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Abstract

The Hodgkin-Huxley model describes action potential generation in certain types of neurons and is a

standard model for conductance-based, excitable cells. Following the early work of Winfree and Best,

this paper explores the response of a spontaneously spiking Hodgkin-Huxley neuron model to a periodic

pulsatile drive. The response as a function of drive period and amplitude is systematically characterized.

A wide range of qualitatively distinct responses are found, including entrainment to the input pulse train

and persistent chaos. These observations are consistent with a theory of kicked oscillators developed by

Qiudong Wang and Lai-Sang Young. In addition to general features predicted by Wang-Young theory, it

is found that most combinations of drive period and amplitude lead to entrainment instead of chaos. This

preference for entrainment over chaos is explained by the structure of the Hodgkin-Huxley phase resetting

curve.

1 Introduction

The Hodgkin-Huxley model describes action potential generation in certain types of neurons and is a stan-

dard model for conductance-based, excitable cells [5, 18, 20]. There is an extensive literature on the response

of the Hodgkin-Huxley model to different types of inputs [1, 2, 11, 14, 15, 16, 17, 19, 24, 25], and understand-

ing how single neurons respond to external forcing continues to be relevant for the study of information

transmission in neural systems [21, 23]. Because neurons typically communicate via pulsatile synaptic

events, it is natural to investigate the response of the Hodgkin-Huxley model to pulsatile inputs. Early

studies by Best and Winfree [3, 38] examine the response of a Hodgkin-Huxley model to periodic impulse

trains, chracterizing in detail the structure of phase singularities and the transition from degree 1 to degree

0 phase resetting. However, their work does not systematically address the asymptotic dynamical behavior

as a function of drive period and amplitude.1

This paper studies a spontaneously spiking (i.e. oscillatory) Hodgkin-Huxley neuron model driven

by periodic, pulsatile input of fixed amplitude and period, and systematically classifies the response as a

function of drive period and amplitude. It is found that:

1. In response to periodic pulsatile forcing of fixed amplitude A and period T, a spontaneously spiking

Hodgkin-Huxley system can exhibit a wide range of distinct behaviors depending on A and T:

(a) Entrainment: The driven system is stably periodic and its period is a rational multiple of the

drive period T.

(b) Transient chaos: The system experiences a transient period of exponential instability before en-

training to the input. This transient chaos is caused by a Smale horseshoe [13].
1 Takabe, Aihara, and Matsumoto [32] appear to have carried out such a systematic study. But, I was only able to locate an abstract.
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(c) Chaos: The system becomes fully chaotic: it possesses a positive Lyapunov exponent and a

mixing attractor (see [39] for a review of these concepts).

The response of the pulse-driven neuron is approximately T0-periodic in the drive period T, where

T0 is the intrinsic period of the unforced Hodgkin-Huxley oscillator. For example, if the pulse-driven

oscillator is chaotic for some drive amplitude A and drive period T, then it is likely to be chaotic when

driven by a pulse train of amplitude A with period near T + T0.

2. The scenarios enumerated above are prevalent in the sense that they correspond to positive-area sub-

sets of the drive period-drive amplitude space. Prevalence, together with the approximate periodicity

stated above, imply that each scenario occurs with positive “probability.” (See the discussion of Fig. 3

in §3 for the precise meaning of probability in this context.) The range of responses and their preva-

lence are consistent with a theory of nonlinear oscillators developed recently by Qiudong Wang and

Lai-Sang Young [33, 34, 35, 36].

3. While chaotic behavior is readily observable, most combinations of drive period and drive ampli-

tude lead to entrainment instead of chaos. This preference for entrainment can be explained by the

structure of the phase resetting curve (see §4) of the Hodgkin-Huxley system.

This paper relies heavily on numerical computation and the conceptual framework provided by Win-

free’s theory of biological rhythms [38] and the work of Q. Wang and L.-S. Young on nonlinear oscillators

[34, 35]. Phase resetting curves, introduced by Winfree, play a particularly important role here. The phase

resetting curve of a nonlinear oscillator is an interval map which captures the asymptotic response of a non-

linear oscillator to a single, pulsatile perturbation. Because they are 1-dimensional objects, phase resetting

curves are often easier to understand than the nonlinear oscillators they represent. They are frequently used

to infer stable dynamical behavior like phase locking. Wang-Young theory provides a mathematical frame-

work for using phase resetting curves to infer the existence and prevalence of chaotic behavior. Rather than

numerically verify the hypotheses of their theorems, we have opted to examine the consequences of the

theory directly, relying on a combination of numerical simulation and geometric reasoning to characterize

the specific response of the Hodgkin-Huxley model to a periodic pulsatile drive.

For the sake of clarity, parameters are selected to ensure that the Hodgkin-Huxley system possesses a

unique limit cycle and no other attracting invariant set. This corresponds to a repeatedly spiking neuron

with an unstable rest state. While the scenarios stated above should still hold when the limit cycle coexists

with other stable invariant sets, this choice simplifies the interpretation of numerical simulations. Other-

wise, a trajectory may jump out of the basin of the limit cycle, which obscures the mechanism described by

Wang-Young theory and which Winfree and Best have already investigated thoroughly [3, 38].

The rest of this paper is organized as follows: Section 2 briefly reviews the unforced Hodgkin-Huxley

equations and its properties. Main numerical results are summarized in §3 and discussed in §4. Section 5

discusses further numerical results, addressing some issues raised in Sections 3 and 4. Section 6 discusses

possible extensions and generalizations.

2 Brief review of the Hodgkin-Huxley model

The Hodgkin-Huxley equations are a system of nonlinear ordinary differential equations2 which describe

the way neurons generate spatially and temporally localized electrical pulses [5, 18, 20]. These electrical

2This paper does not treat the Hodgkin-Huxley PDEs: spatial dependence is not relevant here.
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pulses, called action potentials, are the primary way in which neurons transmit information. Action poten-

tials are triggered by sufficiently large membrane voltages, which can be set up by the influx of ions into

the cell. A neuron is said to fire or spike when it generates an action potential (Fig. 1). The Hodgkin-Huxley

model describes action potential generation in terms of the membrane voltage and dimensionless gating

variables which quantify the effective permeability (or conductance) of the membrane for various types of

ions.

