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Abstract

In this article, we study parameter-dependent systems of reaction-diffusion equations on the
sphere, which are equivariant under the group SO(3) of all rigid rotations on a sphere. Two
main types of spatial-temporal patterns that can appear in such systems are rotating waves
(equilibrium in a co-rotating frame) and modulated rotating waves (periodic solution in a co-
rotating frame). The transition from rotating waves to modulated rotating waves on spherical
domains is explained via a supercritical Hopf bifurcation from a rotating wave, SO(3)-symmetry
and finite-dimensional equivariant center manifold reduction. The Baker-Campbell-Haussdorff
formula in the Lie algebra so(3) is used to get reduced differential equations on so(3), a formula
for a primary frequency vector, as well as a formula for the periodic part associated to any
modulated rotating wave obtained by a supercritical Hopf bifurcation from a rotating wave. As
a consequence, there are three types of motions for the tips of these modulated rotating waves.
In the resonant case (with two parameters), we obtain that the primary frequency vectors of a
branch of these modulated rotating waves are generically orthogonal to the frequency vector of
the initial rotating wave undergoing Hopf bifurcation.

Keywords : equivariant center manifold, rotating wave, modulated rotating wave, Hopf bifurca-
tion

1 Introduction

The main motivation of this article is the presence of spiral waves in excitable media, especially in
cardiac tissue. Spiral waves arise as stable spatio-temporal patterns in various chemical, physical
systems and biological systems, as well as numerical simulations of reaction-diffusion systems on
excitable media with various geometries. Excitable media are extended non-equilibrium systems
having a uniform rest state that is linearly stable but susceptible to finite perturbations. Spi-
ral waves have been observed experimentally, for instance, in catalysis of platinum surfaces [35],
Belousov-Zhabotinsky chemical reactions [25, 29], Rayleigh-Bernard convection [39], slime-mould
cells [13] and the most important, cardiac tissue [6]. Numerical simulations of the spiral waves have
been done by [1, 2], for example.
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It is now believed that spiral and scroll waves that appear in the heart muscle can lead to cardiac
arrhythmias (abnormal rhythms in the heart), giving rise to atrial fluttering or ventricular fibril-
lation. In normal hearts cardiac arrhythmias are rare, but in diseased hearts cardiac arrhythmias
can become more common. For example, if chambers of the heart become abnormally large, they
are susceptible to serious arrhythmias in which waves are believed to circulate in a fashion that is
similar to the circulation of the Belousov-Zhabotinsky waves in a chemical medium. Real human
hearts are enormously complex three-dimensional structures. In this article, we assume that the
geometry of the excitable media is a sphere, which in the case of cardiac tissue is clearly an ap-
proximation.
In the planar case, a rigidly rotating spiral wave is an example of wave pattern rotating around a
center and being well approximated by an Archimedean spiral wave far from rotation center. Near
the rotation center, there is a core region of the spiral wave, where the front of the wave has a tip,
whose structure is considered to be the most important in understanding the behavior of the whole
spiral wave [26, 27]. Barkley [1] was the first who performed a numerical linear stability analysis
for the basic-time periodic spiral wave solution in a reaction-diffusion system on the unbounded
plane and showed evidence of a Hopf bifurcation. In particular, a simple pair of eigenvalues was
shown to cross the imaginary axis while three neutral eigenvalues lie on the imaginary axis and
the remainder of the spectrum is bounded into the left-half plane. Later, using an ad hoc model,
Barkley [2] was the first to realize the key importance of the group SE(2) of all planar translations
and rotations in describing the dynamics and bifurcations of planar spiral waves.
It is well known now that the tip of the spiral wave rotates steadily or meanders or linearly drift
in plane [14, 15]. From a mathematical point of view, rigidly rotating spiral waves are examples
of rotating waves, meandering spiral waves are examples of modulated rotating waves and linearly
drifting spiral waves are examples of modulated rotating waves.
The first rigorous mathematical theory of the planar spiral waves was done by Wulff [52]. In her
thesis, Wulff studied the external periodic forcing of rotating waves which leads to modulated ro-
tating waves or modulated travelling waves, and also proved an SE(2)-equivariant Hopf theorem
for the bifurcation from rotating waves to modulated (rotating or travelling) waves in autonomous
systems. The external periodic forcing of rotating waves was studied using a contraction mapping
theorem on scales of Banach spaces, and the proof for the SE(2)-equivariant Hopf theorem for
rotating waves was based on Liapunov-Schmidt reduction on scales of Banach spaces. In both
cases, it is shown that modulated travelling waves emanate if the rotation frequency is a multiple
of the external frequency, respectively the modulus of the eigenvalue leading to Hopf bifurcation.
The main difficulty comes from the fact that the group SE(2) is noncompact and the action of
SE(2) on the usual spaces of functions is not smooth. The proofs in [52] are based on the basic
assumption that the linearization at the rotating wave in the co-rotating frame does not exhibit
continuous spectrum near the imaginary axis.
Later, Sandstede, Scheel and Wulff [45] proved a finite-dimensional center bundle reduction theo-
rem near a relative equilibrium Gu0 of an infinite-dimensional vector field on a Banach space X
on which acts a finite-dimensional Lie group (not necessarily compact). This generalizes Krupa’s
results on bifurcation from relative equilibria [28], from compact groups to noncompact groups and
from finite dimensions to infinite dimensions. Using the results of [45], the Hopf bifurcation from
one-armed rotating spiral wave to meandering waves can be studied [14, 45].
In the case of a one-armed rotating spiral wave, the relative equilibrium SE(2)u0 is diffeomorphic to
SE(2), which is diffeomorphic to C×S1. Near Hopf bifurcation, the reduced differential equations
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on the center bundle SE(2) × C are given by

ṗ = eiφf(q, λ),

φ̇ = Fφ(q, λ),
q̇ = F q(q, λ),

(1.1)

where Fφ(0, 0) = ωrot, F
q(0, 0) = 0, f(0, 0) = 0. The rotating wave u0 corresponds to q = 0 at

λ = 0 and to the solution (0, ωrott) for the first two differential equations in (1.1).
In case of a supercritical Hopf bifurcation we have dqF

q(0, 0) = iω2, Re (dqF
q
λ(0, 0)) 6= 0. It follows

that for any small λ > 0 there is a meandering spiral wave which becomes a drifting linear wave
if ω1(λ) = kω2(λ), for some k ∈ Z, where ω2(λ) is the frequency that appears due to the Hopf

bifurcation and ω1(λ) =
|ω2(λ)|

2π

∫ 2π
|ω2(λ)|

0 Fφ(q(t, λ), λ) dt, and q(t, λ) is the 2π
|ω2(λ)| periodic solution of

the third differential equation in (1.1) that appears due to the supercritical Hopf bifurcation for
q = 0 at λ = 0. Similar results for m-armed spiral waves were also obtained.
In [53], a G-equivariant semilinear system of parabolic equations (where G is a finite-dimensional
possibly non-compact Lie group) is studied. In particular, the periodic forcing of relative equilib-
ria and resonant periodic forcing of relative equilibria to relative periodic orbits, as well as Hopf
bifurcation from relative equilibria to relative periodic orbits are treated using Liapunov-Schmidt
reduction. Resonant drift phenomena are also studied. Then, these results are applied to the planar
spiral waves.
For the skew-product finite-dimensional system of differential equations on the center manifold near
a relative equilibrium [9], the normal form method which further simplifies the system is presented
in [10]. The normal form for the case G = SE(N) is obtained. Then, the known results regarding
the meandering and drifting of planar spiral waves are recovered, as well as new results regarding
the relative homoclinic and heteroclinic trajectories to relative equilibria of SE(2)-actions.
In [43], Scheel shows that for a large class of reaction-diffusion systems on the plane, m-armed spi-
ral waves bifurcate from a homogeneous equilibrium when the latter undergoes a Hopf bifurcation.
This was done using spatial dynamics.
All previous results are valid for planar spiral waves. The interest to consider spiral waves on non-
planar surfaces is motivated by the applicability to problems in physiology, biology and chemistry.
Therefore, the study of spiral waves by experiments and numerical simulations of reaction-diffusion
systems on a sphere have recently been undertaken. In the case of spiral waves on a sphere, the
dynamics is expected to be quite different because any spiral wave starting from a rotating center
cannot end at a point. The number of tips of a wave front cannot be odd, and therefore, the
dynamics of spiral waves may acquire a new feature qualitatively different from the planar case.
The dynamics of spiral waves in an excitable reaction-diffusion systems on a sphere was numeri-
cally investigated by [18, 55, 56], and [54] who employ a spectral method using spherical harmonics
as basis functions. Maselko [32], as well as Maselko and Showalter [33] performed experiments
with Belousov-Zhabotinsky chemical waves propagating on the surface of a sphere. They observed
that a spiral wave winds outward from a meandering source at the north pole and undergoes self-
annihilation as it winds into itself at the south pole.
In [55], the evolution of spiral waves on a circular domain and on a spherical surface is studied by
numerical integration of a reaction-diffusion system. Two different asymptotic regimes are observed
for both domains. The first regime is a rigid rotation of an excitation wave around the symmetry
axis of the domain. The second one is a compound rotation including a drift of the rotation center
of the spiral wave either along the boundary of the disk or along the equator of the sphere. In this
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case the shape of the wave and its rotation velocity are periodically changing in time. Simplified
analytical estimates are presented to describe the rigid rotation.
In [18], numerical integration of an excitable reaction-diffusion system on a sphere is presented. The
evolution of counter-rotating double spiral waves on the sphere is studied and it is shown that the
tips of the spiral can either perform a meandering motion or rigidly rotate around a fixed center,
depending on the system control parameter. It is observed that the rotation of the spiral wave on
spherical surface is similar to that obtain on the planar surface, except that in the absence of the
boundary on a spherical surface some parts of the wave can undergo self-annihilation in contrast
to the spiral wave behavior on bounded planar surfaces.
In [56], the evolution of spiral waves on a spherical surface is studied by integration of a reaction-
diffusion system with a global feedback. It is shown that depending on intensity, sign, and/or
time delay in the feedback loop a global coupling can be effectively used either to stabilize the rigid
motion of a spiral wave or to completely destroy spiral waves and to suppress self-sustained activity
in a confined domain of an excitable medium.
In [54], the dynamics of chemical spiral waves in an excitable reaction-diffusion system on a sphere is
numerically investigated employing a spectral method using spherical harmonics as basis functions.
Different types of spiral waves –symmetric or antisymmetric source-source or nearly antisymmet-
ric source-nonsource– have been obtained depending on whether the medium is homogeneous or
inhomogeneous, and it has been observed that the tips can either rotate steadily or change their
shapes.
The influence of the topological constraints and the inhomogeneity in the excitability on the ge-
ometry and dynamics of spiral waves on a thin spherical shell of excitable media are presented in
[5]. Also, rigidly rotating waves on spherical domains have been studied using kinematical theory
by [19, 20, 34].
In [19], the geometrical stability of the symmetric counter-rotating spiral waves propagating on the
unit sphere is studied. By the use of the eikonal equations, it is demonstrated that these solutions
are stable under small perturbations normal to the wave front lying on a unit sphere.
In [20], the authors showed that stationary rotating solutions on a sphere of the eikonal equation
under some boundary conditions on tips must be symmetric with respect to the equator with spiral
winding out from source tips at polar points.
In [34], using the eikonal approximation to a reaction-diffusion system on a sphere, the authors
prove existence of a class of counter-rotating double spiral solutions which are highly asymmetric
with respect to the equator. They also derive a power law, linking the angular rotation of the spiral
waves with the velocity of plane waves in medium.
In [41], Renardy considered bifurcations from rotating waves of semi-linear equations that are
equivariant under a general compact Lie group and applied his results to the Laser equations. His
results do not cover the resonance case, which will be covered in our paper. The theorems were
proved using a generalized implicit function theorem on scales of Banach spaces.
In [40], Rand examined modulated rotating waves in rotating fluids and applied his results to the
Taylor-Couette problem, where modulated rotating waves, so called modulated wavy vortices oc-
cur.
In this article we have studied only the trivial isotropy case, because as far as we are aware, there
have been observed no m-spiral waves (m > 1) on spherical surfaces. Also, in [5] it was numerically
verified that there is a critical size of the sphere below which self-sustained spiral waves cannot
exist. Therefore, we use a sphere of an arbitrary, but fixed radius r.
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In this article, we study non-resonant and resonant supercritical Hopf bifurcation from a rotating
wave. The relation between spiral waves and rotating waves, respectively modulated rotating waves
will be presented somewhere else. While we have concentrated on the case of Hopf bifurcation, it
should be mentioned that we would obtain similar results for periodic forcing of a rotating wave.
In Section 2, we define the representation of the Lie group SO(3) on the usual function space. It is
a smooth unitary representation on the fractional spaces relative to the appropriate sectorial oper-
ator. We also associate an SO(3)-equivariant semiflow to the reaction-diffusion system on a sphere,
and we recall the notion of tip position function. In Section 3, we recall the notions of relative
equilibrium, relative periodic orbit, rotating wave and modulated rotating wave. We also define the
notions of frequency vector of a rotating wave and primary frequency vector of a modulated rotating
wave, and present some of their properties. Section 4 deals with a supercritical Hopf bifurcation
from a rotating wave. Decomposition of a modulated rotating wave obtained by Hopf bifurcation
into a primary frequency part and the associated periodic part is proved. In Section 5, the form of
the reduced differential equations on so(3), as well as formulae for a primary frequency vectors and
the associated periodic part are obtained using Baker-Campbell-Hausdorff formula in the Lie alge-
bra so(3), the properties of the exponential map e : so(3) → SO(3) and the properties of the adjoint
representations of SO(3) and so(3). As a consequence, there are three types of motions for the tips
of the modulated rotating waves obtained by a Hopf bifurcation from a rotating wave. Namely, the
tip can either quasi-periodically meander on the sphere, such that the primary frequency vector is
of order O(1) near the frequency vector of the initial rotating wave, or quasi-periodically meander
very slowly (order O(

√
λ)) about the primary frequency vector, which can be orthogonal or not to

the frequency vector of the initial rotating wave undergoing Hopf bifurcation. In the orthogonal
case, the tip motion can be approximated with a very slow drift (order O(

√
λ)) along an equator

of the sphere. Section 6 presents some examples that illustrate the theoretical results obtained
in Sections 4 and 5. In Section 7, the resonant Hopf bifurcation from a rotating wave with two
parameters is studied. Near the resonant Hopf bifurcation, we proved that there exists generically
a unique branch of modulated rotating waves with primary frequency vectors orthogonal to the
frequency vector of the rotating wave undergoing Hopf bifurcation. Then, Section 8 deals with
some numerical results that illustrate the theoretical results obtained in Sections 4 and 5. The
proofs of all theorems are presented in Section 9. Three appendices are included, presenting BCH
formula in so(3), some properties of the exponential map e : so(3) → SO(3) and of the adjoint
representations of SO(3) and so(3), the equivariant center manifold reduction theorem and some
computations done in Section 8.

2 Reaction-diffusion Systems on Sphere rS2

Let r > 0 and S2 be the unit sphere in R3. We consider a reaction-diffusion system of the form

∂u

∂t
(t, x) = D∆Su(t, x) + F (u(t, x)) on rS2, (2.1)

u = (u1, u2, . . . , uN ) : R× rS2 → RN with N ≥ 1,

D =




d1 . . . 0
...

. . .
...

0 . . . dN


 with di ≥ 0 for i = 1, 2, . . . , N the diffusion coefficients, ∆S is Laplace-
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Beltrami operator on rS2 and F = (F1, F2, . . . , FN ) : R
N → RN . Also, D∆Su =




d1∆Su1
d2∆Su2

...
dN∆SuN


.

