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Abstract

This paper studies pseudo-triangulations for a given point set in the plane. Pseudo-triangulations have many
properties of triangulations, and have more freedom since polygons with more than three vertices are allowed as
long as they have exactly inner angles less tharn particular, there is a natural flip operation on every internal
edge. We establish fundamental properties of pseudo-triangulations of point sets. We also present an algorithm to
enumerate the pseudo-triangulations of a given point set, based on the greedy flip of Pocchiola and Vegter. Our two
independent implementations agree, and allow us to experimentally verify or disprove conjectures on the numbers of
pseudo-triangulations and triangulations of a given point set. (For example, we establigi¥that+# PT for all
sets ofn < 10 points.)

1 Introduction

Algorithms that perform computations on sets of points in the plane frequently benefit from using the points to de-
compose the plane into simpler regions: triangulations, Voronoi diagrams, visibility maps, and Delaunay tessellations
are good examples [14]. Decompositions called pseudo-triangulations or geodesic triangulations have been studied
for convex sets and for simple polygons in the plane because of their applications to visibility [35, 36], ray shoot-
ing [13, 18], covering and separation [38], and stretchability of pseudo-lines arrangements [40]. They have been used
in a number of kinetic data structures (KDSs) for collision detection among moving objects in the plane [1,26, 27] be-
cause they can be maintained by edge flips and can form a partition of the free space whose size is related to minimum
link separators of the objects. Streinu used them in an elegant proof that it is always possible to unfold a chain in the
plane without self-intersection [46].

We define pseudo-triangulations of point sets in Section 2.1. Pseudo-triangulations possess versatility and uni-
formity properties that make them worthy of study. For instance, there is an edge-flip operation that applies to any
internal edge in a pseudo-triangulation, unlike the edge-flip operation in triangulations. In Section 2.2, we show how to
implement this operation efficiently, and study the graph of pseudo-triangulations, in which two pseudo-triangulations
are adjacent if they differ by a single edge flip. We show that this graph is connected, that its diameter i©dhiays
and that it is the graph of an abstract polytope. It has since been proven [43] that this abstract polytope can in fact be
geometrically realized.

We then use edge-flips to enumerate all pseudo-triangulations of a given point set. There have been many in-
teresting results on counting and enumerating triangulations for a given set of points in the plane. There have been
a series of upper bounds on the maximum number of triangulati®¥,S), of a givenn-point setS. A count of
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#T(S) < 59t°(™) by Santos and Seidel [44] recently replaced the previous begfgfs) < 28-12n+0(ogn) py
Denny and Sohler [16]. There are examples of point sets with many triangulations that establish a lower bound of
#T(S) > 23n—Theta(logn) [21], Aichholzer [3] has a counting algorithm (that can be executed from a web page
for small point sets [2]) and Bespamyatnikh [10] and Ray and Seidel [42] present enumeration algorithms. There re-
main elementary open questions, such as what point sets have the most and the fewest triangulations. (Aichholzer [2]
maintains a list of the leading examples for up to 20 points.)

Less is known about the number of pseudo-triangulatigf’B7’(.S), of a given point set. Even the following
conjecture is open:

Conjecture 1 [15] For any setS of points in general position in the plangT'(S) < #PT(S) with equality iff the
points are in convex position.

Randall et al. [41] have established an upper bogdl’(S) < 3'#T(S) for any point setS with i points inside

the convex hull. When combined with the bound on the number of triangulations, thisgR@$s) < 27-47+e(n),
Bespamyatnikh has extended his enumeration algorithm to pseudo-triangulations, but has yet to implement it. Also,
his algorithm cannot take a fixed g&tof edges and enumerate only the pseudo-triangulations which cdiitain

Our algorithm, presented in Section 3, is based on the greedy flip algorithm of Pocchiola and Vegter for computing
the visibility complex of a scene af convex objects in the plane [36]. As such, our technique can also enumerate the
pseudo-triangulations that contain a given Kedf edges. In Section 4, we provide some implementation details; we
have produced two independent implementations, which may be obtainedvitenss.poly.edu/pstoolkit/
and www.cs.unc.edu/Research/compgeom/pseudoT/ In Section 5 we present the results of experiments that
explore basic conjectures on the number of pseudo-triangulations and triangulations. Both implementations agree in
these experiments.

Note that Tutte [47] and others have studied the number of topological embeddings of triangulations and rooted
triangulations when the locations of vertices are not specified. Li and Nakano [31] enumerate topologically-distinct
triangulations with a prescribed number of points on their boundary. We focus strictly on the geometric questions
when the vertex set must be a given set of points in the plane.

This work was begun at a Bellairs workshop on pseudo-triangulations organized by lleana Streinu and partially
supported by the NSF. The published results by the participants include the numbers of pseudo-triangulations of special
point configurations [41], the existence of pseudo-triangulations with bounded degree [23, 24], and an analysis of the
flip graph [43]. Especially this last work quotes some of the results on flipping contained in this paper.

2 Graph of pseudo-triangulations

2.1 Definitions

Pseudo-triangulations were defined by Pocchiola and Vegter [37] for the case of 2-dimensional convex sets. In this
paper, we are solely concerned with pseudo-triangulations of point sets. One could replace eachyp@itisk with

centerp and radius, for some smalk > 0, and work within their framework. There are many subtleties involved,
however, which warrant a study of the case of point sets in their own right. For instance, two disks have four bitangents,
only three of which can be non-intersecting; if we collapse the disks to points, all bitangents collapse to a single edge.
To ease the reader’s task and prevent circular dependencies, we do not reference the case of convex sets except in the
proof of the Flip Property (Theorem 6).

Pseudo-triangles. A pseudo-trianglds a simple polygon in the plane that has exactly three vertices, cadled

ners with internal angle less than The three corners of a pseudo-triangle decompose its boundary into three concave
chains. Letl" be a pseudo-triangle. fangentto 7' is a linel in the plane that goes either through a commef 7" and
separates the two edgesbincident uporp, or through a non cornerof 7' and does not separate the two edgé€es of
incident uporp. A pseudo-triangle has exactly one tangent line parallel to any given line.