The original Hodgkin-Huxley equations model action potential generation in the squid giant axon. This

giant axon contains two types of membrane ion channels. One type of channel is specific to potassium ions,

the other to sodium ions. The state variables of the model are the membrane voltage v, the activation n of

the potassium channels, and the activation m and inactivation h of the sodium channels. The equations are

[18]
v̇ = C−1

[

−I − ḡKn4(v − vK)− ḡNam
3h(v − vNa)− ḡleak(v − vleak)

]

ṁ = αm(v)(1 − m)−βm(v)m

ṅ = αn(v)(1− n)−βn(v)n

ḣ = αh(v)(1− h)−βh(v)h

(1)

where

αm(v) = Ψ
(

v+25
10

)

, βm(v) = 4 exp (v/18) ,

αn(v) = 0.1Ψ
(

v+10
10

)

, βn(v) = 0.125 exp (v/80) ,

αh(v) = 0.07 exp (v/20) , βh(v) =
1

1+exp( v+30
10 )

,

Ψ(v) = v
exp(v)−1

.

(2)

Each ion channel consists of independent, identical subunits which must all open to allow ions to pass

through. The gating variables m, n, and h take value in (0, 1) and represent the fraction of subunits which

are open. The term n4 enters into the potassium conductance because potassium channels consist of 4

identical subunits; analogous structures account for the m3h term in the sodium conductance [5]. The

gating variable equations are master equations for continuous-time Markov chains with voltage-dependent

transition ratesα and β; the Markov chains describe the opening and closing of the corresponding channel

subunits. The v̇ equation is Kirchoff’s current law. Action potentials are downward voltage spikes and a

positive I corresponds to an inflow of positively-charged ions. The voltage convention here is that of [18]

and opposite contemporary usage: the membrane voltage v is defined by

v = voltage outside − voltage inside.

Action potentials are generally initiated by perturbations to the membrane voltage. Such perturbations

may be caused, for instance, by the flow of ions across the cell membrane. Because neurons transmit signals

through spatially and temporally localized pulses, it is natural to model stimuli as impulses [31]. The

simplest type of repetitive, pulsatile stimulus to a neuron is a periodic impulse train. This means replacing

the v̇ equation above by

v̇ =C−1
[

−I − ḡKn4(v − vK)− ḡNam
3h(v − vNa)− ḡleak(v − vleak)

]

(3)

+ A ∑
k∈Z

G(t − kT),

where G is a “bump” function such that
∫

G(t) dt = 1. For simplicity, most of this paper uses the choice

G(t) = δ(t); Section 5.2 discusses the response of the Hodgkin-Huxley system to a pulsatile drive with

G(t) =

{

1/t0, 0 ≤ t ≤ t0

0, otherwise
. (4)

3
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Figure 1: The time course for the Hodgkin-Huxley equations at the parameter values (5). The rapid “spike”

followed by a long “recovery” period is typical of the Hodgkin-Huxley equations.

Mathematically, one can also choose to perturb the gating variables, but such perturbations are not entirely

natural and are not considered here.

This paper uses the original Hodgkin-Huxley parameters [18]:

vNa = −115 mV, ḡNa = 120 mΩ−1/cm
2
,

vK = +12 mV, ḡK = 36 mΩ−1/cm
2
,

vleak = −10.613 mV, ḡleak = 0.3 mΩ−1/cm
2
,

C = 1 µF/cm2.

(5)

Time is measured in milliseconds and current density in µA/cm2.

Figure 2 shows a bifurcation diagram for the unforced Hodgkin-Huxley equations. When I = 0, the

neuron maintains a stable rest state, corresponding to the branch of stable fixed points on the left of the

diagram. A sufficiently large value of I causes a neuron to fire repeatedly, which corresponds to the creation

of a limit cycle through a saddle-node bifurcation of periodic orbits. Further increasing I destablizes the

rest state through a subcritical Hopf bifurcation.

In this paper, the injected current is always set to a value near I ≈ 14, corresponding to a steady ionic

current which destabilizes the rest state. The phenomena studied here are insensitive to the precise value

of I as long as it ensures the existence of a stable limit cycle and an unstable fixed point. As explained in

the Introduction, these properties simplify the interpretation of numerical simulations. For this choice of I,

the Jacobian of the Hodgkin-Huxley vector field (Eq. 1) at the unstable fixed point has two real eigenvalues

{−4.97815, −0.146991} in the left half plane, and a complex conjugate pair 0.0763367 ± 0.61866i in the

right half plane. The fixed point thus has 2-dimensional stable and unstable manifolds. The Lyapunov

exponents associated with the limit cycle are 0, ≈ −0.20, ≈ −2.0, and ≈ −8.3. Its period is T0 ≈ 12.944.
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Figure 2: The bifurcation diagram for the Hodgkin-Huxley equations as the injected current I is varied. The

line in the middle marks the v coordinate of the rest state. The solid blue part is stable while the dashed red

part is unstable. Solid black dots near the top and the bottom of the figure are the maximum and minimum

v values of limit cycles. Empty black circles are the maximum and minimum v values of unstable cycles.

The fixed point undergoes a subcritical Hopf bifurcation as I increases. This diagram is computed using

XPPAUT [7].
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Figure 3: Asymptotic properties of the pulse-driven flow are described by the dynamics of the time-T map

FT (see Eq. 6) and its largest Lyapunov exponent λmax. Entrainment corresponds to λmax < 0, and chaos

corresponds to λmax > 0. This figure shows λmax as a function of the drive period T, with T ranging from

T0 ≈ 13 (the intrinsic period of the unforced Hodgkin-Huxley system; see §2) to 8 · T0 ≈ 101. Left: Kick

amplitude is A = 5. Right: Kick amplitude is A = 40. Note (i) λmax(T + T0) ≈ λmax(T); (ii) presence of both

positive and negative exponents for strong kicks (right), and only zero and negative exponents for weak

kicks (left); and (iii) the presence of more negative exponents than positive ones. See §4 for a discussion.

