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Abstract. The grand challenges in biology today are being shaped by powerful high-throughput
technologies that have revealed the genomes of many organisms, global expression patterns
of genes, and detailed information about variation within populations. We are therefore
able to ask, for the first time, fundamental questions about the evolution of genomes,
the structure of genes and their regulation, and the connections between genotypes and
phenotypes of individuals. The answers to these questions are all predicated on progress
in a variety of computational, statistical, and mathematical fields. The rapid growth in
the characterization of genomes has led to the advancement of a new discipline called
phylogenomics. This discipline results from the combination of two major fields in the life
sciences: genomics, i.e., the study of the function and structure of genes and genomes; and
molecular phylogenetics, i.e., the study of the hierarchical evolutionary relationships among
organisms and their genomes. The objective of this article is to offer mathematicians a
first introduction to this emerging field, and to discuss specific mathematical problems and
developments arising from phylogenomics.
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The lack of real contact between mathematics and biology is either a tragedy,
a scandal or a challenge, it is hard to decide which.

–Gian-Carlo Rota [34, p. 2]

1. Introduction. The grand challenges in biology today are being shaped by pow-
erful high-throughput technologies that have revealed the genomes of many organisms,
global expression patterns of genes, and detailed information about variation within
populations. We are therefore able to ask, for the first time, fundamental questions
about the evolution of genomes, the structure of genes and their regulation, and the
connections between genotypes and phenotypes of individuals. The answers to these
questions are all predicated on progress in a variety of computational, statistical, and
mathematical fields [35].

The rapid growth in the characterization of genomes has led to the advancement
of a new discipline called phylogenomics. This discipline, whose scope and potential
was first outlined in [22], results from the combination of two major fields in the
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4 LIOR PACHTER AND BERND STURMFELS

life sciences: genomics, i.e., the study of the function and structure of genes and
genomes; and molecular phylogenetics, i.e., the study of the hierarchical evolutionary
relationships among organisms and their genomes. The objective of this article is to
offer mathematicians a first introduction to this emerging field, and to discuss specific
problems and developments arising from phylogenomics.

The mathematical tools to be highlighted in this paper are statistics, probability,
combinatorics, and—last but not least—algebraic geometry. Emphasis is placed on
the use of algebraic statistics, which is the study of statistical models for discrete
data using algebraic methods. See [44, section 1] for details. Several models which
are relevant for phylogenomics are shown to be algebraic varieties in certain high-
dimensional spaces of probability distributions. This interplay between statistics and
algebraic geometry offers a conceptual framework for understanding and developing
combinatorial algorithms for biological sequence analysis. It is our hope that this will
contribute to some “real contact” between mathematics and molecular biology.

This paper is organized as follows. In section 2 we begin by reviewing the orga-
nization and structure of genomes. This section is meant as a brief tutorial, aimed at
readers who have a little or no background in molecular biology. It offers definitions
of the relevant biological terminology.

Section 3 describes a very simple example of a statistical model for inferring
information about the genetic code. The point of this example is to explain the
philosophy of algebraic statistics: model means algebraic variety.

A more realistic model, which is widely used in computational biology, is the hid-
den Markov model (HMM). In section 4 we explain this model and discuss its applica-
tions to the gene finding problem. Another key problem is the alignment of biological
sequences. Section 5 reviews the statistical models and combinatorial algorithms for
sequence alignment. We also discuss the relevance of parametric inference [43].

In section 6 we present statistical models for the evolution of biological sequences.
These models are algebraic varieties associated with phylogenetic trees, and they play
a key role in inferring the ancestral relationships among organisms and in identifying
regions in genomes that are under selection.

Section 7 gives an introduction to the field of phylogenetic combinatorics, which
is concerned with the combinatorics and geometry of finite metric spaces and their
application to data analysis in the life sciences. We shall discuss the space of all trees
[9], the neighbor-joining algorithm for projecting metrics onto this space, and several
natural generalizations of these concepts.

In section 8 we go back to the data. We explain how one obtains and studies DNA
sequences generated by genome sequencing centers, and we illustrate the mathematical
models by estimating the probability that the DNA sequence in Conjecture 1 occurred
by chance in ten vertebrate genomes.

2. The Genome. Every living organism has a genome, made up of deoxyribonu-
cleic acids (DNA) arranged in a double helix [61], which encodes (in a way to be
made precise) the fundamental ingredients of life. Organisms are divided into two
major classes: eukaryotes (organisms whose cells contain a nucleus) and prokaryotes
(for example, bacteria). In our discussion we focus on genomes of eukaryotes and, in
particular, the human genome [38, 59].

Eukaryotic genomes are divided into chromosomes. The human genome has two
copies of each chromosome. There are 23 pairs of chromosomes: 22 autosomes (two
copies each in both men and women) and two sex chromosomes, which are denoted
X and Y. Women have two X chromosomes, while men have one X and one Y chro-
mosome. Parents pass on a mosaic of their pair of chromosomes to their children.
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THE MATHEMATICS OF PHYLOGENOMICS 5

Table 2.1 The genetic code.

