all the parallel algorithms. Since the modified method reduces the communication
overheads, we expect the gain to be much more significant on a system where the cost
of the communications is heavier (a loosely coupled network of personal computers,
for example).

Figure 3 allows a comparison of the execution times of PDGEBRD and the mod-
ified method on 2, 4, 6, 8, and 10 processors. Again, for each n, there are five pairs
of consecutive bars, dark and white, the dark bar corresponding to PDGEBRD, and
the white bar to the modified method. As can be seen, on two processors our code
is slower than PDGEBRD, but the situation is reversed as we increase the number
of processors. At this point, in our experiments, we were very sorry to not have the
opportunity to use many more processors since we do believe that the new method has
better scalability than the ScaLAPACK routine. In section 5 we justify this conviction
with some arguments.

In Figure 4, for each n, we give the efficiency obtained for PDGEBRD (dark) and
for the parallel code of the modified Barlow algorithm (white), running on 2, 4, 6, 8,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

834 C. CAMPOS, D. GUERRERO, V. HERNÁNDEZ, AND R. RALHA

Fig. 2. Barlow’s versus modified (rectangular matrices).

Fig. 3. PDGEBRD versus modified (rectangular matrices).

and 10 processors. The efficiency is computed according to the usual formula:

(14) Efficiency =
Execution time on a single processor

p× (Execution time on p processors)
.

Finally, to illustrate the influence of the processors grid, we ran PDGEBRD on
a linear array of processors. This causes a significant degradation of the efficiency of
PDGEBRD (compare the dark bars for efficiency in Figures 4 and 5), and, in this
case, the new code is clearly more efficient.

5. Conclusions and future work. Inspired by an algorithm proposed by one
of us, Barlow, Bosner, and Drmač recently presented a backward stable method for
the reduction of a matrix to bidiagonal form.

We have presented parallel implementations of the method as proposed by those
authors and also of a modified method that halves the number of communication
events.

The advantages of one-sided transformations over two-sided methods for parallel
bidiagonalization have been explained in detail in [25]. The parallel code for the one-
sided algorithm is essentially the sequential code with a procedure to compute the dot

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL BIDIAGONALIZATION OF A DENSE MATRIX 835

Fig. 4. PDGEBRD versus modified (efficiency).

Fig. 5. PDGEBRD versus modified (efficiency on a linear array of processors).

products in parallel. This procedure (dubbed GLOBAL.SDOT in [25]) encapsulates
all the communication that is required in the parallel algorithm, provided that each
processor gets full rows of the matrix. For this reason we do not use a two-dimensional
block cyclic distribution. Note that the ScaLAPACK routine PDGEBRD does require
communication not only to compute the dot products but also to compute and ap-
ply the Householder reflectors. Our one-dimensional distribution, together with the
acceptance of some redundancy in the arithmetic, due to the computation of the
Householder vectors, produces a parallel algorithm which is well load-balanced and
reduces significantly the communication needs, as compared to the ScaLAPACK code.
The communication overhead expressed in (12) allows us to conclude (see [25]) that
our parallel algorithm is efficient provided that m/p is large enough.

We have described the methodology employed to develop our sequential and paral-
lel codes which intends to use, as much as possible, calls of LAPACK and ScaLAPACK
routines, in order to obtain high levels of portability and efficiency.

Our results show that the sequential code for the new method is competitive with
the LAPACK routine DGEBRD; although for square matrices we found DGEBRD to
be faster. This is not surprising since DGEBRD requires in this case about 8

3n
3 flops

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

836 C. CAMPOS, D. GUERRERO, V. HERNÁNDEZ, AND R. RALHA

and the new method uses 1
3n

3 additional flops. Furthermore, DGEBRD has a better
ratio of floating point operations to memory references, because it uses level 2 and
level 3 BLAS, whereas the new algorithm does not use any level 3 BLAS routine. Even
so, without an initial QR decomposition, the new method is faster than DGEBRD if
m is much larger than n (in our tests, this happened with m = 10000 and n = 3500).

Our experimental results on a multiprocessor system do not show as clearly as we
expected initially the superiority of the new method. There is a very good reason for
this: the ScaLAPACK routine PDGEBRD proved to be very efficient in our tests; this
is due to the fact that the communications in our machine are fast and also because
we used a maximum of 10 processors only. Since the new algorithm reduces the
communication overheads, its virtues will emerge whenever the cost of communication
becomes higher comparatively to computation time (a larger number of processors
and/or slower communications). Nevertheless, for rectangular matrices our parallel
code was marginally faster than PDGEBRD. We expect to be able to use a larger
number of processors in the very near future in order to be able to support our claim
that the new method has better scalability than the ScaLAPACK routine.

The modification proposed in this paper for the new algorithm reduces to half
the number of communication events. In our tests, the gain has not been dramatic,
but it may be much more significant on systems with a larger number of processors
and/or larger latency in the communications.