Lyapunov exponents are estimated by iterating FT for 1000 steps and tracking the rate of growth of a tangent

vector.
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Figure 4: The probability of different response types, as a function of the drive amplitude A. For each

drive amplitude A, the fraction of drive periods T ∈ [T0, 8T0] for which λmax (FT) > 0, etc., is computed by

sampling from a uniform grid in [T0, 8T0]. It is natural to equate these fractions with probabilities because

the Lyapunov exponents are roughly periodic functions of T (and become more so as T → ∞), as shown

in Figure 3 and explained in §4. Empirical definitions: Let λ̂ denote the estimated Lyapunov exponent and ǫ

the estimated standard error. Then “chaos” is defined as λ̂ > 3ǫ, “entrainment” λ̂ < −3ǫ, and “rotation”
∣

∣λ̂
∣

∣ < ǫ/3.
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3 Main numerical results

Lyapunov exponents provide a convenient way to characterize the asymptotic dynamics of Eq. 3. Let

φt : R
4 → R

4 denote the flow map generated by the unforced Hodgkin-Huxley equations, T the drive

period, and A the drive amplitude. The Poincaré map

FT(v, m, n, h) = φT(v + A, m, n, h) (6)

takes a Hodgkin-Huxley state vector (v, m, n, h), applies a pulse of amplitude A to the membrane voltage,

then evolves it for time T. Iterating the map FT thus gives a stroboscopic record of the state of our pulse-

driven Hodgkin-Huxley system before the arrival of each pulse. The long-term dynamical behavior of the

pulse-driven Hodgkin-Huxley oscillator can be deduced from the asymptotic dynamics of FT , which is

characterized by its (largest) Lyapunov exponent λmax [13]:

λmax < 0 ⇔ FT has sinks ⇔ kicked flow is entrained to input

λmax = 0 ⇔ FT is quasiperiodic ⇔ kicked flow drifts relative to input

λmax > 0 ⇔ FT chaotic ⇔ kicked flow is chaotic

(Sinks refer to stable fixed points and stable periodic orbits.) Note that of the scenarios given in the Intro-

duction, transient chaos alone does not appear in this list: Lyapunov exponents, being long-time, average

quantities, cannot detect transient chaos.

Figure 3 shows the Lyapunov exponents of FT as a function of T/T0, where T0 is the period of the

Hodgkin-Huxley limit cycle. Different colors correspond to different values of A. The periodicity of the

response as a function of T is apparent. Because the response type as a function of T is approximately

identical over each period [nT0, (n+ 1)T0], it makes sense to speak of the probability that a randomly chosen

drive period T will elicit a particular asymptotic behavior, for example chaos. More precisely, periodicity

ensures that the fraction pn of drive periods T in [0, nT0] for which λmax > 0 converges to a well-defined

limit as n → ∞. Similar statements hold for λmax < 0 and λmax = 0.

Figure 4 shows these probabilities as functions of A. At A = 10, the probability of obtaining a positive

exponent is roughly 20% and the probability of obtaining a negative exponent is roughly 70%. Thus, if

one were to pick T randomly out of an interval [NT0, (N + 1)T0] for large, fixed integer N, the probability

that λmax (FT) > 0 is about 20%. Figure 4 shows that when A is small, the most likely type of behavior is

rotation-like behavior. This possibility becomes less likely as A increases. At the same time, sinks and chaos

both become more likely, with sinks dominating the scene. One feature of Figure 4 specific to the pulse-

driven Hodgkin-Huxley flow is that when A is large, the system prefers entrainment over chaos in the sense

that entrainment has higher probability. This preference is more pronounced as A increases. Note that in

computing Lyapunov exponents numerically, we only have access to finite time information. In principle,

this means it is virtually impossible to distinguish persistent chaotic behavior from transient chaos caused

by a “large” horseshoe (but see §5.1).

In all numerical simulations shown in this paper, Eq. 1 is integrated using an adaptive integrator of

Runge-Kutta-Fehlberg type, with an error tolerance of 10−6 (in the sup norm) [30]. The largest Lyapunov

exponent λmax of FT is computed in a straightforward manner, by choosing a nonzero unit vector w ∈ R
4

and estimating the rate of growth of ||(DFT)
nw||. The matrix-vector product (DFT)

nw is easily computed

via the variational equations ẋ = H(x), ẇ = DH(x) · w for the Hodgkin-Huxley vector field H (DH is the

Jacobian matrix of H; see [10] for details).
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4 Discussion

4.1 Response to a single pulse: phase resetting curves

This section reviews phase resetting curves. See Winfree [38], Glass and Mackey [11], and Brown, Moehlis,

and Holmes [4] for more details and applications, and Guckenheimer and Holmes [13] for background

information on dynamical systems theory. See [7, 8, 9, 37] for further discussions of phase resetting curves.

Let φt : Rn → R
n be a flow generated by a smooth vector field with a hyperbolic limit cycle γ. Such

a limit cycle represents a stable nonlinear oscillator. The basin of attraction of γ is denoted B(γ). The

hyperbolicity of γ guarantees that points in B(γ) converge to γ exponentially fast. (It is convenient to use γ

to refer to both the trajectory γ : R → R
n and the invariant point set it defines.) An impulsive perturbation

(“kick”) to the nonlinear oscillator can be defined by specifying a kick amplitude A and a kick direction

K̂ : Rn → R
n and defining a family of kick maps

KA(x) = x + A · K̂(x), (7)

so that kicks send each point x ∈ R
n to KA(x). For what follows, KA should be smooth and satisfy

KA(B(γ)) ⊂ B(γ).

The Hodgkin-Huxley system with the value of I given in §2 is a nonlinear oscillator whose basin

B(γ) is an open subset of R4. The kick map corresponding to an instantaneous voltage spike is simply

KA(v, m, n, h) = (v + A, m, n, h). As in §3, it is convenient to introduce the time-T map

FT = φT ◦ KA , (8)

where ◦ denotes function composition. Iterating FT gives a stroboscopic record of the system state before the

arrival of each kick, and thus describes the long-time dynamics of the flow φt under repeated, T-periodic

kicks.

Because the phase dimension n may be large, the dynamics of FT : Rn → R
n may be difficult to analyze.

Winfree observed that every point near the limit cycle γ must converge to γ as t → ∞, so the flow near γ is

dominated by the rotational motion along γ. Thus, one can reduce the dimension of the phase space from

n to 1, at least heuristically. To do this, first define the phase function θ : γ → [0, T0) by fixing a reference

point x0 ∈ γ and requiring that φθ(x)(x0) = x for all x ∈ γ. By construction, θ satisfies d
dt (θ(γ(t))) = 1, 0 ≤

t < T0. The function θ can be extended to a function θ : B(γ) → [0, T0) by projecting along strong-stable

manifolds3: if y is a point in the basin of γ then θ(y) is defined to be θ(x), where x is the unique point such

that y ∈ Wss(x). This definition of phase preserves the property that d
dt (θ(φt(x))) = 1.

