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Abstract

This paper studies pseudo-triangulations for a given point set in the plane. Pseudo-triangulations have many
properties of triangulations, and have more freedom since polygons with more than three vertices are allowed as
long as they have exactly inner angles less thanπ. In particular, there is a natural flip operation on every internal
edge. We establish fundamental properties of pseudo-triangulations of point sets. We also present an algorithm to
enumerate the pseudo-triangulations of a given point set, based on the greedy flip of Pocchiola and Vegter. Our two
independent implementations agree, and allow us to experimentally verify or disprove conjectures on the numbers of
pseudo-triangulations and triangulations of a given point set. (For example, we establish that#T ≤ #PT for all
sets ofn ≤ 10 points.)

1 Introduction
Algorithms that perform computations on sets of points in the plane frequently benefit from using the points to de-
compose the plane into simpler regions: triangulations, Voronoi diagrams, visibility maps, and Delaunay tessellations
are good examples [14]. Decompositions called pseudo-triangulations or geodesic triangulations have been studied
for convex sets and for simple polygons in the plane because of their applications to visibility [35, 36], ray shoot-
ing [13,18], covering and separation [38], and stretchability of pseudo-lines arrangements [40]. They have been used
in a number of kinetic data structures (KDSs) for collision detection among moving objects in the plane [1,26,27] be-
cause they can be maintained by edge flips and can form a partition of the free space whose size is related to minimum
link separators of the objects. Streinu used them in an elegant proof that it is always possible to unfold a chain in the
plane without self-intersection [46].

We define pseudo-triangulations of point sets in Section 2.1. Pseudo-triangulations possess versatility and uni-
formity properties that make them worthy of study. For instance, there is an edge-flip operation that applies to any
internal edge in a pseudo-triangulation, unlike the edge-flip operation in triangulations. In Section 2.2, we show how to
implement this operation efficiently, and study the graph of pseudo-triangulations, in which two pseudo-triangulations
are adjacent if they differ by a single edge flip. We show that this graph is connected, that its diameter is alwaysO(n2),
and that it is the graph of an abstract polytope. It has since been proven [43] that this abstract polytope can in fact be
geometrically realized.

We then use edge-flips to enumerate all pseudo-triangulations of a given point set. There have been many in-
teresting results on counting and enumerating triangulations for a given set of points in the plane. There have been
a series of upper bounds on the maximum number of triangulations,#T (S), of a givenn-point setS. A count of

∗Research by the first author was partially supported by NSF Career Grant #0133599. A preliminary version appeared inProc. ALENEX, 2005.
†Polytechnic University, CIS, Six Metrotech, Brooklyn NY 11201;hbr@poly.edu
‡Max-Planck-Institut f̈ur Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany;kettner@mpi-sb.mpg.de .
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#T (S) ≤ 59n+o(n) by Santos and Seidel [44] recently replaced the previous best of#T (S) ≤ 28.12n+O(log n) by
Denny and Sohler [16]. There are examples of point sets with many triangulations that establish a lower bound of
#T (S) ≥ 23n−Theta(log n) [21]. Aichholzer [3] has a counting algorithm (that can be executed from a web page
for small point sets [2]) and Bespamyatnikh [10] and Ray and Seidel [42] present enumeration algorithms. There re-
main elementary open questions, such as what point sets have the most and the fewest triangulations. (Aichholzer [2]
maintains a list of the leading examples for up to 20 points.)

Less is known about the number of pseudo-triangulations,#PT (S), of a given point setS. Even the following
conjecture is open:

Conjecture 1 [15] For any setS of points in general position in the plane,#T (S) ≤ #PT (S) with equality iff the
points are in convex position.

Randall et al. [41] have established an upper bound#PT (S) ≤ 3i#T (S) for any point setS with i points inside
the convex hull. When combined with the bound on the number of triangulations, this gives#PT (S) ≤ 27.47n+o(n).
Bespamyatnikh has extended his enumeration algorithm to pseudo-triangulations, but has yet to implement it. Also,
his algorithm cannot take a fixed setK of edges and enumerate only the pseudo-triangulations which containK.

Our algorithm, presented in Section 3, is based on the greedy flip algorithm of Pocchiola and Vegter for computing
the visibility complex of a scene ofn convex objects in the plane [36]. As such, our technique can also enumerate the
pseudo-triangulations that contain a given setK of edges. In Section 4, we provide some implementation details; we
have produced two independent implementations, which may be obtained fromwww.cs.poly.edu/pstoolkit/ .
and www.cs.unc.edu/Research/compgeom/pseudoT/ In Section 5 we present the results of experiments that
explore basic conjectures on the number of pseudo-triangulations and triangulations. Both implementations agree in
these experiments.

Note that Tutte [47] and others have studied the number of topological embeddings of triangulations and rooted
triangulations when the locations of vertices are not specified. Li and Nakano [31] enumerate topologically-distinct
triangulations with a prescribed number of points on their boundary. We focus strictly on the geometric questions
when the vertex set must be a given set of points in the plane.

This work was begun at a Bellairs workshop on pseudo-triangulations organized by Ileana Streinu and partially
supported by the NSF. The published results by the participants include the numbers of pseudo-triangulations of special
point configurations [41], the existence of pseudo-triangulations with bounded degree [23, 24], and an analysis of the
flip graph [43]. Especially this last work quotes some of the results on flipping contained in this paper.

2 Graph of pseudo-triangulations

2.1 Definitions

Pseudo-triangulations were defined by Pocchiola and Vegter [37] for the case of 2-dimensional convex sets. In this
paper, we are solely concerned with pseudo-triangulations of point sets. One could replace each pointp by a disk with
centerp and radiusε, for some smallε > 0, and work within their framework. There are many subtleties involved,
however, which warrant a study of the case of point sets in their own right. For instance, two disks have four bitangents,
only three of which can be non-intersecting; if we collapse the disks to points, all bitangents collapse to a single edge.
To ease the reader’s task and prevent circular dependencies, we do not reference the case of convex sets except in the
proof of the Flip Property (Theorem 6).

Pseudo-triangles. A pseudo-triangleis a simple polygon in the plane that has exactly three vertices, calledcor-
ners, with internal angle less thanπ. The three corners of a pseudo-triangle decompose its boundary into three concave
chains. LetT be a pseudo-triangle. Atangentto T is a linel in the plane that goes either through a cornerp of T and
separates the two edges ofT incident uponp, or through a non cornerp of T and does not separate the two edges ofT
incident uponp. A pseudo-triangle has exactly one tangent line parallel to any given line.
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Pseudo-triangulations. Let P be a set ofn points in general position (i.e., no three collinear points) and letE be
the set ofn(n − 1)/2 undirected line segments with endpoints inP (edges for short). For the purpose of this paper,
we assume that there are no two parallel edges and no edge parallel to thex-axis.1

(a) (b) (c) (d)

Figure 1: (a) A pseudo-triangle and its horizontal and vertical tangents. (b) An acyclic planar set of edges. (c) A
maximal acyclic planar set of edges or, put differently, a pseudo-triangulation. (d) The canonical sorted pseudo-
triangulation.

