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Abstract

This work gathers new results concerning the semi-geostrophic

equations: existence and stability of measure valued solutions, exis-

tence and uniqueness of solutions under certain continuity conditions

for the density, convergence to the incompressible Euler equations.

Meanwhile, a general technique to prove uniqueness of sufficiently

smooth solutions to non-linearly coupled system is introduced, using

optimal transportation.
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1 Introduction

The semi-geostrophic equations are an approximation to the Euler equa-
tions of fluid mechanics, used in meteorology to describe atmospheric flows,
in particular they are believed (see [12]) to be an efficient model to describe
frontogenesis. Different versions (incompressible [1], shallow water [10] , com-
pressible [11]) of this model have been studied, and we will focus here on the
incompressible 2-d and 3-d version. The 3-d model describes the behavior
of an incompressible fluid in a domain Ω ⊂ R

3. To the evolution in Ω is
associated a motion in a ’dual’ space, described by the following non-linear
transport equation:

∂tρ+∇ · (ρv) = 0,

v = (∇Ψ(x)− x)⊥,

detD2Ψ = ρ,

ρ(t = 0) = ρ0.

Here ρ0 is a probability measure on R
3, and for every v = (v1, v2, v3) ∈ R

3,
v⊥ stands for (−v2, v1, 0). The velocity field is given at each time by solving
a Monge-Ampère equation in the sense of the polar factorization of maps (see
[3]), i.e. in the sense that Ψ is convex from R

3 to R and satisfies ∇Ψ#ρ =
χΩL3, where L3 is the Lebesgue measure of R

3, and χΩ is the indicator
function of Ω. For compatibility Ω has Lebesgue-measure one. This model
arises as an approximation to the primitive equations of meteorology, and
we shall give a brief idea of the derivation of the model, although the reader
interested in more details should refer to [12].

In this work we will deal with various questions related to the semi-
geostrophic (hereafter SG) system: existence and stability of measure-valued
solutions, existence and uniqueness of smooth solutions, and finally conver-
gence towards the incompressible Euler equations in 2-d. The results are
stated in more details in section 1.
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1.1 Derivation of the semi-geostrophic equations

We now give for sake of completeness a brief and simplified idea of the deriva-
tion of the system, inspired from [1], and more complete arguments can be
found in [12].

Lagrangian formulation

We start from the 3-d incompressible Euler equations with constant Coriolis
parameter f in a domain Ω.

Dv

Dt
+ fv⊥ =

1

ρ
∇p−∇ϕ,

∇ · v = 0,
Dρ

Dt
= 0,

v · ∂Ω = 0,

where
D·
Dt

stands for ∂t + v · ∇, and we still use v⊥ = (−v2, v1, 0). The

term ∇ϕ denotes the gravitational effects (here we will take ϕ = gx3 with
constant g), and the term fv⊥ is the Coriolis force due to rotation of the
Earth. For large scale atmospheric flows, the Coriolis force fv⊥ dominates

the advection term
Dv

Dt
, and renders the flow mostly bi-dimensional. We use

the hydrostatic approximation: ∂x3p = −ρg and restrict ourselves to the case
ρ ≡ 1.

Keeping only the leading order terms leads to the geostrophic balance

vg = −f−1∇⊥p,

that defines vg, the geostrophic wind. Decomposing v = vg + vag where
the second component is the ageostrophic wind, supposedly small departures
from the geostrophic balance, the semi-geostrophic system reads:

Dvg

Dt
+ fv⊥ = ∇Hp,

∇ · v = 0,

where ∇H = (∂x1 , ∂x2, 0). Note however that the advection operator ∂t+v ·∇
still uses the full velocity v. Introducing the potential

Φ =
1

2
|xH |2 + f−2p,

with xH = (x1, x2, 0), we obtain the following

D

Dt
∇Φ(t, x) = f(x−∇Φ(t, x))⊥.
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We introduce the lagrangian map g : Ω×R
+ 7→ Ω giving the position at time

t of the parcel located at x0 at time 0. The previous equation means that,
if for fixed x ∈ Ω we consider the trajectory in the ’dual’ space, defined by
X(t, x) = ∇Φ(t, g(t, x)), we have

∂tX(t, x) = f (g(t, x)−X(t, x))⊥ .

By rescaling the time, we can set f = 1. As stated the system looks under-
determined: indeed Φ is unknown; however we have the condition X(t, x) =
∇Φ(t, g(t, x)). Moreover, the dynamic in the x space being incompressible
and contained in Ω, the map g(t, ·) must be measure preserving in Ω for each
t, i.e.

L3(g(t)−1(B)) = L3(B)

for each B ⊂ Ω measurable (where L3 denotes the Lebesgue measure of R3).
We shall hereafter denote by G(Ω) the set of all such measure preserving
maps. Then Cullen’s stability criteria asserts that the potential Φ should be
convex for the system to be stable to small displacements of particles in the
x space. Hence, for each t, Φ must be a convex function such that

X(t, ·) = ∇Φ(t, g(t, ·)),

with g(t, ·) ∈ G(Ω). In the next paragraph we shall see that, under very
mild assumptions on X , this decomposition, called polar factorization, can
only happen for a unique choice of g and ∇Φ. Now if Φ∗ is the Legendre
transform of Φ,

Φ∗(y) = sup
x∈Ω

x · y − Φ(x),

then ∇Φ and ∇Φ∗ are inverse maps of each other, and the semi-geostrophic
system then reads

DX

Dt
= (∇Φ∗(X(t))−X(t))⊥ ,

∇Φ∗(t) ◦X(t) ∈ G(Ω).

In the next paragraph, we expose the results concerning the existence and
uniqueness of the gradients ∇Φ,∇Φ∗.

1.2 Polar factorization of vector valued maps

The polar factorization of maps has been discovered by Brenier in [3]. It has
later been extended to the case of general Riemannian manifolds by McCann
in [20].
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The Euclidean case

Let Ω be a fixed bounded domain of Rd of Lebesgue measure 1 and satisfying
the condition Ld(∂Ω) = 0. We consider a mapping X ∈ L2(Ω;Rd). We will
also consider the push-forward of the Lebesgue measure of Ω by X , that we
will denote by X#χΩLd = dρ (or, in short, X#dx) and which is defined by

∀f ∈ C0
b (R

d),

∫

Rd

f(x) dρ(x) =

∫

Ω

f(X(x)) dx.

Let P be the set of probability measures Rd, and P2
a the subset of P where

the subscript a means absolutely continuous with respect to the Lebesgue
measure (or equivalently that have a density in L1(Rd)), and the superscript
2 means with finite second moment. (i.e. such that

∫

Rd

|x|2dρ(x) < +∞.)

Note that for X ∈ L2(Ω,Rd), the measure ρ = X#dx has necessarily finite
second moment, and thus belongs to P2.

Theorem 1.1 (Brenier, [3]). Let Ω be as above, X ∈ L2(Ω;Rd) and ρ =
X#dx.

1. There exists a unique up to a constant convex function, that will be
denoted Φ[ρ], such that:

∀f ∈ C0
b (R

d),

∫

Ω

f(∇Φ[ρ](x)) dx =

∫

Rd

f(x)dρ(x).

2. Let Ψ[ρ] be the Legendre transform of Φ[ρ], if ρ ∈ P2
a , Ψ[ρ] is the unique

up to a constant convex function satisfying

∀f ∈ C0
b (Ω),

∫

Rd

f(∇Ψ[ρ](x)) dρ(x) =

∫

Ω

f(x)dx.

3. If ρ ∈ P2
a , X admits the following unique polar factorization:

X = ∇Φ[ρ] ◦ g,

with Φ[ρ] convex, g measure preserving in Ω.
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Remark: Ψ[ρ],Φ[ρ] depend only on ρ, and are solutions (in some weak
sense) respectively in R

d and Ω, of the Monge-Ampère equations

detD2Ψ = ρ,

ρ(∇Φ) detD2Φ = 1.

When Ψ and Φ are not in C2
loc these equations can be understood in the

viscosity (or Alexandrov) sense or in the sense of Theorem 1.1, which is
strictly weaker. For the regularity of those solutions and the consistency of
the different weak formulations the reader can refer to [8].

The periodic case

The polar factorization theorem has been extended to Riemannian manifolds
in [20] (see also [9] for the case of the flat torus). In this case, we consider
a mapping X : Rd 7→ R

d such that for all ~p ∈ Z
d, X(· + ~p) = X + ~p. Then

ρ = X#dx is a probability measure on T
d. We define Ψ[ρ],Φ[ρ] through the

following:

Theorem 1.2. Let X : Rd → R
d be as above, with ρ = X#dx.

1. Up to an additive constant there exists a unique convex function Φ[ρ]
such that Φ[ρ](x) − x2/2 is Z

d-periodic (and thus ∇Φ[ρ](x) − x is Z
d

periodic), and

∀f ∈ C0(Td),

∫

Td

f(∇Φ[ρ](x)) dx =

∫

Td

f(x) dρ(x).