Consider the limit [12]

F̄T = lim
n→+∞

FT+nT0
. (10)

The map F̄T is well-defined on the basin of γ and retracts the basin onto γ, i.e. F̄T(x) ∈ γ for all x ∈ B(γ).

Thus, F̄T induces an interval map fT : [0, T0) → [0, T0) which, given the current phase of the system,

yields the new phase after kicking and evolving the system for time T. That is, fT(θ(x)) = θ(FT(x)) for all

x ∈ B(γ).

3The strong-stable manifold Wss(x) of x ∈ γ is the set

Wss(x) =

{

y ∈ R
n : lim

n∈Z,n→+∞

φnT0
(y) → x

}

. (9)

When the vector field generating φt is smooth, the strong-stable manifolds are (locally) smooth submanifolds of Rn. The strong-stable

linear subspace Ess(x) is the tangent space of Wss(x) at x. See [12, 13].
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Drive amplitude A Prob. of sink near plateau Prob. of λmax < 0

5 41% 48%

10 58% 62%

20 68% 70%

30 76% 78%

Table 1: Estimates of the probability of obtaining sinks near the plateau, as a function of A. The data for

this table is computed by trying about 40 values of T for each choice of A and examining the graph of the

first return map to the interval [4, 10] (chosen to coincide with the “plateau”) and its intersection(s) with

the diagonal.

The map fT is the phase resetting curve4, or more precisely the finite phase resetting curve (infinitesimal

phase resetting curves [4, 7] are not needed here). By construction, it has the property that

fT+δ(t) = fT(t) + δ (mod T0). (11)

Thus, the family of maps { fT} is periodic in T.

Periodicity in drive period T. The approximate periodicity of λmax(FT) seen in Figure 3 is easy to under-

stand heuristically: kicking the oscillator every T seconds and kicking it every T + T0 seconds should yield

the same asymptotic response because the oscillator simply traverses γ at frequency 1/T0 between kicks.

One can restate this using phase resetting curves: if the drive period T is sufficiently large and θ(x0) = t0,

then the fT-orbit
(

t0, fT(t0), f 2
T(t0), ...

)

should closely follow the phases
(

θ(x0),θ(FT(x0)),θ(F2
T(x0)), ...

)

of

the corresponding FT-orbit. Since fT+T0
= fT, this suggests that λmax(FT+T0

) ≈ λmax(FT).

Preference for entrainment. Figure 5 shows phase resetting curves for the Hodgkin-Huxley equations

for various values of drive period T and drive amplitude A. For sufficientlly small values of A, the phase

resetting curves are circle diffeomorphisms: either there are sinks (i.e. stable fixed pionts or stable periodic

orbits), or the map is conjugate to a rotation on a circle and the response of the kicked oscillator drifts

relative to the periodic drive. As A increases, the graph of fT rather quickly folds over and acquires critical

points. A striking feature of the graphs in Figure 5 is the “plateau,” a phase interval over which fT varies

very slowly. Another striking feature is the “kink” around θ ≈ 9.8. These features are discussed in more

depth in §5. For now, notice that the plateau provides a simple mechanism for creating sinks: changing the

kick period T shifts the graph of fT vertically. Whenever the graph intersects the diagonal with a derivative
∣

∣ f ′T
∣

∣ < 1, then a stable fixed point is created.

This mechanism can be used to verify the results of Figure 4: compute the graph of the first return map

of fT to an interval around the plateau, then shift the graph vertically using a number of different values

of T and estimate the fraction of T’s for which fT has a stable fixed point (see Figure 6). Table 1 shows the

results. For A = 10, the 58% probability of sinks corresponds fairly closely with Figure 4. It is unclear

whether the ambiguous exponents in Figure 4 really represent positive or negative Lyapunov exponents.

If a significant fraction of the ambiguous exponents are really negative, then they must come from small

sinks.

4Wang and Young refer to phase resetting curves as singular limits. Phase resetting curves are also sometimes called phase transition

curves [11].
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Figure 5: The graph of the lift f̃T of fT, i.e. the unique continuous map R → R such that f̃T = fT on [0, T0)

and f̃T(t + T0) = f̃T(t) (mod T0), for the pulse-driven Hodgkin-Huxley equations. Drive amplitudes are

(a) A = 5, (b) A = 10, and (c) A = 20. The precise value of the drive period T is not so important; varying

T shifts the graph vertically (Eq. 11). Note that fT has winding number 1 for A = 5 and A = 10, and has

winding number 0 for A = 20. The numerical data suggests that the degree changes around A ≈ 13.589;

the precise geometric mechanism is not clear. Note that phase ranges from 0 to the intrinsic period T0 ≈ 12.9

of the Hodgkin-Huxley limit cycle.
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Figure 6: The first return map R fT
to the interval [4, 10] (chosen to enclose the plateau), for A = 10 and

T = 17.6. The blue line marks the diagonal.

Note on numerics. Phase resetting curves are computed here using a variation of the Ermentrout-Kopell

adjoint method [4, 8]. The method is described in the Appendix. A systematic comparison of this method

to existing methods for computing phase resetting curves is beyond the scope of the present paper and will

be presented elsewhere.

4.2 Response to repeated pulses: Wang-Young theory

Phase resetting curves provide simple, intuitive explanations for many dynamical properties of pulse-

driven nonlinear oscillators. For our spiking Hodgkin-Huxley oscillator, explicitly-computed phase reset-

ting curves show why our pulse-driven neuron prefers entrainment over chaos. In order to infer asymptotic

behavior, there needs to be a correspondence between the orbits of fT and FT , and the phase of x ∈ B(γ)

generally does not determine the phase of FT(x): it may only do so approximately for a finite number of

iterates. When λmax( fT) < 0, this is enough to show that fT orbits indeed approximate the phases of FT.

Inferring chaotic behavior for FT from fT is far more difficult. Wang-Young theory provides a mathemat-

ical framework for inferring chaotic behavior using phase resetting curves, and in addition explains why

chaotic phenomena (and all the other scenarios) is prevalent.