Pseudo-triangulations. Let P be a set of: points in general position (i.e., no three collinear points) and’lbe
the set ofn(n — 1)/2 undirected line segments with endpointsiinedges for short). For the purpose of this paper,
we assume that there are no two parallel edges and no edge parallettaxts

(b) (©) (d)

Figure 1: (a) A pseudo-triangle and its horizontal and vertical tangents. (b) An acyclic planar set of edges. (c) A
maximal acyclic planar set of edges or, put differently, a pseudo-triangulation. (d) The canonical sorted pseudo-
triangulation.

A subsetH of F is calledplanarif its edges are pairwise interior disjoint, and is calsyclicif for any endpoint
p of an edge off there is a line through that leaves the edges &f incident uporyp all on the same side.

Following Streinu [46] we define pseudo-triangulatiohof P to be a maximal (for the inclusion relation), acyclic
and planar subset df; note that the set of edges of the convex hullRis included in every pseudo-triangulation.
(See Figure 1 for an illustration.) For completeness, we state and prove the following:

Lemma 2 ( [46, Theorem 3.1]) The bounded faces of the subdivision of the plane induced by a pseudo-triangulation
of P are pseudo-triangles. Furthermore the number of pseudo-triangles of the subdivigiendsand its number of
edges i2n — 3.

Proof. (Adapted from [37, Lemma 2]) LeR be a planar and acyclic set of edges containing the edges of the
convex hull of P. Assume that some bounded face of the induced subdivision is not a pseudo-triangle; from this we
shall derive thatk is not maximal. This means that this face is not simply connected or that its exterior boundary
contains at least corners. In both cases we add an edgéetas follows. Take a minimal length curve homotopy
equivalent to the curve formed by the part of the exterior boundary of the face that goes through all corners of the
exterior boundary but one. This curve contains an edge nBtand the addition of this edge 1® does not violate its
acyclicity nor its planarity; henc® is not maximal.

Let R be a pseudo-triangulation and @tbe the setP minus its two points whosg-coordinates are extremal.
SinceR is acyclic, the map that associates with a pseudo-triangle of the subdivision induéethbytouching point
of its horizontal tangent line is one-to-one; furthermore the image of this m@isce all bounded faces are pseudo-
triangles. Thus the number of pseudo-triangles is 2. The last result is then an easy application of Euler’s relation
for planar graphsd

For points in convex position, the set of pseudo-triangulations is exactly the set of triangulations; the external angle
of each vertex on the convex hull is greater thaso triangulations are acyclic. We define a canorscaied pseudo-
triangulation, as in Figure 1(d), for any set of points in general position by the following construction: sort the

1These two restrictions can be lifted, and indeed should be in a good implementation. In section 5, we apply the algorithm to the point sets from
the database of Aichholzer et al. which obey these restrictions.
2“Minimum” pseudo-triangulation in her terminology.



points lexicographically byz, y) coordinates, and form a triangle with the first three points; then for each subsequent
point in order, add one pseudo-triangle by creating two tangents to the convex hull. This pseudo-triangulation, called
incremental in [1], has been used in collision detection. See Section 3.4 for an algorithm.

2.2 Edge flips in pseudo-triangulations

In a triangulation, ardge flipreplaces any edge whose adjacent triangles form a convex quadrilateral by the opposite
diagonal of that quadrilateral. Edge flips, sometimes known as a Lawson flips, are useful tools to study the properties
of triangulations and to generate them algorithmically [21, 29, 33]. An almost identical flip operation is defined for
pseudo-triangulations of disks by Pocchiola and Vegter [36].

We now show that edge flips are even nicer in pseudo-triangulations of point sets, because any edge that is inside

the convex hull can be flipped.
(d) (c) (d)

Figure 2:Four pseudo-quadrangles; the last one, (d), uses both sides of one segment. Each pseudo-quadrangle has two diagonals
(dashed segments), one on each shortest paths that joins opposite corners. Each diagonal form a pair of pseudo-triangles, and an
edge-flip replaces one diagonal with the other.

@

Consider an edgethat is adjacent to two neighboring pseudo-triangles. Each endpairis@f corner in at least
one of the neighboring pseudo-triangles, since each vertex has at most one angle that is gregteeéh@igure 2 for
examples. We observe that removing edgeerges the two neighboring pseudo-triangles into a “pseudo-quadrangle”

At each endpoint oé either two corners merge into one corner or one corner merges with an angle greater than
Thus, the six corners of the original two pseudo-triangles become the four corners of a pseudo-quadrangle.

We can define aiagonalfor a pseudo-quadrangle by connecting opposite corners with a shortest path through
the interior. Such a shortest path coincides with parts of the boundary except for exactly one straight edge in the
interior, which splits the pseudo-quadrangle into two pseudo-triangles. Since there are two pairs of opposite corners,
a pseudo-quadrangle has two diagonals.

Now, any non-hull edge is one diagonal of a pseudo-quadrangle formed by remaviMge define theedge-flip
for e as the operation that removesnd replaces it with the other diagonal. Figure 2 shows four examples. From the
preceding discussion, we can observe:

Lemma 3 Any non-hull edge in a pseudo-triangulation can be flipped. The edge-flip operation replaces the non-hull
edge and its two incident pseudo-triangles with a new edge and two new pseudo-triangles. Flipping the new edge
restores the original pseudo-triangulation.

2.3 Graph of pseudo-triangulations

We now show that the graph of pseudo-triangulations, in which two pseudo-triangulations are adjacent if they differ
by a single edge flip, is connected.



Formally, thegraph of pseudo-triangulationfer a given set of points contains a node for each possible pseudo-
triangulation. An arc connects two nodes if the two corresponding pseudo-triangulations differ by a single edge flip.
The graph is undirected since flips are reversible.

Theedge-flip distanceetween any two pseudo-triangulations is the number of edge flips necessary to change one
into the other, i.e., the shortest path between them in the graph. We show that the flip graph is connected and bound
its diameter. Rote, Streinu, and Santos have extended this result to a beautiful analysis of the flip graph of pseudo-
triangulations, showing that it is polytopal, has a geometric embeddiiy'in® and relating it to minimally rigid
graphs [43].

Lemma 4 The graph of pseudo-triangulations is connected and the edge-flip distance between any two pseudo-
triangulations isO(n?) for a given set of: points.

Proof. We show that one can flip from any pseudo-triangulation to the canonical sorted pseudo-triangulation in
O(n?) steps. Since flips are reversible, this is sufficient to establish the lemma.

