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We consider the nonlinear elastic energy of a thin membrane whose
boundary is kept fixed, and assume that the energy per unit volume
scales as hβ, with h the film thickness and β ∈ (0, 4). We derive, by
means of Γ convergence, a limiting theory for the scaled displace-
ments, which takes a form similar to the one proposed by Föppl
in 1907. The difference can be understood as due to the fact that
we fully incorporate the possibility of buckling, and hence derive a
theory which does not have any resistence to compression. If forces
normal to the membrane are included, then our result predicts that
the normal displacement scales as the cube root of the force. This
scaling depends crucially on the clamped boundary conditions. In-
deed, if the boundary is left free then a much softer response is
obtained, as was recently shown by Friesecke, James and Müller.

1 Introduction

Reduced theories for thin elastic bodies have been proposed and used since the early
days of the theory of elasticity, but only in the last decade it has become possible to
derive them rigorously from three-dimensional nonlinear elasticity. The convergence
criterion which has been used for these problems is Γ-convergence, and the different
physical regimes are reflected by different energy scalings and different topologies
on the space of deformations [13, 14, 8, 9, 16, 17, 10] (we refer to [10] for a review
of the recent mathematical literature and of the mechanical context).

One key property of the elasticity of thin bodies is that tangential displacements
enter the strain to first order, but normal displacements only to second order (see
Figure 1). Therefore linear theories are not usable, as they would describe all normal
displacements as completely stress-free (soft). The first nonvanishing contribution of
normal displacements to strain is quadratic, and correspondingly the leading energy
contribution is of fourth order.

A generalization of the linear theory which incorporates the normal displacements
to leading order was proposed by Föppl [7]. In a variational language, and for the
special case of isotropic elastic moduli and zero Poisson’s ratio, his model corresponds
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Figure 1: Consider a rod of unit length. If one endpoint is displaced tangentially
by ε, the length also changes by ε. If instead the endpoint is displaced by ε in the
normal direction, then the length only changes to order ε2.

to minimizing
1

2

∫
S

∣∣∇u+ ∇uT + ∇v ⊗∇v∣∣2 dx′ (1)

subject to appropriate boundary conditions and forces. Here S ⊂ R
2 represents

the cross-section of the membrane, u : S → R
2 the tangential displacement, and

v : S → R the normal displacement.
The functional (1) is not lower semicontinuous. Physically, a sheet subject to

moderate compression can relax its strain by forming fine-scale folds, which are not
penalized by the functional (1) since it does not contain any curvature term. (We
note in passing that even if bending energy is included compression is often still
relaxed by fine-scale oscillations, see e.g. [3, 6]).

It is therefore to be expected that a variational derivation will not lead to the
functional (1), but to its relaxation. Indeed, we show here that under suitable scaling
assumptions and with clamped boundary conditions three-dimensional elasticity re-
duces, in the sense of Γ-convergence, to a functional corresponding to the relaxation
of (1), which, for the same special case, takes the form

1

2

∫
S

Wrel

(∇u+ (∇u)T + ∇v ⊗∇v) dx′ (2)

where Wrel(F ) = (λ+
1 (F ))2 + (λ+

2 (F ))2, λ1(F ) and λ2(F ) are the eigenvalues of the
symmetric matrix F and λ+ = max{λ, 0}.

Our result, as it will be explained in greater detail in the next section, has impor-
tant consequences for the scaling behavior of the response of clamped membranes.
Consider indeed application of a force fh(x

′) = hαf(x′) normal to the membrane.
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If α ∈ (0, 3), then our convergence result applied for β = 4α/3 implies that the
three-dimensional variational problems converge as h → 0 to the relaxed prob-
lem I0(u, v) +

∫
S
fvdx′, for I0 like in (2). The tangential displacements scale as

hβ/2 = h2α/3, the normal one as hβ/4 = hα/3.
For α > 3 one obtains a different limiting theory, which is quadratic and involves

only bending energy (see e.g. [10]). The limit functional takes the form
∫ |∇2v|2+fv.

In this regime the out-of-plane displacement is linear in the applied force and thus
scales like hα. Understanding the cross-over from the linear to the sublinear scaling,
which had also been observed experimentally, was an important motivation for the
work of Föppl and von Kármán [20]. Indeed von Kármán points out that his theory
interpolates between the linear (pure bending) theory and Föppl’s theory [20, p.
350]1.

Notation The vectors e1, e2 and e3 form an orthonormal basis of R
3, and R

2 is
the space generated by e1 and e2. To every element x = x1e1 + x2e2 + x3e3 ∈ R

3 we
associate x′ := x1e1 + x2e2 ∈ R

2. Thus x = x′ + x3e3.
The space of tensors generated by {ei ⊗ ej}i,j=1,2,3 is denoted by R

3×3, and R
2×2

is the subspace of R
3×3 generated by the tensors {ei ⊗ ej}i,j=1,2. To every F =∑

i,j=1,2,3 Fij ei ⊗ ej ∈ R
3×3 we associate F ′ :=

∑
i,j=1,2 Fij ei ⊗ ej ∈ R

2×2. By R
n×n
sym

we denote the space of symmetric matrices, and by R
n×n
+ the subsets of positive

semidefinite symmetric ones (i.e. {F ∈ R
n×n
sym : F ≥ 0}). Finally Idn is the identity

matrix in R
n×n.

2 The relaxed Föppl functional

We consider the nonlinear elastic energy of a thin three-dimensional body Ωh := S×
(−h/2, h/2), where S ⊂ R

2 is the cross section and h > 0 the (small) thickness. The
deformation is a map wh ∈W 1,2(Ωh,R

3), and its elastic energy per unit thickness is

E(wh,Ωh) :=
1

h

∫
Ωh

W (∇wh(x))dx.

The stored energy function W is assumed to satisfy

(W1) W : R
3×3 → [0,∞] is a Borel measurable function of class C2 in an open

neighborhood of SO(3);

(W2) W (RF ) = W (F ) for every R ∈ SO(3) and every F ∈ R
3×3; furthermore

W (Id3) = 0.

(W3) W (F ) ≥ Cdist2(F, SO(3)) for every F ∈ R
3×3.

1“In dieser Hinsicht liegt die wirkliche Platte zwischen den beiden Grenzfällen der vollkommen
steifen Platte nach Gl. (27) und der vollkommen biegsamen Platte, deren Gleichungen sich aus dem
System (29) mit D = 0 ergeben.” In this regard the real plate lies in between the two limiting
cases of the completely stiff plate according to Eq. (27) and the completely flexible plate, whose
equations are obtained from the system (29) [i.e the vK equations] with D = 0.
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We study the asymptotic behavior as h→ 0 of the minimization problems

inf

{
E(wh,Ωh)

hβ
: wh ∈W 1,2(Ωh,R

3), wh(x) = x on ∂S × (−h/2, h/2)

}

in the range β ∈ (0, 4), by means of Γ-convergence theory.
In order to define an appropriate convergence criterion for a sequence of deforma-

tions wh, which are all defined on different domains, we rescale (following standard
practice) to a unique domain. Precisely, for each wh ∈ W 1,2(Ωh,R

3) we define
yh ∈W 1,2(Ω1,R

3) by yh(x) = wh(x
′ + hx3e3). Then

Eh(wh,Ωh) =

∫
Ω1

W (∇hyh(x))dx,

where ∇h is the operator ∇h := ∇′ + (1/h)∂3 ⊗ e3, i.e.,

∇hy(x) = ∂1y(x) ⊗ e1 + ∂2y(x) ⊗ e2 +
1

h
∂3y(x) ⊗ e3 .