2. Let Ψ[ρ] be the Legendre transform of Φ[ρ]. If ρ is Lebesgue integrable,
Ψ[ρ] is the unique up to a constant convex function satisfying
Ψ[ρ](x) − x2/2 is Z

d-periodic (and thus ∇Ψ[ρ](x) − x is Z
d periodic),

and

∀f ∈ C0(Td),

∫

Td

f(∇Ψ[ρ](x)) dρ(x) =

∫

Td

f(x) dx.

3. If ρ is Lebesgue integrable, X admits the following unique polar factor-
ization:

X = ∇Φ[ρ] ◦ g

with g measure preserving from T
d into itself, and Φ[ρ] convex, Φ[ρ]−

|x|2/2 periodic.
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Remark 1: From the periodicity of ∇Φ[ρ](x)− x,∇Ψ[ρ](x)− x, for every
f Z

d-periodic, f(∇Ψ[ρ]), f(∇Φ[ρ]) are well defined on R
d/Zd.

Remark 2: Both in the periodic and non periodic case, the definitions
of Ψ[ρ] and Φ[ρ] make sense if ρ is absolutely continuous with respect to
the Lebesgue measure. If not, the definition and uniqueness of Φ[ρ] is still
valid, as well as the property ∇Φ[ρ]#ρ = χΩLd. The definition of Ψ[ρ] as
the Legendre transform of Φ[ρ] is still valid also, but then the expression
∫

f(∇Ψ[ρ](x)) dρ(x) does not necessarily make sense since ∇Ψ is not neces-

sarily continuous. Moreover the polar factorization does not hold any more.
Remark 3: We have (see [9]) the unconditional bound

‖∇Ψ[ρ](x)− x‖L∞(Td) ≤
√
d/2

that will be useful later on.

1.3 Lagrangian formulation of the SG system

From Theorems 1.1, 1.2 the Lagrangian formulation of the semi-geostrophic
equation then becomes

DX

Dt
= [∇Ψ(X)−X ]⊥ , (1)

Ψ = Ψ[ρ], ρ = X#dx. (2)

1.4 Eulerian formulation in dual variables

In both cases (periodic and non periodic) we thus investigate the following
system that will be referred to as SG: we look for a time dependent proba-
bility measure t→ ρ(t, ·) satisfying

∂tρ+∇ · (ρv) = 0, (3)

v(t, x) = (∇Ψ[ρ(t)](x)− x)⊥ , (4)

ρ(t = 0) = ρ0. (5)

Weak solutions (which are defined below) of this system with Lp initial data
for p ≥ 1 have been found, see [1], [10], [18].

1.5 Results

In this work we deal with various mathematical problems related to this sys-
tem: we first extend the notion of weak solutions that had been shown to exist
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for ρ ∈ L∞(R+, L
q(R3)), q > 1 ([1], [10]), and then for ρ ∈ L∞(R+, L

1(R3))
([18]), to the more general case of bounded measures. The question of ex-
istence of measure-valued solutions was raised and left unanswered in those
papers, and we show here existence of global solutions to the Cauchy prob-
lem with initial data a bounded compactly supported measure, and show the
weak stability/compactness of these weak measure solutions.

Then we show existence of continuous solutions, more precisely, we show
local existence of solutions with Dini-continuous (see (8)) density. For this
solutions, the velocity field is then C1 and the Lagrangian system (1,2) is
defined everywhere.

We also show uniqueness in the class of Hölder continuous solutions (a
sub-class of Dini continuous solutions). This proof uses in an original way
the optimal transportation of measures by convex gradients and its regularity
properties, and can be adapted to give a new proof of uniqueness for solutions
of the 2-d Euler equation with bounded vorticity, but also for a broad class
of non-linearly coupled system. The typical application is a density evolving
through a transport equation where the velocity field depends on the gradient
of a potential, the potential solving an elliptic equation with right hand side
the density. Well known examples of such cases are the Vlasov-Poisson and
Euler-Poisson systems.

Finally, in the 2-d case, we study the convergence of the system to the
Euler incompressible equations; this convergence is expected for ρ close to
1, since formally expanding Ψ = x2/2 + ǫψ, and linearizing the determinant
around the identity matrix, we get

detD2Ψ = 1 + ǫ∆ψ +O(ǫ2),

and the Monge-Ampère equation turns into the Poisson equation

∆ψ =
ρ− 1

ǫ
=: µ.

After a proper time scaling, µ satisfies

∂tµ+∇ · (µ∇⊥ψ),

∆ψ = µ,

that we recognize as the vorticity formulation of the 2-d Euler incompressible
equation. The study of this ’quasi-neutral’ limit is done by two different ways:
One uses a modulated energy method similar as the one used in [4] and [5]
and is valid for weak solutions. The other uses a more classical expansion
of the solution, and regularity estimates, and is similar to the method used
in [16]. The second method yields also a time of existence for the smooth
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solution that goes to infinity, as the scaling parameter ǫ goes to 0. From a
physical point of view, this asymptotic study may be seen as a justification
of the consistency of the semi-geostrophic approximation.

2 Measure valued solutions

2.1 A new definition of weak solutions

We have first the following classical weak formulation of equation (3):
ρ ∈ C(R+, L1(R3)− w) is said to be a weak solution of SG if

∀T > 0, ∀ϕ ∈ C∞
c ([0, T ]× R

2),
∫

∂tϕ ρ+∇ϕ · (∇Ψ[ρ]− x)⊥ ρ dtdx

=

∫

ϕ(T, x)ρ(T, x)dx−
∫

ϕ(0, x)ρ(0, x)dx,

where for all t, Ψ[ρ] is as in Theorem 1.1. The problematic part in the case
of measure valued solutions is to give sense to the product ρ∇Ψ[ρ] since at
the point where ρ is singular ∇Ψ[ρ] is unlikely to be continuous. Therefore
we use the Theorem 1.1 to write for any ρ ∈ P2

a(R
3)

∀ϕ ∈ C∞
c (R3),

∫

R3

ρ∇Ψ[ρ]⊥ · ∇ϕ =

∫

Ω

x⊥ · ∇ϕ(∇Φ[ρ])

(the integrals would be performed over T3 in the periodic case). The property
∇Φ[ρ]#χΩL3 = ρ is still valid when ρ is only a measure with finite second
moment (see Remark 2 after Theorem 1.2). Therefore, the formulation on
the right hand side extends unambiguously to the case where ρ /∈ L1(R2).

Geometric interpretation

This weak formulation allows has a natural geometric interpretation: at a
point where Ψ[ρ] is not differentiable, and thus where ∂Ψ[ρ] is not reduced
to a single point, ∇Ψ[ρ] should be replaced by ∂̄Ψ[ρ] the center of mass of
the (convex) set ∂Ψ[ρ].
This motivates the following definition of weak measure solutions

Definition 2.1. Let, for all t ∈ [0, T ], ρ(t) be a probability measure of R3.
It is said to be a weak measure solution to SG with initial data ρ0 if

1- The time dependent probability measure ρ belongs to C([0, T ],P−w∗),
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2- there exists t → R(t) non-decreasing such that for all t ∈ [0, T ], ρ(t, ·)
is supported in B(0, R(t)),

3- for all T > 0 and for all ϕ ∈ C∞
c ([0, T ]× R

3) we have
∫

[0,T ]×R3

∂tϕ(t, x) dρ(dt, x) (6)

+

∫

[0,T ]×Ω

∇ϕ(t,∇Φ[ρ(t)](x)) · x⊥ dtdx−
∫

[0,T ]×R3

∇ϕ(t, x) · x⊥ dρ(dt, x)

=

∫

ϕ(T, x)dρ(T, x) dx−
∫

ϕ(0, x)dρ0(x) dx.

This definition is consistent with the classical definition of weak solu-
tions if for all t, ρ(t, ·) is absolutely continuous with respect to the Lebesgue
measure.

2.2 Result

Here we prove the following

Theorem 2.2. 1. Let ρ0 be a probability measure compactly supported.
There exists a global weak measure solution to the system SG with
initial data ρ0 in the sense of Definition 2.1.

2. For any T > 0, if (ρn)n∈N is a sequence of weak measure solutions on
[0, T ] to SG with initial data (ρ0n)n∈N, supported in BR for some R > 0
independent of n, the sequence (ρn)n∈N is precompact in C([0, T ],P −
w∗) and every converging subsequence converges to a weak measure
solution of SG.

Proof of Theorem 2.2

We first show the weak stability of the formulation of Definition (2.1), and
the compactness of weak measure solutions. We then use this result to ob-
tain global existence of solutions to the Cauchy problem with initial data a
bounded measure.