For a pseudo-triangulation that is different from the sorted pseudo-triangulation, start at the rightmost vertex and
flip all incident non-hull edges using less thailips. In the pseudo-quadrangle formed by removing such a non-hull
edge, the rightmost vertex is a corner; the flipped edge in this pseudo-quadrangle cannot attach to the rightmost vertex.
Thus, each flip removes an incident non-hull edge from the rightmost vertex. What remains is a rightmost vertex
with two hull edges. The corresponding pseudo triangle forms a convex chain opposite to the rightmost vertex, which
is the same configuration as in the sorted pseudo-triangulation. We drop the rightmost vertex and continue with the
pseudo-triangulation on the remaining- 1 points recursively. This procedure performs a totaDofi?) flips. O

Since pseudo-triangulations of points in convex position are identical to triangulations, the lower bound construc-
tions forQ(n?) flipping distance for triangulations with points in convex position apply for pseudo-triangulations [45].

The graph of pseudo-triangulations has an even stronger connectivity property. If we consider only the pseudo-
triangulations that contain a chosen set of edeS F, then we get a subgraph induced by the nodes corresponding
to those pseudo-triangulations, whose arcs join nodes that correspond to flips of the edgds.nbtimsubgraph is
connected. As we will see, this is a simple consequence of our enumeration algorithm.

Let X be the set of acyclic and planar subsetd&dhat contain the set of hull-edges, ordered by reverse inclusion
and augmented with a minimum element (it already has a maximum element, rigniEhereforeX is a lattice, and
the edge-flip operation provides the diamond property of abstract polytopes. (See e.g. the article by McMullen [32] or
the appendix of [36] for the notions related to abstract polytope.) As a consequence of the last observation and of the
strong connectivity of{ mentioned in the last paragraph, we have:

Lemma 5 The latticeX is an abstract polytope of dimensi@n — 3 — h, whereh is the number of edges on the convex
hull. Its set of vertices is the set of pseudo-triangulation¥ ofts 1-skeleton is the flip graph of pseudo-triangulations
of S. This abstract polytope is simple.

For further developments on the polytofieand especially for a geometric realizationf see the paper [43].

3 Enumerating pseudo-triangulations

Our goal is to enumerate the set of pseudo-triangulations over a given set of points. To this end we are going to define
a total order< on the set of edges and a binary tree of pseudo-triangulations whose leaves considered as increas-
ing sequences of edges are the pseudo-triangulations ordered lexicographically; furthermore two adjacent pseudo-
triangulations in the tree are either identical or related by a flip operation. Our enumeration algorithm is a traversal
of this tree guided by the aforementioned total orgerOur technigue can also be applied to enumerate the pseudo-
triangulations that contain a given set of edges.



3.1 The flip property

We introduce some definitions and prove a flip property that is essential to prove the correctness of the enumeration
algorithm. For each edge € F, define®(e) as the angle if0, ) that the edge directed upward makes with the
positive horizontal directio®z.

(a)

Figure 3:(a) An acyclic and planar subsat of E, and (b) the seEx = {e | K U{e} is acyclic and plane}r.

Given an acyclic planar subset of edg€sC FE, we denote byF the set of edges € E that can be used to
completeK to a pseudo-triangulation, i.e., such tétJ {e} is acyclic and planar. See Figure 3 for an illustration.

We define a partial ordex ;- on E as follows:e < €’ if there exists a sequence of edges= e, es,...,e, =€’
such thate, ande; 1 share a common endpoint and angt¥®;) < O(e;+1). According to the general position
assumption, two edges sharing an endpoint have different angles and therefore are comparable. It follows that the edges
of a pseudo-triangle are pairwise comparable and are encountered in increasing order when traversing the boundary
of the pseudo-triangle counterclockwise, starting from its point of horizontal tangency. Following [36, Lemma 7]
we observe that two crossing edgeshi are the diagonals of some pseudo-quadrangle (with edgésjnand
consequently they are comparable with respeet to

A filter for a poset( X, <) is a subsef of elements such that for any < y, if € I theny € I. In particular,
to each anglé corresponds a filtefx ¢ of the pose{ Ex, <) whose elements are the edgésf Ex whose angle
©(¢’) is greater thad. Note that/x o = Fx, andly, = E.

Figure 4:The setG(I,,2) is constructed by adding edges from the filfey, — i.e., edges with increasing angles greater than
/2 — until a pseudo-triangulation is formed. (a) illustrates that it is not sufficient to consider andleginr) only, but by
"wrapping around” (b) we do complete a pseudo-triangulation.

For any filter] of the poset{ Ex, <), we define a maximal planar acyclic set of edg&s) = {e1,ea,... e}
recursively: edge; is minimal inI, and, fori > 1, edgee;; is minimal in the set of edgese I\ {ey,...,e;} such
that K U{es,...,e;, e} is acyclic and planar. Since two edges that cross or that share an endpoint are comparable, the



setG(I) is well-defined, up to the choice of the minimal element at each step.

We would like forG(I) to be a pseudo-triangulation, and for this it suffices to make sureifBthas2n — 3
edges. This is not always possible, however, due to the fact that we chose the principal determir@tion0ofr),
therefore introducing a discontinuity in the comparisons, and forcing the algorithm to stop perhaps too early. (See
Figure 4.) To circumvent this, we replace, in the previous definitions, the set of ddgdsy its infinite cover
Ex = Ex x Z: elements ofi i are still called edges and the ang¥v) of an edgev = (e, k) of Ex is defined to
be the reab(e) + kn. The operator o i that increases the angle of an edgertig denoted. It is not hard to see
that if I is a filter of (Ex, <x) then its projection on the first factdx is onto, from which we deduce thét(7) is
a pseudo-triangulation. In this context we redefine the flip operation as follows: wiflig:(I) means to replace
by (e) if e € K:= K x Z or if e is a hull-edge, otherwise to perform an edge-flipecand assign the angle of the
diagonal by adding a multiple of to fall into the rang&®(e), ©(e) + ).

The pseudo-triangulatio@(Iy ) is called thehorizontal greedy pseudo-triangulati@md plays a particular role
in our enumeration algorithm. Further below, we explain how to efficiently compute this pseudo-triangulation.