In terms of the rescaled deformations, and including the constraint given by the
boundary conditions, our problem corresponds to minimizing the functional Ih :
W 1,2(Ω1,R

3) → [0,∞] given by

Ih(y) :=

⎧⎨
⎩

∫
Ω1

W (∇hy(x))dx if y(x) = x′ + hx3e3 for x ∈ ∂S × (−1
2
, 1

2
),

+∞, else.

Due to the boundary conditions and to the energy regime under consideration, the
behavior of a low energy sequence yh will be understood by considering the scaled
displacements

uh(x
′) :=

1

hβ/2

∫ 1

0

(yh(x) − x)′ dx3, (3)

vh(x) :=
1

hβ/4

∫ 1

0

(yh(x) − hx) · e3 dx3. (4)

Note that for every h we have uh ∈ W 1,2
0 (S,R2) and vh ∈ W 1,2

0 (S). However,
for a sequence yh such that h−βIh(yh) stays bounded, we shall prove that, up to
extracting subsequences, (uh, vh) is only weakly-∗ convergent in the larger space
BD(S)×W 1,2

0 (S) (compare with Part I of Theorem 1 below). We recall that BD(S)
denotes the space of the deformations u ∈ L1(S,R2) such that the symmetric part
of the distributional gradient D′u is a Radon measure on S, namely

symD′u ∈ M(S,R2×2
sym )

(the symbol M is used for spaces of Radon measures). The limit of the in-plane
displacements uh will take values in the smaller space

X(S) := {u ∈ BD(S) : ∃M ∈ M(R2,R2×2
+ ) s.t. symD′u+M ∈ L1(R2,R2×2)}, (5)
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where u := u in S and u := 0 in R
2 \ S. This corresponds to requiring that

the symmetrized distributional derivative is the sum of an L1 term and a negative
definite measure, singular with respect to Lebesgue measure. This sign condition
does not bring any additional regularity, as X(S) still contains elements that are not
in BV (S,R2). The formulation of (5) in terms of the extension ū corresponds to a
sign condition on the boundary values of u (in the sense of inner traces). Precisely,
functions u ∈ X(S) obey tr (u) = λνS, where λ ≥ 0 and νS is the outer normal. The
structure of X(S) is discussed in more detail in the Appendix.

The main result of this paper is that for all β ∈ (0, 4), as h → 0 the functionals
h−βIh converge (in the sense of Γ-convergence) to the limit functional I0 : X(S) ×
W 1,2

0 (S) → [0,∞], defined as

I0(u, v) := inf

{
1

2

∫
S

Q2

(
(symD′u+M)(x′) +

∇′v(x′) ⊗∇′v(x′)
2

)
dx′

: M ∈ M(R2,R2×2
+ ), symD′u+M ∈ L1(R2,R2×2

+ )

}
.

Here Q2 : R
2×2 → [0,∞) is the quadratic form

Q2(A) := min
{
Q3(symA + sym (a⊗ e3)) : a ∈ R

3
}
,

and Q3 : R
3×3 → [0,∞) is the Hessian of the energy at the identity, i.e.

Q3(F ) := ∇2W (Id3)[F, F ].

By (W3) the quadratic forms Q2 and Q3 are positive definite on symmetric matrices.
If u ∈ W 1,1(S,R2) and I0(u, v) < ∞, as one can see, the above expression for I0
reduces to

I0(u, v) =
1

2

∫
S

WFö(∇′u(x′),∇′v(x′))dx′ (6)

where WFö : R
2×2 × R

2 → [0,∞) is defined by

WFö(A, b) := min

{
Q2

(
symA+

b⊗ b

2
+M

)
: M = MT , M ≥ 0

}
.

We notice that WFö is a convex function, see Lemma 3 in the Appendix. In the
special case mentioned in the Introduction, which corresponds to Q3(F ) = |F |2,
we get Q2(A) = |A|2 and WFö(A, b) coincides, up to a normalization factor, with
Wrel(A + b⊗ b) as given after (2).

The minimization over positive-definite matrices entering the definition of WFö

corresponds to the relaxation of compression by means of oscillations, and implies
that WFö vanishes on all compressive strains. This minimization was not present
in the original theory by Föppl (i.e. he used W̃Fö = Q2(symA + b ⊗ b/2)). This
difference is the geometrically linear analogue of the one between the membrane
theory rigorously derived by Le Dret and Raoult [13, 14] and the ones that had been
heuristically proposed before.

We now give a precise statement of our convergence result.
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Theorem 1. Let S ∈ R
2 be a bounded, strictly star-shaped, Lipschitz domain and

let W satisfy (W1), (W2), (W3). Then for every β ∈ (0, 4) the functionals h−βIh
Γ-converge (as h→ 0) to the relaxed Föppl functional I0. More precisely we have:

I. Compactness. For every sequence h→ 0 and every yh such that

lim sup
h→0

h−βIh(yh) <∞

the sequences (uh, vh) defined by (3-4) have a subsequence such that

uh⇀u weakly in L2(S,R2),

sym∇′uh
∗
⇀ symD′u weakly-* in M(S,R2×2),

vh⇀v weakly in W 1,2
0 (S,R2)

for some u ∈ X(S) and v ∈W 1,2
0 (S).

II. Lower bound. Under the same assumptions, and along the same subse-
quence,

lim inf
h→0

Ih(yh)

hβ
≥ I0(u, v).

III. Upper bound. For every pair of functions u ∈ X(S) and v ∈ W 1,2
0 (S)

and every sequence h → 0 there exists a sequence of functions yh ∈ C∞(Ω1,R
3)

with yh(x) = x′ + hx3e3 for x ∈ ∂S × (−1/2, 1/2) and such that the pair (uh, vh) ∈
C∞

0 (S,R2) × C∞
0 (S) defined via (3-4) converges to (u, v) as above, and

lim
h→0

Ih(yh)

hβ
= I0(u, v).

By strictly star-shaped we mean that there is a point x ∈ S such that for each
y ∈ ∂S the open segment (x, y) is contained in S. Parts I and II of the Theorem
hold for generic bounded Lipschitz domains.

We recall that such a Γ-convergence result implies convergence of minimizers,
in the sense that Theorem 1 implies that the set of minima of I0 coincides with
the set of accumulation points of asymptotically minimizing sequences for h−βIh.
Explicitly, (u, v) is a minimizer of I0 if and only if there is a sequence yh, converging
to (u, v) as above, such that h−β[Ih(yh) − inf Ih] → 0.