To conclude, let us express our view that the new algorithm is very promising
for parallel processing. There is still scope to optimize our code and to make it even
more competitive with the highly optimized code of the ScaLAPACK routine.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, 3rd ed., Software Environ. Tools 9, SIAM, Philadelphia, 1999.

[2] P. Arbenz, Divide-and-conquer algorithms for the computation of the SVD of bidiagonal ma-
trices, in Vector and Parallel Computing, Ellis Horwood Ser. Comput. Appl., Horwood,
Chichester, UK, 1989, pp. 1–10.

[3] J. Barlow, More accurate bidiagonal reduction for computing the singular value decomposi-
tion, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 761–798.

[4] J. Barlow, N. Bosner, and Z. Drmač, A new stable bidiagonal reduction algorithm, Linear
Algebra Appl., 397 (2005), pp. 35–84.

[5] J. Barlow and J. Demmel, Computing accurate eigensystems of scaled diagonally dominant
matrices, SIAM J. Numer. Anal., 27 (1990), pp. 762–791.

[6] A. Björck, Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT, 7
(1967), pp. 1–21.

[7] A. Björck, Numerics of Gram-Schmidt orthogonalization, Linear Algebra Appl., 197/198
(1994), pp. 297–316.

[8] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,

S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley,
ScaLAPACK Users’ Guide, Software Environ. Tools 4, SIAM, Philadelphia, 1997.

[9] N. Bosner and J. Barlow, Block and Parallel Versions of One-Sided Bidiagonaliza-
tion, Tech. report, University of Zagreb, Zagreb, Croatia, 2005; poster available on
http://osijek.fernuni-hagen.de/∼luka/Presentations/Nela.pdf.

[10] N. Bosner and Z. Drmač, On accuracy properties of one-sided bidiagonalization algorithm and
its applications, in Proceedings of the Conference on Applied Mathematics and Scientific
Computing, Z. Drmač, M. Marušić, and Z. Tutek, eds., Springer, Dordrecht, 2005, pp. 141–
150.

[11] T. F. Chan, An improved algorithm for computing the singular value decomposition, ACM
Trans. Math. Software, 8 (1982), pp. 72–83.

[12] T. F. Chan, Rank revealing QR factorizations, Linear Algebra Appl., 88/89 (1987), pp. 67–82.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL BIDIAGONALIZATION OF A DENSE MATRIX 837

[13] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. Whaley, A pro-
posal for a set of parallel basic linear algebra subprograms, LAPACK Working Note 100,
University of Tennessee, Knoxville, TN, 1995.

[14] J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[15] J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač, Computing

the singular value decomposition with high relative accuracy, LAPACK Working Note 119,
University of Tennessee, Knoxville, TN, 1997.

[16] J. Demmel and W. Kahan, Accurate singular values of bidiagonal matrices, SIAM J. Sci.
Statist. Comput., 11 (1990), pp. 873–912.

[17] J. Dongarra, J. Croz, S. Hammarling, and R. Hanson, An extended set of FORTRAN
basic linear algebra subprograms, ACM Trans. Math. Software, 14 (1988), pp. 1–17.

[18] K. V. Fernando and B. N. Parlett, Accurate singular values and differential QD algorithms,
Numer. Math., 67 (1994), pp. 191–229.

[19] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,
SIAM J. Numer. Anal., 2 (1965), pp. 205–224.

[20] G. H. Golub and C. Reinsch, Singular value decomposition and least squares solution, Numer.
Math., 14 (1970), pp. 403–420.

[21] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1996.

[22] M. Gu and S. C. Eisenstat, A divide-and-conquer algorithm for the bidiagonal SVD, SIAM
J. Matrix Anal. Appl., 16 (1995), pp. 79–92.

[23] IEEE, IEEE Standard for Binary Floating Point Arithmetic, ANSI/IEEE std 754/1985, IEEE
Computer Society, Los Alamitos, CA, 1985.

[24] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice–Hall, Englewood Cliffs, NJ,
1980.

[25] R. Ralha, A new algorithm for singular value decompositions, in Proceedings of the Second
Euromicro Workshop on Parallel and Distributed Processing, IEEE Computer Society, Los
Alamitos, CA, 1994, pp. 240–244.

[26] R. Ralha, One-sided reduction to bidiagonal form, Linear Algebra Appl., 358 (2003), pp. 219–
238.

[27] R. Ralha and A. Mackiewicz, An efficient algorithm for the computation of singular values,
in Proceedings of the Third International Congress of Numerical Methods in Engineering
(Zaragoza, Spain), M. Doblaré, J. M. Correas, E. Alarcón, L. Gavete, and M. Pastor, eds.,
Spanish Society of Numerical Methods in Engineering, Barcelona, Spain, pp. 1371–1380,
1996.

[28] Scali AS, Scali System Guide, http://www.scali.com, 2002.
[29] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete

Reference, MIT Press, Cambridge, MA, 1996.
[30] J. H.Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, UK,

1965.