G5\ {e/}) G\ {eper})

Figure 5:lllustration of the Flip Property for Points.

We are now in a position to state tHg property. This property states that flipping a minimal edge in a pseudo-
triangulation of the formG(I) results in a pseudo-triangulation of the fo{(J), and this will be crucial in our
enumeration algorithm. See Figure 5 for an illustration.

Theorem 6 (Flip Property for Points) LetI be afilter of the poséfE -, < k) and lete be minimalinl. ThenG(1I\e)
is obtained fronG(I) by flippinge.

The proof relies on the theory of pseudo-triangulations developed for bounded 2-dimensional convex sets in [36].
The heart of the proof is to replace each pgirk P by the disk with centep and radius, for some smalk > 0
and to derive the flip property for points from the “flip property for disks” (cf. [36, Theorem 12] and [7, Theorem 5]).
There are many subtleties involved, however. For one things, disks have four bitangents, only three of which can be
non-intersecting, and they all map to a single edge of the point set. Nevertheless, with a bit of care, it is possible to
carry the flip property from the case of disks to the case of points.

We briefly recall the terminology and the results of [36] needed to our purposé;Lél,, . .., O, be a collection
of n pairwise disjoint bounded closed convex subsets of the plane with nonempty interiors and regular boundaries
(obstacles or disks for short). We assume that there is no line tangent to three distengentis a closed undirected
line segment whose supporting line is tangent to two disks at its endpointfree Aitangent is a bitangent whose
interior lies in free space the complement of the disks. In the following considerations all bitangents are free. A
set of (free) bitangents is callgdanar if its elements are pairwise disjoint. pseudo-triangulatior{of the O;s) is
a maximal — for the inclusion relation — planar set of bitangents. It is known that a pseudo-triangulation contains
3n — 3 bitangents that decomposes the convex hull of the disk=imte 2 pseudo-trianglesvhere in this context a



pseudo-triangle is a simply connected region of the plane whose boundary consists of three convex curves that share a
tangent at their common endpoint and which is included in the triangle formed by the three endpoints of these convex
curves.
We denote by the set of (free) bitangents and we introduce its infinite civer B x Z: elements o3 are still
called bitangents; the ang®(v) of the bitangent = (b, k) € B is defined to be the re®(b) + kr where©(b) is
the angle in0, 7) thatb oriented upward makes with the horizontal positive directian and the direction of € B
is the unit vectorcos O (v),sin O(v)) € S'; the operator that increases the angle of a bitangentibylenoted.
Given a planar subséf of B we introduce the seBy of bitangents ofB that cross properly no bitangent &f
(thusH C Bpy). The seBy is endowed with a partial ordety defined as followsb < b’ if there exists a sequence
of bitangents; = b, bs, ..., by = b’ in By such thab; andb; ; touch the same oriented disandO (b;) < O(b; 1)
Each (proper) filted of (B, <) is associated with its so-called greedy pseudo-triangulation

G(I) = {bl,b%...,bgn,g} clI

defined as follows: (1), is minimal inZ, and (2)b;1 is minimal in the subset of bitangents b€rossing none of the
bitangentd,, bo, . . ., b;. Since crossing bitangents are comparable (cf. Lemma [36, Lemm@&(?]),is well-defined

and is a superset of the set of minimal elements.offo flip b in G(I) means to replackby «(b) if be H:= H x Z

or if b is a hull bitangent, otherwise to replakdy the second diagonal (with the appropriated angle) of the pseudo-
quadrangle obtained by merging the two pseudo-triangles incidentiupaf (1).

Theorem 7 (Flip Property for Disks [7,36]) Letb be minimal in the filted of the posetBy, <x). ThenG(I\b) is
obtained fromG(I) by flippingb.

According to the Flip Property the mapping that associates with the bitahgefity the bitangent’ € By defined
by {v'} = G(I \ b) \ G(I) whereb is minimal in is well-defined (because independent pfone-to-one, and onto;
the bitangend’ is denotedp(b; H).

We turn now to the proof of the Flip Property for points. We split the proof into several lemmas. The key idea of
the proof is to define an epimorphism of posets to carry the Flip Property from the case of disks to the case of points.
Before defining this epimorphism we reformulate the greedy procedure in terms more suitable for our subsequent
analysis.

Lemma 8 Let [ be a filter ofBy and letF beinitial in I, i.e.,I \ F'is afilter. ThenG(I) = G(I(F')) wherel(F)
is the filter of the posel ;. () defined byl (F) = I N Byucr). A similar result holds when taking’, Ex for H
andBg.

Proof. SinceF is initial G(F') is a subset of7(I) from which the lemma follows easily.

Now we turn to the construction of the epimorphism. Ear 0 let O;(e) be the disk with centes; and radius:.
Since the points are in general position there exists aegeal 0 such that for alk < ¢y no line pierces three of the
disksO;(e) and no horizontal line pierces two disks. (Remember that we assumed that no two points have the same
ordinate.) We choose such aand we introduce the sét of 2n(n — 1) (free) bitangents of th®;(¢)s and we denote
by n the four-to-one mapping that associates with a bitangenB tangent to the disk®; andO; the edge;(b) of E
with endpointg; andp;. Our first lemma provides a characterization of acyclicity in terms of the crossing predicate.

Lemma 9 Let K be a planar subset af. ThenK is acyclic iff for all maximal (for the inclusion relation) planar
subsetH of ! (K) one has)(H) = K.

3An oriented disk is a disk with a “direction”, “sense”, or “orientation” assigned to its boundary. An oriented disk and a bitangent touch each
other or are tangent to each other if their directions at the point of touching are the same.



Proof. The 'if part’ is easy. To prove the 'only if part’ we show that if there exists an edgek” and a maximal
planar subset! of n~!(K) such thai ¢ n(H) thenK is not acyclic. Letp andq be the endpoints aof and letp™
(resp.p™) be the set of edgeg € K such that (1-p is endpoint ofe’, i.e,e’ = [p,r] for some pointr, and (2-) the
triplet of pointsp, r, ¢ is oriented counterclockwise (resp. clockwise).