A subsetH of E is calledplanar if its edges are pairwise interior disjoint, and is calledacyclic if for any endpoint
p of an edge ofH there is a line throughp that leaves the edges ofH incident uponp all on the same side.

Following Streinu [46] we define apseudo-triangulation2 of P to be a maximal (for the inclusion relation), acyclic
and planar subset ofE; note that the set of edges of the convex hull ofP is included in every pseudo-triangulation.
(See Figure 1 for an illustration.) For completeness, we state and prove the following:

Lemma 2 ( [46, Theorem 3.1])The bounded faces of the subdivision of the plane induced by a pseudo-triangulation
of P are pseudo-triangles. Furthermore the number of pseudo-triangles of the subdivision isn− 2 and its number of
edges is2n− 3.

Proof. (Adapted from [37, Lemma 2]) LetR be a planar and acyclic set of edges containing the edges of the
convex hull ofP . Assume that some bounded face of the induced subdivision is not a pseudo-triangle; from this we
shall derive thatR is not maximal. This means that this face is not simply connected or that its exterior boundary
contains at least4 corners. In both cases we add an edge toR as follows. Take a minimal length curve homotopy
equivalent to the curve formed by the part of the exterior boundary of the face that goes through all corners of the
exterior boundary but one. This curve contains an edge not inR and the addition of this edge toR does not violate its
acyclicity nor its planarity; henceR is not maximal.

Let R be a pseudo-triangulation and letQ be the setP minus its two points whosey-coordinates are extremal.
SinceR is acyclic, the map that associates with a pseudo-triangle of the subdivision induced byR the touching point
of its horizontal tangent line is one-to-one; furthermore the image of this map isQ since all bounded faces are pseudo-
triangles. Thus the number of pseudo-triangles isn− 2. The last result is then an easy application of Euler’s relation
for planar graphs.2

For points in convex position, the set of pseudo-triangulations is exactly the set of triangulations; the external angle
of each vertex on the convex hull is greater thanπ, so triangulations are acyclic. We define a canonicalsorted pseudo-
triangulation, as in Figure 1(d), for any set ofn points in general position by the following construction: sort the

1These two restrictions can be lifted, and indeed should be in a good implementation. In section 5, we apply the algorithm to the point sets from
the database of Aichholzer et al. which obey these restrictions.

2“Minimum” pseudo-triangulation in her terminology.
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points lexicographically by(x, y) coordinates, and form a triangle with the first three points; then for each subsequent
point in order, add one pseudo-triangle by creating two tangents to the convex hull. This pseudo-triangulation, called
incremental in [1], has been used in collision detection. See Section 3.4 for an algorithm.

2.2 Edge flips in pseudo-triangulations

In a triangulation, anedge flipreplaces any edge whose adjacent triangles form a convex quadrilateral by the opposite
diagonal of that quadrilateral. Edge flips, sometimes known as a Lawson flips, are useful tools to study the properties
of triangulations and to generate them algorithmically [21, 29, 33]. An almost identical flip operation is defined for
pseudo-triangulations of disks by Pocchiola and Vegter [36].

We now show that edge flips are even nicer in pseudo-triangulations of point sets, because any edge that is inside
the convex hull can be flipped.

(a) (b) (c) (d)

Figure 2:Four pseudo-quadrangles; the last one, (d), uses both sides of one segment. Each pseudo-quadrangle has two diagonals
(dashed segments), one on each shortest paths that joins opposite corners. Each diagonal form a pair of pseudo-triangles, and an
edge-flip replaces one diagonal with the other.

Consider an edgee that is adjacent to two neighboring pseudo-triangles. Each endpoint ofe is a corner in at least
one of the neighboring pseudo-triangles, since each vertex has at most one angle that is greater thanπ, see Figure 2 for
examples. We observe that removing edgee merges the two neighboring pseudo-triangles into a “pseudo-quadrangle”:
At each endpoint ofe either two corners merge into one corner or one corner merges with an angle greater thanπ.
Thus, the six corners of the original two pseudo-triangles become the four corners of a pseudo-quadrangle.

We can define adiagonal for a pseudo-quadrangle by connecting opposite corners with a shortest path through
the interior. Such a shortest path coincides with parts of the boundary except for exactly one straight edge in the
interior, which splits the pseudo-quadrangle into two pseudo-triangles. Since there are two pairs of opposite corners,
a pseudo-quadrangle has two diagonals.

Now, any non-hull edgee is one diagonal of a pseudo-quadrangle formed by removinge. We define theedge-flip
for e as the operation that removese and replaces it with the other diagonal. Figure 2 shows four examples. From the
preceding discussion, we can observe:

Lemma 3 Any non-hull edge in a pseudo-triangulation can be flipped. The edge-flip operation replaces the non-hull
edge and its two incident pseudo-triangles with a new edge and two new pseudo-triangles. Flipping the new edge
restores the original pseudo-triangulation.

2.3 Graph of pseudo-triangulations

We now show that the graph of pseudo-triangulations, in which two pseudo-triangulations are adjacent if they differ
by a single edge flip, is connected.
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Formally, thegraph of pseudo-triangulationsfor a given set of points contains a node for each possible pseudo-
triangulation. An arc connects two nodes if the two corresponding pseudo-triangulations differ by a single edge flip.
The graph is undirected since flips are reversible.

Theedge-flip distancebetween any two pseudo-triangulations is the number of edge flips necessary to change one
into the other, i.e., the shortest path between them in the graph. We show that the flip graph is connected and bound
its diameter. Rote, Streinu, and Santos have extended this result to a beautiful analysis of the flip graph of pseudo-
triangulations, showing that it is polytopal, has a geometric embedding inR2n−3 and relating it to minimally rigid
graphs [43].

Lemma 4 The graph of pseudo-triangulations is connected and the edge-flip distance between any two pseudo-
triangulations isO(n2) for a given set ofn points.

Proof. We show that one can flip from any pseudo-triangulation to the canonical sorted pseudo-triangulation in
O(n2) steps. Since flips are reversible, this is sufficient to establish the lemma.

For a pseudo-triangulation that is different from the sorted pseudo-triangulation, start at the rightmost vertex and
flip all incident non-hull edges using less thann flips. In the pseudo-quadrangle formed by removing such a non-hull
edge, the rightmost vertex is a corner; the flipped edge in this pseudo-quadrangle cannot attach to the rightmost vertex.
Thus, each flip removes an incident non-hull edge from the rightmost vertex. What remains is a rightmost vertex
with two hull edges. The corresponding pseudo triangle forms a convex chain opposite to the rightmost vertex, which
is the same configuration as in the sorted pseudo-triangulation. We drop the rightmost vertex and continue with the
pseudo-triangulation on the remainingn− 1 points recursively. This procedure performs a total ofO(n2) flips. 2

Since pseudo-triangulations of points in convex position are identical to triangulations, the lower bound construc-
tions forΩ(n2) flipping distance for triangulations with points in convex position apply for pseudo-triangulations [45].