Weak stability of solutions

We consider a sequence (ρn)n∈N of solutions of SG in the sense of Definition
2.1. The sequence is uniformly compactly supported at time 0. We first show
that there exists a non-decreasing function R(t) such that ρn(t) is supported
in B(R(t)) for all t, n:
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Lemma 2.3. Let ρ ∈ C([0, T ],P(R3)− w∗) satisfy (6), let ρ0 = ρ(t = 0) be
supported in B(0, R0), then ρ(t) is supported in B(0, R0+Ct), C = supy∈Ω{|y|}.

Proof. Consider any function ξǫ(t, r) ∈ C∞(R) such that

ξǫ(0, r) ≡ 1 if −∞ < r ≤ R0,

ξǫ(0, r) ≡ 0 if r ≥ R0 + ǫ,

ξǫ(t, r) = ξǫ(r − Ct),

with ξ(0, ·) non increasing. Then compute

d

dt

∫

ξǫ(t, |x|) dρ(t, x)

= −
∫

∂rξǫ(t, |x|)C dρ(t, x) +

∫

Ω

∂rξǫ(t, |∇Φ[ρ(t)]|) ∇Φ[ρ(t)]

|∇Φ[ρ(t)]| · x
⊥ dx

≥
∫

Ω

∂rξǫ(t, |∇Φ[ρ(t)]|)(−C + |x|) dx

≥ 0

since, by definition, for x ∈ Ω, |x| ≤ C and ξ is non increasing with respect

to r. Note also that we have used

∫

∇x[ξ(t, |x|)] · x⊥dρ(t, x) dx ≡ 0. We

know on the other hand that
∫

R3

ξǫ(0, |x|)dρ(0, x) = 1,
∫

R3

ξǫ(t, |x|)dρ(t, x) ≤ 1,

therefore we conclude that

∫

R3

ξǫ(|x|, t)dρ(t, x) ≡ 1, which concludes the

lemma by letting ǫ go to 0.
�

From this lemma, we have:

∣

∣

∣

∣

−
∫

[0,T ]×R3

∇ϕ(t, x) · x⊥ dρn(dt, x) +

∫

[0,T ]×Ω

∇ϕ(t,∇Φ[ρn(t)](x)) · x⊥ dtdx

∣

∣

∣

∣

≤ C(T )‖ϕ‖L1([0,T ],C1(BR(T )).

Thus from Definition 2.1 equation (6) we know that for any time t ≥ 0,
∂tρn(t, ·) is bounded in the dual of L1([0, T ], C1(R3)) and thus in the dual of
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L1([0, T ],W 2,p(R3)) for p > 3 by Sobolev embeddings. Thus for some p′ > 1
we have

∂tρn ∈ L∞([0, T ],W−2,p′(R2)).

With the two above results, and using classical arguments of functional
analysis (see [15]), we can obtain the following lemma:

Lemma 2.4. Let the sequence (ρn)n∈N be as above, there exists ρ ∈ C([0, T ],P−
w∗) and a subsequence (ρnk

)k∈N, such that for all t ∈ [0, T ], ρnk
(t) converges

to ρ(t) in the weak-∗ topology of measures.

With this lemma, we need to show that for all ϕ ∈ C∞
c ([0, T ] × R

3)
we have ∇ϕ(t,∇Φ[ρn(t)]) converging to ∇ϕ(t,∇Φ[ρ(t)]) whenever ρn(t) con-
verges weakly-∗ to ρ(t). This last step will be a consequence of the following
stability theorem:

Theorem 2.5 (Brenier, [3]). Let Ω be as above. Let (ρn)n∈N be a sequence
of probability measures on R

d, such that ∀n,
∫

(1 + |x|2)dρn ≤ C, let Φn =
Φ[ρn] and Ψn = Ψ[ρn] be as in Theorem 1.1. If for any f ∈ C0(Rd) such
that |f(x)| ≤ C(1 + |x|2),

∫

fρn →
∫

ρf, then Φn → Φ[ρ] uniformly on each
compact set of Ω and strongly in W 1,1(Ω;Rd), and Ψn → Ψ[ρ] uniformly on
each compact set of Rd and strongly in W 1,1

loc (R
d).

From this result, we obtain that the sequence ∇Φ[ρn] converges strongly
in L1(Ω) and almost everywhere (because of the convexity of Φ[ρ]) to ∇Φ[ρ].
Thus ∇ϕ(t,∇Φ[ρn]) converges to ∇ϕ(t,∇Φ[ρ]) in L1(Ω) and one can pass to
the limit in the formulation of Definition 2.1. This ends the proof of point 2
of Theorem 2.2.

Existence of solutions

We show briefly the existence of a solution to the Cauchy problem in the
sense of Definition 2.1. Indeed given ρ0 the initial data for the problem that
we want to solve, by smoothing ρ0, we can take a sequence ρ0n of initial
data belonging to L1(R2), uniformly compactly supported and converging
weakly-∗ to ρ0. We know already from [1], [10], [18] that for every ρ0n, one
can build a global weak solution of (3, 4, 5), that will be uniformly compactly
supported on [0, T ] for all T ≥ 0. This sequence will also be solution in the
sense of Definition 2.1. We then use the stability result, and conclude that, up
to extraction of a subsequence, the sequence ρn converges in C([0, T ],P−w∗)
to a weak measure solution of SG with initial data ρ0. This achieves the proof
of Theorem 2.2. �

Remark: One can prove in fact the more general result, valid for non
linear functionals:
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Proposition 2.6. Let F ∈ C0(Ω×R
d), such that |F (x, y)| ≤ C(1+ |y|2), let

(ρn)n∈N be a bounded sequence of probability measures, Lebesgue integrable,
with finite second moment. Let ρ be a probability measure with finite sec-
ond moment, such that for all f ∈ C0(Rd) such that |f(x)| ≤ C(1 + |x|2),
∫

fdρn →
∫

fdρ. Then as n goes to ∞, we have

∫

Rd

F (∇Ψ[ρn](x), x) dρn(x) =

∫

Ω

F (y,∇Φ[ρn](y)) dy

→n

∫

Ω

F (y,∇Φ[ρ](y)) dy :=

∫

Rd

F (∂̄Ψ[ρ](x), x) dρ(x).

3 Continuous solutions

What initial regularity is necessary in order to guarantee that the velocity
fields remains Lipschitz, or that the flow remains continuous, at least for a
short time ? The celebrated Youdovich’s Theorem for the Euler incompress-
ible equation shows that when d = 2, if the initial vorticity data is bounded
in L∞, the flow is Hölder continuous, with Hölder index decreasing to 0 as
time goes to infinity. This proof relies on the following regularity property
of the Poisson equation: if ∆φ is bounded in L∞, then ∇φ is Log-Lipschitz.
This continuity is enough to define a Hölder continuous flow for the vector
field ∇φ⊥. Such a result is not valid for the Monge-Ampère equation. As far
as we know, the optimal regularity result for Monge-Ampère equations is the
following:

3.1 Regularity of solutions to Monge-Ampère equation

with Dini-continuous right hand side

Theorem 3.1 (Wang, [22]). Let u be a strictly convex Alexandrov solution
of

detD2u = ρ (7)

with ρ strictly positive. If w(r), the modulus of continuity of ρ, satisfies

∫ 1

0

w(r)

r
dr <∞, (8)

then u is in C2
loc.
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We will work here in the periodic case. In this case, u the solution of
(7) will be Ψ[ρ] of Theorem 1.2. The arguments of [7], [8], adapted to the
periodic case, show that Ψ[ρ] is indeed a strictly convex Alexandrov solution
of solution of (7). Therefore we obtain the following corollary of Theorem
3.1:

Corollary 3.2. Let ρ ∈ P(Td) be such that

0 < m ≤ ρ ≤ M,
∫ 1

0

w(r)

r
dr = C <∞.

where m,M,C are positive constants. Let Ψ[ρ] be as in Theorem 1.2. We
have, for some constant H depending on m,M,C

‖Ψ[ρ]‖C2(Td) ≤ H.

3.2 Result

We will now prove the following:

Theorem 3.3. Let ρ0 be a probability on T
3, such that ρ is strictly positive

and satisfies the continuity condition (8). Then there exists T > 0 and C1, C2

depending on ρ0, such that on [0, T ] there exists a solution ρ(t, x) of SG that
satisfies for all t ∈ [0, T ]:

∫ 1

0

w(t, r)

r
dr ≤ C1, ‖Ψ(t, ·)‖C2(T3) ≤ C2,

where w(t, r) is the modulus of continuity (in space) of ρ(t, .).

Proof of Theorem 3.3

Let us first sketch the proof: If Ψ ∈ C2, then the flow t→ X(t, x) generated
by the velocity field [∇Ψ(x) − x]⊥ is Lipschitz in space. Since the flow is
incompressible, we have ρ(t, x) = ρ0(X−1(t, x)).
Now we use the following property: If two functions f, g have modulus of
continuity respectively wf , wg then g ◦ f has modulus wg ◦ wf .
Thus ifX−1(t) is Lipschitz, we have wρ0◦X−1(t) ≤ wρ0(L ·) with L the Lipschitz
constant of X−1(t) and condition (8) remains satisfied.