The assumption that¢ »(H) is equivalent to say that for a@lle n~1(e) there exists a bitangebtof H such that
b andb’ are crossing. A simple case analysis shows that this is equivalent to say that fielsets p™Uq=, p~ Ugq™
andp~ U ¢~ are nonempty; from which we deduce thdt andp~ (or ¢ andg™) are nonempty and consequently
that K is not acyclic.C

Our next lemma is the key to the construction of an epimorphism from $&me 7~ (Ex) onto E.

Lemma 10 Let K be an acyclic and planar subset &fand let H be a maximal (for the inclusion relation) planar
subset of)~!(K). Then

1. U(BH) = Eg, and

2.if b <y b thenn(b) <k n(¥').

Proof. Claim (1) is consequence of Lemma 9: indeedAét= K U {e} be planar and acyclic and I&f’ > H
be a maximal planar subset f }(K’) that containg. According to Lemma 9 applied to the pdii’, H' one has
n(H') = K’ and consequently some bitangent)of' (¢) € By . Claim (2) is a simple consequence of Claim(1) and
the observation that i andd’ touch the same oriented disk with(b) < ©(b') thenn(b) andr(b’') share a common
endpoint an®(n (b)) < O(n(b')) with equality iff n(b) = n(b'). O

In other words, the restrictiomy of n to By is a mapping ont@ x that preserves the orderings. We show at
preserves also the greedy pseudo-triangulations.

Lemma 11 Let K be an acyclic and planar subset Bf let H be a maximal planar subset 9f *(K), and let be a
filter of (Ex, <k ). Then

1.0, (I) is afilter of By, <)

2.9(G(ng' (1)) = G(I).

Proof. Claim (1) is simple consequence of Lemma 10. Claim (2) is proved by induction on the set of planar
acyclic subsetd( of E ordered by reverse inclusion. Lét= ;" (I). This is clearly valid if is maximal since in
that caséEx = K, By = H and consequentl (1) = I\ «(I) andG(J) = J \ «(J) from which we deduce that
n(G(J)) = G(I). Assume now thak is not maximal and let be minimal inI. If e ¢ K we setK’ = K U {e}
andH’ = H U G(ny"' ({e}). According to Lemma 8G(I) = G(I') andG(J) = G(J') whereI’ = I(n;'{e}) and
J' = J({e}). One can check thatl = n;;,(J’) from which the result follows by induction sindé c K'. In case
e € K we replace: by an initial segment of that contains exactly one element notiinand proceed similarlyd

We are now ready to carry the Flip Property from the case of disks to the case of points.

Proof of Theorem 6. Let J = n;;*(I) and letF = 1" (e). Note thatF is initial in .J sinceJ \ F = n;" (I \ e)
(cf. Lemma 11, Claim 1). Thanks to the Flip Property for disks the¥et \ F) is obtained fromG(I) by flipping
successively the bitangents Bf Therefore one has

GJ\F)=(G)\G(F))Us(F;H)\ F
and consequently, according to Lemma 11,
G\ e)=(G(I)\e)Un(o(F, H)\ F).

SinceG(I \ e) andG(I) have the same cardinality, namely — 3, it follows thatG(I \ e) \ G(I) is reduced to a
single edge, which is one of the edges)0b(F'; H) \ F). O



3.2 Algorithms for edge flip

In this section we sketch two implementations of edge flip, assuming that the pseudo-triangulation is stored in a data
structure that allows us to access its edges in order around a given face. Standard structures for planar subdivisions,
such as doubly-connected edge lists or quadedge [14, 19], provide this.

Rotational sweep for edge-flip. We can determine the new diagonal obtained by flipping edgsing a ro-

tational sweep somewhat similar to the rotating caliper [14]. The algorithm proceeds by rotating parallel tangents
simultaneously along the interiors of the two pseudo-triangles adjacent$tarting from the edge that we want

to flip, the two tangents initially coincide but have opposite orientations. If we sweep through the angles, the two
tangents immediately separate and meet again only when they reach the new diagonal. We can discretize this sweep
because the tangents rotate around vertices until they are collinear with the next halfedge of a pseudo-triangle. Then
they advance to the next vertex. At corners the tangent changes its orientation with respect to the halfedge orientation.
The sweep terminates when the tangents again coincide. See Figure 8 below for an implementation.

A matroidal flip algorithm. The predicate in the rotational sweep is a test ordering two vectors. One can also
give an implementation that uses only the orientation predleéite _turn( p, g, ) , which returns true iff the point
sequence, g, r forms a left turn. We can call such an algorithm “matroidal,” in that it only uses information about the
order type of the points [11, 28]. Such algorithms are usually better in that they have fewer degenerate configurations,
lower arithmetic complexity, and generalize to other matroids.

The idea behind the algorithm is to identify the flip as the only diagonal edge on the shortest path connecting the
opposite corners. The funnel algorithm of Lee and Preparata can be modified [20, 30] to compute shortest paths in
linear time and return the unique edge not on the boundary of the pseudo-quadrangle. Alternatively, one can compute
common tangents for the pairs of chains in a pseudo-quadrangle to identify the diagonals. Tangents for two separated
chains can be found i®(logn) time [25, 34]. When computing the visibility graph of a set of convex obstacles,
Angelier and Pocchiola [7] use a clever amortization scheme to compute tangéxts itime apiece.

3.3 The enumeration algorithm

In this section, we consider the total orderon E andE induced by©. This order is compatible with, and linearly
extends(E, <). Although we assume general position, the case of parallel edges could be handled by considering a
linear extension of £, <).

In the algorithm, we speak of edgesihas colored red or blue. The red edges are fixed and will not be flipped;
the blue edges can be flipped. We now describe the following binarytree7 (P) of {red,blug-colored pseudo-
triangulations ofP. Each node of the tree corresponds to a colored pseudo-triangulateomd we identify the node
of the tree with its pseudo-triangulatiagh The tree is defined as follows:

1. The root of7 is the horizontal greedy pseudo-triangulati®(yy , ); all its edges are blue.

2. LetG be node of7: If either (i) a blue edge ofr has an angle> = or (i) all the edges of+ are red, thert is
a leaf of the tree. Otherwise, letbe a minimal blue edge, e.g., the blue edge with minimum a@gtg. The
right child of G is obtained from by flipping e and its left child is obtained by changing the colofedd red.