Shear is an important ingredient of Wang-Young theory. Let γ be the limit cycle which represents the

unforced nonlinear oscillator. Near γ, the dynamics follows the periodic, rotational motion on γ. Shear

refers to the presence of an angular velocity gradient around γ: the stronger the shear, the sharper the

angular velocity changes at γ. In two dimensions, this means the flow runs much faster on one side of

γ than on the other; in the presence of strong shear, strong stable manifolds tend to become more nearly

tangent to γ.

Shear and its interaction with kicks is illustrated in a simple model in Figure 7. In the presence of strong

shear, most ways of kicking the oscillator which take advantage of shear (e.g. kicks which do not take x ∈ γ

too close to the strong-stable manifold Wss(x)) will cause segments of the limit cycle to stretch and fold as
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Figure 7: A simple model (see Eq. 12) which illustrates the effect of shear. In (a), a large number of initial

conditions are placed around a limit cycle (the black circle) and a radial kick is applied to each point. The

blue curve shows the resulting positions of each initial condition. In (b), the kicked points are allowed to

flow. The red box contains one of the turning points (see §4.2).

they fall back toward γ. The phase space stretching caused by shear manifests itself in phase intervals over

which
∣

∣ f ′T
∣

∣ > 1. This expansion is conducive to chaotic behavior. However, shear also creates region of

contraction around “turning points,” an example of which is highlighted in Figure 7. Such turning points

correspond to critical points on the phase resetting curve and can easily counteract the expansion needed

for a positive Lyapunov exponent. The competition between expansion and contraction is the main source

of difficulty in proving λmax(FT) > 0.

To infer the existence of parameters for which the time-T map FT is fully chaotic, Wang and Young use

results from their previous work on strange attractors with 1 expanding direction and a roughly toroidal

geometry [33, 36]. Their main result gives conditions under which there must be T for which λmax(FT) > 0.

Furthermore, one can find such “chaotic parameters” near “nice” values of T for which fT has a positive

Lyapunov expoent. Applying the general theory to kicked oscillators requires checking certain geometric

conditions. This has been done for a few concrete classes of models [27, 34, 35]. To illustrate the conse-

quences of the theorems, consider the simple mechanical system [34]

θ̈(t) + λθ̇(t) = µ + A · K̂(θ(t)) ∑
n∈Z

δ(t − nT). (12)

This model was first studied by Zaslavsky, who discovered that this simple system can exhibit fully chaotic

behavior [40]. For Eq. 12, it can be shown that the full range of scenarios enumerated in the Introduction

take place and that they are all prevalent. More precisely, Wang and Young prove (see Theorems 1-3 in [34])

that:

1. Invariant curve & weak kicks: When the drive amplitude A is sufficiently small (which is equivalent

to having a large enough contraction rate λ), there exists a simple closed curve γ̃ to which all orbits of

FT converge and which is invariant under FT. Moreover, we have the following dichotomy:

(a) Quasiperiodic attractors: There exist a set of T of positive Lebesgue measure for which FT is

topologically conjugate to an irrational rotation. In this case, FT is uniquely ergodic on γ̃.
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(b) Gradient-like dynamics: There exists an open set of T such that FT has a finite number of peri-

odic sinks and saddles on γ̃, and every orbit converges to one of these periodic orbits.

2. Gradient-like dynamics without an invariant curve: As A increases (or λ decreases), the invariant

curve γ̃ breaks up. Nevertheless, there continues to be an invariant set (no longer a simple closed

curve) on which gradient-like dynamics persists.

3. Transient chaos: For even larger A or smaller λ, Smale horseshoes (see [13]) will form. Horseshoes

can coexist with sinks and saddles, creating transient chaos.

4. Chaos: In the presence of sufficiently strong shear, there exists a positive measure set of drive periods

T for which FT is fully chaotic in the sense that it possesses (i) a strange attractor with a positive

Lyapunov exponent; (ii) at least 1 and at most finitely many ergodic SRB measures5 with no zero

Lyapunov exponents; (iii) a central limit theorem; (iv) exponential decay of correlations if a power FN
T

is mixing for some SRB measure ν.

Note that this list of (fairly well-understood) scenarios may not be exhaustive. Other scenarios or combi-

nations of scenarios are not excluded by the theory. Also, the kicks in Eq. 12 are purely radial. This is not

strictly necessary; any kick map which takes advantage of shear will do. See [34] for precise conditions and

proofs.

5 Further results

5.1 More on the Hodgkin-Huxley phase resetting curve

Plateau

The plateau in the phase resetting curve for our pulse-driven Hodgkin-Huxley model (see Figure 5) cor-

responds a segment γ̄ of the limit cycle γ which becomes nearly parallel to a strong-stable manifold after

receiving a kick. This can be seen by examining the factors which contribute to the derivative f ′T and which

can potentially cause f ′T to become small over a relatively large phase interval. This can be checked by

writing fT as a composition of other functions and differentiating.

Let γ : R → R
4 denote the limit cycle trajectory. If we choose γ(0) so that θ(γ(0)) = 0, then θ(γ(t)) = t

for all t ∈ [0, T0), and

fT = θ ◦ FT ◦γ

= θ ◦φT ◦ KA ◦ γ.

Changing T does not affect f ′T, so we can set T = 0. Let f = f0. Then f = θ ◦ KA ◦ γ and the chain rule

gives

f ′ = (Dθ ◦ KA ◦ γ) · (DKA ◦γ) · γ̇. (13)

But KA(v, m, n, h) = (v + A, m, n, h), so its Jacobian DKA is the identity matrix, and for all t ∈ [0, T0),

f ′(t) = Dθ(KA(γ(t))) · γ̇(t)

= |Dθ(KA(γ(t)))| · |γ̇(t)| · cos(angle(Dθ(KA(γ(t))), γ̇(t))) (14)

= |Dθ(KA(γ(t)))| · |γ̇(t)| · sin(∡(t)),

5SRB measures are natural invariant measures for dissipative dynamical systems. They characterize the asymptotic behavior of

a Lebesgue-positive measure set of initial conditions and have a number of nice mathematical properties. See Young [39] for an

introduction.
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where ∡(t) is the angle between γ̇(t) and the strong-stable manifold at KA(γ(t)). The last step uses the fact

that the phase function θ : B(γ) → [0, T0) is constant on strong-stable manifolds (see §4). This implies that

the gradient Dθ(x) is everywhere orthogonal to Wss(x∗), where x∗ is the unique point in γ having the same

phase as x. The factors in Eq. 14 thus have simple, geometric meaning: γ(t) is a point on the limit cycle γ

and |γ̇(t)| is the speed of the limit cycle at that point; ∡(t) is the angle between γ̇(t) and the strong-stable

manifold at KA(γ(t)); and |Dθ| measures the rate at which the phase is changing at KA(γ(t)).