Further, the same holds if a continuous perturbation, such as external forces,
is included. In the relevant case of normal forces, this means that the sequence of
functionals

h−β

[
Ih(yh) +

∫
Ω1

fh(x
′) (yh(x) − hx) · e3dx

]

Γ-converges to

I0(u, v) +

∫
S

f(x′)v(x′)dx′ ,

provided that h3β/4fh(x
′) converges to f in L2(S).

We remark that the range of scalings covered by the present result (β ∈ (0, 4)) is
much broader than the one covered by the corresponding Γ-convergence results ob-
tained without clamped boundary conditions. Indeed, without boundary conditions,
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different Γ-limits for h−βIh have been determined for β ∈ (0, 5/3), β = 2, β ∈ (2, 4)
(no result is yet known for β ∈ [5/3, 2)). The two extreme cases β = 0 and β = 4
are special both in the presence or in absence of clamped boundary conditions. We
refer to [10] for a more complete presentation of these different regimes.

3 Proof of Theorem 1.

We prove the three parts in sequence. We start from the argument for the com-
pactness part, which is the one more specific to this situation where the energy has
very little coercivity and different growth conditions in different variables. The form
(1) shows that in this scaling regime one cannot expect to have a local coercivity.
Compactness is gained by means of the boundary conditions. Indeed, the boundary
values imply that ∇uh has zero average, hence the integral of |∇vh|2 is controlled
by the energy. This gives control of ∇vh in L2, but of sym∇uh only in L1.

The lower bound is obtained by a standard argument exploiting the form of W
close to the minimum, again with some subtleties arising from the weakness of the
topologies.

Finally, in the upper bound an explicit construction is needed, which character-
izes the folds which are used to reduce the energy of compressive deformations. In
a first step we reduce to smooth displacements (u, v) with compact support, using
the star-shapedness of S and the convexity of WFö. Then we provide a construction
which reverses the relaxation. This is based on the explicit definition of oscillatory
sequences which reduce the energy of compressive deformations. From the viewpoint
of nonlinear elasticity the typical construction can be seen as a laminate between
isometric deformations, whose average is, in general, a short deformation - i.e. a
deformation whose gradient lies in the convex hull of the set of isometries O(2, 3).

Proof. Part One: compactness. We have a family of deformations yh such that

yh(x) = x′ + hx3e3, ∀x ∈ ∂S × (−1/2, 1/2); (7)∫
Ω1

W (∇hyh(x))dx ≤ Chβ. (8)

We now introduce new functions which characterize the deviation of the elastic
deformation yh from the identity x′ + hx3e3. Since we are dealing with thin sheets
it is natural to separate the tangential and the normal displacement. Therefore we
consider Uh ∈ W 1,2(Ω1,R

2) and Vh ∈W 1,2(Ω1) defined by

yh(x) = x′ + hx3e3 + Uh(x) + Vh(x)e3 .

Equivalently,

Uh(x) := (yh(x) − x)′ , Vh(x) := (yh(x) − hx) · e3 .

The gradients are related by

∇hyh(x) = Id3 + ∇′Uh(x) + e3 ⊗∇′Vh(x) +
1

h
(∂3Uh(x) + ∂3Vh(x)e3) ⊗ e3.
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The tangential nonlinear strain takes the form
[
(∇hyh)

T∇hyh − Id3

]′
= 2sym∇′Uh + (∇′Uh)

T (∇′Uh) + ∇′Vh ⊗∇′Vh (9)

(recall that F ′ denotes projection of F onto R
2×2, and that (Id3 + F )T (Id3 + F ) =

Id3 + 2symF + F TF ).
Integrating (9) over x′ ∈ S the first term cancels, since

∫
S
∇′U(x)dx′ = 0 by (7).

Taking the trace and integrating over x3 ∈ (−1/2, 1/2) leads to∫
Ω1

|∇′Uh(x)|2 + |∇′Vh(x)|2dx = Tr

∫
Ω1

[
(∇hyh)

T∇hyh − Id3

]′
dx ≤ Chβ/2 .

In the last step we used |F TF−Id| ≤ Cdist(F, SO(3))+Cdist2(F, SO(3)), (W3) and
(8). Plugging this information back into (9) gives an analogous bound for sym∇′Uh

in L1(Ω1; R
2×2
sym ). Summarizing we have

∫
Ω1

|sym∇′Uh(x)| + |∇′Uh(x)|2 + |∇′Vh(x)|2dx ≤ Chβ/2. (10)

Therefore it is natural to rescale the tangential displacement Uh by hβ/2, and the
normal one Vh by hβ/4.

Taking averages over x3, we define the rescaled displacements uh ∈ W 1,2
0 (S,R2)

and vh ∈W 1,2
0 (S) by

uh(x
′) :=

1

hβ/2

∫ 1/2

−1/2

Uh(x
′, x3)dx3, vh(x

′) :=
1

hβ/4

∫ 1/2

−1/2

Vh(x
′, x3)dx3.

This definition is equivalent to (3) and (4) above.
By (10) the sequence ∇′vh is bounded in L2(S,R2), hence there is a subsequence

such that
vh⇀v weakly in W 1,2

0 (S). (11)

By (10) the sequence sym∇′uh is bounded in L1(S,R2×2
sym ), and since uh ∈ W 1,2

0

we can apply the Poincaré-Korn inequality [18] (see also [11, 12] and [19, Sect. II.1])
to find

‖uh‖L2(S,R2) ≤ C‖sym∇′uh‖L1(S,R2×2
sym ) ≤ C.

In particular there is a subsequence and u ∈ L2 such that

uh⇀u weakly in L2(S,R2) . (12)

Further, ∇′uh converges to D′u in the sense of distributions, and by (10)

sym∇′uh(x
′)dx′ ∗

⇀ symD′u weakly* in M(S,R2×2
sym ) . (13)

This is the compactness entailed in the functionals under considerations. We
now pass to use these information to obtain a lower bound, that in turn will also
allow us to prove that u ∈ X(S).

Part Two: lower bound. The first part of the argument is along the lines
of [9], and in a sense it constitutes the “generic” lower bound argument used in
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the regime Ih(yh) → 0, i.e. for ∇hyh close to SO(3). In this range it is natural to
“normalize” the deformation gradients ∇hyh in order to use the structure of W near
SO(3). This amounts in considering a field of rotations Rh : Ω1 → SO(3) such that

|∇hyh(x) −Rh(x)| = dist(∇hyh(x), SO(3)).

The function Rh can be chosen to be measurable (see Lemma 7 in the Appendix),
and hence in L∞(Ω1,R

3×3). We also note, see Lemma 2 in the Appendix, that

Rh(x)
T∇hyh(x) ∈ R

3×3
sym .

Consider now

Gh :=
RT

h∇hyh − Id3

hβ/2
. (14)

Since |Gh| = dist(∇hyh, SO(3))/hβ/2, from (W3) and (8) we get that Gh is uniformly
bounded in L2, and taking a subsequence

Gh⇀G weakly in L2(Ω1,R
3×3).