Remark 1: Note that Hölder continuous functions satisfy the condition
(8).

Remark 2: Note also that we do not need any integrability on ∇ρ and the
solution of the Eulerian system still has to be understood in the distributional
sense.
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A fixed point argument

Let us introduce the semi-norm

‖µ‖C =

∫ 1

0

wµ(r)

r
dr (9)

defined on P(T3), where we recall that wµ is the modulus of continuity of µ.
We denote PC the set P equipped with this semi-norm, i.e.

PC = {µ ∈ P(T3), ‖µ‖C <∞}.

From now, we fix ρ0 a probability density in PC , satisfying m ≤ ρ0 ≤ M ,
where m and M are strictly positive constants. Let µ be a time dependent
probability density in L∞([0, T ];PC), such that m ≤ µ(t) ≤ M for all t, we
consider the solution ρ of the initial value problem:

∂tρ+ (∇Ψ[µ](x)− x)⊥ · ∇ρ = 0, (10)

ρ(t = 0) = ρ0. (11)

From Theorem 3.1 and its corollary, the vector field v[µ] = (∇Ψ[µ](x)−x)⊥ is
C1 uniformly in time, therefore there exists a unique solution to this equation,
by Cauchy-Lipschitz Theorem. This solution can be built by the method of
characteristics as follows: Consider the flow X(t, x) of the vector field v[µ],
then ρ(t) is ρ0 pushed forward by X(t), i.e. ρ(t) = ρ0 ◦ X−1(t). From the
incompressibility of v[µ] the condition m ≤ ρ0 ≤ M implies that for all
t ∈ [0, T ], m ≤ ρ(t) ≤ M .

The initial data ρ0 being fixed, the map µ 7→ ρ will be denoted by F .
The spatial derivative of X , DxX satisfies

∂tDxX = Dxv[µ](X)DxX,

therefore we have

|DxX(t)| ≤ exp(t sup
s∈[0,t]

|Dxv[µ](s)|),

and the same bound holds for X(t)−1. Since wf◦g ≤ wf ◦ wg, and writing
Ct = exp(t sups∈[0,t] |Dxv[µ]|), we obtain wρ(t)(·) ≤ wρ0(Ct·), and

∫ 1

0

wρ(t)(r)

r
dr ≤

∫ Ct

0

wρ0(r)

r
dr

≤
∫ 1

0

wρ0(r)

r
dr + (M −m)(Ct − 1),
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(using that ∀r, wρ(r) ≤M −m). Therefore,

‖ρ(t)‖C ≤ ‖ρ0‖C + (M −m)(Ct − 1).

Now from Corollary 3.2, and m,M being fixed, there exists a non-decreasing
function H such that

‖v[µ]‖C1 ≤ H(‖µ‖C),

and so Ct ≤ exp(tH(‖µ‖L∞([0,t];PC
))). Hence we can chose Q > 1, and then

T such that

‖ρ0‖C + (M −m)
(

exp(T H(Q‖ρ0‖C))− 1
)

= Q‖ρ0‖C.

Note that for Q > 1, we necessarily have T > 0. Then the map F : µ 7→ ρ
goes now from

A =
{

µ, ‖µ‖L∞([0,T ];PC) ≤ Q‖ρ0‖C, m ≤ µ ≤M
}

into

B =
{

ρ, ‖ρ(t)‖C ≤ ‖ρ0‖C + (M −m)
(

exp(t H(Q‖ρ0‖C))− 1
)

, ∀t ∈ [0, T ]
}

,

and with our choice of T = T (Q), we have B ⊂ A. Moreover from the
unconditional bounds

ρ ≤M,

‖v[µ]‖L∞([0,T ]×T3) ≤
√
3/2,

(see the remark after Theorem 1.2 for the second bound) and using equation
(10), we have also ‖∂tρ‖L∞([0,T ];W−1,∞) ≤ K(M) whenever ρ = F(µ).

Call Ã (resp. B̃) the set A ∩ {ρ, ‖∂tρ‖L∞([0,T ];W−1,∞) ≤ K(M)}, (resp.
B ∩ {ρ, ‖∂tρ‖L∞([0,T ];W−1,∞) ≤ K(M)}); we claim that

• F(Ã) ⊂ B̃ ⊂ Ã,

• Ã is convex and compact for the C0([0, T ]× T
3) topology,

• F is continuous for this topology,

so that we can apply the Schauder fixed point Theorem. We only check the
last point, the second being a classical result of functional analysis. So let
us consider a sequence (µn)n∈N converging to µ ∈ A, and the corresponding
sequence (ρn = F(µn))n∈N. The sequence ρn is pre-compact in C0([0, T ]×T

3),
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from the previous point, and we see (with the stability Theorem 2.5) that it
converges to a solution ρ of

∂tρ+∇ · (ρv[µ]) = 0.

But, v[µ] being Lipschitz, this solution is unique, and therefore F(µn) con-
verges to F(µ), which proves the continuity of F , and ends the proof of
existence by the Schauder fixed point Theorem.

�

We state here without proof some consequences of the previous result:

Corollary 3.4. Let ρ0 ∈ P(T3), such that 0 < m ≤ ρ ≤M .

1. If ρ0 ∈ Cα, α ∈]0, 1], for T ∗ > 0 depending on ρ0, a solution ρ(t, x) to
(3,4,5) exists in L∞([0, T ∗[, Cα(T3)).

2. If ρ0 ∈ W 1,p, p > 3, for T ∗ > 0 depending on ρ0, a solution ρ(t, x) to
(3,4,5) exists in L∞([0, T [,W 1,p(T3)).

3. If ρ0 ∈ Ck,α, α ∈]0, 1], k ∈ N, for T ∗ > 0 depending on ρ0, a solution
ρ(t, x) to (3,4,5) exists in L∞([0, T ∗[, Ck,α(T3)).

Moreover, for these solutions, the velocity field is respectively in C1,α(T3),
W 2,p(T3), and Ck+1,α(T3) on [0, T ∗[.

4 Uniqueness of solutions to SG with Hölder

continuous densities

4.1 Result

Here we prove the following theorem:

Theorem 4.1. Suppose that ρ0 ∈ P(T3) with 0 < m ≤ ρ0 ≤M , and belongs
to Cα(T3) for some α > 0. From Theorem 3.3, for some T > 0 there exists
a solution ρ̄ to SG in L∞([0, T ], Cα(T3)). Then every solution of SG in
L∞([0, T ′], Cβ(T3)) for T ′ > 0, β > 0 with same initial data coincides with ρ̄
on [0, inf{T, T ′}].

Remark 1: The uniqueness of weak solutions is still an open question.
Remark 2: Our proof of uniqueness is thus valid in a smaller class of

solutions than the one found in the previous section, the reason is the follow-
ing: during the course of the proof, we will need to solve a Monge-Ampère
equation, whose right-hand side is a function of the second derivatives of the
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solution of another Monge-Ampère equation. In Theorem 3.1, if u is solution
to (7) with a right hand side satisfying (8), although u ∈ C2, it is not clear
that the second derivatives of u satisfy (8). Actually, it is even known to be
wrong in the case of the Laplacian (for a precise discussion on the subject,
the reader may refer to [14]). However, from Theorem 4.3 below, if ρ ∈ Cα

then u ∈ C2,α.
What we actually need is a continuity condition on the right hand side of

(7) such that the second derivative of the solution u satisfies (8). This may
be a weaker condition than Hölder continuity, however the proof would not
be affected, therefore it is enough to give it under the present form.

Proof of Theorem 4.1

Let ρ1 and ρ2 be two solutions of (3, 4, 5), in L∞([0, T ], Cβ(T3)) that coincide
at time 0. Let X1, X2 be the two corresponding Lagrangian solutions, (i.e.
solutions of (1,2)). The velocity field being C1, for all t ∈ [0, T ], X1(t, ·) and
X2(t, ·) are both C1 diffeomorphisms of Td.

We call v1 (resp. v2) the velocity field associated to X1 (resp. X2),
vi(t, x) = [∇Ψi(t, x)− x]⊥, i = 1, 2. We have

∂t(X1 −X2) = v1(X1)− v2(X2)

= (v1(X1)− v1(X2)) + (v1(X2)− v2(X2)).