Figure 8 shows f ′ alongside the 3 factors in Eq. 14. The figure shows that the plateau, where f ′T becomes

nearly 0 over a long phase interval, coincides with the near-vanishing of ∡(t). The other factors of f ′ stay

nearly constant over this interval. Thus, there is a segment γ̄ of the limit cycle γ, corresponding to the

phase interval where ∡(t) is small, such that KA(γ̄) is nearly tangent to a strong-stable manifold. That

the segment γ̄, which may be small as a subset of R4, corresponds to a large phase interval, is due to the

relatively slow speed of the limit cycle near γ̄.

What this argument does not explain is the robustness of this tangency (equivalently, the robustness of

the plateau) as the drive amplitude A increases (see Fig. 5). This requires a detailed analysis of the geometry

(in R
4!) of the strong-stable manifolds (see §6).

Numerical computation of Dθ. Figure 8 requires the numerical computation of the gradient Dθ(x) for

x ∈ B(γ). This can be done as follows:

Fix x ∈ B(γ) and consider φn
T0
(x). Clearly, the limit limn→∞φn

T0
(x) = x∗ exists and has the property

that x∗ ∈ γ, θ(x∗) = θ(x), and x ∈ Wss(x∗). Set πss(x) = x∗. Then πss projects B(γ) onto γ and is the identity

map on γ. Furthermore, the nullspace of the Jacobian matrix Dπss(x) of πss is the tangent to Wss(πss(x)) at x,

by construction.

To compute Dθ(x), the foregoing discussion suggests that we compute Dφn
T0
(x) for some large finite n.

For any finite n, the singular values of Dφn
T0
(x) consist of a dominant singular value σ1 and 3 nearly zero

singular values σ2, σ3, and σ4. The σi → 0 as n → ∞ for i = 2, 3, 4. Denote the left and right singular

vectors associated with σ1 by u and v. It is easy to check that the right eigenvector v is orthogonal to the

null space of Dπss(x) and hence tangent to Dθ.

This computation requires a relatively accurate estimate of the intrinsic period T0 of the limit cycle γ,

without which the computation would not converge. This paper adopts the following strategy: instead of

estimating T0 just once and reusing its value, solve the system of 24 equations

ẋ1 = H(x1), ẋ2 = H(x2), J̇ = DH(x2) · J (15)

with initial conditions

x1(0) ∈ γ, x2(0) = x, J(0) = Id4×4 (16)

where H is the Hodgkin-Huxley flow field and x is the point at which we would like to evaluate Dθ.

Note that x1, x2 ∈ R
4 and J ∈ R

4×4. The solution of these equations then give x2(t) = φt(x) and J(t) =

Dφt(x). The reference trajectory x1 is only used to count the number of periods which have elapsed, and

the trajectory (x2, J) is used to compute Dπss(x). This procedure works fairly well in practice.

Kink

It is natural to ask whether fT (see Fig. 5), for A = 10 or A = 20, is discontinuous around the kink.

A discontinuity indicates that there are points in a neighborhood of γ which can be kicked outside the

basin of γ. This is not likely the case: Figure 9 shows a magnified view of the phase resetting curve near

the kink; the graph does not include any numerical interpolation. The figure is obtained by fixing a small
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Figure 8: The origin of the plateau: in (a), the curves are (i) Black: | f ′(t)|; (ii) Blue: |sin(∡(t))|; (iii) Red:

|Dθ(KA(t))|; (iv) Purple: |γ̇(t)|. In (b), the graph of fT near the plateau is shown for reference. Here,

A = 10. (c) The speed of the Hodgkin-Huxley flow along γ. The vertical lines mark the interval [5, 9],

which is part of the plateau.
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Figure 9: (a) The graph of fT ◦ g−1 with drive amplitude A = 10, with the abscissa shown in a new coor-

dinate system θ′ = g(θ) to magnify the region around the “kink.” No interpolation is done in this figure:

only actually computed points are shown. (b) The graph of the coordinate transformation g. The map g is

generated automatically by the simple adaptive algorithm described in the appendix.
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Figure 10: A suggestive picture: in (a), a segment of γ, starting in the upper left corner of the picture, is

kicked straight across to the upper right corner. It then follows the flow toward the fixed point for some time

before spiraling away. The overall direction of motion is top to bottom. (b) Another view of the approach

to the fixed point. The overall direction of motion here is right to left. The kick amplitude is A = 13.589.
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Figure 11: Graphs of fT for kick amplitudes A approaching Acrit from below (a-c) and above (d-f). The

horizontal lines mark integral multiples of T0.

18



parameter δ > 0 and adaptively refining the grid {θn} on which the phase resetting curve is evaluated until

| fT(θn+1)− fT(θn)| ≤ δ. In Figure 9, δ is set to 0.1. The adaptive procedure (see the Appendix) continues

to converge for smaller values of δ.

Figure 10 suggests an explanation for the kink: that it is likely caused by a segment of γ being kicked

near the stable manifold of the unstable fixed point. This would cause the segment to wind around the

stable manifold and eventually spirals away from the fixed point. (Recall that the two unstable eigenvalues

of the fixed point form a complex conjugate pair.) In the process the kicked segment spreads apart and its

subsets pick up different amounts of time delays. However, because the Hodgkin-Huxley phase space is

4-dimensional, Figure 10 cannot give a reliable picture of the dynamics: projecting onto 2 dimensions loses

too much information.

The scenario sketched above predicts that there exist a critical kick amplitude Acrit at which KA(γ) inter-

sects the stable manifold of the fixed point. (There may be more than 1 intersection, and more than 1 value

of A which cause intersections.) As A → Acrit, the phase resetting curve should start winding around S1

more and more. This can be numerically tested: an estimate of Acrit is computed using the Nelder-Meade

algorithm [30] to minimize the closest distance of a trajectory to the fixed point. This yields a critical value

Acrit ≈ 13.58953.... When A = Acrit exactly, fT should wind around infinitely many times and possess a

singularity near the location(s) of intersection. For A 6= Acrit, fT remains smooth, but as A → Acrit, fT should

develop a singularity and blow up. See Figure 11.