We now use Taylor’s formula to obtain a lower bound in terms of the second
derivatives of W at the identity. Precisely, by (W1) and (W2) there is ρ : R+ → R

such that limt→0 ρ(t)/t
2 = 0 and

W (∇hyh) = W (Id3 +RT
h∇hyh − Id3)

≥ 1

2
Q3(R

T
h∇hyh − Id3) − ρ

(|RT
h∇hyh − Id3|

)
.

It is convenient to consider separately the part of the domain where ∇hyh is close
to a rotation, which is large, and the small exceptional set. To do this, let

ωh = {x ∈ Ω1 : dist(∇hyh(x), SO(3)) ≤ hβ/4}.
Let χh be the characteristic function of ωh. By (W3) and (8) we get |ωh| → |Ω1|.
Restricting the integration to ωh we get

Ih(yh)

hβ
≥ 1

2

∫
Ω1

χh(x)Q3

(
Rh(x)

T∇hyh(x) − Id3

hβ/2

)
dx (15)

− 1

hβ

∫
Ω1

χh(x)ρ (dist(∇hyh(x), SO(3)))dx.

The second term goes to zero as h→ 0, for it is equal to the integral of

χh ρ (dist(∇hyh, SO(3)))

dist2(∇hyh, SO(3))
· dist2(∇hyh, SO(3))

hβ
.

By the definition of ωh the first fraction converges uniformly to zero as h → 0, at
the same time the second one is uniformly bounded in L1 by (8).

As χh(x) ∈ {0, 1} we also have χhQ3(Gh) = Q3(χhGh), and since χhGh⇀G
weakly in L2(Ω1,R

3×3) we easily conclude from (15) that

lim inf
h→0

Ih(yh)

hβ
≥ 1

2

∫
Ω1

Q3(G(x))dx.

9



Note that G is symmetric as Gh was.
In order to extract further information on G is useful to express it as a limit of

a sequence not involving Rh. Since ∇hyh = Rh(Id3 + hβ/2Gh) we get

(∇hyh)
T (∇hyh) = Id3 + 2hβ/2Gh + hβGT

hGh

and thus

Gh − (∇hyh)
T (∇hyh) − Id3

2hβ/2
= −h

β/2

2
GT

hGh → 0 strongly in L1(Ω1,R
3×3). (16)

In particular

(∇hyh)
T (∇hyh) − Id3

2hβ/2
⇀G weakly in L1(Ω1,R

3×3). (17)

As G(x) is symmetric we have Q3(G(x)) ≥ Q2(G(x)′). Furthermore, as Q2 is
convex, we can apply Jensen’s inequality in the x3 direction and find

lim inf
h→0

Ih(yh)

hβ
≥ 1

2

∫
S

Q2(A(x′))dx′

where

A(x′) =

∫ 1/2

−1/2

G(x′ + x3e3)
′dx3, ∀x′ ∈ S .

It remains to relate A to u and v. To do this, we consider the integral over
x3 ∈ (−1/2, 1/2) of the nonlinear strain,

Ah(x
′) :=

∫ 1/2

−1/2

[
(∇hyh)

T (∇hyh) − Id3

]′
2hβ/2

dx3 .

By (17) we have
Ah⇀A weakly in L1(S,R2×2) . (18)

At the same time, dividing (9) by 2hβ/2 and integrating over x3 gives

Ah(x
′) =

1

hβ/2

∫ 1/2

−1/2

sym∇′Uh(x) +
∇′Vh(x) ⊗∇′Vh(x)

2
+

∇′Uh(x)
T∇′Uh(x)

2
dx3.

The first term equals sym∇′uh(x
′), the other two can be bounded via Jensen’s

inequality leading to

Ah(x
′) ≥ sym∇′uh(x

′) +
∇′vh(x

′) ⊗∇′vh(x
′)

2
+ hβ/2∇′uh(x

′)T∇′uh(x
′).

As vh is bounded in W 1,2(S) we have that ∇vh⊗∇vh converges weakly* to a measure
µ ∈ M(S,R2×2), and by a standard lower semicontinuity argument µ ≥ ∇v ⊗
∇v. Using (13) and the fact that the third term on the right hand side is positive
semidefinite we conclude that

A(x′) dx′ ≥ symD′u+
∇′v(x′) ⊗∇′v(x′)

2
dx′. (19)
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The difference of the two sides of this inequality defines a Radon measure on S
with values in R

2×2
+ that we denote by M . In particular symD′u+M is absolutely

continuous with respect to the Lebesgue measure as

symD′u+M =

{
A(x′) − ∇′v(x′) ⊗∇′v(x′)

2

}
dx′.

Finally,

lim inf
h→0

Ih(yh)

hβ
≥ 1

2
inf

{∫
S

Q2

(
(symD′u+M)(x′) +

∇′v(x′) ⊗∇′v(x′)
2

)
dx′

}

where the infimum runs over all M ∈ M(S,R2×2
+ ) such that symD′u + M ∈

L1(S,R2×2
sym ).

Finally, we repeat the argument for yh(x) := yh(x) if x ∈ S × (−h/2, h/2),
yh(x) := x′ + hx3e3 if x ∈ (R2 \ S) × (−h/2, h/2). As W (Id3) = 0 and Q3(0) =
Q2(0) = 0 the above argument can be repeated without any change and we find that
there exists a measure M ∈ M(R2,R2×2

+ ) such that symD′u + M ∈ L1(R2,R2×2
sym ).

Thus u ∈ X(S).
Part Three: upper bound. We are given u ∈ X(S) and v ∈ W 1,2

0 (S) with
I0(u, v) < ∞ (otherwise there is nothing to prove), and we have to construct a
recovery sequence. We shall now first use star-shapedness of S to show that it
suffices to consider u and v with compact support in S, then use convexity of WFö

to show that it suffices to consider smooth u and v, and finally provide an explicit
construction.

After a translation we can assume that S is star-shaped with respect to the
origin. Fix ε > 0 and consider the functions

uε(x
′) =

1

1 + ε
ū((1 + ε)x′) , vε(x

′) =
1

1 + ε
v̄((1 + ε)x′) .

As above, we denote by a bar extension by zero outside S, so that e.g. ū = u on S
and ū = 0 in R

2 \S. It is clear that uε and vε are supported on S/(1 + ε) ⊂⊂ S. At
the same time uε ∈ X(S) (as u ∈ X(S)), vε ∈W 1,2

0 (S), and, as ε→ 0,

(uε, vε)⇀(u, v) weakly-∗ in X(S) ×W 1,2(S),

(i.e., in the convergence stated in Part I). Now we remark that

I0(uε, vε) ≤ (1 + ε)−2I0(u, v). (20)

This follows from a change of variables, once one has proven that ∇′vε(x
′) = ∇′v((1+

ε)x′)), and that for any M ∈ M(R2,R2×2
+ ) such that symD′u + M ∈ L1(R2,R2×2

+ )
we can find Mε ∈ M(R2,R2×2

+ ) such that

symD′uε +Mε = (symD′u+M)((1 + ε)x′)dx′.