We study the reaction-diffusion system (2.1) on the function space

Y =

{
L2(rS2,RN ) if di > 0 for i = 1, 2, . . . , N ;

H2(rS2,RN ) if there exists i ∈ {1, 2 . . . , N} such that di = 0.

Let α ∈ (12 , 1) and Yα = D((I − D∆S)
α) be the fractional spaces of Y relative to the sectorial

operator −D∆S. Using [12, 22, 23, 38, 47, 52], to the reaction-diffusion system (2.1) we associate
a local semiflow on an open set of Y. Let F : RN → RN be a Ck+2 function such that F (0) = 0,
where 0 ≤ k ≤ ∞. Then the reaction-diffusion system (2.1) defines a sufficiently smooth local
semiflow Φ on the function space Yα. The flow is Ck+2 if Y = L2(rS2,RN ) and Ck if Y =
H2(rS2,RN ). Namely [38], for any u0 ∈ Yα, let u(t, u0) be the sufficiently smooth solution (Ck+2

or Ck respectively) of the initial value problem given by the reaction-diffusion system (2.1) and by
the initial condition u(0) = u0, defined on the maximal interval of existence I(u0) = [0, t0(u0)).
Let W = {(t, u0) ∈ [0,∞) × Yα | t ∈ I(u0)}. Then, the local semiflow Φ : W → Yα is defined
by Φ(t, u0) = u(t, u0), for any (t, u0) ∈ W . Any reaction-diffusion system of the above type has
the property that is SO(3)-equivariant, where the precise meaning of SO(3)-equivariance is defined
below.

Definition 2.1. The representation T of SO(3) on Y is the function T : SO(3) → GL(Y), defined
by

T (A)u(x) = u(A−1x) where A ∈ SO(3), u ∈ Y, x ∈ rS2. (2.2)

The linear action θ : SO(3) × Y → Y associated to the unitary representation T ([22, 23, 30,
47, 52]) is defined by

θ(A, u)(x) = u(A−1x) where A ∈ SO(3), u ∈ Y and x ∈ rS2. (2.3)

We denote θ(A, u) = Au. From now on, when we talk about SO(3)-equivariance, we mean equivari-
ance with respect to the action θ defined in (2.3). Using [7, 46, 48, 49, 50], we obtain the following
two propositions:

Proposition 2.2. [4] The restriction of the representation T to Yα, where α ∈ (12 , 1), is smooth.

Proposition 2.3. [4] Let F : RN → RN be a Ck+2 function such that F (0) = 0 and 1 ≤ k ≤ ∞.
The local semiflow Φ is SO(3)-equivariant with respect to the action θ restricted to Yα.

For any u0 ∈ Yα we follow the time evolution of u0 under the local semiflow Φ using the concept
of tip motion of u0.

Definition 2.4. For 0 ≤ k ≤ ∞, a Ck function xtip : Y
α → rS2 that is SO(3)-equivariant is

called a tip position function. By the tip of u ∈ Yα, we understand the point xtip(u) ∈ rS2. Also,
for any u0 ∈ Yα, xtip(Φ(t, u0)) with t ∈ [0,∞) is called the tip motion of u0. If the function xtip is
defined only on an open subset of Yα, then the function xtip is called a local tip position function.

The tip position function is usually used to follow the time evolution of u0 under the local
semiflow Φ, when Φ(t, u0) is a rotating wave or a modulated rotating wave.
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3 Rotating Waves and Modulated Rotating Waves on rS2

We consider that north hemisphere of S2 is the set N = {(x, y, z) ∈ S2 | z > 0 or z = 0, x ∈
[−1, 1), y ∈ [0, 1]}, and south hemisphere is the set S = S2 \N .
For any G-equivariant dynamical system, where G is a Lie group, we can talk about the concepts
of relative equilibrium and relative periodic orbit. If SO(n) ⊂ G for some integer n ≥ 2, we can
also talk about rotating waves and modulated rotating waves.

Definition 3.1. [11, 28, 52] Let u0 ∈ Yα be such that the stabilizer of u0 is Σu0 = I3. The orbit
group of u0 is called a relative equilibrium for (2.1) if there exists a matrix X0 ∈ so(3) such that

Φ(t, u0) = eX0tu0 for any t ≥ 0. (3.1)

Sometimes, when SO(3)u0 is a relative equilibrium, we call u0 a relative equilibrium. If X0 6= O3,
then any solution of the reaction-diffusion system (2.1) of the form AΦ(., u0), where A ∈ SO(3) is
called a rotating wave for (2.1).

Because the action θ restricted to Yα is smooth, then the relative equilibrium from Definition
3.1 is a sufficiently smooth manifold in Yα diffeomorphic to SO(3) since Σu0 = I3.

Definition 3.2. Let Φ(., Au0) be a rotating wave as in Definition 3.1, where A ∈ SO(3). Then,

the vector
−−−−−−→
AX0A

−1 is called the frequency vector of the rotating wave. If the vector 1
|X0|

−−−−−−→
AX0A

−1

is in the north hemisphere, then ω0 = |X0| is called the frequency of the rotating wave. Otherwise,
−ω0 is called the frequency of the rotating wave.

Then, the rotating waves in SO(3)u0 have their anti-symmetric matrices associated with the
frequency vectors on the same adjoint orbit. The following property shows the importance of the
frequency vector associated to any rotating wave:

Proposition 3.3. [4] For a rotating wave Φ(t, u0), the tip motion xtip(Φ(t, u0)) is a circle on the
sphere rS2 with the center on the line having the direction of the frequency vector of Φ(t, u0), and
this is independent of the choice of the tip position function.

Definition 3.4. [11, 28, 52] Let u0 ∈ Yα be such that the stabilizer of u0 is Σu0 = I3. The set
defined by {AΦ(t, u0) | A ∈ SO(3), t ∈ [0,∞)} is called a relative periodic orbit for (2.1) if it is
not a relative equilibrium and there exist a number T > 0 and a matrix X0 ∈ so(3) such that

Φ(T, u0) = eX0Tu0 and Φ(t, u0) /∈ SO(3)u0 for any t ∈ (0, T ). (3.2)

If |X0|T 6= 2kπ for any k ∈ Z, then any solution of the reaction-diffusion system (2.1) of the form
AΦ(., u0), with A ∈ SO(3) is called a modulated rotating wave for (2.1).

If |X0| = 2kπ
T

for some k ∈ Z, then Φ(t, u0) is a T -periodic solution of the reaction-diffusion
(2.1). Because the action θ of SO(3) on Yα is smooth, then the relative periodic orbit defined
in Definition 3.4 is a sufficiently smooth manifold in Yα. There are two properties related to
modulated rotating waves, namely:

Remark 3.5. [4]

1. Φ(T1, u0) = eX0T1u0 if and only if T1 ∈ TZ.
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2. There are periodic solutions of the reaction-diffusion system (2.1) that are modulated rotat-
ing waves in the sense of Definition 3.4. Then their period is an integer multiple of the
corresponding T from Definition 3.4 and |X0|T ∈ 2πQ.

Definition 3.6. Let Φ(., Au0) be a modulated rotating wave as in Definition 3.4, where A ∈ SO(3).

Then, the vector
−−−−−−→
AX0A

−1 is called a primary frequency vector of the modulated rotating wave and
the positive number T is called the relative period of the modulated rotating wave. If the vector
1

|X0|
−−−−−−→
AX0A

−1 is in the north hemisphere, then ω0 = |X0| is called the primary frequency of the
modulated rotating wave. Otherwise, −ω0 is called the primary frequency of the modulated rotating
wave.

A primary frequency vector
−→
X1 of a modulated rotating waveΦ(t, Au0) is unique up to an integer

multiple of 2π
|X1|T

−→
X1. Then the modulated rotating waves in SO(3)Φ(., u0) have the anti-symmetric

matrices associated with primary frequency vectors on the same adjoint orbit (if we consider primary
frequency vectors to be unique up to a multiple of 2kπ

T
, k ∈ Z of the corresponding unit primary

frequency vector). If Φ(t, Au0) is a T -periodic solution of the reaction-diffusion system (2.1) such
that Φ(T,Au0) = Au0 and Φ(t, Au0) /∈ SO(3)u0 for all t ∈ (0, T ), then a primary frequency vector

of Φ(t, Au0) can be any vector
−→
X1 ∈ R3 with |X1| = 2kπ

T
for k ∈ Z. The following property shows

the importance of the primary frequency vector associated to any modulated rotating wave:

Proposition 3.7. [4] For a modulated rotating wave Φ(t, u0), the tip motion xtip(Φ(t, u0)) has the
property that xtip(Φ(kT, u0)) for k ∈ Z are points of a circle on the sphere rS2 with the center on
the line having the direction of the primary frequency vector of Φ(t, u0); this is independent of the
choice of the tip position function.

4 Hopf Bifurcation from Rotating Waves to Modulated Rotating

Waves on rS2

In this section, we will consider a supercritical Hopf bifurcation from an equilibrium. Because the
bifurcating periodic solution has amplitude of order

√
λ, the following definition will simplify the

language.

Definition 4.1. Let M be a smooth manifold, X a normed space or the empty set, p ≥ 0 an
integer and Y : X × [0, λ0) × Rp → M for λ0 > 0 small. We say that the function Y is CS on
X × [0, λ0)× Rp if the function Z : X × [0, ǫ0)× Rp →M defined by

Z(x, ǫ, µ) = Y (x, ǫ2, µ),

is smooth on X × [0, ǫ0)× Rp, where ǫ0 =
√
λ0.

We say that Y is Ck-CS if Z is Ck, where k ∈ Z, k ≥ 1. We say that Y is sufficiently CS if Z is
sufficiently smooth.

Let us consider the following reaction-diffusion system

∂u

∂t
(t, x) = D∆Su(t, x) + F (u(t, x), λ) on rS2, (4.1)
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u = (u1, u2, . . . , uN ) : R × rS2 → RN with N ≥ 1, D =




d1 . . . 0
...

. . .
...

0 . . . dN


, di ≥ 0, i = 1, 2,

. . . , N the diffusion coefficients and F = (F1, F2, . . . , FN ) : R
N × R → RN a Ck+2 function with

3 ≤ k ≤ ∞. We study the reaction-diffusion system (4.1) on the function space Y defined in
Section 2. Let u0 ∈ Yα be a relative equilibrium that is not an equilibrium for (4.1) at λ = 0 and
such that the stabilizer of u0 is Σu0 = I3. Let Φ(t, u0, 0) = eX0tu0. Consider L the linearization of
the right-hand side of (4.1) with respect to the rotating wave Φ(t, u0, 0) = eX0tu0 at λ = 0 in the
co-rotating frame, that is

L = D∆S +DuF (u0, 0) −X0.

Suppose that:

1. σ(L)∩{z ∈ C | Re (z) ≥ 0} is a spectral set with spectral projection P∗, and dim(R(P∗)) <∞;

2. the semigroup eLt satisfies
∣∣eLt|R(1−P∗)

∣∣ ≤ Ce−β0t for some β0 > 0 and C > 0.

Theorems B.1 (see Appendix B) can be applied. Then, there exist sufficiently smooth functions
XG : V∗ × R → so(3) and XN : V∗ ×R → V∗ such that any solution of

Ȧ = AXG(q, λ),
q̇ = XN (q, λ),

(4.2)

on SO(3)×V∗ corresponds to a solution of the reaction-diffusion system (4.1) on M cu
u0
(λ) under the

diffeomorphic identification for |λ| small. Also, XG(0, 0) = X0, XN (0, 0) = 0 and σ(DuXN (0, 0)) =
σ(Q∗L|V∗), where Q∗ is the projection onto V∗ along Tu0(SO(3)u0). An example of tip position
function is xtip : M

cu
u0
(λ) × R → rS2 defined by xtip(AΨ(q), λ) = Ax0, where x0 ∈ rS2 is fixed.

Also, we have the following result. Suppose we omit the parameter λ. Let Φ(., u1) be a modulated
rotating wave as defined in Definition 3.4 with u1 ∈ M cu

u0
and Σu1 = I3, where M

cu
u0

is defined in
Theorem B.1. Suppose that Φ(., u0) corresponds to 0 and Φ(., u1) corresponds to q1(t), where 0
and q1(t) are solutions of the second differential equation in (4.2). Using [9, 17, 45], we have:

Proposition 4.2. [4]

1. Φ(., u0) is orbitally stable (respectively unstable) if 0 is stable (respectively unstable) in the
second differential equation of (4.2).

2. Φ(., u1) is orbitally stable (respectively unstable) if q1(t) is stable (respectively unstable) in the
second differential equation of (4.2).

Let dim(R(P∗)) = 5. Suppose that a supercritical Hopf bifurcation with eigenvalues ±iωbif
takes place in the second differential equation of (4.2) in V∗ at q = 0 for λ = 0 [16, 24, 51]. Namely,

1. XN (0, 0) = 0;

2. DqXN (0, 0) has eigenvalues ±iωbif ; without loss of generality, we assume that XN (0, λ) = 0
for |λ| small;

3. DqXN (0, λ) has the eigenvalues α(λ)±i(ωbif+β(λ)) with α(0) = β(0) = 0 such that α
′
(0) > 0;
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4. the branch of periodic solutions q(t, λ) bifurcating from q = 0 satisfies q(t, λ) = O(
√
λ) for

λ ≥ 0 small;

Let q(t, 0) = 0 for all t ∈ [0,∞). Let T (λ) = 2π
|ωλ| be the period of the solution q(t, λ) near q = 0

that appears for λ > 0 small due to the supercritical Hopf bifurcation, where ωλ = ωbif +O(λ) for
λ ≥ 0 small. Let us define

XG(t, λ) = XG(t, λ) =

{
XG(q(t, λ), λ) if λ > 0 and t ∈ [0,∞),

X0 if λ = 0 and t ∈ [0,∞),
(4.3)

where XG(q, λ) is defined in Theorem B.1(see Appendix B).
Since q(t, λ) =

√
λr(t, λ) is sufficiently CS and XG(q, λ) is sufficiently smooth, it follows that the

function XG is sufficiently CS.
Writing q(t, λ) =

√
λr(t, λ), we have

XG(t, λ) = x0(t, λ)X
1
0 +

√
λx1(t, λ)X1 +

√
λx2(t, λ)X2,

x0(t, λ) = |X0|+
√
λx01(t) + λx02(t, λ)

(4.4)

for t ∈ [0,∞) and λ ≥ 0 small. The functions XG(t, λ), x0(t, λ), x1(t, λ), x2(t, λ) are
2π
|ωλ| -periodic

in t for λ ≥ 0 small.
Let A(t, λ) for t ∈ [0,∞) and λ ≥ 0 small be the solution of the initial value problem

Ȧ = AXG(t, λ),
A(0) = I3,

(4.5)

where XG(t, λ) is defined in (4.3).

Lemma 4.3 (Decomposition of A(t, λ)). Suppose that the assumptions made in this section
hold. Consider the initial value problem

Ȧ = AXG(t, λ),
A(0) = I3,

(4.6)

where XG(t, λ) defined by (4.3) is sufficiently CS and 2π
|ωλ|-periodic in t for λ > 0 small. Then,

there exists a sufficiently CS solution A(t, λ) = eX(λ)tB(t, λ) of the initial value problem (4.6),
where X(λ) ∈ so(3) and B(t, λ) is a 2π

|ωλ|-periodic function such that B(0, λ) = I3.

We call B(t, λ) the periodic part of Φ(t, uλ, λ) associated to
−−−→
X(λ). Using Lemma 4.3 we get the

following result:

Theorem 4.4 (Hopf Bifurcation Theorem for Rotating Waves on a Sphere). Suppose that
the assumptions made in this section hold. Then, there exists a sufficiently CS branch Φ(t, uλ, λ)
of solutions for the reaction-diffusion system (4.1) such that Φ(t, u0, 0) = eX0tu0 and for λ > 0
small, Φ(t, uλ, λ) is either an orbitally stable modulated rotating wave with a primary frequency

vector
−−−→
X(λ) and the secondary frequency ωλ, or an orbitally stable periodic solution with the period

2π
|ωλ| .