T C A G

T

TTT �→ Phe
TTC �→ Phe
TTA �→ Leu
TTG �→ Leu

TCT �→ Ser
TCC �→ Ser
TCA �→ Ser
TCG �→ Ser

TAT �→ Tyr
TAC �→ Tyr
TAA �→ stop
TAG �→ stop

TGT �→ Cys
TGC �→ Cys
TGA �→ stop
TGG �→ Trp

C

CTT �→ Leu
CTC �→ Leu
CTA �→ Leu
CTG �→ Leu

CCT �→ Pro
CCC �→ Pro
CCA �→ Pro
CCG �→ Pro

CAT �→ His
CAC �→ His
CAA �→ Gln
CAG �→ Gln

CGT �→ Arg
CGC �→ Arg
CGA �→ Arg
CGG �→ Arg

A

ATT �→ Ile
ATC �→ Ile
ATA �→ Ile
ATG �→ Met

ACT �→ Thr
ACC �→ Thr
ACA �→ Thr
ACG �→ Thr

AAT �→ Asn
AAC �→ Asn
AAA �→ Lys
AAG �→ Lys

AGT �→ Ser
AGC �→ Ser
AGA �→ Arg
AGG �→ Arg

G

GTT �→ Val
GTC �→ Val
GTA �→ Val
GTG �→ Val

GCT �→ Ala
GCC �→ Ala
GCA �→ Ala
GCG �→ Ala

GAT �→ Asp
GAC �→ Asp
GAA �→ Glu
GAG �→ Glu

GGT �→ Gly
GGC �→ Gly
GGA �→ Gly
GGG �→ Gly

The sequence of DNA molecules in a genome is typically represented as a se-
quence of letters, partitioned into chromosomes, from the four letter alphabet Ω =
{A,C,G, T}. These letters correspond to the bases in the double helix, that is, the
nucleotides adenine, cytosine, guanine, and thymine. Since every base is paired with
an opposite base (A with T and C with G in the other half of the double helix), in
order to describe a genome it suffices to list the bases in only one strand. However,
it is important to note that the two strands have a directionality which is indicated
by the numbers 5′ and 3′ on the ends (corresponding to carbon atoms in the helix
backbone). The convention is to represent DNA in the 5′ → 3′ direction. The human
genome consists of approximately 2.8 billion bases, and has been obtained using high-
throughput sequencing technologies that can be used to read the sequence of short
DNA fragments hundreds of bases long. Sequence assembly algorithms are then used
to piece together these fragments [39]. See also [44, section 4].

Despite the tendency to abstract genomes as strings over the alphabet Ω, one
must not forget that they are highly structured: for example, certain subsequences
within a genome correspond to genes. These subsequences play the important role
of encoding proteins. Proteins are polymers made of twenty different types of amino
acids. Within a gene, triplets of DNA, known as codons, encode the amino acids for
the proteins. This is known as the genetic code. Table 2.1 shows the 64 possible
codons and the twenty amino acids they code for. Each amino acid is represented
by a three letter identifier (“Phe” = Phenylalanine, “Leu” = Leucin, . . .). The three
codons TAA, TAG, and TGA are special: instead of coding for an amino acid, they
are used to indicate that the protein ends.

In order to make protein, DNA is first copied into a similar molecule called mes-
senger RNA (abbreviated mRNA) in a process called transcription. It is the RNA
that is translated into protein. The entire process is referred to as expression. Proteins
can be structural elements or perform complex tasks (such as regulation of expression)
by interacting with the many molecules and complexes in cells. Thus, the genome is
a blueprint for life. An understanding of the genes, the function of their proteins, and
their expression patterns is fundamental to biology.

The human genome contains approximately 25,000 genes, although the exact
number has still not been determined. While there are experimental methods for

D
ow

nl
oa

de
d 

03
/0

7/
17

 to
 1

31
.2

15
.2

25
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



6 LIOR PACHTER AND BERND STURMFELS

validating and discovering genes, there is still no known high-throughput technology
for accurately identifying all the genes in a genome. The computational problem
of identifying genes, the gene finding problem, is an active area of research. One
of the main difficulties lies in the fact that only a small portion of any genome is
genic. For instance, less than 5% of the human genome is known to be functional. In
section 4 we discuss this problem and the role of probabilistic models in formulating
statistically sound methods for distinguishing genes from nongenic sequence. The
models of choice, HMMs, allow for the integration of diverse biological information
(such as the genetic code and the structure of genes) and yet are suitable for designing
efficient algorithms. By virtue of being algebraic varieties, they provide a key example
of the link connecting algebra, statistics, and genomics. Nevertheless, the current
understanding of genes is not sufficient to allow for the ab-initio identification of all
the genes in a genome, and it is through comparison with other genomes that the
genes are revealed [3].