We want to obtain a Gronwall type inequality for ‖X1 − X2‖L2 . Since v1

is uniformly Lipschitz in space (from Theorem 3.3), the first bracket is esti-
mated in L2 norm by C‖X1 −X2‖L2.
We now need to estimate the second term. We first have that

∫

|v1(X2)− v2(X2)|2 =
∫

ρ2|∇Ψ1 −∇Ψ2|2,

and since ρ2 is bounded, we need to estimate ‖∇Ψ1 −∇Ψ2‖L2. This will be
done in the following Proposition:

Proposition 4.2. Let X1, X2 be mappings from T
d into itself, such that the

densities ρi = Xi#dx, i = 1, 2 are in Cα(Td) for some α > 0, and satisfy
0 < m ≤ ρi ≤M . Let Ψi, i = 1, 2 be convex such that

detD2Ψi = ρi

in the sense of Theorem 1.1, i.e. Ψi = Ψ[ρi]. Then

‖∇Ψ1 −∇Ψ2‖L2 ≤ C‖X1 −X2‖L2,

where C depends on α (the Hölder index of ρi), ‖ρi‖Cα(Td), m and M .
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Before giving a proof of this result, we conclude the proof of the Theorem
4.1. The Proposition 4.2 implies immediately that

‖∂t(X1 −X2)‖L2 ≤ C‖X1 −X2‖L2 ,

and we conclude the proof of the Theorem by a standard Gronwall lemma.
�

4.2 Energy estimates along Wasserstein geodesics: Proof

of Proposition 4.2.

In the proof of this result we will need the following result on optimal trans-
portation of measures by gradient of convex functions:

Theorem 4.3 (Brenier, [3], McCann, [20], Cordero-Erausquin, [9],
Caffarelli,[6]). Let ρ1, ρ2 be two probability measures on T

d, such that ρ1 is
absolutely continuous with respect to the Lebesgue measure.

1. There exists a unique up to a constant convex function φ such that
φ− | · |2/2 is Z

d periodic, satisfying ∇φ#ρ1 = ρ2.

2. The map ∇φ is the solution of the minimization problem

inf
T#ρ1=ρ2

∫

Td

ρ1(x)|T (x)− x|2
Td dx, (12)

and for all x ∈ R
d, |∇φ(x)− x|Td = |∇φ(x)− x|Rd.

3. If ρ1, ρ2 are strictly positive and belong to Cα(Td) for some α > 0 then
φ ∈ C2,α(Td) and satisfies pointwise

ρ2(∇φ) detD2φ = ρ1.

For complete references on the optimal transportation problem (12) and
its applications, the reader can refer to [21].

Remark 1: the expression | · |Td denotes the Riemannian distance on the
flat torus, whereas |·|Rd is the Euclidian distance on R

d. The second assertion
of point 2 means that, for all x ∈ R

d, |∇φ(x)− x| ≤ diam(Td) =
√
d/2.

Remark 2: Here again, note that since φ − | · |2/2 is periodic, the map
x 7→ ∇φ(x) is compatible with the equivalence classes of Rd/Zd, and therefore
is defined without ambiguity on T

d.
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Wasserstein geodesics between probability measures

In this part we use results from [2], [19]. Using Theorem 4.3, we consider the
unique (up to a constant) convex potential φ such that

∇φ#ρ1 = ρ2,

φ− | · |2/2 is Zd − periodic.

We consider, for θ ∈ [1, 2], φθ defined by

φθ = (2− θ)
|x|2
2

+ (θ − 1)φ.

We also consider, for θ ∈ [1, 2], ρθ defined by

ρθ = ∇φθ #ρ1.

Then ρθ interpolates between ρ1 and ρ2. This interpolation has been in-
troduced in [2] and [19] as the time continuous formulation of the Monge-
Kantorovitch mass transfer. In this construction, a velocity field vθ is defined
dρθ a.e. as follows:

∀f ∈ C0(Td;Rd),

∫

ρθvθ · f =

∫

ρ1f(∇φθ) · ∂θ∇φθ. (13)

It is easily checked that the pair ρθ, vθ satisfies

∂θρθ +∇ · (ρθvθ) = 0,

and for any θ ∈ [1, 2], we have (see [2]):

1

2

∫

Td

ρθ|vθ|2 =
1

2

∫

Td

ρ1|∇φ(x)− x|2 = W 2
2 (ρ1, ρ2),

where W2(ρ1, ρ2) is the Wasserstein distance between ρ1 and ρ2, defined by

W 2
2 (ρ1, ρ2) = inf

T#ρ1=ρ2

{
∫

ρ1(x)|T (x)− x|2
Td

}

.

The Wasserstein distance can also be formulated as follows:

W 2
2 (ρ1, ρ2) = inf

Y1,Y2

{
∫

Td

|Y1 − Y2|2Td

}

where the infimum is performed over all maps Y1, Y2 : Td 7→ T
d such that

Yi#dx = ρi, i = 1, 2. From this definition we have easily

W 2
2 (ρ1, ρ2) ≤

∫

|X2(t, a)−X1(t, a)|2 da,

and it follows that, for every θ ∈ [1, 2],
∫

Td

ρθ|vθ|2 =W 2
2 (ρ1, ρ2) ≤ ‖X2 −X1‖L2 . (14)
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Regularity of the interpolant measure ρθ

From Theorem 4.3, for ρ1, ρ2 ∈ Cβ and pinched between the positive postive
constants m and M , we know that φ ∈ C2,β and satisfies

detD2φ =
ρ1

ρ2(∇φ)
.

We now estimate ρθ = ρ1[detD
2φθ]

−1. From the concavity of log(det(·))
on symmetric positive matrices, we have

detD2φθ = det((2− θ)I + (θ − 1)D2φ)

≥ [detD2φ]θ−1

≥ m

M
.

Moreover, since φ ∈ C2, detD2φθ is bounded by above. Thus ρθ is uniformly
bounded away from 0 and infinity, and uniformly Hölder continuous.

Final energy estimate

If we consider, for every θ ∈ [1, 2], Ψθ solution of

detD2Ψθ = ρθ, (15)

in the sense of Theorem 1.2, then Ψθ interpolates between Ψ1 and Ψ2, and
Ψθ ∈ C2,β uniformly, from the regularity of ρθ. We will estimate ∂θ∇Ψθ by
differentiating (15) with respect to θ: for M,N two d × d matrices, t ∈ R,
we recall that

det(M + tN) = detM + t (trace M t
coN) + o(t),

where Mco is the co-matrix (or matrix of cofactors) of M . Moreover, for any
f ∈ C2(Rd;R), if M is the co-matrix of D2f , it is a common fact that

∀j ∈ [1..d],

d
∑

i=1

∂iMij ≡ 0. (16)

Hence, denoting Mθ the co-matrix of D2Ψθ, we obtain that ∂θΨθ satisfies

∇ · (Mθ∇∂θΨθ) = ∂θρθ(t)

= −∇ · (ρθvθ). (17)
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From the C2,β regularity of Ψθ, D
2Ψθ is a C

β smooth, positive definite matrix,
and its co-matrix as well. Thus the problem (17) is uniformly elliptic. If we
multiply by ∂θΨθ, and integrate by parts we obtain

∫

∇t∂θΨθMθ ∇∂θΨθ = −
∫

∇∂θΨθ · vθρθ.

Using that Mθ ≥ λI for some λ > 0, and combining with the inequality (14)
above, we obtain

‖∇∂θΨθ(t)‖L2 ≤ λ−1‖ρθvθ‖L2

≤ λ−1‖X2 −X1‖L2

(

sup
θ

‖ρθ‖L∞

)1/2

.

The constant λ−1 depends onm,M, β, {‖ρi‖Cβ , i = 1, 2}, and is thus bounded
under our present assumptions. We have already seen that ρθ is uniformly
bounded, and we finally obtain that

‖∇Ψ1 −∇Ψ2‖L2 ≤ C‖X1 −X2‖L2, (18)

this ends the proof of Proposition 4.2.
�.

Remark 1. In [17], the author obtains also (weaker) estimates of the type
of Proposition 4.2, for discontinuous densities ρ1, ρ2.

5 Uniqueness of solutions to the 2-d Euler

equations with bounded vorticity: a new

proof

This proof adapts easily to the case of 2-d Euler equation with bounded
vorticity, giving a new proof of the uniqueness part in Youdovich’s theorem.
We start now from the following system:

∂tρ+∇ψ⊥ · ∇ρ = 0, (19)

ρ = ∆ψ, (20)

ρ(t = 0) = ρ0. (21)

For simplicity, we restrict ourselves to the periodic case, i.e. x ∈ T
d, ρ, ψ

periodic, this implies that ρ has total mass equal to 0. We reprove the
following classical result:

Theorem 5.1 (Youdovich, [23]). Given an initial data ρ0 ∈ L∞(T2) sat-
isfying

∫

T2 ρ
0 = 0, there exists a unique solution to (19, 20, 21) such that ρ

belongs to L∞
loc(R

+ × T
2).
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Proof of Theorem 5.1

We consider two solutions ρ1, ψ1 and ρ2, ψ2, such that ρi, i = 1, 2 are bounded
in L∞([0, T ]× T

d). In this case the velocity fields vi = ∇ψ⊥
i both satisfy

∀(x, y) ∈ T
2, |x− y| ≤ 1

2
, |vi(x)− vi(y)| ≤ C|x− y| log 1

|x− y| .