The graph of pseudo-triangulations has an even stronger connectivity property. If we consider only the pseudo-
triangulations that contain a chosen set of edgesK ⊆ E, then we get a subgraph induced by the nodes corresponding
to those pseudo-triangulations, whose arcs join nodes that correspond to flips of the edges not inK. This subgraph is
connected. As we will see, this is a simple consequence of our enumeration algorithm.

Let X be the set of acyclic and planar subsets ofE that contain the set of hull-edges, ordered by reverse inclusion
and augmented with a minimum element (it already has a maximum element, namely∅). ThereforeX is a lattice, and
the edge-flip operation provides the diamond property of abstract polytopes. (See e.g. the article by McMullen [32] or
the appendix of [36] for the notions related to abstract polytope.) As a consequence of the last observation and of the
strong connectivity ofX mentioned in the last paragraph, we have:

Lemma 5 The latticeX is an abstract polytope of dimension2n−3−h, whereh is the number of edges on the convex
hull. Its set of vertices is the set of pseudo-triangulations ofX. Its 1-skeleton is the flip graph of pseudo-triangulations
of S. This abstract polytope is simple.

For further developments on the polytopeX and especially for a geometric realization ofX, see the paper [43].

3 Enumerating pseudo-triangulations
Our goal is to enumerate the set of pseudo-triangulations over a given set of points. To this end we are going to define
a total order≺ on the set of edges and a binary tree of pseudo-triangulations whose leaves considered as increas-
ing sequences of edges are the pseudo-triangulations ordered lexicographically; furthermore two adjacent pseudo-
triangulations in the tree are either identical or related by a flip operation. Our enumeration algorithm is a traversal
of this tree guided by the aforementioned total order≺. Our technique can also be applied to enumerate the pseudo-
triangulations that contain a given set of edges.
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3.1 The flip property

We introduce some definitions and prove a flip property that is essential to prove the correctness of the enumeration
algorithm. For each edgee ∈ E, defineΘ(e) as the angle in[0, π) that the edgee directed upward makes with the
positive horizontal directionOx.

(a) (b)

Figure 3:(a) An acyclic and planar subsetK of E, and (b) the setEK =
{
e | K ∪ {e} is acyclic and planar

}
.

Given an acyclic planar subset of edgesK ⊆ E, we denote byEK the set of edgese ∈ E that can be used to
completeK to a pseudo-triangulation, i.e., such thatK ∪ {e} is acyclic and planar. See Figure 3 for an illustration.

We define a partial order≺K onEK as follows:e ≺K e′ if there exists a sequence of edgese1 = e, e2, . . . , ek = e′

such thatei andei+1 share a common endpoint and anglesΘ(ei) < Θ(ei+1). According to the general position
assumption, two edges sharing an endpoint have different angles and therefore are comparable. It follows that the edges
of a pseudo-triangle are pairwise comparable and are encountered in increasing order when traversing the boundary
of the pseudo-triangle counterclockwise, starting from its point of horizontal tangency. Following [36, Lemma 7]
we observe that two crossing edges inEK are the diagonals of some pseudo-quadrangle (with edges inEK) and
consequently they are comparable with respect to≺K .

A filter for a poset(X,≺) is a subsetI of elements such that for anyx ≺ y, if x ∈ I theny ∈ I. In particular,
to each angleθ corresponds a filterIK,θ of the poset(EK ,≺K) whose elements are the edgese′ of EK whose angle
Θ(e′) is greater thanθ. Note thatIK,0 = EK , andI∅,0 = E.

(a) (b)

Figure 4:The setG(Iπ/2) is constructed by adding edges from the filterIπ/2 — i.e., edges with increasing angles greater than
π/2 — until a pseudo-triangulation is formed. (a) illustrates that it is not sufficient to consider angles in[π/2, π) only, but by
”wrapping around” (b) we do complete a pseudo-triangulation.

For any filterI of the poset(EK ,≺K), we define a maximal planar acyclic set of edgesG(I) = {e1, e2, . . . , ek}
recursively: edgee1 is minimal inI, and, fori ≥ 1, edgeei+1 is minimal in the set of edgese ∈ I \ {e1, . . . , ei} such
thatK ∪{e1, . . . , ei, e} is acyclic and planar. Since two edges that cross or that share an endpoint are comparable, the
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setG(I) is well-defined, up to the choice of the minimal element at each step.
We would like forG(I) to be a pseudo-triangulation, and for this it suffices to make sure thatG(I) has2n − 3

edges. This is not always possible, however, due to the fact that we chose the principal determination ofΘ in [0, π),
therefore introducing a discontinuity in the comparisons, and forcing the algorithm to stop perhaps too early. (See
Figure 4.) To circumvent this, we replace, in the previous definitions, the set of edgesEK by its infinite cover
EK = EK × Z: elements ofEK are still called edges and the angleΘ(v) of an edgev = (e, k) of EK is defined to
be the realΘ(e) + kπ. The operator onEK that increases the angle of an edge byπ is denotedι. It is not hard to see
that if I is a filter of(EK ,≺K) then its projection on the first factorEK is onto, from which we deduce thatG(I) is
a pseudo-triangulation. In this context we redefine the flip operation as follows: to flipe in G(I) means to replacee
by ι(e) if e ∈ K := K × Z or if e is a hull-edge, otherwise to perform an edge-flip one and assign the angle of the
diagonal by adding a multiple ofπ to fall into the range(Θ(e),Θ(e) + π).

The pseudo-triangulationG(I∅,0) is called thehorizontal greedy pseudo-triangulationand plays a particular role
in our enumeration algorithm. Further below, we explain how to efficiently compute this pseudo-triangulation.

e1 e2

G(Iπ/2) G(Iπ/2\ {e1}) G(Iπ/2\ {e1,e2})

Figure 5:Illustration of the Flip Property for Points.

We are now in a position to state theflip property. This property states that flipping a minimal edge in a pseudo-
triangulation of the formG(I) results in a pseudo-triangulation of the formG(J), and this will be crucial in our
enumeration algorithm. See Figure 5 for an illustration.

Theorem 6 (Flip Property for Points) LetI be a filter of the poset(EK ,≺K) and lete be minimal inI. ThenG(I\e)
is obtained fromG(I) by flippinge.

The proof relies on the theory of pseudo-triangulations developed for bounded 2-dimensional convex sets in [36].
The heart of the proof is to replace each pointp ∈ P by the disk with centerp and radiusε, for some smallε > 0
and to derive the flip property for points from the “flip property for disks” (cf. [36, Theorem 12] and [7, Theorem 5]).
There are many subtleties involved, however. For one things, disks have four bitangents, only three of which can be
non-intersecting, and they all map to a single edge of the point set. Nevertheless, with a bit of care, it is possible to
carry the flip property from the case of disks to the case of points.