We now show how to construct Mε. Since

symD′uε =
1

(1 + ε)2

[
1

1 + ε
Id2#symD′u

]
,

11



(where # stands for push-forward of measures, that is f#µ(E) := µ(f−1(E))), it
suffices to choose

Mε :=
1

(1 + ε)2

[
1

1 + ε
Id2#M

]
.

This concludes the proof of (20). From now on we assume that (u, v) is supported
on S0 ⊂⊂ S.

To show that (u, v) can be assumed to be smooth, fix δ < dist(S0, ∂S), and set

uδ(x
′) =

∫
S0

ρδ(x
′ − y′)u(y′)dy′ , vδ(x

′) =

∫
S0

ρδ(x
′ − y′)v(y′)dy′ .

where ρδ is a standard mollification kernel on the scale δ, i.e. ρδ(x
′) = δ−2ρ(x′/δ)

for ρ ∈ C∞
c (B2),

∫
R2 ρ = 1. Then automatically (uδ, vδ) ∈ C∞

c (S,R2) × C∞
c (S), and

as δ → 0 we have (uδ, vδ) → (u, v) weakly in X(S) ×W 1,2(S). It remains to show
that lim supδ→0 I0(uδ, vδ) ≤ I0(u, v). To see this let M ∈ M(R2,R2×2

+ ) be such that
f = symD′u+M ∈ L1(R2,R2×2

sym ), and

I0(u, v) ≤ 1

2

∫
S

Q2

(
(symD′u+M)(x′) +

∇v(x′) ⊗∇v(x′)
2

)
dx′ + δ

(M and f will depend on δ). Then

∇′uδ(x
′) =

∫
S

ρδ(x
′ − y′)f(y′)dy′ −

∫
S

ρδ(x
′ − y′)dM(y′)

where the second integral takes values in the (convex) set R
2×2
+ . We now use that

WFö is nondecreasing in its (matrix-valued) first argument, and that it is convex, to
obtain ∫

S

WFö(∇′uδ,∇′vδ)dx
′ ≤

∫
S

WFö(ρδ ∗ f, ρδ ∗ ∇′v)dx′

≤
∫

S

WFö(f,∇′v)dx′

On the smooth functions (uδ, vδ) we can use (6), and since WFö ≤ Q2 we get

I0(uδ, vδ) ≤ I0(u, v) + δ .

It remains to prove the thesis for the case u ∈ C∞
c (S,R2), v ∈ C∞

c (S). We first
show that for every j ∈ N we can find Mj ∈ L∞(S,R2×2

+ ) and aj ∈ C∞
c (S,R3) such

that

1

2

∫
S

Q3

(
sym (∇′u+ aj ⊗ e3) +

∇′v ⊗∇′v
2

+Mj

)
dx′ ≤ I0(u, v) +

C

j
, (21)

with Mj taking only a finite number of values, each of them on a Lipschitz subset
of S. To see this, consider a subdivision of S into small squares, say of side lj . The
oscillation of the smooth fields ∇u and ∇v on each square is uniformly small, hence

12



– provided lj is small enough – on each square we can pick one value of a and one
value of M so that

Q3

(
sym (∇′u+ aj ⊗ e3) +

∇′v ⊗∇′v
2

+Mj

)
≤WFö(∇′u,∇′v) +

1

j
.

Further, on the squares intersecting ∂S we can choose a = 0, since u and v have zero
boundary values. This defines piecewise constant fields aj and Mj with the required
property. Smoothing aj concludes the proof of (21).

Claim. Given u ∈ C∞
0 (S,R2), v ∈ C∞

0 (S), a ∈ C∞
0 (S,R3) and M ∈ L∞(S,R2×2

+ )
taking finitely many values on Lipschitz subsets of S, there exists a sequence yh ∈
C∞(Ω1,R

3) such that yh(x) = x′ + hx3e3 for x ∈ ∂S × (−1/2, 1/2), the functions
uh and vh defined as in (3) and (4) satisfy (11), (12), and (13), the scaled nonlinear
strain

Fh :=
(∇hyh)

T (∇hyh) − Id3

2hβ/2

converges to

Fh → sym (∇′u+ a⊗ e3) +
∇′v ⊗∇′v

2
+M, strongly in L2(Ω1,R

3×3) , (22)

and such that there is a field of rotations Rh ∈ L∞(Ω1, SO(3)) such that

‖RT
h∇hyh − Id3‖L∞(S,R3×3) ≤ Chβ/2, (23)

for some constant C which does not depend on h.
Assume for the moment that this can be done. By (W1) and (W2) we get

W (∇hyh) = W (RT
h∇hyh) =

1

2
Q3

(
RT

h∇hyh − Id3

)
+ o(|RT

h∇hyh − Id3|2),

so that by (23) it follows

lim
h→0

1

hβ

∫
Ω1

W (∇hyh)dx = lim
h→0

1

2

∫
Ω1

Q3 (Gh) dx <∞,

where Gh := h−β/2(RT
h∇hyh − Id3). By (23) Gh is bounded in L∞. Then Fh −Gh =

2−1hβ/2GT
hGh (compare with (16)) converges strongly to zero in L∞, while by (22)

Fh itself has a strong limit in L2. Therefore Gh converges strongly in L2 to the same
limit as Fh, and this limit is

G(x) := sym (∇′u(x′) + a(x′) ⊗ e3) +
∇′v(x′) ⊗∇′v(x′)

2
+M(x′) .

This expression does not depend on x3, and recalling (21) we get

lim
h→0

1

hβ

∫
Ω1

W (∇hyh)dx =

∫
Ω1

Q3 (G(x)) dx =

∫
S

Q3 (G(x′)) dx′ = I0(u, v) +
C

j

which is the thesis.
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Now we prove the claim. Let us define

yh(x) := x′ + hx3e3 + hβ/2(u(x′) + ξh(x
′)) + hβ/4(v(x′) + ϕh(x

′))e3
+h x3

(
hβ/4bh(x

′) + hβ/2sh(x
′)e3 + hβ/2a(x′)

)
where bh ∈ C∞

0 (S,R2), sh ∈ C∞
0 (S), ξh ∈ C∞

0 (S,R2) and ϕh ∈ C∞
0 (S) have to be

chosen properly. The choice of these spaces ensures that the boundary condition
yh(x) = x′ + hx3e3 for x ∈ ∂S × (−1/2, 1/2) is satisfied. Further, we shall choose
all those functions to be uniformly Lipschitz (i.e. their gradients are bounded by a
constant which can depend on M , u and v, but not on h).

The linear term in x3 cancels under integration over x3 ∈ (−1/2, 1/2); the se-
quences uh and vh defined via (3) and (4) satisfy

uh = u+ ξh, vh = v + ϕh.

We shall choose ξh ∈ C∞
0 (S,R2) and ϕh ∈ C∞

0 (S) in such a way that

ξh⇀ 0 weakly in W 1,2(S,R2) (24)

ϕh⇀ 0 weakly in W 1,4(S) (25)

‖(∇′)2ϕh‖L∞(S,R2×2) ≤ C

εh
, (26)

for a suitable sequence εh → 0 as h → 0. Note that (24) and (25) ensure the
convergence properties (11), (12) and (13).