A leaf G satisfying 2.(i) is called a blue leaf, and a leaf satisfying 2.(ii) is called a red leaf. Blue leaves stop the
algorithm from enumerating a pseudo-triangulati®iseveral times; without stopping for blue leaves, the tree would
be infinite, and each pseudo-triangulation would be reported for every vatevith the same remainder moduto

The algorithm simply explores the trgeby a depth-first traversal, visiting the left child before the right child, and
reporting the red leaves in the order in which they are discovered.

The algorithm is fully described once we explain how to find the minimal blue eddyethe most direct imple-
mentation, the blue edges are stored in a priority queue, orderéd bie edge: at the top of the queue is removed
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upon descending to either child, and edgés enqueued when descending to a right child iff its argle’) < =
(otherwise the right child is a blue leaf and the recursion stops).

It is not necessary to store the priority queue in the recursion stack if we simply add bdgeto the queue when
returning to the parent after visiting the right subtree. Thus, the stack gro@$1jyat each recursive call.

Theorem 12 The set of red leaves @f(P) ordered from left to right (in the order they are reported by the algorithm)
is the set of pseudo-triangulations Bfordered lexicographically by.

Proof. Let G be a pseudo-triangulation with edgeshhand letGy, G4, ... G, ... Gy be the path in the tree
defined inductivelyG is the root the tree and’; ; is the left child ofG; if the minimal blue edge of7; belongs to
G otherwiseG; is its right child. LetK; be the set of red edges 6f;, edgee; be the minimal blue edge &f;, and
filter I; = Ik, o(,) Of Ex,. We claim that

1.K; CG,

2.G \ K, CI,
from which we deduce thdt,, is a red leaf ands = G..

Claims (1), (2) and (3) are easily proven by inductioniarsing the Flip Property of the previous section. The
proof is finished by noting that the red leaves of the tree are pseudo-triangulations with eflgé€s in

Note that the theorem is also valid for any total oretethat is a linear extension ef, yielding a well defined tree
7-(P). Since® induces such a total order and is easy to compute, thanks to the geometry, it is convenient to use it.
See Remark 1 below.

Theorem 13 The height of the tre@ (P) is at mostu(n — 1)/2.

Remarks. 1. In this formulation, the algorithm depends on the or@eof the edges, which is not implied by the
orientation of all triplets of points. For this reason, the algorithm as described here is not matroidal. It is, however,
possible to give a matroidal algorithm, by selectingdanyblue edge that is minimal for the partial order In this
case the tre@ (P) isn’t uniquely defined, and finding such an edge is more difficult, necessitating the maintenance of
the antichain [ in the notation of [7]) associated with the current fillewhile traversing the tree.

2. Maintaining the dual pseudo-triangulatiéGh = ¢..(G) (in the notation of [7]) while traversing the tree, where
¢. = ¢~ ! and where: and¢(e) have the same color, allows to retriave&vhen coming back from the right subtree.
Hence instead of storing a recursive stack to remeralzar the way up the tree, the algorithm can maintain @rly
and its dual. This changes the space complexity of the algorithm from quadratic to linear.

3. If K is an acyclic and planar set of edges, then by coloring the edgés refd, and replacing the root of
the tree by the horizontal greedy pseudo-triangula@ifix o) C Ex, the algorithm enumerates the set of pseudo-
triangulations that contaifl’. Observe that this proves that the graph of pseudo-triangulations is strongly connected.

3.4 The horizontal greedy triangulation

We now explain how to comput@(/y o). In fact, the algorithm can be adapted by a simple rotation to con{pUle)
foranyé € [0, 7). Itis convenient for the exposition (and for the algorithm) to order the poinBkwf lexicographical
order, i.e.p; <ygz P2 <yz - Pn-

The construction usdswer andupper horizon tregsdefined here as follows. For all poipt with 1 < i < n,
denote by/(p) the pointp;, for j > ¢, which minimizes the angl®(pp;) € [0,7). Definel(p,) = p,. Since
" (p) = pn, the set of edges of the forp(p) is a tree whose root ig, (it is connected because everyhas a path
to p,,, and it has vertices andh — 1 edges). We call that tree th@wver horizon treeand denote it bl (P).
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Figure 6:(a) A point set, (b) its lower and (c) upper horizon trees; (d) the superimposition of the horizon trees
yields pseudo-quadrangles (shaded) and pseudo-triangles.

COMPUTEL OWERHORIZONTREE(P) CoMPUTEUPPERHORIZONTREE(P)
Effects: computed(p; ) for everyp; € P Effects: computes.(p;) for everyp; € P

1 €(pn) < Pn L u(pr) <+ p1

2: for i «— n — 1 downto 1 do 2: for i — 2tondo

3 j—i+1 3 j—i—1

4:  whileright _turn (p;,p;, ¢(p;)) do 4:  whileright _turn (p;, p;,u(p;)) do

5: j—j+1 5: je—j3—1

6:  U(p;i) — pj 6:  u(pi) — pj

Figure 7: Computing the lower and upper horizon trees.

Likewise, for pointp; with 1 < i < n, denote byu(p) the pointp;, j < 4, which minimizes the angl®(pp;) €
[, 27) (defineu(py) = p1). The set of edges of the forpu(p) is also a tree, of rogh,, which we call theupper
horizon treeand denote by, (P).

The following lemma, first observed in [39], forms the basis of the algorithm. See Figure 6 for an illustration.

Lemma 14 Let K = Ty(P) U Ty(P) be the set of edges belonging to the horizon trees.

(1) K contains all the edges of the convex hullraf

(2) K decomposes the convex hullinto regions, each of which is either a pseudo-triangle or a pseudo-quadrangle.
(3) K C G(Ipo).

With this lemma, the algorithm is straightforward. The pseudo-code is given in Figure 7. It condfitésr
eachp € P by Andrew’s variant of Graham’s convex hull algorithm [6]. We need the prediggtté _turn (p,q,r)
which returns true if the point sequenggy, » forms a right turn. (In particular, the inner while loop will stopjat n
sinceright _turn (p;, pn, pn) is always false.)

Note that the algorithm still produces the correct tree if two edges are parallel or three points are collinear, or even
if two points have the same ordinate (thanks to the lexicographical order).