We briefly recall the terminology and the results of [36] needed to our purpose. LetO1, O2, . . . , On be a collection
of n pairwise disjoint bounded closed convex subsets of the plane with nonempty interiors and regular boundaries
(obstacles or disks for short). We assume that there is no line tangent to three disks. Abitangentis a closed undirected
line segment whose supporting line is tangent to two disks at its endpoints. Afree bitangent is a bitangent whose
interior lies in free space the complement of the disks. In the following considerations all bitangents are free. A
set of (free) bitangents is calledplanar if its elements are pairwise disjoint. Apseudo-triangulation(of theOis) is
a maximal — for the inclusion relation — planar set of bitangents. It is known that a pseudo-triangulation contains
3n − 3 bitangents that decomposes the convex hull of the disks into2n − 2 pseudo-triangleswhere in this context a
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pseudo-triangle is a simply connected region of the plane whose boundary consists of three convex curves that share a
tangent at their common endpoint and which is included in the triangle formed by the three endpoints of these convex
curves.

We denote byB the set of (free) bitangents and we introduce its infinite coverB = B × Z: elements ofB are still
called bitangents; the angleΘ(v) of the bitangentv = (b, k) ∈ B is defined to be the realΘ(b) + kπ whereΘ(b) is
the angle in[0, π) thatb oriented upward makes with the horizontal positive directionOx, and the direction ofv ∈ B
is the unit vector(cos Θ(v), sinΘ(v)) ∈ S1; the operator that increases the angle of a bitangent byπ is denotedι.

Given a planar subsetH of B we introduce the setBH of bitangents ofB that cross properly no bitangent ofH
(thusH ⊆ BH ). The setBH is endowed with a partial order≺H defined as follows:b ≺H b′ if there exists a sequence
of bitangentsb1 = b, b2, . . . , bk = b′ in BH such thatbi andbi+1 touch the same oriented disk3 andΘ(bi) < Θ(bi+1)
Each (proper) filterI of (BH ,≺H) is associated with its so-called greedy pseudo-triangulation

G(I) = {b1, b2, . . . , b3n−3} ⊂ I

defined as follows: (1)b1 is minimal inI, and (2)bi+1 is minimal in the subset of bitangents ofI crossing none of the
bitangentsb1, b2, . . . , bi. Since crossing bitangents are comparable (cf. Lemma [36, Lemma 7]),G(I) is well-defined
and is a superset of the set of minimal elements ofI. To flip b in G(I) means to replaceb by ι(b) if b ∈ H := H × Z
or if b is a hull bitangent, otherwise to replaceb by the second diagonal (with the appropriated angle) of the pseudo-
quadrangle obtained by merging the two pseudo-triangles incident uponb in G(I).

Theorem 7 (Flip Property for Disks [7,36]) Letb be minimal in the filterI of the poset(BH ,≺H). ThenG(I \ b) is
obtained fromG(I) by flippingb.

According to the Flip Property the mapping that associates with the bitangentb ∈ BH the bitangentb′ ∈ BH defined
by {b′} = G(I \ b) \G(I) whereb is minimal inI is well-defined (because independent ofI), one-to-one, and onto;
the bitangentb′ is denotedφ(b;H).

We turn now to the proof of the Flip Property for points. We split the proof into several lemmas. The key idea of
the proof is to define an epimorphism of posets to carry the Flip Property from the case of disks to the case of points.
Before defining this epimorphism we reformulate the greedy procedure in terms more suitable for our subsequent
analysis.

Lemma 8 Let I be a filter ofBH and letF be initial in I, i.e.,I \ F is a filter. ThenG(I) = G(I(F )) whereI(F )
is the filter of the posetBH∪G(F ) defined byI(F ) = I ∩ BH∪G(F ). A similar result holds when takingK, EK for H
andBH .

Proof. SinceF is initial G(F ) is a subset ofG(I) from which the lemma follows easily.2

Now we turn to the construction of the epimorphism. Forε > 0 let Oi(ε) be the disk with centerpi and radiusε.
Since the points are in general position there exists a realε0 > 0 such that for allε < ε0 no line pierces three of the
disksOi(ε) and no horizontal line pierces two disks. (Remember that we assumed that no two points have the same
ordinate.) We choose such anε and we introduce the setB of 2n(n− 1) (free) bitangents of theOi(ε)s and we denote
by η the four-to-one mapping that associates with a bitangentb in B tangent to the disksOi andOj the edgeη(b) of E
with endpointspi andpj . Our first lemma provides a characterization of acyclicity in terms of the crossing predicate.

Lemma 9 Let K be a planar subset ofE. ThenK is acyclic iff for all maximal (for the inclusion relation) planar
subsetH of η−1(K) one hasη(H) = K.

3An oriented disk is a disk with a “direction”, “sense”, or “orientation” assigned to its boundary. An oriented disk and a bitangent touch each
other or are tangent to each other if their directions at the point of touching are the same.
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Proof. The ’if part’ is easy. To prove the ’only if part’ we show that if there exists an edgee ∈ K and a maximal
planar subsetH of η−1(K) such thate /∈ η(H) thenK is not acyclic. Letp andq be the endpoints ofe and letp+

(resp.p−) be the set of edgese′ ∈ K such that (1-)p is endpoint ofe′, i.e, e′ = [p, r] for some pointr, and (2-) the
triplet of pointsp, r, q is oriented counterclockwise (resp. clockwise).

The assumption thate /∈ η(H) is equivalent to say that for allb ∈ η−1(e) there exists a bitangentb′ of H such that
b andb′ are crossing. A simple case analysis shows that this is equivalent to say that the setsp+∪q+, p+∪q−, p−∪q+

andp− ∪ q− are nonempty; from which we deduce thatp+ andp− (or q+ andq−) are nonempty and consequently
thatK is not acyclic.2

Our next lemma is the key to the construction of an epimorphism from someBH ⊆ η−1(EK) ontoEK .

Lemma 10 Let K be an acyclic and planar subset ofE and letH be a maximal (for the inclusion relation) planar
subset ofη−1(K). Then

1. η(BH) = EK , and
2. if b ≺H b′ thenη(b) �K η(b′).

Proof. Claim (1) is consequence of Lemma 9: indeed letK ′ = K ∪ {e} be planar and acyclic and letH ′ ⊇ H
be a maximal planar subset ofη−1(K ′) that containsH. According to Lemma 9 applied to the pairK ′,H ′ one has
η(H ′) = K ′ and consequently some bitangent ofη−1(e) ∈ BH . Claim (2) is a simple consequence of Claim(1) and
the observation that ifb andb′ touch the same oriented disk withΘ(b) < Θ(b′) thenη(b) andη(b′) share a common
endpoint andΘ(η(b)) ≤ Θ(η(b′)) with equality iff η(b) = η(b′). 2

In other words, the restrictionηH of η to BH is a mapping ontoEK that preserves the orderings. We show thatηH

preserves also the greedy pseudo-triangulations.

Lemma 11 LetK be an acyclic and planar subset ofE, let H be a maximal planar subset ofη−1(K), and letI be a
filter of (EK ,≺K). Then

1. η−1
H (I) is a filter of(BH ,≺H)

2. η(G(η−1
H (I))) = G(I).