Horseshoes & transient chaos

Wang-Young theory also guarantees the existence of T’s for which FT exhibits transient chaos, i.e. FT pos-

sesses a Smale horseshoe [13] together with a sink. The coexistence of a horseshoe with a sink has the

following effect on the dynamics: almost every FT-orbit would eventually fall into a sink, but an orbit

which wanders near a horseshoe would dance around unpredictably for a finite number of iterations. Two

nearby orbits which enter the vicinity of a horseshoe can emerge widely separated, and fall into the sink

out of phase (unless the sink happens to be a fixed point). In terms of time series data, this kind of behavior

can be recognized by looking at pairs of trajectories and finding that they chaotically “flutter” about before

settling down into a steady periodic motion, likely out of phase.

In contrast to entrainment and chaos, transient chaotic behavior is difficult to observe in the pulse-

driven Hodgkin-Huxley system. This is because the most likely place to find a horseshoe is near the kink,

where the expansion so strong that most trajectories escape very quickly. Nevertheless, it is possible to find

indirect evidence for horseshoes in the pulse-driven Hodgkin-Huxley model. To do so, one looks for an

interval I ⊂ [0, T0) such that fT(I) gets mapped completely across I at least twice. It is easy, for example,

to find a “small” horseshoe around the kink in the phase resetting curve. See Figure 12. The phase interval

I tells us the rough location of a horseshoe for FT.

To go from such an interval I to a horseshoe for the full map FT, it is necessary to (i) blow up the

corresponding segment of γ to form an open set U ⊂ R
4 such that FT(U) intersects U at least twice, and the

intersection stretches all the way across U in the unstable direction (along γ); and (ii) find invariant cones

[13]. This can be done in a straightforward manner and is not discussed further here.

5.2 Miscellaney

Decay of correlations

Wang-Young theory predicts that when the dynamics of a pulse-driven oscillator is chaotic and there is a

unique SRB measure, time correlations (more precisely time autocovariance functions) decay exponentially
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Figure 12: The phase resetting map and an interval I (marked by the straight lines) which maps across itself

twice. The abscissa (but not the ordinate) is shown in transformed coordinates. Here, A = 10 and T = 81.

This is a “small” horseshoe: because the derivative of fT is so large there (on the order of 103 ∼ 104), most

numerically computed orbits escape the horseshoe after a few iterates.
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Figure 13: Normalized autocorrelation function Cvv(n) for the v variable of the time-T map FT . This graph

indicates that the dynamics is mixing, but the data is insufficient to confirm that the system is exponentially

mixing.

fast in time. Figure 13 shows the time autocovariance function

Cvv(n) =
∫

(v ◦ Fn
T) · v dµ −

(

∫

v dµ

)2

(17)

for the voltage variable v (µ is an ergodic invariant measure). While it clearly decays as n → ∞ and thus

provides evidence that the invariant measure is mixing, the data is not sufficient to confirm that the decay

is exponential.

Response to finite-duration pulses

A natural variation on the numerical experiments of previous sections is to replace instantaneous impulses

with finite-duration pulses. Heuristically, if the pulse durection t0 is less than the fastest of the intrinsic

timescales of γ, the resulting response should be essentially the same as the response to instantaneous

impulses. With I ≈ 14, these time scales are 12.944 (= the period), 5.1, 0.50, and 0.12 (corresponding to the

negative Lyapunov exponents).

Figure 14 summarizes the numerical results for t0 = 0.05 (shorter than all time scales), 0.3 (shorter than

all but one time scale), 2.75 (shorter than all but two fastest time scales), and 9.0 (very slow, not really

pulsatile in any sense of the word). These graphs should be compared to Figure 4. The pulse amplitude is

adjusted so that the total amount of charge delivered is the same as an impulse of amplitude A. Interestingly

enough, the behavior seen earlier are quite robust and disappear only when t0 = 9. These results suggest

that the contracting directions do not mix very much over γ, and only the slowest contracting time scale

participates in the production of chaotic behavior.
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Figure 14: Distribution of Lyapunov exponents for I ≈ 14 with finite-duration pulse of duration (a) t0 =

0.05, (b) t0 = 0.3, (c) t0 = 2.75, and (d) t0 = 9.0. See Figure 4 caption for details. Recall that the Lyapunov

exponents of the unperturbed limit cycle γ are −0.196, −2.01, and −8.31, corresponding to relaxation times

of 5.1, 0.50, and 0.12.
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6 Outlook

The results reported here show that the pulse-driven Hodgkin-Huxley model (3) responds to low-frequency

(relative to the intrinsic period T0 of the spiking neuron) periodic impulse forcing in a wide range of ways.

Depending on the drive period and drive amplitude, the response can range from entrainment to fully

chaotic behavior. This is consistent with the predictions of Wang-Young theory. Furthermore, as shown

in §4, it is possible to explain some phenomena specific to our pulse-driven Hodgkin-Huxley oscillator in

terms of special features of the phase resetting curve and provide a partial understanding of the source of

these features.

There are some interesting directions for future work:

Random kick times. The shape of the Hodgkin-Huxley phase resetting curve suggests that if one were

to drive a Hodgkin-Huxley neuron using a pulse train with random kick times, the resulting random dy-

namical system can have a negative Lyapunov exponent. This is because the phase resetting curve moves

up and down from kick to kick, and for any kick time distribution which is sufficiently uniform (e.g. an

exponential distribution), the probability that the plateau intersects the diagonal is high. The size of the

plateau suggests that over many iterates, contraction may dominate expansion, leading to a negative Lya-

punov exponent. A negative Lyapunov exponent implies that two Hodgkin-Huxley neurons, when driven

by a common pulse train with random kick times, will synchronize. That is, the plateau provides a way to

create a “random fixed point” [22]. These predictions are consistent with preliminary numerical results and

with a perturbation theory developed by Nakao et. al. for randomly-kicked oscillators in the limit of weak

kicks [26]. The heuristic, geometric argument sketched above may lead to an extension of their result to the

regime of strong kicks.