This implies that the flows (t, x) 7→ Xi(t, x) associated to the velocity fields
vi = ∇ψ⊥

i are Hölder continuous, and measure preserving. Moreover, one
has, for all t ∈ [0, T ], ρi(t) = Xi(t)#ρ

0.
Applying the same technique as before, we need to estimate ‖∇ψ1 −

∇ψ2‖L2(T2) in terms of ‖X1 − X2‖L2(T2). In the present case, the energy
estimate of Proposition 4.2 will hold under the weaker assumptions that the
two densities are bounded.

Proposition 5.2. Let X1, X2 be mappings from T
d into itself, let ρ0 be a

bounded measure with a density in L∞ with respect to the Lebsgue measure,
and with

∫

Td ρ
0 = 0. Let ρi = Xi#ρ

0, i = 1, 2. Let ψi, i = 1, 2 be periodic
solutions of ∆ψi = ρi, i = 1, 2, then we have

‖∇ψ1 −∇ψ2‖L2(Td) ≤
(

2‖ρ0‖L∞ max{‖ρ1‖L∞ , ‖ρ2‖L∞}
)1/2 ‖X1 −X2‖L2(Td).

Remark: In other words, this proposition shows that for ρ1, ρ2 bounded,
the H−1 norm of ρ1 − ρ2 is controlled by some ’generalized’ (since here we
have unsigned measures) Wasserstein distance between ρ1 and ρ2.

To conclude the proof of Theorem 5.1, note first that for all C > 0, we
can take T small enough so that ‖X2 − X1‖L∞([0,T ]×T2) ≤ C. Now we have
for the difference X1 −X2, as long as |X1 −X2| ≤ 1/2,

‖∂t(X1 −X2)‖L2

≤ ‖∇ψ1(X1)−∇ψ1(X2)‖L2 + ‖∇ψ1(X2)−∇ψ2(X2)‖L2

≤ C1‖|X1 −X2| log(|X1 −X2|)‖L2 + C2‖X1 −X2‖L2 ,

where, to evaluate the second term of the second line, we have used the fact
that

‖∇ψ1(X2)−∇ψ2(X2)‖L2 = ‖∇ψ1 −∇ψ2‖L2,

and then applied Proposition 5.2.
We just need to evaluate ‖|X1 −X2| log(|X1 −X2|)‖L2. We take T small

enough so that ‖X2 − X1‖L∞([0,T ]×T2) ≤ 1/e and notice that x 7→ x log2 x is
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concave for 0 ≤ x ≤ 1/e, therefore by Jensen’s inequality we have
∫

T2

|X2 −X2|2 log2(|X1 −X2|)

=
1

4

∫

T2

|X2 −X2|2 log2(|X1 −X2|2)

≤ 1

4

∫

T2

|X2 −X1|2 log2
(
∫

T2

|X2 −X1|2
)

,

and some elementary computations finally yield

∂t‖X2 −X1‖L2 ≤ C‖X2 −X1‖L2 log
1

‖X2 −X1‖L2

.

The conclusion X1 ≡ X2 follows then by standard arguments.

5.1 Energy estimates along Wasserstein geodesic: Proof

of Proposition 5.2

The proof of this proposition is very close to the proof of Proposition 4.2,
and we will only sketch it, insisting on the specific points. Here the densities
ρi can not be of constant sign, since their mean value is zero, hence we
introduce ρ0,+ (resp. ρ0,−) the positive (resp. negative) part of ρ0. Then we
introduce ρ±i = Xi#ρ

0,±. Note that if the mappings Xi were injective, (which
is the case in our present situation) we would have ρ±i that cöıncides with
the positive/negative parts of ρi, but this can be wrong if Xi is not injective.
However what remains is that ρi = ρ+i − ρ−i . Now, ρ

±
i , i = 1, 2 are 4 positive

measures of total mass equal to say M , with M <∞.

Wasserstein geodesic

We interpolate between the positive parts ρ+i , and the negative part is han-
dled in the same way. As before we introduce the density ρ+θ (t) that inter-
polates between ρ+1 (t) and ρ

+
2 (t). In this interpolation, we consider v+θ such

that

∂θρ
+
θ +∇ · (ρ+θ v+θ ) = 0,

and we introduce as well ρ−θ , v
−
θ . Then ρθ = ρ+θ − ρ−θ has mean value 0. Let

the potential ψθ be solution to

∆ψθ = ρθ. (22)

Note that ρθ has mean value zero therefore this equation is well posed on T
2,

moreover ψθ interpolates between ψ1 and ψ2.



The Semi-Geostrophic equations 25

Bound on the interpolant measure ρθ

Instead of interpolating between two smooth densities, we interpolate be-
tween bounded densities, and use the following result from [19]:

Proposition 5.3 (McCann, [19]). Let ρ+θ be the Wasserstein geodesic link-
ing ρ+1 to ρ+2 defined above. Then, for all θ ∈ [1, 2],

‖ρ+θ ‖L∞ ≤ max
{

‖ρ+1 ‖L∞ , ‖ρ+2 ‖L∞

}

.

The same holds for ρ−i , ρ
−
θ .

Remark: This property is often referred to as ’displacement convexity’.

Energy estimates

Now by differentiating (22) with respect to θ, we obtain

∆∂θψθ = ∂θρθ = −∇ · (ρ+θ v+θ − ρ−θ v
−
θ ), (23)

with v±θ the interpolating velocity defined as in (13), and satisfying for all
θ ∈ [1, 2],

∫

ρ±θ |v±θ |2 = W 2
2 (ρ

±
1 (t), ρ

±
2 (t)).

Multiplying (23) by ∂θψθ, and integrating over θ ∈ [1, 2], we obtain

‖∇ψ1 −∇ψ2‖L2(Td) ≤
∫ 2

θ=1

‖ρ+θ v+θ ‖L2 + ‖ρ−θ v−θ ‖L2

≤ W2(ρ
+
1 , ρ

+
2 )

(

sup
θ

‖ρ+θ ‖L∞

)1/2

+ W2(ρ
−
1 , ρ

−
2 )

(

sup
θ

‖ρ−θ ‖L∞

)1/2

.

Note that the energy estimate is easier here than in the Monge-Ampère case,
since the problem is immediately uniformly elliptic.

The mappings Xi satisfy Xi#ρ0 = ρi, and Xi#(ρ
±
0 ) = ρ±i . Hence,

W 2
2 (ρ

±
1 , ρ

±
2 ) ≤

∫

ρ±0 |X1 −X2|2.

Using Proposition 5.3, we conclude:

‖∇ψ1 −∇ψ2‖L2(Td)

≤ 2‖X2 −X1‖L2

(

‖ρ0‖L∞ max {‖ρ1‖L∞ , ‖ρ2‖L∞}
)1/2

.
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This ends the proof of Proposition 5.2. Note that in our specific case, Xi

are Lebesgue measure preserving invertible mappings, therefore ‖ρ±i ‖L∞ =
‖ρ±0 ‖L∞ , and the estimate can be simplified in

‖∇ψ1 −∇ψ2‖L2(Td) ≤ 2‖ρ0‖L∞‖X2 −X1‖L2(Td).

�

Remark: This technique can be used to conclude uniqueness for many
non-linear systems, where a transport equation and an elliptic equation are
coupled. The velocity field is the gradient of a potential satisfying a elliptic
equation whose right hand side depends smoothly on the density. For exam-
ple, we have uniqueness of solutions to the Vlasov-Poisson system and Euler-
Poisson system with bounded density and bounded velocity. The Vlasov-
Monge-Ampère and Euler-Monge-Ampère systems have also been studied by
the author ([5], [16]), and the same technique apply to yield uniqueness for
solutions with Cα density and bounded velocity. Note however that to en-
force uniform ellipticity, we need for the Monge-Ampère equation the density
to be bounded by below which is not the case for the Poisson equation.

6 Convergence to the Euler equation

6.1 Scaling of the system

Here we present a rescaled version of the 2-d SG system and some formal
arguments to motivate the next convergence results. Here x ∈ T

2, t ∈ R
+

and for v = (v1, v2) ∈ R
2, v⊥ now means (−v2, v1). Introducing ψ[ρ] =

Ψ[ρ] − |x|2/2, where Ψ[ρ] is given by Theorem 1.2, the periodic 2-d SG
system now reads

∂tρ+∇ · (ρ∇ψ⊥) = 0,

det(I +D2ψ) = ρ.