Proof. Claim (1) is simple consequence of Lemma 10. Claim (2) is proved by induction on the set of planar
acyclic subsetsK of E ordered by reverse inclusion. LetJ = η−1

H (I). This is clearly valid ifK is maximal since in
that caseEK = K, BH = H and consequentlyG(I) = I \ ι(I) andG(J) = J \ ι(J) from which we deduce that
η(G(J)) = G(I). Assume now thatK is not maximal and lete be minimal inI. If e /∈ K we setK ′ = K ∪ {e}
andH ′ = H ∪G(η−1

H ({e}). According to Lemma 8,G(I) = G(I ′) andG(J) = G(J ′) whereI ′ = I(η−1
H {e}) and

J ′ = J({e}). One can check thatI ′ = η−1
H′ (J ′) from which the result follows by induction sinceK ⊂ K ′. In case

e ∈ K we replacee by an initial segment ofJ that contains exactly one element not inK and proceed similarly.2

We are now ready to carry the Flip Property from the case of disks to the case of points.

Proof of Theorem 6. Let J = η−1
H (I) and letF = η−1

H (e). Note thatF is initial in J sinceJ \ F = η−1
H (I \ e)

(cf. Lemma 11, Claim 1). Thanks to the Flip Property for disks the setG(J \ F ) is obtained fromG(I) by flipping
successively the bitangents ofF . Therefore one has

G(J \ F ) = (G(J) \G(F )) ∪ φ(F ;H) \ F

and consequently, according to Lemma 11,

G(I \ e) = (G(I) \ e) ∪ η(φ(F,H) \ F ).

SinceG(I \ e) andG(I) have the same cardinality, namely2n− 3, it follows thatG(I \ e) \G(I) is reduced to a
single edge, which is one of the edges ofη(φ(F ;H) \ F ). 2
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3.2 Algorithms for edge flip

In this section we sketch two implementations of edge flip, assuming that the pseudo-triangulation is stored in a data
structure that allows us to access its edges in order around a given face. Standard structures for planar subdivisions,
such as doubly-connected edge lists or quadedge [14,19], provide this.

Rotational sweep for edge-flip. We can determine the new diagonal obtained by flipping edgee using a ro-
tational sweep somewhat similar to the rotating caliper [14]. The algorithm proceeds by rotating parallel tangents
simultaneously along the interiors of the two pseudo-triangles adjacent toe. Starting from the edgee that we want
to flip, the two tangents initially coincide but have opposite orientations. If we sweep through the angles, the two
tangents immediately separate and meet again only when they reach the new diagonal. We can discretize this sweep
because the tangents rotate around vertices until they are collinear with the next halfedge of a pseudo-triangle. Then
they advance to the next vertex. At corners the tangent changes its orientation with respect to the halfedge orientation.
The sweep terminates when the tangents again coincide. See Figure 8 below for an implementation.

A matroidal flip algorithm. The predicate in the rotational sweep is a test ordering two vectors. One can also
give an implementation that uses only the orientation predicateleft turn( p, q, r) , which returns true iff the point
sequencep, q, r forms a left turn. We can call such an algorithm “matroidal,” in that it only uses information about the
order type of the points [11,28]. Such algorithms are usually better in that they have fewer degenerate configurations,
lower arithmetic complexity, and generalize to other matroids.

The idea behind the algorithm is to identify the flip as the only diagonal edge on the shortest path connecting the
opposite corners. The funnel algorithm of Lee and Preparata can be modified [20, 30] to compute shortest paths in
linear time and return the unique edge not on the boundary of the pseudo-quadrangle. Alternatively, one can compute
common tangents for the pairs of chains in a pseudo-quadrangle to identify the diagonals. Tangents for two separated
chains can be found inO(log n) time [25, 34]. When computing the visibility graph of a set of convex obstacles,
Angelier and Pocchiola [7] use a clever amortization scheme to compute tangents inO(1) time apiece.

3.3 The enumeration algorithm

In this section, we consider the total order< on E andE induced byΘ. This order is compatible with, and linearly
extends,(E,≺). Although we assume general position, the case of parallel edges could be handled by considering a
linear extension of(E,≺).

In the algorithm, we speak of edges inE as colored red or blue. The red edges are fixed and will not be flipped;
the blue edges can be flipped. We now describe the following binary treeT = T (P ) of {red,blue}-colored pseudo-
triangulations ofP . Each node of the tree corresponds to a colored pseudo-triangulationG, and we identify the node
of the tree with its pseudo-triangulationG. The tree is defined as follows:

1. The root ofT is the horizontal greedy pseudo-triangulationG(I∅,0); all its edges are blue.

2. LetG be node ofT : If either (i) a blue edge ofG has an angle≥ π or (ii) all the edges ofG are red, thenG is
a leaf of the tree. Otherwise, lete be a minimal blue edge, e.g., the blue edge with minimum angleΘ(e). The
right child ofG is obtained fromG by flippinge and its left child is obtained by changing the color ofe to red.

A leaf G satisfying 2.(i) is called a blue leaf, and a leaf satisfying 2.(ii) is called a red leaf. Blue leaves stop the
algorithm from enumerating a pseudo-triangulationG several times; without stopping for blue leaves, the tree would
be infinite, and each pseudo-triangulation would be reported for every value ofΘ with the same remainder moduloπ.

The algorithm simply explores the treeT by a depth-first traversal, visiting the left child before the right child, and
reporting the red leaves in the order in which they are discovered.

The algorithm is fully described once we explain how to find the minimal blue edgee. In the most direct imple-
mentation, the blue edges are stored in a priority queue, ordered byΘ. The edgee at the top of the queue is removed
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upon descending to either child, and edgee′ is enqueued when descending to a right child iff its angleΘ(e′) < π
(otherwise the right child is a blue leaf and the recursion stops).

It is not necessary to store the priority queue in the recursion stack if we simply add edgee back to the queue when
returning to the parent after visiting the right subtree. Thus, the stack grows byO(1) at each recursive call.

Theorem 12 The set of red leaves ofT (P ) ordered from left to right (in the order they are reported by the algorithm)
is the set of pseudo-triangulations ofP ordered lexicographically byΘ.

Proof. Let G be a pseudo-triangulation with edges inE and letG0, G1, . . . Gi, . . . Gk be the path in the tree
defined inductively:G0 is the root the tree andGi+1 is the left child ofGi if the minimal blue edge ofGi belongs to
G otherwiseGi+1 is its right child. LetKi be the set of red edges ofGi, edgeei be the minimal blue edge ofGi, and
filter Ii = IKi,Θ(ei) of EKi

. We claim that
1. Ki ⊆ G,
2. G \Ki ⊂ Ii,
3. G(Ii) = (Gi \Ki) ∪ ι(Ki).

from which we deduce thatGk is a red leaf andG = Gk.
Claims (1), (2) and (3) are easily proven by induction oni using the Flip Property of the previous section. The

proof is finished by noting that the red leaves of the tree are pseudo-triangulations with edges inE. 2

Note that the theorem is also valid for any total order< that is a linear extension of≺, yielding a well defined tree
T<(P ). SinceΘ induces such a total order and is easy to compute, thanks to the geometry, it is convenient to use it.
See Remark 1 below.