Computingu(p) is performed by a similar algorithm. After the initial sorting@(n log n) time, both algorithms
takeO(n) time. Once the horizon trees have been computed, the subdivision can be constructed in linear time, and
each region visited to determine if it is a pseudo-triangle or pseudo-quadrangle. A pseudo-quadrangle can be split in
time linear to its number of edges, by computing its two diagonals and inserting the one with $nalleus, once
the points are sorted lexicographically, the algorithm compGts ) in linear time.
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3.5 Complexity analysis

The algorithm spend®(n) time for a flip or a priority queue operation in the worst case, hence @ing per edge
of the tree. Since the number of edges is the same as the number of internal nodes, which is also half the number of
leaves, the algorithm spends amortized tithe:) per pseudo-triangulation.

Using a heap for the priority queue reduces the cost of the priority queue operat@(isgo:). Moreover, using
binary search can reduce the complexity of the flip algorith@ flog n) as well, at the cost of maintaining the corners
of pseudo-triangles (which can be don€lfil) time after a flip) and maintaining the boundary of the pseudo-triangles
as splittable queues as in [36].

Unfortunately, this is the time spent per leaf, counting bothitheedandthen,, blue leaves. The following ratio
is therefore important for the analyzing the complexity of the algorithrs: (ny + n,.)/n,.. We initially conjectured
a bound of 2 on this ratio, which was disproved by experiments (see next section). The currently best upper bound we
have is the number of edges of a pseudo-triangulation not on the convex hutlpi-e3 — h.

To conclude, the algorithm is set up in tinlign log n) to compute the horizontal greedy triangulatiGi/y ()
and insert its edges in the priority queue. The running time of the algorithm per red leaf of the tree (i.e., pseudo-
triangulation of P) is upper-bounded by (pn) = O(n?), and can be lowered with more complicated algorithmic
machinery taO(plogn) = O(nlogn). All of this is in the worst case.

Note that the average complexity of a pseudo-triangl@ (i), thus on the average the flip will be performed in
constant time. We expect thatis much smaller tham, although not constanp(= O(logn) seems a tempting
conjecture, but we do not have a shred of evidence in support). Thus in practice, we expect that the amortized cost per
pseudo-triangulation is much lower thér{n logn), perhapsD(p). In order to state such a result, however, we lack
an amortized bound for the flip and an upper boundsfor

Note finally that the number of pseudo-triangulations grows exponentially fast, thus limiting the domain of practi-
cality of our algorithm in the low tens (twenties). Thus all of the asymptotic complexities should be taken with a grain
of salt. A good implementation will settle for low-complexity algorithms as well as simplicity of the code.

4 Implementation issues

Two independent implementations based on the above algorithm have been developed in order to ensure the correctness
of the experimental validation of the conjecture.

4.1 Halfedge data structure

Both implementations chose to represent pseudo-triangulation by a halfedge data structure, a.k.a. doubly connected
edge list or DCEL. One implementation is based azC, and described in [17,22], and the other on an independent
halfedge data structure described in [12].

A halfedge data structure (HDS) is an edge-based data structure capable of storing a pseudo-triangulation, or more
generally any connected planar set of edges. Each edge is split into two halfedges with opposite orientations. By
convention, the halfedges incident to a face are oriented counter-clockwise around the faggpoAfte pointer
links a halfedge to its opposite halfedge, arat andprev pointer links it to the next halfedge in counterclockwise
orientation along the incident face. The incident vertices of a halfedge are namsthifve andtarget, as in [12].

4.2 Flip algorithm

Since the algorithm needs to examine the flip edge and decide whether to actually perform the flip or not, it is advanta-
geous to implement the rotational sweep method. Moreover, in this case, neither the flip algorithm nor the enumeration
algorithm need the revergerev pointers, thus saving space and execution time. For simplicity, we present below an
implementation that usgsrev pointers, namely in thes _corner function. Eliminatingprev pointers is possible

(see the implementation hitp://geometry.poly.edu/pstoolkit/ ) but complicates the pseudo-code.
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FINDPSEUDOFLIP(h)
Returns: a pair(h’, ¢') such that the edge joiningource(h’) andsource(yg’) is
the flip of the edge supporting
1: g < opposite(h)
2: reverse _h—is _corner (h),reverse _g<is _corner (g)
3: while true do
4. {decide which ofy or 4 is the next tangent to jump to the next vertex
5. if rotate _ccw_less( source(h),target(h),source(yg)),target(g))
is the same agéverse _h+#reverse _g)then

6: {test if advancingy crosses ovek and thus is the solutign
7: if left _turn( source(h), source(g), target(g)) #reverse _g then
8: return (h, g)
o: {not a solution yet, advangg
10: g < next(g)
11: if is _corner( g) then
12: reverse _g«negate(everse _g)
13:  else
14: {test if advancing: crosses oveg and thus is the solutign
15: if left _turn( source(h),source(g), target(g)) #reverse _h then
16: return (h, g)
17: {not a solution yet, advande}
18: g — next(h)
19: if is _corner( h) then
20: reverse _h<negatefeverse _h)

Figure 8: An implementation of the rotational flip method.

The function FNDPSEUDOFLIP returns two halfedge handles whose source vertices form the endpoints of the
flipped diagonal rotated counterclockwise from the old diagonal. The function does not actually flip the diagonal.
Note that the result could include the old diagonal, which needs to be considered before removing the old diagonal. In
the function,h andg are the halfedges whose source vertices are in contact with the two rotating tangents. The two
flagsreverse _handreverse _g indicate the relative orientation of the tangents to the halfédyedg respectively.

The pseudo-code is presented in Figure 8. This function needs two geometric predafatesurn(  p, q,r)
returns true if the point sequenggy, r forms a left turn, whileotate _ccw_less( p, g, r, s) returns true if the angle
from the oriented segmept; to the oriented segment is less thanr, which is equivalent téeft _turn( p,q,p +
(s —r)) . As aconveniences _corner (h)returnsleft _turn( source(prev(h)),source(h),target(h)) .

We note that it is possible that two pseudo-triangles share more than the origindl @algehen it is easy to see
that they cannot share more than two). In this case, the reader can check that the algorithm does not miss the flip due
to such (unavoidable) degeneracies.