A slightly modified version of this theorem was proved by [41, 53]. They used the Liapunov-
Schmidt reduction on scales of Banach spaces. We use the equivariant manifold reduction and
Lemma 4.3.
The bifurcation diagram is illustrated in Figure 4.1.
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Figure 4.1: Bifurcation Diagram for Nonresonant Hopf Bifurcation

5 The Primary Frequency Vector Formula for Φ(t, uλ, λ)

Let X1
0 = 1

|X0|X0. There exist X1,X2 ∈ so(3) such that the set {−→X 1
0,
−→
X 1,

−→
X 2} is an orthonormal

basis in R3 satisfying

−→
X 1

0 ×
−→
X 1 =

−→
X 2,

−→
X 1 ×

−→
X 2 =

−→
X 1

0 and
−→
X 2 ×

−→
X 1

0 =
−→
X 1.

Since so(3) is isomorphic to R3 and
−−−→
[X,Y ] =

−→
X × −→

Y , {X1
0 ,X1,X2} is a basis of the Lie algebra

so(3) such that
[X1

0 ,X1] = X2, [X1,X2] = X1
0 and [X2,X

1
0 ] = X1.

Let us consider the reaction-diffusion system (4.1).
Throughout this section, we will suppose that u0 ∈ Yα is a relative equilibrium that is not an
equilibrium for (4.1) at λ = 0 and such that the stabilizer of u0 is Σu0 = I3. Also, let Φ(t, u0, 0) =
eX0tu0.

Suppose that Theorem 4.4 holds. Recall that a primary frequency vector
−−−→
X(λ) of Φ(t, uλ, λ) is

given by A( 2π
|ωλ| , λ) = e

X(λ) 2π

|ωλ| for λ > 0 small.

5.1 Existence of a sufficiently CS branch X(λ)

The theorems stated in this subsection can be proved without using BCH formula in so(3) [4].
Let us define the smooth following function

q([
−→
Y ]) =

{
Y if 1

|Y |
−→
Y , 1

|X0|
−→
X0 are in the same hemisphere or Y = O3

(− 2π
|Y | + 1)Y if 1

|Y |
−→
Y , 1

|X0|
−→
X0 are in different hemispheres and Y 6= O3,

(5.1)

where points 0 and 2π are identified, and [
−→
Y ] is an equivalence class of D (see Appendix A for

definition of D). Then eq([Y ]) = e[Y ] for any [Y ] ∈ D.
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Theorem 5.1. [4] Suppose that the hypotheses of Theorem 4.4 are satisfied. Then, there exists

a unique sufficiently CS branch X(λ) such that 2π
|ωλ|X(λ) ∈ q(D) for λ ≥ 0,

−−−→
X(λ) is a primary

frequency vector of Φ(t, uλ, λ) for λ > 0 small and Φ( 2π

|ωbif | , u0, 0) = e
X(0) 2π

|ωbif |u0.

The branch X(λ) does not have the property that X(0) = X0. The next corollary shows that

we can construct a branch of primary frequency vectors
−−−−→
Xf (λ) such that Xf (0) = X0.

Corollary 5.2. [4] Suppose that the hypotheses of Theorem 4.4 are satisfied. Then, there exists

a branch Xf (λ) for λ ≥ 0 such that
−−−−→
Xf (λ) is a primary frequency vector of Φ(t, uλ, λ) for λ > 0

small and Xf (0) = X0. Moreover,

1. if |X0| 6= kωbif for all k ∈ Z, then the branch Xf (λ) for λ ≥ 0 is sufficiently CS and

Xf (λ) =
[
|X0|+O(

√
λ)
]
X1

0 +O(
√
λ)X1 +O(

√
λ)X2 for small λ ≥ 0. (5.2)

(The branch Φ(t, uλ, λ) contains only modulated rotating waves for λ ≥ 0 small).

2. if |X0| = kωbif for some k ∈ Z, k 6= 0, then
∣∣Xf (λ)

∣∣ for λ ≥ 0 is continuous and

∣∣∣Xf (λ)
∣∣∣ = |X0|+O(λ

1
4 ) for small λ ≥ 0. (5.3)

Therefore, we can not have frequency -locking phenomena for the modulated rotating waves
Φ(t, uλ, λ). If |X0| = kωbif for some k ∈ Z, k 6= 0, it may be possible that the branch Xf (λ) be
discontinuous at λ = 0 or/and at any λ > 0 such that |X(λ)| = 0.

5.2 Construction of the branches X(λ) and Xf (λ)

In the rest of the section we give a way of constructing X(λ) and Xf (λ) for λ ≥ 0 using the BCH
formula in so(3) presented in Theorem A.2. Theorems 5.3, 5.4 and 5.5 are used to construct the

branch X(λ). Recall that a primary frequency vector
−−−→
X(λ) of Φ(t, uλ, λ) is given by A( 2π

|ωλ| , λ) =

e
X(λ) 2π

|ωλ| for λ > 0 small, we show that there exists a sufficiently CS function Z(t, λ) ∈ q(D) such

that A(t, λ) = eZ(t,λ) for at least t ∈
[
0, 2π

|ωλ|

]
and λ ≥ 0 small.

Theorem 5.3. Suppose that the hypotheses of Theorem 4.4 are satisfied. Let us consider the
following initial value problem

−→̇
Z =

[
I3 +

1
2Z +

(
1

|Z|2 − cos
|Z|
2

2 sin |Z|
2
|Z|

)
Z2

]−−−−−→
XG(t, λ),

Z(0) = O3.
(5.4)

Then,

1. there exists a positive integer n independent of λ such that the initial value problem (5.4) has
a unique sufficiently CS solution Z1(t, λ) on t ∈ [0, 2π

n|ωλ| ] and λ ≥ 0 small;
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2.

Z1(t, λ) =

(
|X0| t+

√
λ

∫ t

0
x01(s) ds + λx03(t, λ)

)
X1

0 +
√
λz1(t, λ)X1 +

√
λz2(t, λ)X2 (5.5)

for any t ∈ [0, 2π
n|ωλ| ] and λ ≥ 0 small;

The integer n that appears in Theorem 5.3 can be found and, in general, it is not 1. Therefore,
in general, the function Z1(t, λ) is not defined on the entire interval [0, 2π

|ωλ| ], for λ ≥ 0 small.

Corollary 5.4. Suppose that the hypotheses of Theorem 4.4 are satisfied and the positive integer
n is the one obtained in Theorem 5.3. Then, for any i = 1, 2, . . . , n− 1 the initial value problem

−→̇
Z =

[
I3 +

1
2Z +

(
1

|Z|2 − cos
|Z|
2

2 sin
|Z|
2

|Z|

)
Z2

]−−−−−→
XG(t, λ),

Z(i 2π
n|ωλ|) = O3

(5.6)

has a unique sufficiently CS solution Zi+1(t, λ) on [i 2π
n|ωλ| , (i+ 1) 2π

n|ωλ| ] and λ ≥ 0 small.

Combining Theorem 5.3 and Corollary 5.4, we obtain the following result:

Theorem 5.5. Suppose that the hypotheses of Theorem 4.4 are satisfied. Then, there exists a
sufficiently CS function Z(t, λ) ∈ q(D) such that A(t, λ) = eZ(t,λ) for t ∈ [0,∞) and λ ≥ 0 small,
where A(t, λ) is the solution of the initial value problem (4.5). In fact, the function Z(t, λ) satisfies
the following initial value problem for t ∈ [0,∞) and λ ≥ 0 small :

−→̇
Z =

[
I3 +

1
2Z +

(
1

|Z|2 − cos
|Z|
2

2 sin
|Z|
2

|Z|

)
Z2

]−−−−−→
XG(t, λ)( mod 2π),

−−→
Z(0) =

−→
O3.

(5.7)

Remark 5.6. In fact, the function Z(t, λ) obtained in Theorem 5.5 is constructed as follows:

1. On the interval [0, 2π
ωλ

]:

Z(t, λ) = Z0(t, λ) = q(BCH(Z1(
2π

n |ωλ|
, λ), Z2(2

2π

n |ωλ|
, λ), . . . , Zi(t, λ))) (5.8)

for all t ∈ [(i− 1) 2π
n|ωλ| , i

2π
n|ωλ| ] and λ ≥ 0 small, where i = 1, 2, . . . , n and Zi is the solution

of the initial value problem (5.6) on the interval [(i − 1) 2π
n|ωλ| , i

2π
n|ωλ| ].

2. On the interval [i 2π
|ωλ| , (i + 1) 2π

|ωλ| ] for any integer i ≥ 1 and λ ≥ 0 small :

Z(t, λ) = Zi(t, λ) = q(BCH(Z0(
2π

|ωλ|
, λ), Zi−1(t− 2π

|ωλ|
, λ))). (5.9)

Using the function Z(t, λ) obtained in Theorem 5.5, we construct the branches X(λ) (λ ≥ 0)
as follows:
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Proposition 5.7 (Primary Frequency Vectors Associated to Φ(t, uλ, λ)). Suppose that the
hypotheses of Theorem 4.4 are satisfied. Then, the branch X(λ) for λ ≥ 0 from Theorem 5.1 is
defined by:

X(λ) =
|ωλ|
2π

Z(
2π

|ωλ|
, λ) for small λ ≥ 0, (5.10)

where Z(t, λ) is given in Theorem 5.5;

Corollary 5.8 (Primary Frequency Vectors Associated to Φ(t, uλ, λ)). Then, the branch
Xf (λ) for λ ≥ 0 from Corollary 5.2 is defined by:

1. if |X0| 6= kωbif for all k ∈ Z, then we define Xf (λ) = |X(λ)|+k|ωλ|
|X(λ)| X(λ) for λ > 0 small.

2. if |X0| = kωbif for some k ∈ Z, k 6= 0, then we define:
Xf (0) = X0;

if |X(λ)| 6= 0, then we define Xf (λ) = |X(λ)|+k|ωλ|
|X(λ)| X(λ) for λ ≥ 0 small;

if |X(λ)| = 0, then we define Xf (λ) = X(λ) + k |ωλ|Q(λ), where Q(λ) ∈ so(3), |Q(λ)| = 1
for λ > 0 small.

Using Lemma 4.3 for λ > 0 small, we can associate A(t, λ) = eX(λ)tB(t, λ) = eX
f (λ)tBf (t, λ) to

each modulated rotating wave or periodic solution of period 2π
|ωλ| obtained by Theorem 4.4, where

B(t, λ), Bf (t, λ) are 2π
|ωλ| -periodic in t for λ > 0 small, as well as B(0, λ) = Bf (0, λ) = I3. Also, let

B(t, 0) and Bf (t, 0) be such that A(t, 0) = eX(0)tB(t, 0) = eX
f (0)tBf (t, 0), that is Bf (t, 0) = I3.

Proposition 5.9 (Periodic Parts Associated to Φ(t, uλ, λ)). Suppose that the hypotheses of
Theorem 4.4 are satisfied. Then,

1. if |X0| 6= kωbif for all k ∈ Z, we have

Bf (t, λ) = e
√
λY (t,λ) for t ∈ [0,∞) and λ ≥ 0 small, (5.11)

where Y (t, λ) is 2π
|ωλ| -periodic in t and sufficiently CS for t ∈ [0,∞) and λ ≥ 0 small.

2. if |X0| = kωbif for some k ∈ Z, k 6= 0, we have

B(t, λ) = eX0t+
√
λH(t,λ) for t ∈ [0,∞) and λ ≥ 0 small, (5.12)

where H(t, λ) is sufficiently CS for t ∈ [0,∞) and λ ≥ 0 small, and e
X0

2π

|ωλ|
+
√
λH( 2π

|ωλ|
,λ)

= I3
for λ ≥ 0 small.

Remark 5.10. In fact, Bf(t, λ) = eq(BCH(−Xf (λ)t,Z(t,λ))) (respectively B(t, λ) = eq(BCH(−X(λ)t,Z(t,λ))))
for t ∈ [0,∞) and λ ≥ 0 small, where Z(t, λ) is given in Theorem 5.5.

Using Theorems 5.7, 5.8 and 5.9 we get the following result:

Theorem 5.11. Suppose that the hypotheses of Theorem 4.4 are satisfied. Then,
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1. if |X0| 6= kωbif for all k ∈ Z, we have

Φ(t, uλ, λ) = e[(|X0|+O(
√
λ))X1

0+O(
√
λ)X1+O(

√
λ)X2]te

√
λY (t,λ)Ψ(

√
λr(t, λ)),

where Y (t, λ) and r(t, λ) are sufficiently CS and 2π
|ωλ| -periodic in t for λ ≥ 0 small.

2. if |X0| = kωbif for some k ∈ Z, k 6= 0, we have

Φ(t, uλ, λ) = e[O(
√
λ)X1

0+O(
√
λ)X1+O(

√
λ)X2]teX0t+

√
λH(t,λ)Ψ(

√
λr(t, λ)),

where r(t, λ) and H(t, λ) are sufficiently CS and r(t, λ) is 2π
|ωλ| -periodic in t for λ ≥ 0 small,

as well as e
X0

2π

|ωλ|
+
√
λH( 2π

|ωλ|
,λ)

= I3 for λ ≥ 0 small.

In fact, we have that the initial value problem (4.2) is equivalent with the following initial value
problem

−→̇
Z =

[
I3 +

1
2Z +

(
1

|Z|2 − cos
|Z|
2

2 sin |Z|
2
|Z|

)
Z2

]−−−−−→
XG(q, λ) ( mod 2π) ,

q̇ = XN (q, λ),−−→
Z(0) =

−→
O3.

(5.13)

We could have considered that the differential equation q̇ = XN (q, λ) has a 2π
|ωλ| -periodic solution

q(t, λ) = O(
√
λ) instead of assuming that a supercritical Hopf bifurcation takes places at q = 0 for

λ = 0. All the results remain valid.

6 Examples

Throughout this section, we let ǫ =
√
λ. Here we present some examples of functions XG(t, λ) for

which we can get the closed form solution A(t, λ) of the initial value problem (4.5). They obey
Theorem 5.11.

Example 6.1 ( Hopf bifurcation to modulated rotating waves). Let g(t, λ) be a sufficiently
smooth periodic function of period 2π

|ωbif+λ| such that g(0, λ) = 0 for λ ≥ 0 small. For any t ∈ [0,∞)

and λ ≥ 0 small, we define

XG(t, λ) = (2ǫX1 +2ǫX2 +2ǫX1
0 )ġ(t, λ) + e−(2ǫX1+2ǫX2+ǫX1

0 )g(t,λ)(X0 + ǫX1)e
(2ǫX1+2ǫX2+2ǫX1

0 )g(t,λ).

It is clear that XG(t, λ) is a sufficiently CS, 2π

|ωbif+λ| -periodic function such that XG(t, 0) = X0.

Then, the initial value problem (4.5) has the solution

A(t, λ) = e(X0+ǫX1)te(2ǫX1+2ǫX2+2ǫX1
0 )g(t,λ).

Clearly,
−→
X 0 + ǫ

−→
X 1 is not orthogonal to

−→
X 0.

Example 6.2 (Example 1. Resonant drift phenomena for modulated rotating waves).
Let ωbif = |X0| and g(t, λ) be a sufficiently smooth periodic function of period 2π

|ωbif+λ| such that
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g(0, λ) = 0 for λ ≥ 0 small.
For any t ∈ [0,∞) and λ ≥ 0 small, we define

XG(t, λ) = (X0 + ǫX2)


 |ωbif + λ|√

|X0|2 + λ
+ λġ(t, λ)


 + ǫe

−(X0+ǫX2)

(
|ωbif+λ|√
|X0|

2+λ
t+λg(t,λ)

)

X1

· e
(X0+ǫX2)

(
|ωbif+λ|√
|X0|

2+λ
t+λg(t,λ)

)

. (6.1)

It is clear that XG(t, λ) is a sufficiently CS, 2π

|ωbif+λ| - periodic function such that XG(t, 0) = X0.