Theorem 13 The height of the treeT (P ) is at mostn(n− 1)/2.

Remarks. 1. In this formulation, the algorithm depends on the orderΘ of the edges, which is not implied by the
orientation of all triplets of points. For this reason, the algorithm as described here is not matroidal. It is, however,
possible to give a matroidal algorithm, by selecting fore anyblue edge that is minimal for the partial order≺. In this
case the treeT (P ) isn’t uniquely defined, and finding such an edge is more difficult, necessitating the maintenance of
the antichain (̂I in the notation of [7]) associated with the current filterI while traversing the tree.

2. Maintaining the dual pseudo-triangulationG∗ = φ∗(G) (in the notation of [7]) while traversing the tree, where
φ∗ = φ−1 and wheree andφ(e) have the same color, allows to retrievee when coming back from the right subtree.
Hence instead of storing a recursive stack to remembere on the way up the tree, the algorithm can maintain onlyG
and its dual. This changes the space complexity of the algorithm from quadratic to linear.

3. If K is an acyclic and planar set of edges, then by coloring the edges ofK red, and replacing the root of
the tree by the horizontal greedy pseudo-triangulationG(IK,0) ⊆ EK , the algorithm enumerates the set of pseudo-
triangulations that containK. Observe that this proves that the graph of pseudo-triangulations is strongly connected.

3.4 The horizontal greedy triangulation

We now explain how to computeG(I∅,0). In fact, the algorithm can be adapted by a simple rotation to computeG(Iθ)
for anyθ ∈ [0, π). It is convenient for the exposition (and for the algorithm) to order the points ofP by lexicographical
order, i.e.,p1 <yx p2 <yx · · · pn.

The construction useslower andupper horizon trees, defined here as follows. For all pointpi with 1 ≤ i < n,
denote bỳ (p) the pointpj , for j > i, which minimizes the angleΘ( ~ppj) ∈ [0, π). Define`(pn) = pn. Since
`n(p) = pn, the set of edges of the formp`(p) is a tree whose root ispn (it is connected because everypi has a path
to pn, and it hasn vertices andn− 1 edges). We call that tree thelower horizon treeand denote it byT`(P ).
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(a) (b) (c) (d)

Figure 6:(a) A point set, (b) its lower and (c) upper horizon trees; (d) the superimposition of the horizon trees
yields pseudo-quadrangles (shaded) and pseudo-triangles.

COMPUTELOWERHORIZONTREE(P )
Effects: computes̀ (pi) for everypi ∈ P

1: `(pn)← pn

2: for i← n− 1 downto 1 do
3: j ← i + 1
4: while right turn (pi, pj , `(pj)) do
5: j ← j + 1
6: `(pi)← pj

COMPUTEUPPERHORIZONTREE(P )
Effects: computesu(pi) for everypi ∈ P

1: u(p1)← p1

2: for i← 2 to n do
3: j ← i− 1
4: while right turn (pi, pj , u(pj)) do
5: j ← j − 1
6: u(pi)← pj

Figure 7: Computing the lower and upper horizon trees.

Likewise, for pointpi with 1 < i ≤ n, denote byu(p) the pointpj , j < i, which minimizes the angleΘ(~ppj) ∈
[π, 2π) (defineu(p1) = p1). The set of edges of the formpu(p) is also a tree, of rootp1, which we call theupper
horizon treeand denote byTu(P ).

The following lemma, first observed in [39], forms the basis of the algorithm. See Figure 6 for an illustration.

Lemma 14 LetK = T`(P ) ∪ Tu(P ) be the set of edges belonging to the horizon trees.
(1) K contains all the edges of the convex hull ofP .
(2) K decomposes the convex hull ofP into regions, each of which is either a pseudo-triangle or a pseudo-quadrangle.
(3) K ⊆ G(I∅,0).

With this lemma, the algorithm is straightforward. The pseudo-code is given in Figure 7. It computes`(p) for
eachp ∈ P by Andrew’s variant of Graham’s convex hull algorithm [6]. We need the predicateright turn (p, q, r)
which returns true if the point sequencep, q, r forms a right turn. (In particular, the inner while loop will stop atj = n
sinceright turn (pi, pn, pn) is always false.)

Note that the algorithm still produces the correct tree if two edges are parallel or three points are collinear, or even
if two points have the same ordinate (thanks to the lexicographical order).

Computingu(p) is performed by a similar algorithm. After the initial sorting inO(n log n) time, both algorithms
takeO(n) time. Once the horizon trees have been computed, the subdivision can be constructed in linear time, and
each region visited to determine if it is a pseudo-triangle or pseudo-quadrangle. A pseudo-quadrangle can be split in
time linear to its number of edges, by computing its two diagonals and inserting the one with smallerΘ. Thus, once
the points are sorted lexicographically, the algorithm computesG(I∅,0) in linear time.
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3.5 Complexity analysis

The algorithm spendsO(n) time for a flip or a priority queue operation in the worst case, hence timeO(n) per edge
of the tree. Since the number of edges is the same as the number of internal nodes, which is also half the number of
leaves, the algorithm spends amortized timeO(n) per pseudo-triangulation.

Using a heap for the priority queue reduces the cost of the priority queue operations toO(log n). Moreover, using
binary search can reduce the complexity of the flip algorithm toO(log n) as well, at the cost of maintaining the corners
of pseudo-triangles (which can be done inO(1) time after a flip) and maintaining the boundary of the pseudo-triangles
as splittable queues as in [36].

Unfortunately, this is the time spent per leaf, counting both thenr redand thenb blue leaves. The following ratio
is therefore important for the analyzing the complexity of the algorithm:ρ = (nb + nr)/nr. We initially conjectured
a bound of 2 on this ratio, which was disproved by experiments (see next section). The currently best upper bound we
have is the number of edges of a pseudo-triangulation not on the convex hull, i.e.,2n− 3− h.

To conclude, the algorithm is set up in timeO(n log n) to compute the horizontal greedy triangulationG(I∅,0)
and insert its edges in the priority queue. The running time of the algorithm per red leaf of the tree (i.e., pseudo-
triangulation ofP ) is upper-bounded byO(ρn) = O(n2), and can be lowered with more complicated algorithmic
machinery toO(ρ log n) = O(n log n). All of this is in the worst case.

Note that the average complexity of a pseudo-triangle isO(1), thus on the average the flip will be performed in
constant time. We expect thatρ is much smaller thann, although not constant (ρ = O(log n) seems a tempting
conjecture, but we do not have a shred of evidence in support). Thus in practice, we expect that the amortized cost per
pseudo-triangulation is much lower thanO(n log n), perhapsO(ρ). In order to state such a result, however, we lack
an amortized bound for the flip and an upper bound forρ.

Note finally that the number of pseudo-triangulations grows exponentially fast, thus limiting the domain of practi-
cality of our algorithm in the low tens (twenties). Thus all of the asymptotic complexities should be taken with a grain
of salt. A good implementation will settle for low-complexity algorithms as well as simplicity of the code.