If ρ is close to one then ψ should be small, and therefore one may consider
the linearization det(I+D2ψ) = 1+∆ψ+O(|D2ψ|2), that yields ∆ψ ≃ ρ−1.
Thus for small initial data, i.e. ρ0−1 small, one expects ψ, µ = ρ−1 to stay
close to a solution of the Euler incompressible equation EI

∂tρ̄+∇ · (ρ̄∇φ̄⊥) = 0, (24)

∆φ̄ = ρ̄. (25)
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We shall rescale the equation, in order to consider quantities of order one.
We introduce the new unknown

ρǫ(t, x) =
1

ǫ
(ρ(

t

ǫ
, x)− 1),

ψǫ(t, x) =
1

ǫ
ψ(
t

ǫ
, x).

Then we have

ρ(t) = 1 + ǫρǫ(ǫt),

Ψ[ρ](t) = |x|2/2 + ǫψǫ(ǫt),

and we define φǫ by

ǫφǫ = |x|2/2− Φ[ρ],

so that

∇φǫ = ∇ψǫ(∇Φ[ρ]). (26)

Hence, at a point x ∈ T
2, ∇φǫ⊥ is the velocity of the associated dual point

∇Φ[ρ](x). The evolution of this quantities is then governed by the system
SGǫ

∂tρ
ǫ +∇ · (ρǫ∇ψǫ⊥) = 0, (27)

det(I + ǫD2ψǫ) = 1 + ǫρǫ. (28)

Remark: Note that this system admits global weak solutions with initial
data any bounded measure ρǫ 0, as long as

∫

T2

ρǫ 0 = 0, (29)

ρǫ 0 ≥ −1

ǫ
. (30)

Note also that if the pair (ρ̄, φ̄) is solution to the EI system (24, 25), so

is the pair

(

1

ǫ
ρ̄(
t

ǫ
, x),

1

ǫ
φ̄(
t

ǫ
, x)

)

.

We now present the convergence results. We show that solutions of SGǫ

converge to solutions of EI in the following sense: if ρǫ 0, the initial data of
SGǫ, is close (in some sense depending on the type of convergence we wish
to show) to a smooth initial data ρ̄0 for EI, then ρǫ and ρ̄ remain close for
some time. This time goes to ∞ when ǫ goes to 0.

We present two different versions of this result: the first one is for weak
solutions of SGǫ, and the second one is for Lipschitz solutions.
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6.2 Convergence of weak solutions

Theorem 6.1. Let (ρǫ, ψǫ) be a weak solution of the SGǫ system (27, 28).
Let (ρ̄, φ̄) be a smooth C3([0, T ]×T

2) solution of the EI system (24, 25). Let
φǫ be obtained from ψǫ as in (26), let Hǫ(t) be defined by

Hǫ(t) =
1

2

∫

T2

∣

∣∇φǫ −∇φ̄
∣

∣

2
,

then

Hǫ(t) ≤ (Hǫ(0) + Cǫ2/3(1 + t)) expCt

where C depends on sup0≤s≤t{‖D3φ̄(s), D2∂tφ̄(s) ‖L∞(T2)}.

Remark 1: Note that∇φǫ⊥(t, x) is the velocity at point∇Φ[ρ] = x−ǫ∇φǫ.
Thus we compare the SGǫ velocity at point x−ǫ∇φǫ (the dual point of x) with
the EI velocity at point x. Our result allows also to compare the velocities
at the same point, by noticing that

Gǫ(t) =
1

2

∫

T2

ρ
∣

∣∇ψǫ −∇φ̄
∣

∣

2

=
1

2

∫

T2

∣

∣∇φǫ −∇φ̄(x− ǫ∇φǫ)
∣

∣

2

≤ C(Hǫ(t) + ǫ2)

using the smoothness of φ̄, and if vsgǫ,vei are the respective velocities of the

SGǫ and EI systems, Gǫ =

∫

T2

ρǫ|vsgǫ − vei|2.
Remark 2: The expansion det(I + D2ψ) = 1 + ∆ψ + O(|D2ψ|2), used

above to justify the convergence relies a priori on the control of D2ψ in the
sup norm. But in the Theorem 6.1, the initial data must satisfy ∇ψǫ close
in L2 norm to a smooth divergence free velocity: this condition means that
D2ψǫ is close in H−1 norm to D2φ̄, which is smooth. This control does not
allow to justify the expansion det(I +D2ψ) = 1 + ∆ψ +O(|D2ψ|2), but we
see that the result remains valid.

Proof of Theorem 6.1

In all the proof, we use C to denote any quantity that depends only on φ̄.
We use the conservation of the energy of the SGǫ system, given by

E(t) =

∫

T2

|∇φǫ|2.
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This fact, although formally easily justified, is actually not so straightforward
for weak solutions, and has been proved by F. Otto in an unpublished work.
The argument is explained in [5]. Therefore E(t) = E0. The energy of the
smooth solution of EI is given by

∫

T2

|∇φ̄|2

and also conserved. For all smooth θ, we will use the notation:

< D2θ > (t, x) =

∫ 1

s=0

(1− s)D2θ(t, x− sǫ∇φǫ(t, x)).

Thus we have the identity
∫

T2

ρǫθ =

∫

T2

θ(x− ǫ∇φǫ) (31)

=

∫

T2

θ − ǫ

∫

T2

∇θ · ∇φǫ + ǫ2
∫

T2

< D2θ > ∇φǫ∇φǫ. (32)

Using the energy bound, the last term is bounded by ǫ2‖D2θ‖L∞(T2)E0. Then
we write

d

dt
Hǫ(t) = − d

dt

∫

T2

∇φ̄ · ∇φǫ.

Using the identity (32), we have for all smooth θ,

ǫ

∫

T2

∇θ · ∇φǫ = −
∫

T2

ρǫθ +

∫

T2

θ + ǫ2
∫

T2

< D2θ > ∇φǫ∇φǫ,

hence, replacing θ by φ̄ in this identity, we get

d

dt
Hǫ(t) =

1

ǫ

d

dt

∫

T2

[ρǫφ̄− φ̄− ǫ2 < D2φ̄ > ∇φǫ∇φǫ].

We can suppose without loss of generality that

∫

T2

φ̄(t, x) dx ≡ 0. Then if

we define

Qǫ(t) =

∫

T2

ǫ < D2φ̄ > ∇φǫ∇φǫ,

(note that |Qǫ(t)| ≤ Cǫ), we have

d

dt
(Hǫ +Qǫ) =

1

ǫ

d

dt

∫

T2

ρǫφ̄.
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Hence we are left to compute

1

ǫ

d

dt

∫

T2

ρǫφ̄ =
1

ǫ

∫

T2

∂tρ
ǫφ̄+ ρǫ∂tφ̄

=
1

ǫ

∫

T2

ρǫ∇ψǫ⊥ · ∇φ̄− ǫ∇φǫ · ∇∂tφ̄+ ǫ2 < D2∂tφ̄ > ∇φ̄∇φ̄

=
1

ǫ

∫

T2

ρǫ∇ψǫ⊥ · ∇φ̄−
∫

T2

∇φǫ · ∇∂tφ̄+O(ǫ)

= T1 + T2 +O(ǫ),

where at the second line we have used (27) for the first term and (32) with
θ = ∂tφ̄ for the second and third term. (Remember also that we assume
∫

∂tφ̄ ≡ 0.)
We will now use the other formulation of the Euler equation: v = ∇φ̄⊥

satisfies

∂tv + v · ∇v = −∇p.

After a rotation of π/2, this equation becomes:

∂t∇φ̄+D2φ̄∇φ̄⊥ = ∇p⊥,

thus for T2 we have

T2 = −
∫

T2

∇φǫ · ∇∂tφ̄

=

∫

T2

∇φǫD2φ̄∇φ̄⊥.

For T1, using (26) and (32), we have

ǫT1 =

∫

T2

ρǫ∇ψǫ⊥ · ∇φ̄

=

∫

T2

∇ψǫ⊥(x− ǫ∇φǫ) · ∇φ̄(x− ǫ∇φǫ)

=

∫

T2

∇φǫ⊥ · ∇φ̄− ǫ∇φǫ⊥D2φ̄∇φǫ + ǫ∆

where ∆ is defined by

∆ =

∫

T2

∇φǫ⊥

(

D2φ̄−
∫ 1

s=0

D2φ̄(x− sǫ∇φǫ) ds

)

∇φǫ. (33)

The term
∫

T2 ∇φǫ⊥ · ∇φ̄ vanishes identically. Concerning ∆, we claim the
following estimate:
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Lemma 6.2. Let ∆ be defined by (33), then

|∆| ≤ C(ǫ
2
3 +Hǫ),

where C depends on ‖D3φ̄‖L∞.

We postpone the proof of this lemma after the proof of Theorem 6.1. We
now obtain

d

dt
(Hǫ(t) +Qǫ(t)) ≤

∫

T2

(∇φ̄⊥ −∇φǫ⊥)D2φ̄∇φǫ + CHǫ + Cǫ2/3.