Then, the initial value problem (4.5) has the solution

A(t, λ) = eǫX1te
(X0+ǫX2)

(
|ωbif+λ|√
|X0|

2+λ

t+λg(t,λ)

)

. (6.2)

Clearly, ǫ
−→
X 1 is orthogonal to

−→
X 0.

Example 6.3 (Example 2. Resonant drift phenomena for modulated rotating waves).
Let ωbif = |X0| and g(t, λ) be a sufficiently smooth periodic function of period 2π

|ωbif+λ| such that

g(0, λ) = 0 for λ ≥ 0 small.
For any t ∈ [0,∞) and λ ≥ 0 small, we define

XG(t, λ) = (X0 + ǫX2)


 |ωbif + λ|√

|X0|2 + λ
+ λġ(t, λ)


 + ǫe

−(X0+ǫX2)

(
|ωbif+λ|√
|X0|

2+λ

t+λg(t,λ)

)

· (X0 +X1)e
(X0+ǫX2)

(
|ωbif+λ|√
|X0|

2+λ
t+λg(t,λ)

)

. (6.3)

It is clear that XG(t, λ) is a sufficiently CS, 2π

|ωbif+λ| -periodic function such that XG(t, 0) = X0.

Then, the initial value problem (4.5) has the solution

A(t, λ) = eǫ(X0+X1)te
(X0+ǫX2)

(
|ωbif+λ|√
|X0|

2+λ
t+λg(t,λ)

)

. (6.4)

Clearly, ǫ(
−→
X 0 +

−→
X 1) is not orthogonal to

−→
X 0.

Example 6.4 (Example 3. Resonant drift phenomena for modulated rotating waves).
Let ωbif = 1

k
|X0| for k ∈ Z, k 6= 0 and g(t, λ, µ) be a sufficiently smooth periodic function of period

2π

|ωbif+λ| such that g(0, λ, µ) = 0 for λ ≥ 0, |µ| small.

For any t ∈ [0,∞), λ ≥ 0 small and |µ| small, we define

XG(t, λ, µ) = (X0 + µX1)


 k |ωbif + λ|√

|X0|2 + µ2
+ λġ(t, λ, µ)




+ ǫke
−(X0+µX1)

(
k|ωbif+λ|√
|X0|

2+µ2
t+λg(t,λ,µ)

)

((ǫ− µ)X0 +X1 +X2)e
(X0+µX1)

(
k|ωbif+λ|√
|X0|

2+µ2
t+λg(t,λ,µ)

)

.
(6.5)
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It is clear that XG(t, λ, µ) is a sufficiently CSλ,
2π

|ωbif+λ| -periodic function such that XG(t, 0, µ) =

X0 + µX1. Then, the initial value problem (4.5) for two parameters λ, µ has the solution

A(t, λ, µ) = eǫ
k((ǫ−µ)X0+X1+X2)te

(X0+µX1)

(
k|ωbif+λ|√
|X0|

2+µ2
t+λg(t,λ,µ)

)

. (6.6)

Clearly, for µ =
√
λ, we have orthogonality, that is ǫk(

−→
X 1 +

−→
X 2) is orthogonal to

−→
X 0.

Example 6.5 (Nonuniform rigidly rotation). Let ωbif = |X0| and g(t, λ) be a sufficiently
smooth periodic function of period 2π

|ωbif+λ| such that g(0, λ) = 0 for λ ≥ 0 small.

For any t ∈ [0,∞) and λ ≥ 0 small, we define

XG(t, λ) = (X0 + ǫX1)(1 + ǫġ(t, λ)). (6.7)

It is clear that XG(t, λ) is a sufficiently CS, 2π

|ωbif+λ| -periodic function such that XG(t, 0) = X0.

Then, the initial value problem (4.5) has the solution

A(t, λ) = e(X0+ǫX1)(t+g(t,λ)). (6.8)

This clearly represents a non-uniformly rigid rotation about the line containing the vector
−−−−−−→
X0 + ǫX1.

This is a degenerate situation for the case of one parameter.

Also, the case of a 2π
|ωλ| -periodic solution is a degenerate situation for one parameter. Therefore,

we do not present it here.
These examples will be used in Section 8. As we have seen in Examples 6.2 and 6.3, if we have a
single parameter λ and |X0| = kωbif for some k ∈ Z, we can have three different types of solutions
for the initial value problem (4.5). In Example(6.4), we have two parameters λ ≥ 0 and µ, as well

as |X0| = kωbif for some k ∈ Z and we have a branch µ = µ(λ) for which
−−−−−−−→
X(λ, µ(λ)) is orthogonal

to
−→
X0. In next section, we prove that this is generically valid.

7 Resonant Drift Phenomena for Modulated Rotating Waves on

rS2

We consider the following reaction-diffusion system

∂u

∂t
(t, x) = D∆Su(t, x) + F (u(t, x), λ, µ) on rS2, (7.1)

where u = (u1, u2, . . . , uN ) : R× rS2 → RN with N ≥ 1, D =




d1 . . . 0
...

. . .
...

0 . . . dN


 with di ≥ 0 for

i = 1, 2, . . . , N are the diffusion coefficients and F = (F1, F2, . . . , FN ) : R
N × R × R → RN are

sufficiently smooth functions such that F (0, λ, µ) = 0 for |λ|, |µ| small.
We study the reaction-diffusion system (7.1) on the function space Y defined in Section 2. Let
Φ(t, u, λ, µ) be the SO(3)-equivariant sufficiently smooth local semiflow defined as in Section 2. Let
u0 ∈ Yα be a relative equilibrium that is not an equilibrium for (7.1) at (λ, µ) = (0, 0) and such
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that the stabilizer of u0 is Σu0 = I3. consider L the linearization of the right-hand side of (7.1)
with respect to the rotating wave Φ(t, u0, 0, 0) = eX0tu0 at (λ, µ) = (0, 0) in the co-rotating frame,
that is

L = D∆S +DuF (u0, 0, 0) −X0.

Suppose that:

1. σ(L)∩{z ∈ C | Re (z) ≥ 0} is a spectral set with spectral projection P∗, and dim(R(P∗)) <∞;

2. the semigroup eLt satisfies
∣∣eLt|R(1−P∗)

∣∣ ≤ Ce−β0t for some β0 > 0 and C > 0.

Theorems B.1 with parameters λ, µ can be applied.
There exist sufficiently smooth functions XG : V∗ ×R×R → so(3) and XN : V∗ ×R×R → V∗ such
that any solution of

Ȧ = AXG(q, λ, µ),
q̇ = XN (q, λ, µ),

(7.2)

on SO(3)× V∗ corresponds to a solution of the reaction-diffusion system (4.1) on M cu
u0
(λ, µ) under

the diffeomorphic identification for |λ| and |µ| small. Also, XG(0, 0, 0) = X0, XN (0, 0, 0) = 0
and σ(DuXN (0, 0, 0)) = σ(Q∗L|V∗), where Q∗ is the projection onto V∗ along Tu0(SO(3)u0). Let
dimR(P∗) = 5. Suppose that a supercritical Hopf bifurcation with eigenvalues ±iωbif takes place
in the second differential equation of (7.2) in V∗ at q = 0 for (λ, µ) = (0, 0), that is:

1. XN (0, 0, 0) = 0;

2. DqXN (0, 0, 0) has eigenvalues ±iωbif ; without loss of generality, we assume that XN (0, λ, µ) =
0 for |λ|, |µ| small;

3. DqXN (0, λ, µ) has the eigenvalues α(λ, µ) ± i(ωbif + β(λ, µ) with α(0, 0) = β(0, 0) = 0) and
αλ(0, 0) > 0. This implies that α(λH(µ), µ) = 0 for some sufficiently smooth curve λ = λH(µ)
with λH(0) = 0. This curve represents the Hopf points and without loss of generality, we
suppose that λH(µ) = 0 for |µ| small;

4. the branch of periodic solutions q(t, λ, µ) bifurcating from q = 0 generically satisfies q(t, λ, µ) =√
(λ)r(t, λ, µ).

For λ > 0 small and |µ| small, let T (λ, µ) = 2π

|ωλ,µ| be the period of the periodic solution q(t, λ, µ)

near q = 0, that appears due to the supercritical Hopf bifurcation, where ωλ,µ = ωbif + O(µ) +
λs(λ, µ) for λ ≥ 0 small and |µ| small.
By Theorem 4.4, there exists a sufficiently CS branch Φ(t, uλ,µ, λ, µ) for λ ≥ 0 small and |µ| small
such that for |µ| small, Φ(t, u0,µ, 0, µ) = eXG(0,0,µ)tu0,µ and such that for λ > 0 small and |µ| small,
Φ(t, uλ,µ, λ, µ) is an orbitally stable modulated rotating wave or periodic solution of period 2π

|ωλ,µ| .

Let
−−−−−→
X(λ, µ) be the sufficiently CS branch such that for |µ| small, e

X(0,µ) 2π

|ω0,µ| = e
XG(0,0,µ) 2π

|ω0,µ| , and
for λ > 0 small and |µ| small,

−−−−−→
X(λ, µ) is a primary frequency vector corresponding toΦ(t, uλ,µ, λ, µ).

We have the following two results:

Theorem 7.1 (Resonance Case). Suppose the previous assumptions hold and that |X0| = kωbif
for some k ∈ Z, k 6= 0. Let

XG(q, λ, µ) = x0(q, λ, µ)X
1
0 + x1(q, λ, µ)X1 + x2(q, λ, µ)X2.
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  λ
Η

(µ)=0

µ=µ(λ) 

µ=µ(λ)

λ

µ

represents MRW that are orthogonal to  X 0

stable MRW

stable RW

or periodic solutions

Figure 7.1: Parameter Space for Resonant Hopf Bifurcation

Then, if (x0)µ(0, 0, 0) 6= k(ω0,µ)
′ |µ=0, there exists a sufficiently CS curve µ = µ(λ) for λ ≥ 0 small

such that µ(0) = 0, and there exists a sufficiently CS branch of orbitally stable modulated rotating

waves Φ(t, uλ,µ(λ), λ, µ(λ)) for λ > 0 small, with a primary frequency vector
−−−−−−−→
X(λ, µ(λ)) orthogonal

to
−→
X0.

Corollary 7.2. Suppose that Theorem 7.1 hold. Then,

1. the branch X(λ, µ(λ)) is sufficiently CS for λ ≥ 0 small and X(λ, µ(λ)) = O(λ)
k
2 )X1 +

O(λ
k
2 )X2 for λ ≥ 0 small.

2. B(t, λ, µ(λ)) = e(O(
√
λ)X1

0+O(
√
λ)X1+O(

√
λ)X2)teX0t+

√
λH(t,λ), for t ∈ [0,∞) and λ ≥ 0 small,

where H(t, λ) is a sufficiently CS function such that e
X0

2π

|ωλ|
+
√
λH( 2π

|ωλ|
,λ)

= I3 for λ ≥ 0 small.

3. there exists a branch Xf (λ, µ(λ)) with λ ≥ 0 that is discontinuous at λ = 0, but
∣∣Xf (λ, µ(λ))

∣∣
is continuous for λ ≥ 0 small and

∣∣Xf (λ, µ(λ))
∣∣ = |X0|+O(λ

k
4 ) for λ ≥ 0 small.

The branch µ = µ(λ) for λ ≥ 0 small can be found using the BCH formula in so(3). The
parameter space in the case of the resonant Hopf bifurcation is illustrated in Figure (7.1).

The results in Sections 4, 5 and 7 show that a rotating wave on a sphere generically under-
goes a transition to quasi-periodic meandering (modulated rotating wave) at a Hopf bifurcation.
Furthermore, the primary frequency vector of the modulated rotating wave is determined by both
the critical Hopf eigenvalues and the frequency of the rotating wave undergoing the bifurcation. In
particular, resonances between the critical Hopf eigenvalue and the frequency of the rotating wave
undergoing the bifurcation lead to orthogonal drift. While we have concentrated on the case of
Hopf bifurcation, it should be mentioned that we would obtain similar results for periodic forcing
of a rotating wave: equation (4.5) represents the dynamical equations of a periodically forced ro-
tating wave. In a spherical heart, for example, one could alter the dynamics of a rotating spiral
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wave simply by applying a (weak) periodic forcing (e.g. pacing), thereby inducing meandering.
By an appropriate choice of the forcing frequency, one could then control the direction of the
primary frequency vector (i.e. steer the spiral tip to another location). Of course, this assumes
perfect spherical symmetry. The case when geometrical imperfections appear can also influence the
dynamics of rotating waves and it will be presented somewhere else.

8 Some Numerical Results

Theorem 5.11 shows that, generically, by a supercritical Hopf bifurcation of a rotating wave, not
only we get modulated rotating waves (that is a quasi-periodic tip motion), but also we get a quasi-
periodic meandering tip motion. It is possible that this meandering motion is not of epicycle-type.
We illustrate this using the examples presented in Section 6.

Let Lx =




0 0 0
0 0 −1
0 1 0


, Ly =




0 0 1
0 0 0
−1 0 0


, Lz =




0 −1 0
1 0 0
0 0 0


,

Rx(θ) = eLxθ =




1 0 0
0 cos θ − sin θ
0 sin θ cos θ


, Ry(θ) = eLyθ =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


,

Rz(θ) = eLzθ =




cos θ − sin θ 0
sin θ cos θ 0
0 0 1


.

We have seen that the study of the reaction-diffusion system (4.1) on Yα reduces to the study
of the finite-dimensional system (4.2) on the center manifold M cu

u0
(λ) of the relative equilibrium

SO(3)u0, with Φ(t, u0, 0) = eX0tu0. Let us denote XG(q, λ) = F x(q, λ)Lx+F
y(q, λ)Ly+F

z(q, λ)Lz
for any q ∈ V∗ and |λ| small.
If we parameterize SO(3) by Euler angles, that is A = Rz(ψ)Rx(θ)Rz(φ), where φ ∈ [0, 2π),
θ ∈ [0, π], ψ ∈ [0, 2π), the finite dimensional system (4.2) becomes

φ̇ = F z(q, λ)− cot θ [F y(q, λ) cos φ+ F x(q, λ) sin φ] ,

θ̇ = −F y(q, λ) sin φ+ F x(q, λ) cos φ,

ψ̇ = 1
sin θ [F

y(q, λ) cos φ+ F x(q, λ) sin φ] ,
q̇ = XN (q, λ).

(8.1)

We consider the following initial value problem associated with the system (8.1):

φ̇ = F z(q, λ)− cot θ[F y(q, λ) cos φ+ F x(q, λ) sin φ],

θ̇ = −F y(q, λ) sin φ+ F x(q, λ) cos φ,

ψ̇ = 1
sin θ [F

y(q, λ) cos φ+ F x(q, λ) sin φ],
φ(0) = 0,
θ(0) 6= 0,
ψ(0) = 0,
q̇ = XN (q, λ).