4 Implementation issues
Two independent implementations based on the above algorithm have been developed in order to ensure the correctness
of the experimental validation of the conjecture.

4.1 Halfedge data structure

Both implementations chose to represent pseudo-triangulation by a halfedge data structure, a.k.a. doubly connected
edge list or DCEL. One implementation is based on CGAL, and described in [17,22], and the other on an independent
halfedge data structure described in [12].

A halfedge data structure (HDS) is an edge-based data structure capable of storing a pseudo-triangulation, or more
generally any connected planar set of edges. Each edge is split into two halfedges with opposite orientations. By
convention, the halfedges incident to a face are oriented counter-clockwise around the face. Anopposite pointer
links a halfedge to its opposite halfedge, andnext andprev pointer links it to the next halfedge in counterclockwise
orientation along the incident face. The incident vertices of a halfedge are named thesource andtarget, as in [12].

4.2 Flip algorithm

Since the algorithm needs to examine the flip edge and decide whether to actually perform the flip or not, it is advanta-
geous to implement the rotational sweep method. Moreover, in this case, neither the flip algorithm nor the enumeration
algorithm need the reverseprev pointers, thus saving space and execution time. For simplicity, we present below an
implementation that usesprev pointers, namely in theis corner function. Eliminatingprev pointers is possible
(see the implementation inhttp://geometry.poly.edu/pstoolkit/ ) but complicates the pseudo-code.
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FINDPSEUDOFLIP(h)
Returns: a pair(h′, g′) such that the edge joiningsource(h′) andsource(g′) is
the flip of the edge supportingh.

1: g ← opposite(h)
2: reverse h←is corner (h), reverse g←is corner (g)
3: while true do
4: {decide which ofg or h is the next tangent to jump to the next vertex}
5: if rotate ccw less( source(h), target(h), source(g)), target(g))

is the same as (reverse h 6=reverse g) then
6: {test if advancingg crosses overh and thus is the solution}
7: if left turn( source(h), source(g), target(g)) 6=reverse g then
8: return (h, g)
9: {not a solution yet, advanceg}

10: g ← next(g)
11: if is corner( g) then
12: reverse g←negate(reverse g)
13: else
14: {test if advancingh crosses overg and thus is the solution}
15: if left turn( source(h), source(g), target(g)) 6=reverse h then
16: return (h, g)
17: {not a solution yet, advanceh}
18: g ← next(h)
19: if is corner( h) then
20: reverse h←negate(reverse h)

Figure 8: An implementation of the rotational flip method.

The function FINDPSEUDOFLIP returns two halfedge handles whose source vertices form the endpoints of the
flipped diagonal rotated counterclockwise from the old diagonal. The function does not actually flip the diagonal.
Note that the result could include the old diagonal, which needs to be considered before removing the old diagonal. In
the function,h andg are the halfedges whose source vertices are in contact with the two rotating tangents. The two
flagsreverse h andreverse g indicate the relative orientation of the tangents to the halfedgeh andg respectively.

The pseudo-code is presented in Figure 8. This function needs two geometric predicates:left turn( p, q, r)
returns true if the point sequencep, q, r forms a left turn, whilerotate ccw less( p, q, r, s) returns true if the angle
from the oriented segmentpq to the oriented segmentrs is less thanπ, which is equivalent toleft turn( p, q, p +
(s− r)) . As a convenience,is corner (h) returnsleft turn( source(prev(h)), source(h), target(h)) .

We note that it is possible that two pseudo-triangles share more than the original edgeh (but then it is easy to see
that they cannot share more than two). In this case, the reader can check that the algorithm does not miss the flip due
to such (unavoidable) degeneracies.

An optimization we could have tried for the flip is to see if the two adjacent regions are triangles, which gives
the diagonal without any geometric tests. (Note that because of the minimality of pseudo-triangulations, the union of
these two triangles must be a convex quadrilateral.) There is no guarantee, however, that even a single edge is adjacent
to two triangles (considerp1 = (0,−1), p2 = (0, 1), pk = (k, 0) for k > 2). Nevertheless, if the point set hash edges
on the boundary of its convex hull, there are at leasth − 2 triangles in the pseudo-triangulation (with equality iff all
the pseudo-triangles are at most quadrangular).

14



4.3 Enumeration algorithm

Using the FINDPSEUDOFLIP function, it is easy to implement the recursive variant of the enumeration algorithm. As
noted, the only variable to store in the recursion stack is the minimal edgee at the current node.

Since the number of pseudo-triangulations ofn points grows exponentially withn, we will not be able to run the
algorithm for values ofn larger than, say, 20. In fact,n = 10, with up to 234,160 pseudo-triangulations, is already a
challenge and takes on the order of the second. This dictates a few implementation choices.

First, the priority queue can be a simple vector of edges, sorted byΘ values, although using a binary heap is
not a penalty and improves the performance slightly. Second, finding the flip without performing it saves a constant
time. Third, a non-recursive version of the algorithm eliminates the function call overhead, which contributes a (small)
constant factor overall. Fourth, storing the old diagonale on the stack when a diagonal is flipped avoids searching for
this edge by reverse flipping the edgee′ in order to restore the original pseudo-triangulation. The second and fourth
optimizations combined save 36% in runtime.

5 Experimental results
We started this investigation to support or find a counter-example to the conjecture 1. The conjecture is not know to
be true even for small values ofn. Our goal is to run our enumeration algorithm on Aichholzer et al.’s comprehensive
database of point sets with cardinalityn ≤ 10 [4]. Our result is that for the over 14 million point setsS in the
database up ton ≤ 10, we have#T (S) ≤ #PT (S). Moreover, we also have computed the maximum number of
pseudo-triangulations (Table 1) which enriches Aichholzer’s compendium. Finally, we have packaged our software
into a pseudo-triangulation workbench with which we can interactively examine pseudo-triangulations, flip edges, and
perform various algorithms. This was extremely useful in exploring other conjectures, including about bounded-degree
pseudo-triangulations.

In order to assert confidence in our implementations, we have independently devised two implementations of the
enumeration algorithm, and checked that they agree on every point set in the database. The casen = 10 took about a
month to compute on a cluster of 26 Sun workstations and another eight Pentium processors at 1 Ghz, and about 200
days for the independent computation by another co-author. Luckily, both results agreed!

Interestingly, it was observed by Oswin Aichholzer that, forn = 8, the maximum#PT was achieved for thesame
two point sets as for the maximum#T , and conjectured that the same would be true forn = 10. Indeed, this is now
verified. But this is not true forn < 8 nor forn = 9. At this time, it seems far-fetched to conjecture that, for all even
n ≥ 8, #PT (S) attain its maximum exactly for the point setsS which also maximize#T (S). Nevertheless, we can
state:

Experimentally proven fact 15 For any point set withn ≤ 10, we have#T (S) ≤ #PT (S), with equality iff the
point set is in convex position. In that case,#PT (S) is minimal.