This synchronization mechanism has also been studied numerically by Doi in the context of a sim-

ple pieceise linear map [6]. In addition, there is an extensive literature on noise-induced synchrony in

neural models, including white-noise-driven Hodgkin-Huxley equations [29, 41]. Models exhibiting noise-

induced synchrony provide a concrete framework for exploring neural reliability [21, 23].

Robustness of the phase resetting curve. How robust are the features (plateau, kink) of the Hodgkin-

Huxley phase resetting curve under perturbations to parameters? How robust is the geometry of the near-

tangency of kicked segments and strong-stable manifolds responsible for forming the plateau? As the

range of phenomena predicted by Wang-Young theory may be present in two-dimensional models like the

Morris-Lecar or FitzHugh-Nagumo, these models may provide a good starting point for exploring these

questions in lower-dimensional settings.

A Appendix: Computation of phase resetting curves

All numerical calculations of phase resetting curves reported in this paper use the algorithm described

here. It is closely related to an algorithm due to Ermentrout and Kopell [8]. It is presented here for the sake

of completeness; a systematic comparison with existing methods will appear elsewhere. The algorithm

computes the phase resetting curve for finite-size perturbations but can be adapted to compute phase resetting

curves for infinitesimal perturbations. See Appendix A in [4] and [28, 37]) for more general discussions

of phase resetting curves, and Ermentrout, Pascal, and Gutkin [9] for a discussion of computing phase

resetting curves experimentally.
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The basic idea is to numerically compute the strong-stable linear subspaces along the limit cycle. Then,

using these linear subspaces as approximations to strong-stable submanifolds, project a kicked point down

to the limit cycle, where the phase can be estimated. The algorithm really computes strong-stable linear

subspaces along γ and uses these linear subspaces to approximate the phase resetting curve.

Some preliminaries: the limiting map F̄T = limn→∞ FT+nT0
can be characterized abstractly by the equa-

tion

F̄T = πss ◦φT ◦ KA = φT ◦ πss ◦ KA , (18)

where πss(x) = y if and only if x ∈ Wss(y), i.e. πss : B(γ) → γ maps the basin of γ onto the limit cycle

γ along strong-stable manifolds. The abstract notations (and notions) have their uses: the projection πss

encapsulates the properties of the strong-stable manifolds, e.g. by definition, the strong stable manifold

Wss(πss(x)) passes through x for any x ∈ B(γ), and the nullspace of the Jacobian matrix Dπss(x) is precisely

the tangent space of the strong stable manifold Wss(πss(x)) at x.6

Algorithm (Phase resetting curves via stable subspaces).

1. Estimate the period T0 of the limit cycle γ by numerically solving the unforced equations starting with

a point on or near γ.

2. Discretize γ by subdividing the time interval [0, T0) into N intervals and computing the correspond-

ing points xi ∈ γ. Fix an arbitrary reference point x0 on γ so that each point on γ can be assigned a

unique phase θ ∈ [0, T0).

3. For each point xi computed in the previous step, compute the Jacobian DH(xi) of the Hodgkin-

Huxley flow field H at that point.

4. Using the results of the previous two steps, solve

ẋ = −H(x),

ξ̇ = η− 〈η,ξ〉ξ ,

η = DH(x)Tξ ,

(19)

using the grid points {xi} computed in the previous steps. The ẋ part of the equation above is clearly

numerically unstable, but that is not a problem because we have already have a numerical represen-

tation of γ.

The equations above are a variant of the usual method for computing Lyapunov exponents [13].

They preserve the length of ξ(t), though in practice, it is necessary to rescale ξ(t) to ensure that

this constraint is maintained. As t → ∞, ξ(t) becomes orthogonal to the strong-stable linear subspace

Ess(x(t)) of γ. The subspace Ess(x(t)) is tangent to the strong-stable manifold Wss(x(t)) at x(t).7

6Note that the commutation relation φt ◦ πss = πss ◦φt expresses the invariance of the strong-stable foliation under φt. The map

KA , in general, has nothing to do with the flow and does not commute with the other maps.
7These equations can be generalized to the following:

ẋ = −H(x)

ξ̇i = ηi − 〈ηi ,ξi〉ξi − ∑ j<i

(

〈ξi, ξ̇ j〉+ 〈ηi,ξ j〉
)

ξ j

ηi = DH(x)Tξi

(20)

If the vectors (ξi) form an orthonormal basis at t = 0, then the equations will guarantee that (ξi(t)) are orthonormal for all t > 0.

Again, it will be necessary to perform Gram-Schmidt orthogonalizations periodically to maintain this constraint. The vector ξ1(t), as

before, converges to a vector orthogonal to Ess(x(t)). So (ξ2(t),ξ3(t),ξ4(t)) span Ess(x(t)). Similarly, the vectors (ξ3(t),ξ4(t)) span

the subspace consisting of the 2 fastest contracting directions, and (ξ4(t)) spans the fastest contracting direction.
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5. Using Eq. 18 in combination with the linear subspaces computed in the previous step, we can now

approximate the phase resetting curve. Start with a point x ∈ γ and compute Φt(KA(x)) for increasing

t. Let t0 > 0 be the minimum positive time at which Φt0(KA(x)) has (i) returned to a small, fixed

neighborhood of γ (in this paper this is chosen to be a neighborhood of distance 10−4 around γ); and

(ii) Φt0(KA(x)) lies within one of the pre-computed linear subspaces Ess(x∗) for some point x∗. Let θ∗
denote the phase of the point x∗. Then the new phase of the system is (T +θ∗ − t0) (mod T0).

6. Proceed to the next grid point and repeat.

7. When the derivative of the phase resetting curve becomes large or infinite, it may be necessary to

adaptively generate the grid points on which the curve is evaluated. Generally speaking, the grid {xi}

constructed in Step 2 need not equal the grid
{

x′i
}

on which the phase resetting curve is evaluated.

In particular, the grid
{

x′i
}

can be adaptively chosen to ensure that
∣

∣

∣
f̂a(x′i+1)− f̂a(x′i)

∣

∣

∣
≤ ǫ, where f̂a

denotes the computed phase resetting curve and ǫ is a fixed number, in this paper usually 0.1. This

adaptive mechanism provides a way to detect discontinuities in fT .
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