An optimization we could have tried for the flip is to see if the two adjacent regions are triangles, which gives
the diagonal without any geometric tests. (Note that because of the minimality of pseudo-triangulations, the union of
these two triangles must be a convex quadrilateral.) There is no guarantee, however, that even a single edge is adjacent
to two triangles (consider; = (0, —1), p2 = (0, 1), pr = (k,0) for k > 2). Nevertheless, if the point set hagdges
on the boundary of its convex hull, there are at Idast 2 triangles in the pseudo-triangulation (with equality iff all
the pseudo-triangles are at most quadrangular).
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4.3 Enumeration algorithm

Using the FNDPSEUDOFLIP function, it is easy to implement the recursive variant of the enumeration algorithm. As
noted, the only variable to store in the recursion stack is the minimal edgthe current node.

Since the number of pseudo-triangulationsigfoints grows exponentially with, we will not be able to run the
algorithm for values of: larger than, say, 20. In faat, = 10, with up to 234,160 pseudo-triangulations, is already a
challenge and takes on the order of the second. This dictates a few implementation choices.

First, the priority queue can be a simple vector of edges, sorte@l bglues, although using a binary heap is
not a penalty and improves the performance slightly. Second, finding the flip without performing it saves a constant
time. Third, a non-recursive version of the algorithm eliminates the function call overhead, which contributes a (small)
constant factor overall. Fourth, storing the old diaganah the stack when a diagonal is flipped avoids searching for
this edge by reverse flipping the edgfen order to restore the original pseudo-triangulation. The second and fourth
optimizations combined save 36% in runtime.

5 Experimental results

We started this investigation to support or find a counter-example to the conjecture 1. The conjecture is not know to
be true even for small values af Our goal is to run our enumeration algorithm on Aichholzer et al.'s comprehensive
database of point sets with cardinality < 10 [4]. Our result is that for the over 14 million point sefsin the
database up te < 10, we have#T(S) < #PT(S). Moreover, we also have computed the maximum number of
pseudo-triangulations (Table 1) which enriches Aichholzer's compendium. Finally, we have packaged our software
into a pseudo-triangulation workbench with which we can interactively examine pseudo-triangulations, flip edges, and
perform various algorithms. This was extremely useful in exploring other conjectures, including about bounded-degree
pseudo-triangulations.

In order to assert confidence in our implementations, we have independently devised two implementations of the
enumeration algorithm, and checked that they agree on every point set in the database. ®he tateok about a
month to compute on a cluster of 26 Sun workstations and another eight Pentium processors at 1 Ghz, and about 200
days for the independent computation by another co-author. Luckily, both results agreed!

Interestingly, it was observed by Oswin Aichholzer that,/fce 8, the maximum# PT was achieved for theame
two point sets as for the maximugT’, and conjectured that the same would be truesfer 10. Indeed, this is now
verified. But this is not true for < 8 nor forn = 9. At this time, it seems far-fetched to conjecture that, for all even
n > 8, #PT(S) attain its maximum exactly for the point sefswhich also maximize#T'(S). Nevertheless, we can
state:

Experimentally proven fact 15 For any point set witth < 10, we have#T'(S) < #PT(S), with equality iff the
point set is in convex position. In that cagePT'(.S) is minimal.

Table 1 shows the minimum and maximum values#d?T'(S) for every value ofn, and indicates the running
time of our algorithms (both implementations were comparable). The point set with mingfainis the point set
in convex position for < 10. This contrasts sharply with the situation on triangulations [2]. In a previous version of
this paper, we conjectured that the number of pseudo-triangulations is minimized for point sets in convex position for
any value ofn. In fact, this has been proven recently [5].

Forn = 11, the point set database has recently been assembled by Aicholzer et al. and consists of 2,334,512,907
point sets. It is thus infeasible to compute the exact lower and upper bounds using this algorithm. Nevertheless, we
can still compute the number of pseudo-triangulations for particular configurations (this s a further test of correctness
of our algorithm, when the result is know mathematically), and on random point sets.

We conjectured that the ratjpof (blue and red) leaves to red leaves was bounded by 2. Experiments showed that
this is simply not true. In Table 2, we display some lower bounds,@s well as the best known upper bound.
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Figure 9:Screen shot of using the pseudo-triangulation workbench to test a conjecture

6 Conclusion

We have presented and implemented a new algorithm to enumerate all the pseudo-triangulations of a point set. This
algorithm uses the theory of pseudo-triangulations that was developed for convex obstacles, in particular it makes
reuse of the greedy flip algorithm.

Using the polytopal construction of [43], one could obtain another algorithm via the reverse-search paradigm [8].
Our algorithm is more general, however, since with the proper flip algorithm it also applies to matroids (in the dual,
arrangements of pseudo-lines), while reverse search is limited to geometric systems.

The running time per triangulation is in thea(n?), although it should be possible to lower that upper bound by
using amortization of the flip algorithm, as well as better upper bounds on the ratio of leaves over red leaves. Also,
the algorithm can be improved in theory using more fancy data structures, but since it is unlikely to be applied to point
sets larger thaR0, this is more of a theoretical exercise.

We independently developed two implementations of the algorithm, which agree on all point sets<fdi.

Using these implementation, we verified that Conjecture 1 is true f6r10. The mathematical proof (even for such
small values o) is still waiting to be discovered.
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# points  # point order types  lower-bound upper bound runtime

3 1 1 1 (1,#1) < l1sec

4 2 2 3 (1,#2) < lsec

5 3 5 13 (2,#3) < 1sec

6 16 14 76 (8, #15) < 1sec

7 135 42 485 (30, #125) 1sec

8 3315 132 3555 (150, #2991 and #3199) 3min = 0.054 sec/order type

9 158817 429 27874 (774, #151721) 990min = 0.374 sec/order type

10 14309 547 1430 234160 (4550, #13413894 and #13812360) about 200 days

Table 1: Number of pseudo-triangulations found among all the order types. Between parenthgge&Sis for the order typeS maximizing
#PT(S), followed by the index of5 in the database.

# points exact lower-bound  upper bound
3 1
4 2
5 276923 4
6 3.49254 6
7 4.26786 8
8 4.89121 10
9 5.74258 12
10 6.28663 14
11 N/A >6.11959 16
12 N/A >5.709 18

Table 2:Maximum ratiop of (blue and red) leaves to red leaves during the enumeration. The second column is (a 5-digit approximation of) the

exact number when available. The third column is a lower bound, obtained by trying random point sets with various distributions, while the fourth
column is the best known upper bound.
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