Noticing that for every θ : T2 7→ R we have
∫

T2

∇θ⊥D2φ̄∇φ̄ =

∫

T2

∇θ⊥ · ∇(
1

2
|∇φ̄|2) = 0,

we find that
∫

T2

(∇φ̄⊥ −∇φǫ⊥)D2φ̄∇φǫ =

∫

T2

(∇φ⊥ −∇φ̄ǫ⊥)D2φ̄(∇φǫ −∇φ̄),

hence

d

dt
(Hǫ(t) +Qǫ(t)) ≤ −

∫

T2

(∇φǫ⊥ −∇φ̄⊥)D2φ̄(∇φǫ −∇φ̄) + CHǫ + Cǫ2/3

≤ C(Hǫ(t) +Qǫ(t) + ǫ2/3)

using that Qǫ(t) ≤ Cǫ. Therefore

Hǫ(t) +Qǫ(t) ≤ (Hǫ(0) +Qǫ(0) + Cǫ2/3t) exp(Ct)

and finally

Hǫ(t) ≤ (Hǫ(0) + Cǫ2/3(1 + t)) exp(Ct)

and the result follows. Check that the constant C depends only on
sup0≤s≤t{‖D3φ̄, D2∂tφ̄‖L∞(T2)}. This ends the proof of Theorem 6.1

�

Proof of Lemma 6.2

First we show that if Θ(R) =

∫

{|∇φǫ|≥R}

|∇φǫ|2, then

Θ(R) ≤ C

∫

|∇φǫ −∇φ̄|2 + C

R2
. (34)
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Indeed,
∫

|∇φǫ|2 ≤ C, implies that meas{|∇φǫ| ≥ R} ≤ C
1

R2
. Since |∇φ̄(t, x)| ≤

C for (t, x) ∈ [0, T ′]× T
d, we have

Θ(R) ≤
∫

{|∇φǫ|≥R}

|∇φ̄|2 +
∫

{|∇φǫ|≥R}

|∇φǫ −∇φ̄|2

≤ C

R2
+

∫

|∇φǫ −∇φ̄|2.

Hence (34) is proved.
Then, letting

K(x) = D2φ̄−
∫ 1

s=0

D2φ̄(x− sǫ∇φǫ) ds,

we have

∆ ≤ CΘ(R) +

∫

|∇φǫ|≤R

|K(x)||∇φǫ|2

with |K(x)| ≤ Cǫ|∇φǫ| thus

∆ ≤ Cǫ

∫

|∇φǫ|≤R

|∇φǫ|3 + CΘ(R)

≤ C

(

ǫR

∫

|∇φǫ|2 + 1

R2
+

∫

|∇φǫ −∇φ̄|2
)

≤ C

(

ǫR +
1

R2
+

∫

|∇φǫ −∇φ̄|2
)

for all R, so for R = ǫ−1/3 we obtain:

∆ ≤ Cǫ2/3 + C

∫

|∇φǫ −∇φ̄|2.

This proves Lemma 6.2
�

6.3 Convergence of strong solutions

We present here another proof of convergence, that holds for stronger norms.
Let us consider as above the solution (ρ̄, φ̄) to Euler:

∂tρ̄+∇ · (ρ̄∇φ̄⊥) = 0,

∆φ̄ = ρ̄,
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and we recall the SGǫ system

∂tρ
ǫ +∇ · (ρǫ∇ψǫ⊥) = 0,

det(I + ǫD2ψǫ) = 1 + ǫρǫ.

We have then

Theorem 6.3. Let (ρ̄, φ̄) be a solution of EI, such that that ρ̄ ∈ C2
loc(R

+ ×
T
2). Let ρǫ 0 be a sequence of initial data for SGǫ satisfying (29, 30), and

such that
ρǫ 0 − ρ̄0

ǫ
is bounded in W 1,∞(T2). Then there exists a sequence

(ρǫ, ψǫ) of solutions to SGǫ that satisfies: for all T > 0, there exists ǫT > 0,
such that the sequence

ρǫ − ρ̄

ǫ
,
∇ψǫ −∇φ̄

ǫ

for 0 < ǫ < ǫT is uniformly bounded in L∞([0, T ],W 1,∞(T2)).

Remark: In the previous theorem, we obtained estimates in L2 norm, here
we obtain estimates in Lipschitz norm. Estimates of higher derivatives follow
in the same way.

Proof of Theorem 6.3

We expand the solution of SGǫ as the solution of EI plus a small perturbation
of order ǫ and show that this perturbation remains bounded in large norms
(at least Lipschitz). We first remark the the assumption on ρ̄ implies that
∀T > 0, φ̄ ∈ L∞([0, T ];C3(T2)). Let us write

ρǫ = ρ̄+ ǫρ1

ψǫ = φ̄+ ǫψ1.

Rewritten in terms of ρ1, ψ1, the SGǫ system reads:

∂tρ1 + (∇φ̄+ ǫ∇ψ1)
⊥ · ∇ρ1 = −∇ψ⊥

1 · ∇ρ̄,
∆ψ1 + ǫ trace [D2ψ1D

2φ̄] + ǫ2 detD2ψ1 = ρ1 − detD2φ̄.

Differentiating the first equation with respect to space, we find the evolution
equation for ∇ρ1:

∂t∇ρ1 + ((∇φ̄+ ǫ∇ψ1)
⊥ · ∇)∇ρ1

= −(D2φ̄+ ǫD2ψ1)∇ρ⊥1 −D2ψ1∇ρ̄⊥ −D2ρ̄∇ψ⊥
1 . (35)
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We claim that in order to conclude the proof it is enough to have an estimate
of the form

‖ψ1(t, ·)‖C1,1(T2) ≤ C(1 + ‖ρ1(t, ·)‖C0,1(T2)), (36)

where C depends on φ̄. Let us admit this bound temporarily, and finish the
proof of the theorem: using (36) and (35), we obtain

d

dt
‖∇ρ1‖L∞ ≤ C(t)(1 + ‖∇ρ1‖L∞ + ǫ‖∇ρ1‖2L∞),

where the constant C(t) depends on the C2(T2) norm of (ρ̄(t, ·), φ̄(t, ·)). This
quantity is bounded on every interval [0, T ].

Thus we conclude using Gronwall’s lemma that ‖∇ρ1(t, ·)‖L∞(T2) remains
bounded on [0, Tǫ] with Tǫ going to T as ǫ goes to 0. We then choose T as
large as we want, since when d = 2 the smooth solution to EI is global in
time. From estimate (36) the W 1,∞ bound on ρ1 implies a W 2,∞ bound on
ψ1. Then, we remember that

ρ1 =
ρǫ − ρ̄

ǫ
, ∇ψ1 =

∇ψǫ −∇φ̄
ǫ

to conclude the proof of Theorem 6.3.
�

Proof of the estimate (36)

We write the equation followed by ψ1 as follows:

∆ψ1 = − trace [ǫD2ψ1D
2φ̄]− ǫ2 detD2ψ1 + ρ1 − detD2φ̄.

We recall that

‖fg‖C2,α ≤ ‖f‖C2,α‖g‖C2,α,

hence, using Schauder C2,α estimates for solutions to Laplace equation (see
[13]), we have

‖ψ1‖C2,α ≤ C1(1 + ǫ‖ψ1‖C2,α + ǫ2‖ψ1‖2C2,α), (37)

where C1 depends on ‖φ̄‖C2,α , ‖ρ1‖Cα. The inequality (37) will be satisfied
in two cases: either for ‖ψ1‖C2,α ≤ C2 or for ‖ψ1‖C2,α ≥ C3ǫ

−2 where C2, C3

are positive constants that depend on C1.
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Now we show that ψǫ, solution of (28), is bounded in C2,α for ρǫ bounded
in Cα norm. We consider for t ∈ [0, 1] ψǫ

t the unique up to a constant periodic
solution of

det(I + ǫD2ψǫ
t) = 1 + tǫρǫ.

Diiferentiating this equation with respect to t, we find

MijDij∂tψ
ǫ
t = ρǫ,

whereM is the co-matrix of I+ǫD2ψǫ
t . From the regularity result of Theorem

4.3, M is Cα and striclty elliptic. From Schauder estimates, we have then
‖∂tψǫ

t‖C2,α ≤ C‖ρǫ‖C2,α , and integrated over t ∈ [0, 1], we get

‖ψǫ‖C2,α ≤ C‖ρǫ‖C2,α.

Hence, since ψǫ = φ̄+ ǫψ1, we have ψ1 bounded by C/ǫ in C2,α. Hence it can
not be bigger than C3/ǫ

2, and to satsify (37), we must have

‖ψ1‖C2,α ≤ C2,

where C2 as above depends on ‖φ̄‖C2,α, ‖ρ1‖Cα. This proves estimate (36).
�
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