(8.2)

We choose θ(0) 6= 0 near 0 in (8.2).
We consider V∗ ≃ C and a supercritical Hopf bifurcation takes place in q̇ = XN (q, λ) at q = 0
for λ = 0 with eigenvalues ±iωbif . Let q(t, λ) be the periodic solution of the second differential
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equation in (B.1), that appears by a supercritical Hopf bifurcation for λ > 0 small. Let T (λ) = 2π
|ωλ|

be its period, where ωλ = ωbif + O(λ) for λ ≥ 0 small. Let q(t, 0) = 0 for any t ∈ R. If we
substitute q(t, λ) in XG(q, λ) and in the first three equations of the system (8.2), we get XG(t, λ) =
XG(q(t, λ), λ) = F x(q(t, λ), λ)Lx + F y(q(t, λ), λ)Ly + F z(q(t, λ), λ)Lz = |X0|X1

0 +
√
λH(t, λ) for

λ ≥ 0 small and t ∈ R. If we write F xx(t, λ) = F x(q(t, λ), λ), F yy(t, λ) = F y(q(t, λ), λ) and
F zz(t, λ) = F z(q(t, λ), λ), we get that XG(t, λ) = F xx(t, λ)Lx + F yy(t, λ)Ly + F zz(t, λ)Lz is 2π

|ωλ| -
periodic.
The following initial value problem is obtained

φ̇ = F zz(t, λ) − cot θ[F yy(t, λ) cos φ+ F xx(t, λ) sin φ],

θ̇ = −F yy(t, λ) sin φ+ F xx(t, λ) cos φ,

ψ̇ = 1
sin θ [F

yx(t, λ) cos φ+ F xx(t, λ) sinφ],
φ(0) = 0,
θ(0) 6= 0,
ψ(0) = 0.

(8.3)

We choose θ(0) 6= 0 near 0 in (8.3).
We use a Maple program that integrates numerically the system (8.3) and finds numerically a
primary frequency vector ([44], if its norm is not 0 or π) of the modulated rotating wave that
appears by a supercritical Hopf bifurcation, as discussed in Section 4. Then, for a choice of the

point x0 ∈ rS2 near r
|X0|

−→
X 0, we represent the tip motion

xtip(Φ(t, uλ, λ)) = A(0, λ)−1A(t, λ)x0 on rS2 (8.4)

for λ ≥ 0 small. Recall that Φ(t, uλ, λ) = A(0, λ)−1A(t, λ)Ψ(q(t, λ)).
We consider the following cases:

Case 1. X(t, λ) is given in Example (6.1) from Section 6; X1
0 = Lz,X1 = Lx,X2 = Ly; ωbif = 20,

|X0| = 2, g(t, λ) = sin((ωbif + λ)t), r = 3, θ(0) = 0.01, x0 =




0
0.92
2.85


. We get Figures 8.1

to 8.2 for λ = 0.01, 0.05.
Since |X0| 6= kωbif for any k ∈ Z, we have the nonresonant case. On Figures 8.1 and 8.2, it is
visualized the tip motion given by (8.4) of the modulated rotating waves Φ(t, uλ, λ) obtained
by a supercritical Hopf bifurcation that takes place in q̇ = XN (q, λ) at q = 0 for λ = 0. On
Figure 8.1 we consider λ = 0.01. On Figure 8.2 we consider λ = 0.05.
On the second of Figure 8.1 we plot the points xtip(Φ(i 2π

ωλ
, uλ, λ)) for some i = 0, 1, 2,. . .

and we can see that they are points of a circle on the sphere rS2 with the center on the line
having the direction of the primary frequency vector of Φ(t, uλ, λ), where λ = 0.01.
The grey line is the line containing the frequency of the rotating wave undergoing the Hopf

bifurcation,
−→
X0. The black lines are the lines corresponding to the primary frequency vector

associated to the modulated rotating wave. One of them is computed numerically and the
other is the exact one. We can see that they are very close.

Case 2. X(t, λ) is given in Example (6.2) from Section 6; X1
0 = Lz,X1 = Lx,X2 = Ly; ωbif = |X0| =

20, g(t, λ) = sin((ωbif + λ)t), r = 3, θ(0) = 0.02, x0 =




0
0.92
2.85


.
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We get Figures 8.3 to 8.4 for λ = 0.05, 0.1.
Since |X0| = kωbif for k = 1 ∈ Z, we have the resonant case. On Figures 8.3 and 8.4, it is
visualized the tip motion given by (8.4) of the modulated rotating waves Φ(t, uλ, λ) obtained
by a supercritical Hopf bifurcation that takes place in q̇ = XN (q, λ) at q = 0 for λ = 0. On
Figure 8.3 we consider λ = 0.05. On Figure 8.4 we consider λ = 0.1. We can see that the

primary frequency vectors associated to the modulated rotating waves are orthogonal to
−→
X0.

We call this phenomenon resonant drift.
On the second of Figure 8.3 we plot the points xtip(Φ(i 2π

ωλ
, uλ, λ)) for some i = 0, 1, 2,. . .

and we can see that they are points of a circle on the sphere rS2 with the center on the line
having the direction of the primary frequency vector of Φ(t, uλ, λ), where λ = 0.05.
The grey line is the line containing the frequency of the rotating wave undergoing the Hopf

bifurcation,
−→
X0. The black line is the line corresponding to the primary frequency vector

associated to the modulated rotating wave.

Case 3. X(t, λ) is given in Example (6.3) from Section 6; X1
0 = Lz,X1 = Lx,X2 = Ly; ωbif = |X0| =

20, g(t, λ) = sin((ωbif + λ)t), r = 3, θ(0) = 0.5, x0 =




0.44
0.14
2.96


 .

We get Figures 8.5 to 8.6 for λ = 0.05, 0.25.
Since |X0| = kωbif for k = 1 ∈ Z, we have the resonant case. On Figures 8.5 and 8.6, it is
visualized the tip motion given by (8.4) of the modulated rotating waves Φ(t, uλ, λ) obtained
by a supercritical Hopf bifurcation that takes place in q̇ = XN (q, λ) at q = 0 for λ = 0. On
Figure 8.5 we consider λ = 0.05. On Figure 8.6 we consider λ = 0.25. We can see that the
primary frequency vectors associated to the modulated rotating waves are not orthogonal to−→
X0. This can happen in the resonant case if we consider only one parameter λ.
On the second of Figure 8.5 we plot the points xtip(Φ(i 2π

ωλ
, uλ, λ))for some i = 0, 1, 2,. . .

and we can see that they are points of a circle on the sphere rS2 with the center on the line
having the direction of the primary frequency vector of Φ(t, uλ, λ), where λ = 0.05.
The grey line is the line containing the frequency of the rotating wave undergoing the Hopf

bifurcation,
−→
X0. The black line is the line corresponding to the primary frequency vector

associated to the modulated rotating wave.
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xtip(Φ(t, u0.01, 0.01)) xtip(Φ(i 2π
20.01 , u0.01, 0.01)),i = 1, . . . , 5

Figure 8.1: Case 1, λ = 0.01

The nonuniformly rigid rotation shown in Example 6.4 is not generically. Therefore, we do not
present it here.

9 Proofs of Theorems

Proof of Lemma 4.3. Let us omit the parameter λ. Since SO(3) is a compact manifold and XG

is a sufficiently CS function, the initial value problem (4.6) has a unique sufficiently CS solution
that is globally defined. Let A∗(t) be this solution. Since the exponential map exp : so(3) → SO(3)
is surjective, there exists a matrix X ∈ so(3) such that A∗(T ) = eXT .
Let us make the following change of variable B = e−XtA.
Then the first equation of (4.6) becomes:

Ḃ = −e−XtXA(t) + e−XtȦ(t), (9.1)

or since Ȧ = AXG(t), we get

Ḃ = −e−XtXA(t) + e−XtAXG(t), (9.2)

or since A = eXtB it follows that

Ḃ = −XB(t) +B(t)XG(t). (9.3)

The initial condition A(0) = I3 becomes B(0) = I3.
Let us consider now the initial value problem

Ḃ = −XB +BXG(t),
B(0) = I3.

(9.4)
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xtip(Φ(t, u0.05, 0.05))

Figure 8.2: Case 1, λ = 0.05

The initial value problem (9.4) has a unique global solution since SO(3) is a compact manifold.
Since A∗(t) is the solution of the initial value problem (4.6), it follows that B∗(t) = e−XtA∗(t) is a
solution of (9.4) and B∗(T ) = I3.
Let us define

C∗(t) = B∗(t+ T ).

We will check that C∗ is another solution of (9.4). We have C∗(0) = B∗(T ) = I3 and for any
t ∈ [0,∞),

d

dt
(C∗(t)) =

d

dt
(B∗(t+ T )) =

dB∗

dt
(t+ T ) = −XB∗(t+ T ) +B∗(t+ T )XG(t+ T )

= −XB∗(t+ T ) +B∗(t+ T )XG(t) = −XC∗(t) + C∗(t)XG(t),
(9.5)

where we have used the fact that XG is a T -periodic function.
Therefore, B∗(t) = C∗(t) for t ∈ [0,∞), that is, B∗ is T -periodic.
So, A∗(t) = eXtB∗(t) for t ∈ [0,∞).
Taking into account the parameter λ > 0, since XG(t, λ) is sufficiently CS for t ∈ [0,∞) and λ > 0,
we have that A(t, λ) is sufficiently CS for t ∈ [0,∞) and λ > 0 small. If we work with λ ≥ 0, then
A(t, λ) is sufficiently CS for t ∈ [0,∞) and λ ≥ 0 small.

Proof of Theorem 4.4. We apply Theorems B.1. Then, it is sufficient to study the differential
equations (4.2).
The supercritical Hopf bifurcation in V ∗ for the second differential equation in (4.2) at q = 0 for
λ = 0 implies that there exists a unique sufficiently CS branch of periodic solutions q(t, λ) for λ > 0
near q = 0.
Recall that we have denoted by T (λ) = 2π

|ωλ| the period of q(t, λ), where ωλ = ωbif + O(λ) is a
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xtip(Φ(t, u0.05, 0.05)) xtip(Φ(i 2π
20.05 , u0.05, 0.05)),i = 1, . . . , 5

Figure 8.3: Case 2, λ = 0.05

sufficiently smooth function for λ ≥ 0 small.
If we substitute q(t, λ) in the first of the differential equations (B.1), we get the differential equation

Ȧ = AXG(t, λ), (9.6)

where we recall that the function XG(t, λ) is sufficiently CS and 2π
|ωλ| -periodic for t ∈ [0,∞) and

λ ≥ 0 small (and it is defined by (4.4)).
We consider the following initial value problem on SO(3):

Ȧ = AXG(t, λ),
A(0) = I3,

(9.7)

because any solution of the differential equation (9.6) with A(0) = A0, where A0 ∈ SO(3) is given
by A0A

∗(t, λ) and A∗(t, λ) is the solution of the initial value problem (9.7).
For λ > 0 small, by applying Lemma 4.3, we get

A(t, λ) = eX(λ)tB(t, λ) for t ∈ [0,∞) and λ ≥ 0 small ,

where B(t, λ) has period T (λ) and B(0, λ) = I3.
Consequently, by using Theorems B.1, there exists a solution Φ(t, uλ, λ) of the reaction-diffusion
system (4.1) of the form:

Φ(t, uλ, λ) = A(t, λ)Ψ(q(t, λ)) = eX(λ)tB(t, λ)Ψ(q(t, λ)), where t ∈ [0,∞) and λ > 0 small ,

with Ψ(q(0, λ)) = uλ and Ψ appears in the statement of Theorem B.1 (see Appendix B). If we
write

q1(t, λ) = B(t, λ)Ψ(q(t, λ)),
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xtip(Φ(t, u0.1, 0.1))

Figure 8.4: Case 2, λ = 0.1

then the function q1(t, λ) is T (λ)-periodic in t, since B(t, λ) and q(t, λ) are T (λ)-periodic in t. Also,
we get

Φ(t, uλ, λ) = eX(λ)tq1(t, λ) and Φ(T (λ), uλ, λ) = eX(λ)T (λ)uλ.

We check that, at least generically, Φ(t, uλ, λ) /∈ SO(3)uλ for any t ∈ (0, T (λ)) and λ > 0 small.

We prove that
−−−→
X(λ) is a primary frequency vector of Φ(t, uλ, λ).

Suppose that there exists a T1(λ) ∈ (0, T (λ)) such that Φ(T1(λ), uλ, λ) ∈ SO(3)uλ and for t ∈
(0, T1(λ)) we have Φ(t, uλ, λ) /∈ SO(3)uλ. Let T (λ) = lT1(λ)+r, where r ∈ [0, T1(λ)) and l ∈ Z. Let
Φ(T1(λ), uλ, λ) = eY (λ)T1(λ)uλ, where Y (λ) ∈ so(3). Using the definition and SO(3)-equivariance
of the semiflow Φ, we get Φ(T (λ), uλ, λ) = Φ(r,Φ(lT1(λ), uλ, λ)) = elY (λ)T1(λ)Φ(r, uλ, λ).
Therefore, Φ(r, uλ, λ) = e−lY (λ)T1(λ)eX(λ)T (λ)uλ ∈ SO(3)uλ and r ∈ [0, T (λ)). It follows that r = 0
and so T (λ) = lT1(λ). Thus, Φ(T (λ), uλ, λ) = eX(λ)T (λ)uλ = eY (λ)T (λ)uλ and eX(λ)T (λ) = eY (λ)T (λ)

because Σuλ = I3.
Also, we get Φ(t, uλ, λ) = eX(λ)tq1(t, λ) = eY (λ)te−Y (λ)teX(λ)tB(t, λ)Ψ(q(t, λ)).
Let B1(t, λ) = e−Y (λ)teX(λ)tB(t, λ). B1(t, λ) is T (λ)-periodic, because B(t, λ) is T (λ)-periodic and
eX(λ)T (λ) = eY (λ)T (λ). Thus,

Φ(t, uλ, λ) = eY (λ)tB1(t, λ)Ψ(q(t, λ)).

Then Φ(T1(λ), uλ, λ) = eY (λ)T1(λ)uλ = eY (λ)T1(λ)B1(T1(λ), λ)Ψ(q(T1(λ), λ)), and it follows that
Ψ(q(T1(λ), λ)) = (B(T1(λ), λ))

−1uλ.
We have that uλ is close to u0 and SO(3)u0 ∩ Ψ(V∗) = {u0}, therefore, generically, SO(3)uλ ∩
Ψ(V ∗) = {uλ}. Since Ψ(q(T1(λ), λ)) = (B(T1(λ), λ))

−1uλ ∈ Ψ(V∗) ∩ SO(3)uλ, it follows that
B(T1(λ), λ)uλ = uλ and, since Σuλ = I3, B1(T1(λ), λ) = I3 and Ψ(q(T1(λ), λ)) = uλ = Ψ(q(0, λ)).
Because Ψ is a local diffeomorphism (see [9, 45]) and q(t, λ) =

√
λr(t, λ), it results that q(T1(λ), λ) =

q(0, λ). We know that q(t, λ) is a solution of the differential equation q̇ = XN (q, λ). Therefore,
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xtip(Φ(t, u0.05, 0.05)) xtip(Φ(i 2π
20.05 , u0.05, 0.015)), i = 1, . . . , 5

Figure 8.5: Case 3, λ = 0.05

it follows that q(t, λ) is T1(λ)-periodic. But it has the period T (λ). That is, T (λ) = T1(λ)
contradicting the fact that T1(λ) ∈ (0, T (λ)).
If |X(λ)| T (λ) = 2kπ for some k ∈ Z, then Φ(t, uλ, λ) is a periodic solution with the period T (λ).

Otherwise, Φ(t, uλ, λ) is a modulated rotating wave with a primary frequency vector
−−−→
X(λ).

By Proposition 4.2, the orbital stability of the modulated rotating wave or of the periodic solution
obtained above is the same as the stability of the periodic solution q(t, λ).
Therefore, since the periodic solution q(t, λ) for λ > 0 is stable, then the corresponding modulated
rotating wave or periodic solution is orbitally stable as well.
Since A(t, λ) and q(t, λ) are sufficiently CS and Ψ is a local diffeomorphism, we get that Φ(t, uλ, λ)
is sufficiently CS. The same result can be inferred if we take into account that uλ = Ψ(q(0, λ)).