Let us now note that we have

∇hyh = Id3 + hβ/4H1 + hβ/2H2 + h1+β/4H3 + h1+β/2H4, (27)

where

H1 := e3 ⊗∇′vh + bh ⊗ e3,

H2 := ∇′uh + a⊗ e3 + she3 ⊗ e3,

H3 := x3∇′bh,

H4 := x3(∇′sh + ∇′a).

Expanding the nonlinear strain (∇hyh)
T (∇hyh) via the rule (Id3 + F )T (Id3 + F ) =

Id3 + 2symF + F TF we get

(∇hyh)
T (∇hyh) − Id3 = 2hβ/4symH1 + hβ/2(2symH2 +HT

1 H1) + o(hβ/2)Jh

for a suitable tensor field Jh we shall consider again later on. In order to obtain a
strain of order hβ/2 we need to render H1 antisymmetric, and this can be done by
choosing

bh := −∇′vh. (28)

In this way we find

Fh = symH2 +
HT

1 H1

2
+
o(hβ/2)

2hβ/2
Jh

= sym (∇′uh + a⊗ e3) +

(
sh − |∇′vh|2

2

)
e3 ⊗ e3 +

∇′vh ⊗∇′vh

2
+
o(hβ/2)

2hβ/2
Jh.
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As we are looking for (22) we choose

sh := −|∇′vh|2
2

, (29)

and then, in order to have (22), it remains to show (i) that ξh and ϕh can be chosen
in such a way that (24), (25) hold and

sym (∇′ξh + ∇′v ⊗∇′ϕh) +
∇′ϕh ⊗∇′ϕh

2
→M strongly in L2(S,R2×2); (30)

and that (ii) the resulting tensor field Jh satisfies

o(hβ/2)

hβ/2
Jh → 0 strongly in L2(S,R2×2). (31)

This can be done as follows. Let us define

ξh = ψh − ϕh∇′v,

for some ψh ∈W 1,∞
0 (S,R2) to be chosen later. Then we find

sym (∇′ξh + ∇′v ⊗∇′ϕh) +
∇′ϕh ⊗∇′ϕh

2

= sym∇′ψh +
∇′ϕh ⊗∇′ϕh

2
− ϕh(∇′)2v.

Accordingly to Lemma 5 below we can find ψh ∈ C∞
0 (S,R2) and ϕh ∈ C∞

0 (S)
uniformly Lipschitz and such that (25) and (26) hold (with an εh that we can choose
arbitrarily, provided it goes to zero), with

sym∇′ψh +
∇′ϕh ⊗∇′ϕh

2
→M,

strongly in L2(S,R2×2) and ψh⇀ 0 weakly in W 1,2
0 (S,R2). As a consequence the

resulting sequence ξh will satisfy (24) and also (30) will hold true. We now prove
that (31) is also true and (22) will be established. To this end let us notice that,
with the above choices of bh, sh, ξh and ϕh, we have that, for every h,

‖H1‖L∞(S,R2×2) + ‖H2‖L∞(S,R2×2) ≤ C,

‖H3‖L∞(S,R2×2) + ‖H4‖L∞(S,R2×2) ≤ C(1 + ‖(∇′)2ϕh‖L∞(S,R2×2)).

Then

o(hβ/2)

hβ/2
|Jh| ≤ C

(
hβ/4 + h1−β/4|(∇′)2ϕh|

) ≤ C

(
hβ/4 +

h1−β/4

εh

)
.

Since we are working in the regime 0 < β < 4, it suffices to choose εh = h(1−β/4)/2.
In the end we prove (23). First of all let us notice that for every F ∈ R

3×3 we
have

dist(F, SO(3)) ≤ |symF − Id3| + C|F − Id|2,
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an inequality that reflects the fact that the tangent space of SO(3) at Id3 is the
space of antisymmetric matrices. Next we consider a measurable field Rh : S →
SO(3) such that dist(∇hyh, SO(3)) = |Rh − ∇hyh|. From (27) we deduce that
‖∇hyh − Id3‖L∞(S,R3×3) ≤ Chβ/4 (in particular Rh is uniquely defined) and that
‖sym∇hyh − Id3‖L∞(S,R3×3) ≤ Chβ/2, as symH1 = 0. Thus from the inequality we
pointed put above we have |Rh − ∇hyh| ≤ Chβ/2, from which (23) immediately
follows.
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Appendix

We start by briefly analyzing the properties of the space u ∈ X(S), the convex cone
in BD(S) that was introduced in (5) and that arises naturally in the determination
of the domain of the Γ-limit I0. General references for the space of functions of
bounded deformation BD(S) are, for example, the monograph by Temam [19] and
the paper by Ambrosio, Coscia and Dal Maso [2].

Let us recall that if u ∈ BD(S) then

symD′u = fu(x
′)dx′ + µu

where µu ∈ M(S,R2×2
sym ) is singular with respect to the Lebesgue measure on S, and

fu ∈ L1(S,R2×2) is the density of symD′u with respect to the Lebesgue measure.
Then u ∈ X(S) if and only if µu ≤ 0, where u = u in S and u = 0 in R

2 \ S.
The structure of the singular part of the strain µu can be further analyzed:

indeed, it turns out that there is a rectifiable set Ju in S and that, once we have fixed
an orientation of it νu ∈ L∞(H1
Ju, S

1), there are functions u+, u− ∈ L1(H1
Ju,R
2),

and a measure (symD′u)c singular with respect to both dx′ and H1, such that

µu = (symD′u)c + sym ((u+ − u−) ⊗ νu)dH1
Ju + sym (− tr (u) ⊗ νS)dH1
∂S,
where tr (u) ∈ L1(H1
∂S,R2) is the trace of u on ∂S and νS is the outer normal to
S. In particular the condition µu ≤ 0 implies the compatibility condition

u+(x′) − u−(x′) = −λ(x′)νu(x
′) for H1-a.e. x′ ∈ Ju,

for a suitable λ ∈ L1(H1
Ju, [0,∞)) (we recall that sym a ⊗ b ≤ 0, with b �= 0, iff
a = −λb). The sign condition on the boundary term gives analogously

tr (u)(x′) = λ(x′)νS(x′) for H1 a.e. x′ ∈ ∂S
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for a function λ ∈ L1(∂S, [0,∞)). The geometric meaning of the condition (symD′u)c ≤
0 for the Cantor part of symD′u is instead less clear as the validity of the “rank-one
property” (established in the space BV by Alberti [1]) in BD is at present unknown.

One could ask if the sign condition µu ≤ 0 is sufficient to gain more regularity
for the distributional gradient D′u. It turns out that this is not the case, in the
sense that there are functions in X(S) that are not in BV (S,R2). For example, let
S = (−1, 1)2, and for i > 2 let Qi = (2−i, 2−i+1)2. In each Qi by [15, Theorem 1]
(see also [5, Theorem 1]) there is ui ∈ C∞

0 (Qi,R
2) such that∫

Qi

|sym∇′ui|dx′ ≤ 2|Qi|,
∫

Qi

|∇′ui|dx′ ≥ 2i .