Table 1 shows the minimum and maximum values of#PT (S) for every value ofn, and indicates the running
time of our algorithms (both implementations were comparable). The point set with minimum#PT is the point set
in convex position forn ≤ 10. This contrasts sharply with the situation on triangulations [2]. In a previous version of
this paper, we conjectured that the number of pseudo-triangulations is minimized for point sets in convex position for
any value ofn. In fact, this has been proven recently [5].

For n = 11, the point set database has recently been assembled by Aicholzer et al. and consists of 2,334,512,907
point sets. It is thus infeasible to compute the exact lower and upper bounds using this algorithm. Nevertheless, we
can still compute the number of pseudo-triangulations for particular configurations (this s a further test of correctness
of our algorithm, when the result is know mathematically), and on random point sets.

We conjectured that the ratioρ of (blue and red) leaves to red leaves was bounded by 2. Experiments showed that
this is simply not true. In Table 2, we display some lower bounds onρ, as well as the best known upper bound.
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Figure 9:Screen shot of using the pseudo-triangulation workbench to test a conjecture

6 Conclusion
We have presented and implemented a new algorithm to enumerate all the pseudo-triangulations of a point set. This
algorithm uses the theory of pseudo-triangulations that was developed for convex obstacles, in particular it makes
reuse of the greedy flip algorithm.

Using the polytopal construction of [43], one could obtain another algorithm via the reverse-search paradigm [8].
Our algorithm is more general, however, since with the proper flip algorithm it also applies to matroids (in the dual,
arrangements of pseudo-lines), while reverse search is limited to geometric systems.

The running time per triangulation is in theoryO(n2), although it should be possible to lower that upper bound by
using amortization of the flip algorithm, as well as better upper bounds on the ratio of leaves over red leaves. Also,
the algorithm can be improved in theory using more fancy data structures, but since it is unlikely to be applied to point
sets larger than20, this is more of a theoretical exercise.

We independently developed two implementations of the algorithm, which agree on all point sets forn ≤ 10.
Using these implementation, we verified that Conjecture 1 is true forn ≤ 10. The mathematical proof (even for such
small values ofn) is still waiting to be discovered.
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# points # point order types lower-bound upper bound runtime
3 1 1 1 (1, #1) < 1sec
4 2 2 3 (1, #2) < 1sec
5 3 5 13 (2, #3) < 1sec
6 16 14 76 (8, #15) < 1sec
7 135 42 485 (30, #125) 1sec
8 3 315 132 3 555 (150, #2991 and #3199) 3min = 0.054 sec/order type
9 158 817 429 27 874 (774, #151 721) 990min = 0.374 sec/order type

10 14 309 547 1430 234 160 (4550, #13 413 894 and #13 812 360) about 200 days

Table 1: Number of pseudo-triangulations found among all the order types. Between parentheses is#T (S) for the order typeS maximizing
#PT (S), followed by the index ofS in the database.

# points exact lower-bound upper bound
3 1
4 2
5 2.76923 4
6 3.49254 6
7 4.26786 8
8 4.89121 10
9 5.74258 12

10 6.28663 14
11 N/A ≥ 6.11959 16
12 N/A ≥ 5.709 18

Table 2:Maximum ratioρ of (blue and red) leaves to red leaves during the enumeration. The second column is (a 5-digit approximation of) the
exact number when available. The third column is a lower bound, obtained by trying random point sets with various distributions, while the fourth
column is the best known upper bound.
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[12] H. Brönnimann. Designing and implementing a general purpose halfedge data structure. InProc. 5th Int.
Workshop Algorithm Engineering.(WAE), volume 2141 ofLecture Notes Comput. Sci., Springer Verlag, pp.
51–66, 2001.

[13] B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink. Ray shooting
in polygons using geodesic triangulations.Algorithmica, 12:54–68, 1994.

[14] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.Computational Geometry: Algorithms and
Applications. Springer-Verlag, Berlin, Germany, 2nd edition, 2000.

[15] E. D. Demaine, J. S. B. Mitchell, and J. O’Rourke, eds. Problem 40: The Number of Pointed Pseudotriangula-
tions. InThe Open Problems Project, http://maven.smith.edu/ ∼orourke/TOPP/P40.html .

[16] M. Denny and C. Sohler. Encoding a triangulation as a permutation of its point set. InProc. 9th Canad. Conf.
Comput. Geom., pp. 39–43, 1997.

[17] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of CGAL, a computational
geometry algorithms library.Softw. – Pract. Exp., 30(11):1167–1202, 2000.

[18] M. T. Goodrich and R. Tamassia. Dynamic ray shooting and shortest paths in planar subdivisions via balanced
geodesic triangulations.J. Algorithms, 23:51–73, 1997.

[19] L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi
diagrams.ACM Trans. Graph., 4(2):74–123, 1985.

[20] J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy class.Comput. Geom.
Theory Appl., 4:63–98, 1994.

[21] F. Hurtado, M. Noy, and J. Urrutia. Flipping edges in triangulations.Disc. Comput. Geom., 22(3):333–346,
1999.

[22] L. Kettner. Using generic programming for designing a data structure for polyhedral surfaces.Comput. Geom.
Theory Appl., 13:65–90, 1999.

[23] L. Kettner, D. Kirkpatrick, Andrea Mantler, J. Snoeyink, B. Speckmann, and F. Takeuchi. Tight degree bounds
for pseudotriangulations of points.Comput. Geom. Theory Appl.25(1&2):1–12, 2003.

[24] L. Kettner, D. Kirkpatrick, and B. Speckmann. Tight degree bounds for pseudo-triangulations of points. InProc.
13th Canad. Conf. Comput. Geom., 2001.

[25] D. Kirkpatrick and J. Snoeyink. Computing common tangents without a separating line. InProc. 4th Workshop
Algorithms Data Struct.(WADS), volume 955 ofLecture Notes Comput. Sci., pp. 183–193, Springer-Verlag,
1995.

[26] D. Kirkpatrick, J. Snoeyink, and B. Speckmann. Kinetic collision detection for simple polygons. InProc. 16th
Annu. ACM Sympos. Comput. Geom., pp. 322–330, 2000.

[27] D. Kirkpatrick and B. Speckmann. Separation sensitive kinetic separation for convex polygons. InProc. Japan
Conf Disc. Comp. Geom.(JCDCG 2000), volume 2098 ofLecture Notes Comput. Sci., pp. i244–251, Springer
Verlag, 2001.

[28] D. E. Knuth.Axioms and Hulls, volume 606 ofLecture Notes Comput. Sci.Springer-Verlag, 1992.

18



[29] C. L. Lawson. Transforming triangulations.Discrete Math., 3:365–372, 1972.

[30] D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear barriers.Networks, 14:393–
410, 1984.

[31] Z. Li and S. Nakano. Efficient generation of plane triangulations without repetition. InProc. 28th Int. Colloq.
Automata, Languages and Programming(ICALP), volume ofLecture Notes Comput. Sci., pp. 433-443, 2001.

[32] Peter McMullen. Modern developments in regular polytopes. In T. Bisztriczky, P. McMullen, R. Schneider, and
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