Proof of Theorem 5.3. We will use the following result (see [21]):

Lemma 9.1. Let g(t, u) be a continuous function on an open connected set [a1, b1)×R+ ⊂ Ω ⊂ R2

and such that the initial value problem for the scalar equation u̇ = g(t, u) has a unique solution
u(t) ≥ 0 on t ∈ [a1, b1). If f : [a1, b1) × Rn → Rn is continuous and ‖f(t, x)‖ ≤ g(t, ‖x‖) for
t ∈ [a1, b1) and x ∈ Rn, then the solutions of ẋ = f(t, x), ‖x(a1)‖ ≤ u(a1) exists on [a1, b1) and
‖x(t)‖ ≤ u(t) for t ∈ [a1, b1).

There exists a constant M > 0 independent of λ ≥ 0 small such that
∣∣XG(t, λ)

∣∣ < M for
t ∈ [0,∞) and λ ≥ 0 small. For λ ≥ 0 small and any |Z| ≤ π, we have

∥∥∥∥∥

[
I3 +

1

2
Z +

(
1

|Z|2
− cos |Z|

2

2 sin |Z|
2 |Z|

)
Z2

]
−−−−−→
XG(t, λ)

∥∥∥∥∥ ≤
[
‖I3‖+

1

2
‖Z‖+

(
1

|Z|2
+

cos |Z|
2

2 sin |Z|
2 |Z|

)
‖Z‖2

]
M, (9.8)
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xtip(Φ(t, u0.25, 0.25))

Figure 8.6: Case 3, λ = 0.25

∥∥∥∥∥

[
I3 +

1

2
Z +

(
1

|Z|2
− cos |Z|

2

2 sin |Z|
2 |Z|

)
Z2

]
−−−−−→
XG(t, λ)

∥∥∥∥∥ ≤

M

[
√
3 +

1

2

√
2 |Z|+

(
1

|Z|2
+

cos |Z|
2

2 sin |Z|
2 |Z|

)
2 |Z|2

]
(9.9)

or, if we use the fact that the function x→ x cos x
sinx is decreasing on [0, π2 ],

∥∥∥∥∥

[
I3 +

1

2
Z +

(
1

|Z|2
− cos |Z|

2

2 sin |Z|
2 |Z|

)
Z2

]
−−−−−→
XG(t, λ)

∥∥∥∥∥ ≤

M

[√
3 +

1

2

√
2 |Z|+ (2 + 2 · 1)

]
≤M(6 + |Z|). (9.10)

The initial value problem
ȧ = M(6 + a),
a(0) = 0

(9.11)

has solution on an maximal interval [0, bmax], where bmax is defined such that a(t) ≤ π on [0, bmax];
bmax is independent of λ.
Therefore, using Lemma 9.1 with a1 = 0, it follows that the sufficiently CS solution Z1(t, λ) of the
initial value problem (5.4) is defined for any t ∈ [0, bmax] and λ ≥ 0 small, and that |Z(t, λ)| ≤ π
for any t ∈ [0, bmax] and λ ≥ 0 small.

If we choose a positive integer n > 0 such that n > T (λ)
bmax

, then the initial value problem (5.4) has

a solution Z1(t, λ) defined and sufficiently CS on t ∈ [0, T (λ)
n

] and λ ≥ 0 small. Since T (λ) =
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T (0) +O(λ), then we can choose n independent of λ for λ ≥ 0 small, where T (0) = 2π

|ωbif | .
This ends the proof of (1) of Theorem 5.3.
To prove the formula (5.5), we write the Taylor expansion of

Z∗(t, ǫ)
def
= Z1(t, ǫ

2):

Z∗(t, ǫ) = z00(t, ǫ)X
1
0 + z11(t, ǫ)X1 + z22(t, ǫ)X2, (9.12)

z00(t, ǫ) = Z0(t) + Z1(t)ǫ+ ǫ2Z2(t, ǫ). (9.13)

If we substitute (9.12), (9.13) and (4.4) in the first of the differential equations given by (5.4) with
λ = ǫ2, identify the orders of ǫ in both sides and then take ǫ =

√
λ, we get the formula (5.5) for

Z1(t, λ). For the sake of simplicity, we omit ǫ.
The result is

ż00X
1
0 + ż11X1 + ż22X2 = [I3 +

z00
2
X1

0 +
z11
2
X1 +

z22
2
X2

+


 1

z200 + z211 + z222
− cos

√
z200+z

2
11+z

2
22

2

2
√
z200 + z211 + z222 sin

√
z200+z

2
11+z

2
22

2




·(z00X1
0 + z11X1 + z22X2)

2]
−−−−−−−−−−−−−−−−−→
x0X

1
0 + ǫx1X1 + ǫx2X2.

(9.14)

Since Z∗ is sufficiently smooth, we get Z∗(t, ǫ) = Z∗(t, 0) + ǫH(t, ǫ) = |X0| tX1
0 + ǫH(t, ǫ).

Therefore, z11(t, ǫ) = ǫz1(t, ǫ) and z22(t, ǫ) = ǫz2(t, ǫ). In the right-hand side of (9.14), the coefficient
of X1

0 is x0(t, ǫ) + ǫ2k(t, ǫ) = |X0|+ ǫx01(t) + ǫ2x02(t, ǫ) + ǫ2k(t, ǫ) and thus ż00 = |X0|+ ǫx01(t) +
ǫ2k1(t, ǫ), where x0, x01, x02 are defined in (4.4). Therefore,

z00(t, λ) = |X0| t+ ǫ

∫ t

0
x01(s) ds+ ǫ2x03(t, ǫ).

This gives the formula (5.5) after we relabel z1(t,
√
λ), z2(t,

√
λ) and x03(t,

√
λ) to z1(t, λ), z1(t, λ)

and x03(t, λ). This ends the proof of (2) of Theorem 5.3.

Proof of Corollary 5.4. We have the same notations as in the proof of Theorem 5.3. From the
proof of Theorem 5.3, we know that the initial value problem

ȧ = M(6 + a),
a(0) = 0

(9.15)

has the solution a defined on [0, bmax] with a(t) ≤ π on [0, bmax]. Let t0 =
T (λ)
n

∈ [0, bmax]. Consider
the initial value problem

ȧ = M(6 + a),
a(t0) = 0

(9.16)

The solution to this problem satisfies a(t) ≤ π for any t ∈ [t0, 2t0].

We repeat the previous argument for t0 = iT (λ)
n

for i = 2, 3, . . . , n− 1. From this and Lemma 9.1

with a1 = t0 = iT (λ)
n

for i = 2, 3, . . . , n− 1, we get the conclusion of Corollary 5.4.
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Proof of Theorem 5.5. Recall that T (λ) = 2π
|ωλ| for λ ≥ 0 small.

Part 1 On the interval [0, T (λ)]:
Consider the initial value problem

Ȧ = AXG(t, λ),
A(0) = I3.

(9.17)

Let us make the change of variable A = eZ near I3 in the initial value problem (9.17).
Then, using Proposition A.4 (2) we get the following initial value problem in Z:

eZ
∑∞

n=0
(−1)n

(n+1)!(adZ)
nŻ = eZXG(t, λ),

Z(0) = O3,
(9.18)

∑∞
n=0

(−1)n

(n+1)! (adZ)
nŻ = XG(t, λ),

Z(0) = O3,
(9.19)

−−−−−−−−−−−−−−−→∑∞
n=0

(−1)n

(n+1)! (adZ)
nŻ =

−−−−−→
XG(t, λ),

Z(0) = O3,
(9.20)

or, using again Proposition A.3 (1) we get

∑∞
n=0

(−1)n

(n+1)!Z
n
−→̇
Z =

−−−−−→
XG(t, λ),

Z(0) = O3.
(9.21)

Using Proposition A.3 (3), we have that

∞∑

n=0

(−1)n

(n + 1)!
Zn =

(
I3 +

cos |Z| − 1

|Z|2
Z +

|Z| − sin |Z|
|Z|3

Z2

)
. (9.22)

(9.22) will proved later.
If we put (9.22) into (9.21), we get

(
I3 +

cos|Z|−1

|Z|2 Z + |Z|−sin|Z|
|Z|3 Z2

)−→̇
Z =

−−−−−→
XG(t, λ),

Z(0) = O3.
(9.23)

We will prove later that for any |Z| < 2π,

(
cos |Z| − 1

|Z|2
Z +

|Z| − sin |Z|
|Z|3

Z2

)−1

= I3 +
1

2
Z +

(
1

|Z|2
− cos |Z|

2

2 sin |Z|
2 |Z|

)
Z2. (9.24)

Since we are looking for |Z| ≤ π < 2π, the system (9.23) becomes

−→̇
Z =

[
I3 +

1
2Z +

(
1

|Z|2 − cos |Z|
2

2 sin |Z|
2

|Z|

)
Z2

]−−−−−→
XG(t, λ),

Z(0) = O3,
(9.25)
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where we are looking for a solution Z such that |Z| ≤ π on some interval [0, t0(λ)].
We now prove (9.24). It is enough to check that

(
I3 +

cos |Z| − 1

|Z|2
Z +

|Z| − sin |Z|
|Z|3

Z2

)[
I3 +

1

2
Z +

(
1

|Z|2
− cos |Z|

2

2 sin |Z|
2 |Z|

)
Z2

]
= I3. (9.26)

Using Proposition A.3 (3), that is Z3 = − |Z|2 Z and Z4 = − |Z|2 Z2, we have

(
I3 +

cos |Z| − 1

|Z|2
Z +

|Z| − sin |Z|
|Z|3

Z2

)[
I3 +

1

2
Z +

(
1

|Z|2
− cos |Z|

2

2 sin |Z|
2 |Z|

)
Z2

]

= I3 +
1

2
Z +

(
1

|Z|2
− cos |Z|

2

2 sin |Z|
2 |Z|

)
Z2 +

cos |Z| − 1

2 |Z|2
Z2

+
cos |Z| − 1

|Z|2
Z +

cos |Z| − 1

|Z|2

(
1

|Z|2
− cos |Z|

2

2 sin |Z|
2 |Z|

)
Z3 +

|Z| − sin |Z|
|Z|3

Z2 +
|Z| − sin |Z|

2 |Z|3
Z3

+
|Z| − sin |Z|

|Z|3

(
1

|Z|2
− cos |Z|

2

2 sin |Z|
2 |Z|

)
Z4

= I3 +

[
1

2
+

cos |Z| − 1

|Z|2
− cos |Z| − 1

|Z|2
+

cos |Z| − 1

|Z|2
|Z| cos |Z|

2

2 sin |Z|
2

− 1

2
+

sin |Z|
2 |Z|

]
Z

[
1

|Z|2
− cos |Z|

2

2 sin |Z|
2 |Z|

+
cos |Z| − 1

2 |Z|2
+

|Z| − sin |Z|
|Z|3

− |Z| − sin |Z|
|Z|

1

|Z|2
+

+
|Z| − sin |Z|

|Z|
cos |Z|

2

2 sin |Z|
2 |Z|

]
Z2

= I3 +

[
− sin2 |Z|

2

|Z|
cos |Z|

2

sin |Z|
2

+
sin |Z|
2 |Z|

]
Z +

[
cos2 |Z|

2

|Z|2
− 2 sin |Z|

2 cos |Z|
2

2 |Z|2
cos |Z|

2

sin |Z|
2

]
Z2 = I3.

(9.27)

The proof of (9.22) follows by using Proposition A.3 (3):

∞∑

n=0

(−1)n

(n + 1)!
Zn = I3 +

∞∑

k=1

(−1)2k

(2k + 1)!
Z2k +

∞∑

k=0

(−1)2k+1

(2k + 2)!
Z2k+1

= I3 +

(
− 1

2!
+

1

4!
|Z|2 − 1

6!
|Z|4 + . . .

)
Z

+

(
1

3!
− 1

5!
|Z|2 + 1

7!
|Z|4 − . . .

)
Z2

= I3 +
cos |Z| − 1

|Z|2
Z +

|Z| − sin |Z|
|Z|3

Z2,

(9.28)

where we have used the Taylor expansions for sine and cosine.
We apply Theorem 5.3 to get A(t, λ) = eZ1(t,λ), for any t ∈ [0, T (λ)

n
] and λ ≥ 0 small,
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where Z1(t, λ) is the sufficiently CS solution of (5.4). We make the change of variable B =

(A(T (λ)
n
, λ))−1A. We get that the solution of the initial value problem (9.17) is given by

A(t, λ) = eZ1(
T (λ)
n

,λ)B(t, λ),

where B(t, λ) is the solution of the initial value problem

Ḃ = BXG(t, λ),
B( 1

n
T (λ)) = I3.

(9.29)

Using the above argument and Corollary 5.4, we have that B(t, λ) = eZ2(t,λ) for any t ∈
[T (λ)
n
, 2T (λ)

n
] and λ ≥ 0 small, where Z2(t, λ) is the sufficiently CS solution of (5.6) for i = 2.

If we continue this, we get for λ ≥ 0 small and any t ∈ [(i− 1)T (λ)
n
, iT (λ)

n
] ,

A(t, λ) = eZ
0(t,λ),

where Z0(t, λ) is given by

eZ
0(t,λ) = eZ1(

T (λ)
n

,λ)eZ2(2
T (λ)
n

,λ) . . . eZi(t,λ) (9.30)

for any t ∈ [(i − 1)T (λ)
n
, iT (λ)

n
] and small λ ≥ 0 for i = 1, 2, . . . , n, where Zi is the solution

of the initial value problem (5.6) on the interval [(i− 1)T (λ)
n
, iT (λ)

n
].

Then [Z(t, λ)] is defined by formula (5.8).
Also, from (5.5) in Theorem 5.3 we get

Zi(t, λ) =

(
|X0| (t− (i− 1)

T (λ)

n
) +

√
λ

∫ t

(i−1)
T (λ)
n

x01(s) ds + λxi03(t, λ)

)
X1

0

+
√
λzi1(t, λ)X1 +

√
λzi2(t, λ)X2 (9.31)

for any t ∈ [(i− 1)T (λ)
n
, iT (λ)

n
] and small λ ≥ 0 for i = 1, 2, . . . , n.

Because the BCH formula in so(3) is smooth from so(3) × so(3) into D (see Theorem A.2)
and Zi(t, λ) for i = 1, 2, . . . , n are sufficiently CS, then [Z(t, λ)] is sufficiently CS on [0, T (λ)]
and λ ≥ 0 small.

Part 2 On the interval [iT (λ), (i + 1)T (λ)] for any integer i ≥ 0.
Since

A(t+ T (λ), λ) = eX(λ)T (λ)A(t, λ) = A(T (λ), λ)A(t, λ) = eZ
0(T (λ),λ)eZ

0(t,λ),

it is easy to see that we can define for any t ∈ [T (λ), 2T (λ)] and λ ≥ 0 small,

[Z1(t, λ)] = BCH(Z0(T (λ), λ), Z0(t− T (λ), λ)).

Because the BCH formula in so(3) is smooth from so(3)×so(3) into D, Z0(t, λ) is sufficiently
CS and T (λ) is sufficiently smooth, then [Z(t, λ)] is sufficiently CS for any t ∈ [T (λ), 2T (λ)]
and for λ ≥ 0 small.
We then repeat the above argument.
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It is clear that the function [Z(t, λ)] is sufficiently CS, and A(t, λ) = eZ(t,λ) for t ∈ [0,∞) and
λ ≥ 0 small. Let us define Z1(t, λ) = q([Z(t, λ)]). Therefore, Z1(t, λ) is sufficiently CS and
A(t, λ) = eZ(t,λ) = e[Z(t,λ)] = eZ1(t,λ).
Thus, Z1(t, λ) is the solution of the initial value problem (5.7).