We set u = ui in Qi, u = 0 on S \ ∪Qi. It is clear that u is in BD(S) but not in
BV (S; R2), and that it has zero trace on ∂S. To show that it is in X, it suffices to
check that the symmetric part of the distributional gradient is absolutely continuous
with respect to the Lebesgue measure. Since u ∈ C1(S \{0},R2), it suffices to check
that the n-dimensional density of symD′u at zero is finite. To this end let ρB2 be
the ball of radius ρ and center in the origin, then

|symD′u|(ρB2) ≤
∑

{i:Qi∩ρB2 �=∅}
|symD′u|(Qi) ≤ 4|ρB2| .

This concludes the proof.
It is not clear if for the u constructed above we can find a v ∈ W 1,2

0 (S) such
that I0(u, v) < ∞. In other words, the question of whether the space {u ∈ X(S) :
I0(u, v) < ∞ for some v ∈ W 1,2

0 (S)} is contained in BV (S,R2) remains open. It is
however clear that this space is not more regular than BV . Indeed, let f : (0, 1) →
(0, 1) be a generic monotonic BV function, and extend it to R by f(t) = t. Then set
u(x) = −(f(x1)−x1, 0), v = 0, S = (−2, 2)2. Then I0(u, v) <∞. This construction
provides an example where the jump and Cantor part of Du are nonzero.

The rest of the appendix is devoted to the statement and proof of some lemmas
that were used in the proof of the upper bound. Of particular relevance in the
description of the relaxation process of compressive deformations are Lemma 4 and
Lemma 5.

Lemma 2. Let F ∈ R
n×n. Then there is R ∈ SO(n) such that dist(F, SO(n)) =

|RTF − Idn|. For all such R, the product RTF is symmetric.

Proof. This is well-known. We recall the argument for the convenience of the reader.
Existence is clear. To show symmetry, observe that replacing F by F̃ = RTF one can
reduce to the case R = Idn, i.e. it suffices to show that dist(F, SO(n)) = |F − Idn|
implies that F is symmetric. Consider the function

f(Q) = |F −Q|2 = |F |2 − 2F : Q+ |Q|2 .
(we write F : G = Tr F TG =

∑
FijGij). The first and the last term are constant

(for Q ∈ SO(n)), hence can be ignored. That Q = Id is a local minimum among all
Q ∈ SO(n) implies that the gradient of the linear term −2F : Q, i.e. −2F , is normal
to the constraint SO(n) at the identity. The tangent space to SO(n) at the identity
is the space of skew-symmetric matrices, hence this requirement corresponds to −2F
being symmetric.
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Lemma 3. WFö is convex.

Proof. Choose λ ∈ (0, 1), A, A′ ∈ R
2×2
sym and b, b′ ∈ R

2, and set

Aλ = λA+ (1 − λ)A′ , bλ = λb+ (1 − λ)b′ .

We have to show that

WFö(Aλ, bλ) ≤ λWFö(A, b) + (1 − λ)WFö(A
′, b′) .

The key observation is that

bλ ⊗ bλ = λb⊗ b+ (1 − λ)b⊗ b− λ(1 − λ)(b− b′) ⊗ (b− b′) .

Therefore for any Mλ ∈ R
2×2
+ we have

WFö(Aλ, bλ) ≤ Q2

(
symAλ +

1

2
bλ ⊗ bλ +Mλ

)

= Q2

(
λ

[
symA+

b⊗ b

2

]
+ (1 − λ)

[
symA′ +

b′ ⊗ b′

2

]
−Mb +Mλ

)

where Mb = λ(1 − λ)(b− b′) ⊗ (b− b′) ∈ R
2×2
+ .

Choose now M,M ′ ∈ R
2×2
+ so that

WFö(A, b) = Q2

(
symA+

1

2
b⊗ b+M

)
,

and the same for A′, b′ and M ′, and set Mλ = λM + (1− λ)M ′ +Mb ∈ R
2×2
+ . Then

the previous expression takes the form

Q2

(
λ

[
symA +

b⊗ b

2
+M

]
+ (1 − λ)

[
symA′ +

b′ ⊗ b′

2
+M ′

])

and the convexity of Q2 concludes the proof.

Lemma 4. For each M ∈ R
2×2
+ there are ψδ ∈ W 1,∞(R2,R2) and ϕδ ∈ W 1,∞(R2)

such that

ψδ
∗
⇀ 0 weakly* in W 1,∞(R2,R2),

ϕδ
∗
⇀ 0 weakly* in W 1,∞(R2),

as δ → 0,

sym∇′ψδ(x
′) +

∇′ϕδ(x
′) ⊗∇′ϕδ(x

′)
2

= M,

for a.e. x′ ∈ R
2, and ‖ψδ‖W 1,∞ + ‖ϕδ‖W 1,∞ ≤ C(|M | + 1) .

Proof. Let ζ(t) be defined as t if 0 < t < 1/2, as (1− t) if 1/2 < t < 1 and extended
periodically on the rest of R. Let ζδ(t) := δζ(t/δ) for every δ > 0 so that ζδ ⇀

∗ 0
weakly* in W 1,∞(R) as δ → 0.
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We can write M = λ1a1 ⊗ a1 + λ2a2 ⊗ a2 for a1, a2 ∈ S1 and λ1, λ2 ≥ 0. We
define

ψδ(x
′) := (

√
λ1a1 −

√
λ2a2)ζδ((

√
λ1a1 +

√
λ2a2) · x′),

so that

∇′ψδ(x
′) := ζ ′δ((

√
λ1a1 +

√
λ2a2) · x′)(

√
λ1a1 −

√
λ2a2) ⊗ (

√
λ1a1 +

√
λ2a2).

In particular

sym∇′ψδ(x
′) =

{
λ1a1 ⊗ a1 − λ2a2 ⊗ a2 on S+

δ

λ2a2 ⊗ a2 − λ1a1 ⊗ a1 on S−
δ

where we have put S−
δ = R

2 \ S+
δ and

S+
δ :=

{
x′ ∈ R

2 : for a k ∈ N we have (
√
λ1a1 +

√
λ2a2) · x′ ∈

(
kδ, kδ + 1

2
δ
)}

.

Correspondingly we define

ϕδ(x
′) :=

{
ζδ(2

√
λ2 a2 · x′), if x′ ∈ S+

δ ,

ζδ(−2
√
λ1 a1 · x′), if x′ ∈ S−

δ .