Proof of Proposition 5.7. If we define

X(λ) =
1

T (λ)
Z(T (λ), λ) for λ ≥ 0 small , (9.32)

then A(T (λ), λ) = eX(λ)T (λ).
Since Z(t, λ) is sufficiently CS for t ∈ [0,∞) and λ ≥ 0 small and T (λ) > 0 for λ ≥ 0 is sufficiently
smooth, we get that X(λ) is sufficiently CS for λ ≥ 0 small. The branch X(λ) defined by (9.32)
is such that X(λ)T (λ) ∈ q(D) for λ ≥ 0 and it is the branch whose existence is stated in Theorem
5.1.

Proof of Corollary 5.8. Using Proposition 5.7 we know that X(λ) is sufficiently CS for λ ≥ o

small. Therefore, |X(λ)|2 for λ ≥ 0 small is sufficiently CS. Using Taylor formula for ǫ→
∣∣X(ǫ2)

∣∣2

around ǫ = 0 up to the term of order ǫ, and then taking ǫ =
√
λ, we get |X(λ)|2 = |X(0)|2+O(ǫ) =

|X(0)|2 +O(
√
λ) for λ ≥ 0 small. Also, |X(λ)| is continuous for λ ≥ 0.

The branch Xf (λ) is constructed below. Let |X0|T (0) = α0 + 2kπ, where α0 ∈ [0, 2π), k ∈ Z,
k ≥ 0, and T (0) = 2π

|ωbif | .

1. If |X0| 6= kωbif for all k ∈ Z, then α0 6= 0.
Since A(T (0), 0) = eX0T (0) = eX(0)T (0) = eZ(t,λ), we get that
X(0)T (0) = Z(t, 0) = q(BCH(0,X0T (0))) = α0X

1
0 . Therefore, |X(0)| = α0 > 0. Since X(λ)

is sufficiently CS, then |X(λ)| > 0 for λ ≥ 0 small.

Then Xf (λ) = |X(λ)|+k|ωλ|
|X(λ)| X(λ) is well-defined for λ ≥ 0 small.

We check that Xf (0) = X0. Using X(0) = |X(0)|X1
0 , it yields Xf (0) = |X(0)|T (0)+2kπ

T (0) X1
0 =

α0+2kπ
T (0) X1

0 = |X0|X1
0 = X0.

Since |X(λ)| > 0 and X(λ), ωλ are sufficiently CS, then Xf (λ) is sufficiently CS.
Using the Taylor formula for ǫ → Xf (ǫ2) around ǫ = 0 up to the term of order ǫ and then

taking ǫ = λ
1
2 , we get Xf (λ) = Xf (0) + O(ǫ)X1

0 + O(ǫ)X1 + O(ǫ)X2 = X0 + O(λ
1
2 )X1

0 +

O(λ
1
2 )X1 +O(λ

1
2 )X2 for λ ≥ 0 small, thus we get the formula (5.2).

We have only modulated rotating waves because |X0|T (0) 6= 2kπ for any k ∈ Z implies∣∣Xf (λ)
∣∣ T (λ) 6= 2kπ for any k ∈ Z and for λ ≥ 0 small by the continuity of

∣∣Xf (λ)
∣∣T (λ).

2. If |X0| = kωbif for some k ∈ Z, k 6= 0, then α0 = 0.
Let Xf (0) = X0.

If |X(λ)| 6= 0, then we define Xf (λ) = |X(λ)|+k|ωλ|
|X(λ)| X(λ) for λ > 0 small.

If |X(λ)| = 0, then we define Xf (λ) = X(λ) + k |ωλ|Q(λ), where Q(λ) ∈ so(3), |Q(λ)| = 1
for λ > 0 small.
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If |X0| = kωbif for some k ∈ Z, k 6= 0, then we check that
∣∣Xf (λ)

∣∣ = |X(λ)|+ 2kπ
T (λ) for all λ ≥ 0

small. For λ > 0 small such that |X(λ)| > 0, we have
∣∣Xf (λ)

∣∣ = |X(λ)| + 2kπ |X(λ)|
T (λ)|X(λ)| =

|X(λ)|+ 2kπ
T (λ) .

For λ > 0 small such that X(λ) = 0, we have
∣∣Xf (λ)

∣∣ = 2kπ
T (λ) |Q(λ)| = 2kπ

T (λ) .

Hence, for λ ≥ 0 small, we get
∣∣Xf (λ)

∣∣ = |X(λ)| + 2kπ
T (λ) .

Since |X(λ)|2 = |X(0)|2+O(
√
λ) and |X(0)| = 0, we get |X(λ)| = O(λ

1
4 ) and then

∣∣Xf (λ)
∣∣ =

O(λ
1
4 ) + 2kπ

T (0) +O(λ) = O(λ
1
4 ) + |X0| for λ ≥ 0 small, thus we get the formula (5.3).

Also,
∣∣Xf (λ)

∣∣ is continuous since X(λ) and T (λ) are continuous for λ ≥ 0 small.

By using Proposition A.4 ((6) and (7)), we have eX
f (λ)T (λ) = eX(λ)T (λ) for λ ≥ 0 small.

Proof of Theorem 5.9. 1. Suppose that |X0| 6= kωbif for any k ∈ Z.

We have Bf(t, λ) = e−X
f (λ)tA(t, λ) = e−X

f (λ)teZ(t,λ) = eq(BCH(−Xf (λ)t,Z(t,λ))) for t ∈ [0,∞)
and λ ≥ 0 small.
Since Xf (λ) and Z(t, λ) are sufficiently CS for t ∈ [0,∞) and λ ≥ 0 small and the BCH
formula in so(3) is smooth, it follows that Perf (t, λ) = q(BCH(−Xf (λ)t, Z(t, λ))) is suffi-
ciently CS for t ∈ [0,∞) and λ ≥ 0 small.

Since e−X
f (0)teZ(t,0) = A(t)−1A(t) = I3 = eBCH(−Xf (0)t,Z(t,0)), it follows that Perf (t, 0) =

q(BCH(−Xf (0)t, Z(t, 0))) = O3. Then, Perf (t, λ) =
√
λY (t, λ) for all t ∈ R and λ ≥ 0

small. The periodicity of Y (., λ) results from the following Remark:

Remark 9.2. If P (t, λ) = eG(t,λ), P : R×R → SO(3) is a continuous T -periodic function in
t for λ ≥ 0 small and G : R×R → so(3) is a continuous function such that G(t, λ) = λH(t, λ),
then H(t, λ) is a T -periodic function in t for λ ≥ 0 small.

Proof. We have P (t + T, λ) = P (t, λ) =⇒ eG(t+T,λ) = eG(t,λ) =⇒ eλH(t+T ) = eλH(t) and
λH(t, λ), λH(t + T, λ) are in a neighborhood of O3 for λ ≥ 0 small. Then, by using the
fact that the exponential map exp is a local diffeomorphism at O3, it follows that λH(t, λ) =
λH(t+ T, λ) or G(t+ T, λ) = G(t, λ) for λ ≥ 0 small.

Writing the Taylor formula for ǫ → Perf (t, ǫ2) at ǫ = 0 up to order of ǫ and taking ǫ =
√
λ,

we get Perf (t, λ) = O3 + ǫY1(t, ǫ) =
√
λY (t, λ)) for t ∈ [0,∞) and λ ≥ 0 small.

2. Suppose that |X0| = kωbif for some k ∈ Z, k 6= 0.
We have B(t, λ) = e−X(λ)tA(t, λ) = e−X(λ)teZ(t,λ) = eq(BCH(−X(λ)t,Z(t,λ))) for t ∈ [0,∞) and
λ ≥ 0 small. Since X(λ) and Z(t, λ) are sufficiently CS for t ∈ [0,∞) and λ ≥ 0 small, and
BCH formula in so(3) is smooth, it is clear that Per(t, λ) = q(BCH(−X(λ)t, Z(t, λ))) is
sufficiently CS for t ∈ [0,∞) and λ ≥ 0 small.
Since X(0) = O3, we get X(λ) = O(

√
λ)X1

0 +O(
√
λ)X1 +O(

√
λ)X2. Since A(t, 0) = eX0t =

eZ(t,0) and Per(t, 0) = q(BCH(O3, Z(t, 0))) = q(BCH(O3,X0t)), it yields that Per(t, 0) =
X0t( mod 2π). We denote r(t) = t( mod 2π

|X0|). Therefore, Per(t, λ) = X0r(t) +
√
λH1(t, λ)

for t ∈ [0,∞) and λ ≥ 0 small. Also, it is clear that B(t, λ) = eX0t+
√
λH(t,λ). Since B(t, λ) is

2π
|ωλ| -periodic in t and B(0, λ) = I3, it follows that e

X0
2π

|ωλ|
+
√
λH( 2π

|ωλ|
,λ)

= I3 for λ ≥ 0 small.
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Proof of Theorem 5.11. Since Φ(t, uλ, λ) = eX(λ)B(t, λ)Ψ(q(t, λ)) = eX
f (λ)Bf (t, λ)Ψ(q(t, λ)),

the conclusion of Theorem 5.11 result by applying Theorems 5.7, 5.8 and 5.9.

Proof of Theorem 7.1. Let us define Y (α, β) = eαX1+βX2 .
Let us denote λ = ǫ2, X̃(ǫ, µ) = X(ǫ2, µ) and T̃ (ǫ, µ) = T (ǫ2, µ) = 2π

|ωǫ2,µ| . Let T̃ (0, µ) =
2π

|ω0,µ| .

We have to prove that there exist sufficiently smooth curves

µ = µ(ǫ), α = α(ǫ) and β = β(ǫ) such that µ(0) = 0, α(0) = 0 and β(0) = 0

satisfying

Y (α, β) = eX̃(ǫ,µ)T̃ (ǫ,µ) or Y (α, β)−1eX̃(ǫ,µ)T̃ (ǫ,µ) = I3. (9.33)

Let us define the function F : R4 → SO(3) by

F (α, β, ǫ, µ) = e−αX1−βX2eX̃(ǫ,µ)T̃ (ǫ,µ).

We will prove the existence of the smooth curves using the implicit function theorem for the function
F at the point (α, β, ǫ, µ) = (0, 0, 0, 0).
We now prove that:

1. F (0, 0, 0, 0) = I3
and

2. [(DF )(0,0,0,0)]X1
0 ,X1,X2

has rank 3.

We have that F (0, 0, 0, 0) = e−0·X1−0·X2eX̃(0,0)T̃ (0,0) = eX(0,0)T (0,0) = e
X0

2π

|ωbif | = I3 since |X0| =
kωbif .
Recall that we have

XG(q, λ, µ) = x0(q, λ, µ)X
1
0 + x1(q, λ, µ)X1 +2 (q, λ, µ)X2.

Then XG(0, 0, µ) = a(µ)X1
0 + b(µ)X1 + c(µ)X2, where

a(µ) = x0(0, 0, µ) = |X0|+O(µ), b(µ) = x1(0, 0, µ) = O(µ) and c(µ) = x2(0, 0, µ) = O(µ).

Since A(t, λ, µ) = eX(λ,µ)T (λ,µ), then A(t, 0, µ) = eX(0,µ)T (0,µ) = eX̃(0,µ)T̃ (0,µ). Also A(t, 0, µ) =
eXG(0,0,µ)T (0,µ). Using Proposition A.4 (2), we get

∂

∂µ
eX(0,µ)T (0,µ)|µ=0 =

∂

∂µ
eXG(0,0,µ)T (0,µ)|µ=0

= eXG(0,0,0)T (0,0)
∞∑

n=0

[
(−1)n

(n+ 1)!
(ad(XG(0, 0)T (0, 0)))

n
(
(XG(0, 0, µ)T (0, µ))

′ |µ=0

)]
. (9.34)
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We have T (0, 0) = 2π

|ωbif | , XG(0, 0, 0) = X0 and

(XG(0, 0, µ)T (0, µ))
′ |µ=0 = (XG(0, 0, µ))

′ |µ=0T (0, 0) +XG(0, 0, 0)(T (0, µ))
′ |µ=0

=
2π

|ωbif |
[
(a

′
(0)X1

0 + b
′
(0)X1 + c

′
(0)X2)

]

+ |X0| [−2π · sgn(ωbif )]
(ω0,µ)

′ |µ=0

ω2
bif

X1
0

=
2π

|ωbif |
[
(a

′
(0) − k · (sgn(ωbif ))2(ω0,µ)

′ |µ=0)X
1
0 + b

′
(0)X1 + c

′
(0)X2

]
,

(9.35)

where we have used |X0| = kωbif . Therefore, (9.34) becomes

e

2π|X0|

|ωbif |X
1
0

∞∑

n=0

(−1)n

(n+ 1)!

(
ad(

2π |X0|
|ωbif |

X1
0 )

)n( 2π

|ωbif |
[
(a

′
(0)− k(ω0,µ)

′ |µ=0)X
1
0 + b

′
(0)X1 + c

′
(0)X2

])

=
2π

|ωbif |
[
(a

′
(0)− k(ω0,µ)

′ |µ=0)X
1
0 + b

′
(0)X1 + c

′
(0)X2

]

+

∞∑

n=1

(−1)n

(n+ 1)!

(
ad(2|k|πX1

0 )
)n
(

2π

|ωbif |
[
(a

′
(0)− k(ω0,µ)

′ |µ=0)X
1
0 + b

′
(0)X1 + c

′
(0)X2

])

=
2π

|ωbif |
[
(a

′
(0)− k(ω0,µ)

′ |µ=0)X
1
0 + (b

′
(0) + ∗)X1 + (c

′
(0) + ∗)X2

]
,

(9.36)

where we have used e

2π|X0|

|ωbif |X
1
0

= I3 and where ∗ denotes other terms. These term appear only in
the coefficients of X1 and X2 since

(
ad(2|k|πX1

0 )
)( 2π

|ωbif |
[
(a

′
(0)− k(ω0,µ)

′ |µ=0)X
1
0 + b

′
(0)X1 + c

′
(0)X2

])

=
2π

|ωbif |
[
2|k|πX1

0 , (a
′
(0) − k(ω0,µ)

′ |µ=0)X
1
0 + b

′
(0)X1 + c

′
(0)X2

]

=
4|k|π2
|ωbif |

(−c′(0)X1 + b
′
(0)X2),

(9.37)

and for any integer n ≥ 2,

(
ad(2|k|πX1

0 )
)n
(

2π

|ωbif |
[
(a

′
(0) − k(ω0,µ)

′ |µ=0)X
1
0 + b

′
(0)X1 + c

′
(0)X2

])

=

[
2|k|πX1

0 ,
(
ad(2|k|πX1

0 )
)n−1

(
2π

|ωbif |
[
(a

′
(0) − k(ω0,µ)

′ |µ=0)X
1
0 + b

′
(0)X1 + c

′
(0)X2

])]
(9.38)

will contain only linear combinations of X1 and X2.
Then with respect to the basis {X1

0 ,X1,X2},

36



(DF )(0,0,0,0) =




0 −1 0
0 0 −1
0 0 0

2π

|ωbif |
(
a
′
(0)− k(ω0,µ)

′ |µ=0

)
2π

|ωbif |b
′
(0) + ∗ 2π

|ωbif |c
′
(0) + ∗


 ,

where ∗ denotes other terms (Below we show that in fact 2π

|ωbif |b
′
(0)+∗ = 0 and 2π

|ωbif |c
′
(0)+∗ = 0).

Let U =
∑∞

n=0
(−1)n

(n+1)!

(
ad(2π|X0|

|ωbif | X
1
0 )

)n(
2π

|ωbif |
[
(a

′
(0) − k(ω0,µ)

′ |µ=0)X
1
0 + b

′
(0)X1 + c

′
(0)X2

])
. Us-

ing Proposition A.3 (1), we get

−→
U =

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∞∑

n=0

(−1)n

(n+ 1)!

(
ad(2π|k|X1

0 )
)n
(

2π

|ωbif |
[
(a

′
(0) − k(ω0,µ)

′ |µ=0)X
1
0 + b

′
(0)X1 + c

′
(0)X2

])

=
2π

|ωbif |

∞∑

n=0

(−1)n

(n+ 1)!
(2π|k|X1

0 )
n
[
(a

′
(0)− k(ω0,µ)

′ |µ=0)
−→
X 1

0 + b
′
(0)

−→
X 1 + c

′
(0)

−→
X 2

]
.

(9.39)

If we apply the relation (9.22) for Z = 2π|k|X1
0 , then taking into account that |Z| = 2π|k|, we get

∞∑

n=0

(−1)n

(n+ 1)!
(2π|k|X1

0 )
n = I3 + (X1

0 )
2. (9.40)

If we substitute (9.40) into (9.39), it follows that

−→
U =

2π

|ωbif |
[I3 + (X1

0 )
2]
[
(a

′
(0)− k(ω0,µ)

′ |µ=0)
−→
X 1

0 + b
′
(0)

−→
X 1 + c

′
(0)

−→
X 2

]

=
2π

|ωbif |
[
(a

′
(0)− k(ω0,µ)

′ |µ=0)
−→
X 1

0 + b
′
(0)

−→
X 1 + c

′
(0)

−→
X 2

+(a
′
(0)− k(ω0,µ)

′ |µ=0)(X
1
0 )

2−→X 1
0 + b

′
(0)(X1

0 )
2−→X 1 + c

′
(0)(X1

0 )
2−→X 2

]
.

(9.41)

Since (X1
0 )

2−→X 1
0 =

−→
0 , (X1

0 )
2−→X 1 = −−→

X 1 and (X1
0 )

2−→X 2 = −−→
X 2, we get

−→
U = 2π

|ωbif |(a
′
(0) −

|k|(ω0,µ)
′ |µ=0)

−→
X 1

0.
In order to have the rank of (DF )(0,0,0,0) equal to 3, it is necessary and sufficient that

a
′
(0) 6= k(ω0,µ)

′ |µ=0.

We note that depending on the function XG(t, λ, µ) we can establish if α(ǫ) = 0 and/or β(ǫ) = 0.
Another proof of Theorem 7.1 We have that A(T (λ, µ), λ, µ) = eX(λ,µ)T (λ,µ), where X(λ, µ) is
defined as in Proposition 5.7.
Let X(λ, µ) = a1(λ, µ)X

1
0 + b1(λ, µ)X1 + c1(λ, µ)X2. Then, since X(λ, µ) is sufficiently CS, we get

that a1, b1, c1 are sufficiently CS and b1(0, µ) = O(µ), c1(0, µ) = O(µ).
Since eX(0,0)T (0,0) = A(T (0, 0), 0, 0) = I3, then X(0, 0) = O3, that is a1(0, 0) = 0.
We want to find a sufficiently CS branch µ = µ(λ) such that µ(0) = 0 and a1(λ, µ(λ)) = 0, for
λ ≥ 0 small. If (a1)µ(0, 0) 6= 0, then by applying the implicit function theorem we get the existence
of the required sufficiently CS branch.
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Now we show that (a1)µ(0, 0) 6= 0 is equivalent with a
′
(0) 6= k(ω0,µ)

′ |µ=0.
We have that A(T (0, µ), 0, µ) = eX(0,µ)T (0,µ) = eXG(0,0,µ)T (0,µ) for |µ| small, then we getX(0, µ)T (µ, 0) =

XG(0, 0, µ)T (µ, 0) +
2l(µ)π

|XG(0,0,µ)|XG(0, 0, µ) for some l(µ) ∈ Z for |µ| small.

Thus,
[
a1(0, µ)X

1
0 + b1(0, µ)X1 + c1(0, µ)X2

]
T (0, µ) =[

a(µ)X1
0 + b(µ)X1 + c(µ)X2

]
T (0, µ)+ 2l(µ)π√

a(µ)2+O(µ2)

[
a(µ)X1

0 + b(µ)X1 + c(µ)X2

]
for |µ| ≥ 0 small.

This implies that

a1(0, µ) = a(µ) +
a(µ)√

a(µ)2 +O(µ2)
l(µ)ω0,µ · sgn(ωbif ), (9.42)

which for µ = 0 gives l(0) = −|k|, where we have used the fact that |X0| = kωbif > 0 implies
sgn(k) = sgn(ωbif ), and thus, k · sgn(ωbif ) = |k|. Since l(µ) ∈ Z is continuous, we get l(µ) = −|k|
for |µ| ≥ 0 small.
Then by taking into account that sgn(ωbif ) = sgn(k), (9.42) becomes

a1(0, µ) = a(µ)− k
a(µ)√

a(µ)2 +O(µ2)
ω0,µ. (9.43)

By differentiation of (9.43), it follows that (a1)µ(0, 0) = a
′
(0) − k(ω0,µ)

′ |µ=0 6= 0.

Proof of Corollary 7.2. The conclusions of Corollary 7.2 result in the same way as in the proof
of Theorems 5.7 and 5.9, except the scaling of the primary frequencies |X(λ, µ(λ))| that results
from Remark 3.5 in [53].

A BCH formula in so(3)

It is known that SO(3) is diffeomorphic as a manifold to the real projective space RP 3 (see [42]). If

Y =




0 a −b
−a 0 c
b −c 0


 ∈ so(3), then we define

−→
Y =




c
b
a


. Also, we define |Y | =

∥∥∥
−→
Y
∥∥∥. A model

for the spaceRP 3 is the setD = {−→y ∈ R3 | ‖−→y ‖ ≤ π, whith the antipodals points of the norm |y| =
π identified }. In fact, D is the quotient set E/ ∼, where ∼ is the equivalence relation ~y ∼ ~z iff z =
−y, |y| = π and E = {−→y ∈ R3 | ‖−→y ‖ ≤ π}. The set D is considered with the quotient topology.
Sometimes, instead of −→y ∈ R3, |−→y | ≤ π, we use y ∈ so(3), in which case we denote the equivalence
class [y] = [−→y ]. The projection map p : E → D , p(y) = [y] is smooth. There exists a unique
smooth function d∗ : SO(3) → D such that ed

∗(A) = A.

Definition A.1. For any X, Y ∈ so(3), we define BCH(X,Y ) = d∗(eXeY ), where d∗ is defined
above. Clearly, we have eBCH(X,Y ) = eXeY and BCH(X,Y ) ∈ D, for any X, Y ∈ so(3).

Theorem A.2 (BCH Formula in so(3), [4, 8, 44]). The BCH formula in so(3) has the form

BCH(X,Y ) = [αX + βY + γ[X,Y ]] for X, Y ∈ so(3), (A.1)

where
α = k(X,Y )hα(X,Y ), β = k(X,Y )hβ(X,Y ), γ = k(X,Y )hγ(X,Y ),
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and

e = cos
|X|
2

cos
|Y |
2

− sin
|X|
2

sin
|Y |
2

cos(∠( ~X, ~Y )),

a1 = sin
|X|
2

cos
|Y |
2
, a = a1e,

b1 = sin
|Y |
2

cos
|X|
2
, b = b1e,

c1 = sin
|X|
2

sin
|Y |
2
, c = c1e,

d1 =

√
a21 + b21 + 2a1b1 cos(∠( ~X, ~Y )) + c21(sin(∠(

~X, ~Y ))2,

d = d1 |e| ,

where ∠( ~X, ~Y ) is the angle between the two vectors
−→
X and

−→
Y ,

hα(X,Y ) =

{
a1
|X| if X 6= O3;

cos |Y |
2 if X = O3,

hβ(X,Y ) =

{
b1
|Y | if Y 6= O3;

cos |X|
2 if Y = O3,

hγ(X,Y ) =





c1
|X||Y | if X 6= O3, Y 6= O3;

sin |Y |
2

|Y | if X = O3, Y 6= O3;

sin |X|
2

|X| if Y = O3,X 6= O3;

1 if Y = O3,X = O3,

k(X,Y ) =





sarcsin(d)
d1

if (eXeY )2 6= I3, e
XeY has eigenvalues with positive real parts;

sπ−arcsin(d)
d1

if (eXeY )2 6= I3, e
XeY has two eigenvalues with negative

or zero real parts;

π if (eXeY )2 = I3, e
XeY 6= I3;

s if eXeY = I3,

where s = sgn(e) =

{
1, if e > 0;

−1, if e < 0,
for any (X,Y ) ∈ so(3) × so(3), such that (eXeY )2 6= I3 or

eXeY = I3. The functions α2, β2, γ2 are smooth on so(3)× so(3) and |α|, |β|, |γ| are continuous
on so(3)× so(3). Also, the function BCH is smooth from so(3)× so(3) into D.

Proposition A.3. 1. [42] For any X, Y ∈ so(3),
−−−−−→
ad(X)Y = X

−→
Y and−−−−−−−→

(ad(X))nY = Xn−→Y for any integer n > 0.
(A.2)

2. For any A ∈ SO(3) and any X ∈ so(3), we have
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(a) ∣∣AXA−1
∣∣ = |X| ; (A.3)

(b) [42]

AXA−1 = B if and only if A
−→
X =

−→
B.

3. [31] For any X ∈ so(3), we have:

X2n = (−1)n−1 |X|2(n−1)X2 for any n ≥ 1,

X2n+1 = (−1)n |X|2nX for any n ≥ 0.
(A.4)

The properties of the exponential map e : so(3) → SO(3) are:

Proposition A.4. 1. [3, 36] The exponential map exp : so(3) → SO(3) is surjective.

2. [36, 42] The exponential map exp is a smooth function on so(3) and its differential is given
by:

(d(exp))X (Y ) = eX
∞∑

n=0

(−1)n

(n+ 1)!
(ad(X))n(Y ) for any X, Y ∈ so(3)

or

(d(exp))X (Y ) =

∞∑

n=0

1

(n+ 1)!
(ad(X))n(Y )eX for any X, Y ∈ so(3)

( we will use the first formula later ). Moreover, it is a local diffeomorphism near any
X ∈ so(3) if and only if the operator ad(X) has no eigenvalues of the form 2πik with k 6= 0,
that is if and only if |X| 6= 2kπ for k ∈ Z, k 6= 0.

3. [42] d
dt

(
eX(t)

)
= Ẋ(t)eX(t) if and only if X(t) = Xg(t), where X ∈ so(3) and g : R → R is a

C1 function.

4. [8, 44] The Rodrigues’ formula holds:

eX = I3 +
sin |X|
|X| X + 2

sin2 |X|
2

|X|2
X2 for any X ∈ so(3),

where we take the limit when X = O3.

5. [42] The exponential map exp maps any X ∈ so(3), X 6= O3 to the right-handed rotation

A ∈ SO(3) with angle |X| around −→
X .

6. [42] eX = I3 if and only if |X| = 2kπ for some k ∈ Z.

7. [42] eX = eY if and only if either |X| = 2kπ = |Y | or −→
Y =

−→
X + 2kπ

|X|
−→
X for some k ∈ Z.
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B Equivariant Center Manifold Reduction for Reaction-Diffusion

Systems on rS2

We consider the reaction-diffusion system (4.1).

Theorem B.1 ([9, 45]). Let u0 ∈ Yα be a relative equilibrium that is not an equilibrium for (4.1)
at λ = 0 and such that the stabilizer of u0 is Σu0 = I3. Let L be the linearization of the right-hand
side of (4.1) with respect to the rotating wave Φ(t, u0, 0) = eX0tu0 at λ = 0 in the co-rotating frame,
that is

L = D∆S +DuF (u0, 0) −X0.

Suppose that:

1. σ(L)∩{z ∈ C | Re (z) ≥ 0} is a spectral set with spectral projection P∗, and dim(R(P∗)) <∞;

2. the semigroup eLt satisfies
∣∣eLt|R(1−P∗)

∣∣ ≤ Ce−β0t for some β0 > 0 and C > 0.

Then there exists a sufficiently smooth parameter-dependent center manifold M cu
u0
(λ) for the relative

equilibrium u0. Let V∗ be the orthogonal complement of Tu0(SO(3)u0) in E
cu = R(P∗).

Then the center manifold M cu
u0
(λ) is diffeomorphic to SO(3)× V∗ for |λ| small. Furthermore, there

exist sufficiently smooth functions XG : V∗×R → so(3) and XN : V∗×R → V∗ such that any solution
of

Ȧ = AXG(q, λ),
q̇ = XN (q, λ),

(B.1)

on SO(3) × V∗ corresponds to a solution of the reaction-diffusion system (4.1) on M cu
u0
(λ) under

the diffeomorphic identification (A, q) → AΨ(q), with Ψ a local chart from V to M , for |λ| small.
Also, XG(0, 0) = X0, XN (0, 0) = 0 and σ(DuXN (0, 0)) = σ(Q∗L|V∗), where Q∗ is the projection
onto V∗ along Tu0(SO(3)u0).

Remark B.2. Theorems B.1 is valid for more than one parameter.

C Some Computations

We present the proof of (8.1):
If we parameterize SO(3) by Euler angles, that is A = Rz(ψ)Rx(θ)Rz(φ), where φ ∈ [0, 2π),
θ ∈ [0, π], ψ ∈ [0, 2π), and we substitute this into the equation Ȧ = AXG(q, λ), we get

ψ̇

(
dRz
dψ

(ψ)

)
Rx(θ)Rz(φ) + θ̇Rz(ψ)

(
dRx
dθ

(θ)

)
Rz(φ) + φ̇Rz(ψ)Rx(θ)

(
dRz
dφ

(φ)

)

= Rz(ψ)Rx(θ)Rz(φ) [F
x(q, λ)Lx + F y(q, λ)Ly + F z(q, λ)Lz ] (C.1)

or

ψ̇Rz(−φ)Rx(−θ)Rz(−ψ)
(
dRz
dψ

(ψ)

)
Rz(φ)Rx(θ)Rz(φ)

+ θ̇Rz(−φ)Rx(−θ)
(
dRx
dθ

(θ)

)
Rz(φ) + φ̇Rz(−φ)

(
dRz
dφ

(φ)

)

= F x(q, λ)Lx + F y(q, λ)Ly + F z(q, λ)Lz .

(C.2)
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By computation, it follows that

Rz(−φ)
(
dRz

dφ
(φ)
)

= Lz,

Rz(−φ)Rx(−θ)
(
dRx

dθ
(θ)
)
Rz(φ) = (− sinφ)Ly + cosφLx,

Rz(−φ)Rx(−θ)Rz(−ψ)
(
dRz

dψ
(ψ)
)
Rz(φ)Rx(θ)Rz(φ) = cos θLz + cosφ sin θLy + sinφ sin θLx.

(C.3)
If we substitute (C.3) into (C.2), we get

ψ̇(cos θLz + cosφ sin θLy + sinφ sin θLx) + θ̇((− sinφ)Ly + cosφLx) + φ̇Lz

= F x(q, λ)Lx + F y(q, λ)Ly + F z(q, λ)Lz . (C.4)

If we identify the corresponding coefficients of Lx, Ly and Lz from both sides of the equation (C.4),
we get the system

ψ̇ cos θ + φ̇ = F z(q, λ),

ψ̇ cosφ sin θ − θ̇ sinφ = F y(q, λ),

ψ̇ sinφ sin θ + θ̇ cosφ = F x(q, λ).

(C.5)

Then, by multiplying the second equation in (C.5) by − sinφ and the third equation in (C.5) by
cosφ and adding them, we get θ̇ = −F y(q, λ) sin φ + F x(q, λ) cos φ. Similarly, by multiplying the
second equation in (C.5) by cosφ and the third equation in (C.5) by sinφ and adding them, we
get ψ̇ = 1

sin θ [F
y(q, λ) cos φ+ F x(q, λ) sin φ]. If we substitute ψ̇ given by the above relation into the

first equation of the system (C.5), we get φ̇ = F z(q, λ)− cot θ [F y(q, λ) cos φ+ F x(q, λ) sin φ].
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