Note that ϕδ ∈W 1,∞(R2). Indeed if x′ ∈ S+
δ ∩ S−

δ we have that for some j ∈ N

jδ = 2(
√
λ1a1 +

√
λ2a2) · x′,

and since ζδ is δ-periodic we deduce that ϕδ is continuous on the interfaces, and thus
Lipschitz on R

2. On the other hand we have that

∇′ϕδ(x
′) =

{
2
√
λ2ζ

′
δ(2

√
λ2 a2 · x′)a2, if x′ ∈ S+

δ ,

−2
√
λ1ζ

′
δ(−2

√
λ1 a1 · x′)a1, if x′ ∈ S−

δ .

and since ζ ′δ = ±1 a.e. we get

∇′ϕδ(x
′) ⊗∇′ϕδ(x

′) =

{
4λ2a2 ⊗ a2, if x′ ∈ S+

δ ,
4λ1a1 ⊗ a1, if x′ ∈ S−

δ .

The thesis follows.

Lemma 5. Let M ∈ L∞(S,R2×2
+ ) be constant on each of finitely many Lipschitz

subsets Sj covering S, and let εh → 0, εh > 0. Then there are ψh ∈ C∞
0 (S,R2) and

ϕh ∈ C∞
0 (S) such that

ψh⇀ 0 weakly in W 1,2(S,R2),

ϕh⇀ 0 weakly in W 1,4(S),

sym∇′ψh(x
′) +

∇′ϕh(x
′) ⊗∇′ϕh(x

′)
2

→M strongly in L2(S,R2×2),

and

εh‖(∇′)2ϕh‖L∞(S,R2×2) ≤ 1 ,

‖ψh‖W 1,∞(S,R2) + ‖ϕh‖W 1,∞(S) ≤ C(‖M‖L∞(S,R2×2) + 1) .
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Proof. We can without loss of generality assume that M is constant on the entire S
(if not, we perform the construction independently on each Sj).

Let ψ̃δ, ϕ̃δ be the functions given by Lemma 4, Sρ = {x′ ∈ S : dist(x′, ∂S) > ρ},
and ηρ ∈ C∞

0 (Bρ,R) be a mollification kernel on the scale ρ, i.e. be such that

∫
R2

ηρ(x
′)dx′ = 1 ,

∫
R2

ρ|∇′ηρ(x
′)| + ρ2|(∇′)2ηρ(x

′)|dx′ ≤ C .

We set

ψδ,ρ(x
′) =

∫
Sρ

ψ̃δ(y
′)ηρ(x

′ − y′)dy′

and analogously ϕδ,ρ. Clearly ψδ,ρ ∈ C∞
0 (S,R2), ϕδ,ρ ∈ C∞

c (S), and as ρ→ 0

ψδ,ρ → ψ̃δ , ϕδ,ρ → ϕ̃δ , strongly in W 1,2(S,R2), resp. W 1,4(S).

It remains to take a suitable diagonal subsequence. Indeed, for each δ we can chose
ρ(δ) such that

‖ψδ,ρ(δ) − ψ̃δ‖W 1,2(S,R2) + ‖ϕδ,ρ(δ) − ϕ̃δ‖W 1,4(S) ≤ δ .

This ensures all desired convergence properties as δ → 0. To include the
bound on the second gradient it suffices to choose δ(h) as the smallest δ for which
εh‖(∇′)2ϕδ,ρ(δ)‖L∞(S,R2×2) ≤ 1. This is possible since εh → 0, and for the same reason
δ(h) → 0. Finally, we set ψh = ψδ(h),ρ(δ(h)) and define ϕh likewise.

In the proof of Theorem 1 we have stated the existence of certain measurable
functions. This can be proved by a rather standard application of the measurable
selections principles, which is however typically disregarded in the literature. We
therefore chose to provide here the simple details for the case of interest here.

The basic tool is the following slight simplification of Theorem III.6 in [4].

Lemma 6. Let X be a set with a σ-algebra F , let Y be a complete, separable metric
space and for every x ∈ X let a nonempty subset F (x) of Y be given in such a way
that

{x ∈ X : F (x) ∩ U �= ∅} ∈ F (32)

for every open set U in Y .
Then a measurable map f : X → Y can be defined in such a way that f(x) ∈ F (x)

for every x ∈ X.

For the convenience of the reader we recall the brief proof.

Proof. Let {yk}k be a countable and dense subset of Y and let f0 : X → Y be
defined by

f0(x) := yk0(x),

k0(x) := min{k ∈ N : F (x) ∩B(yk, 2
0) �= ∅}.

Note that f0 is measurable as it takes values in {yk}k and as (f0)
−1(yk) is measurable

for every k, by (32). Assume that a measurable fj : X → Y has been defined in
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such a way that: fj(x) = ykj(x), for kj(x) such that F (x) ∩B(ykj(x), 2
−j) �= ∅. Then

we define fj+1(x) as

fj+1(x) := ykj+1(x),

kj+1(x) := min{k ∈ N : F (x) ∩B(ykj(x), 2
−j) ∩ B(yk, 2

−j−1) �= ∅}.

Once again fj+1 is measurable by (32). Furthermore we have easily that

dist(fj(x), F (x)) ≤ 2−j, dist(fj(x), fj+1(x)) ≤ 2−j+1,

so that dist(fj(x), fj+h(x)) → 0 as j → ∞ for every h. Since Y is complete for every
x ∈ X we find f(x) ∈ F (x) such that fj(x) → f(x), and in particular the map
f : X → Y is measurable. This completes the proof of the lemma.

We then state and prove some consequences of this Lemma that we have used in
the proof of Theorem 1.

Lemma 7. Let M : Ω → R
n×n be measurable. Then there is a measurable R : Ω →

SO(n) such that

|M(x) − R(x)| = dist(M(x), SO(n)) ∀x ∈ Ω.

Proof. We apply Lemma 6 with X = Ω, F the σ-algebra of the Lebesgue measurable
sets of Ω, Y = SO(n) and F (x) = {Q ∈ SO(n) : |Q−M(x)| = dist(M(x), SO(n)).
Let U be an open set of SO(3) and let Uk be an increasing sequence of compact sets
exhausting U . Then

{x ∈ X : F (x) ∩ U �= ∅}
= {x ∈ Ω : ∃Q ∈ U, |Q−M(x)| = dist(M(x), SO(n))}
=

⋃
k∈N

{x ∈ Ω : dist(M(x), Uk) = dist(M(x), SO(n))}

and each set in this countable union is measurable as it is the coincidence set of two
measurable functions.

References

[1] Giovanni Alberti, Rank one property for derivatives of functions with bounded
variation, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 239–274.

[2] L. Ambrosio, A. Coscia, and G. Dal Maso, Fine properties of functions with
bounded deformation, Arch. Rat. Mech. Anal. 139 (1997), 201–238.

[3] H. Ben Belgacem, S. Conti, A. DeSimone, and S. Müller, Energy scaling of
compressed elastic films, Arch. Rat. Mech. Anal. 164 (2002), 1–37.

[4] C. Castaign and M. Valadier, Convex analysis and measurable multifunctions,
Springer Verlag, Berlin, 1977.

21



[5] S. Conti, D. Faraco, and F. Maggi, A new approach to counterexamples to L1

estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of
separately convex functions, Arch. Rat. Mech. Anal. 175 (2005), 287–300.

[6] S. Conti and F. Maggi, Confining thin elastic sheets and folding paper, in prepa-
ration.
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