The differences between the genomes of individuals in a population are small and
are primarily due to recombination events (part of the process by which two copies of
parental chromosomes are merged in the offspring). On the other hand, the genomes
of different species (classes of organisms that can produce offspring together) tend to
be much more divergent. Genome differences between species can be explained by
many biological events including:

• Genome rearrangement—comparing chromosomes of related species reveals
large segments that have been reversed and flipped (inversions), segments
that have been moved (transpositions), fusions of chromosomes, and other
large scale events. The underlying biological mechanisms are poorly under-
stood [45, 49].
• Duplications and loss—some genomes have undergone whole genome dupli-
cations. This process was recently demonstrated for yeast [36]. Individual
chromosomes or genes may also be duplicated. Duplication events are of-
ten accompanied by gene loss, as redundant genes slowly lose or adapt their
function over time [23].
• Parasitic expansion—large sections of genomes are repetitive, consisting of
elements which can duplicate and reintegrate into a genome.
• Point mutation, insertion, and deletion—DNA sequences mutate, and in non-
functional regions these mutations accumulate over time. Such regions are
also likely to exhibit deletions; for example, strand slippage during replication
can lead to an incorrect copy number for repeated bases.

Accurate mathematical models for sequence alignment and evolution, our topics in
sections 5–7, have to take these processes into consideration.

Two distinct DNA bases that share a common ancestor are called homologous. Ho-
mologous bases can be related via speciation and duplication events, and are therefore
divided into two classes: orthologous and paralogous. Orthologous bases are descen-
dant from a single base in an ancestral genome that underwent a speciation event,
whereas two paralogous bases correspond to two distinct bases in a single ancestral
genome that are related via a duplication. Because we cannot sequence ancestral
genomes, it is never possible to formally prove that two DNA bases are homologous.
However, statistical arguments can show that it is extremely likely that two bases are
homologous, or even orthologous. The problem of identifying homologous bases be-
tween genomes of related species is known as the alignment problem. We shall discuss
this in section 5.D

ow
nl

oa
de

d 
03

/0
7/

17
 to

 1
31

.2
15

.2
25

.1
88

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



THE MATHEMATICS OF PHYLOGENOMICS 7

The alignment of genomes is the first step in identifying highly conserved se-
quences that point to the small fraction of the genome that is under selection, and
therefore likely to be functional. Although the problem of sequence alignment is math-
ematically and computationally challenging, proposed homologous sequences can be
rapidly and independently validated (it is easy to check whether two sequences align
once they have been identified), and the regions can often be tested in a molecular
biology laboratory to determine their function. In other words, sequence alignment
reveals concrete verifiable evidence for evolutionary selection and often results in
testable hypotheses.

As a focal point for our discussion, we present a specific DNA sequence of length
42. This sequence was found in the fall of 2003 as a byproduct of computational work
conducted by Lior Pachter’s group at Berkeley [10]. Whole genome alignments were
found and analyzed for human (hs), chimpanzee (pt), mouse (mm), rat (rn), dog (cf),
chicken (gg), frog (xt), zebra-fish (dr), fugu-fish (tr), and tetraodon (tn) genomes.
The abbreviations refer to the Latin names of these organisms. They will be used
in Table 8.1 and Figure 8.1. From alignments of the ten genomes, the following
hypothesis was derived, which we state in the form of a mathematical conjecture.

Conjecture 1 (the “Meaning of Life”). The sequence of 42 bases

TTTAATTGAAAGAAGTTAATTGAATGAAAATGATCAACTAAG(2.1)

was present in the genome of the ancestor of all vertebrates, and it has been completely
conserved to the present time (i.e., none of the bases have been mutated, nor have there
been any insertions or deletions).

The identification of such a sequence requires a highly nontrivial computation:
the alignment of ten genomes (including mammalian genomes close to 3 billion bases
in length) and subsequent analysis to identify conserved orthologous regions within
the alignment [63]. Using the tools described in section 8, one checks that the sequence
(2.1) is present in all ten genomes. For instance, in the human genome (May 2004
version), the sequence occurs on chromosome 7 in positions 156501197–156501238.
By examining the alignment, one verifies that, with very high probability, the regions
containing this sequence in all ten genomes are orthologous. Furthermore, the implied
claim that (2.1) occurs in all present-day vertebrates can, in principle, be tested.

Identifying and analyzing sequences such as (2.1) is important because they are
highly conserved yet often nongenic [7]. One of the ongoing mysteries in biology is
to unravel the function of the parts of the genome that are nongenic and yet very
conserved. The extent of conservation points to the possibility of critical functions
within the genome. Recent studies have pointed to the association of highly conserved
elements with developmental genes [48, 62].

In 2003, the sequence (2.1) appeared to be the longest completely conserved
sequence among the vertebrates. We were amused to find that its length was 42.
In light of [1], it was decided to name this DNA sequence “The Meaning of Life.”
It may be a coincidence that the segment above contains two copies of the motif
TTAATTGAA, but this motif may also have some function (for example, it may be
bound by a protein). Indeed, the identification of such elements is the first step
toward understanding the complex regulatory code of the genome.

The conjecture was formulated in the spring of 2004 and it was circulated in the
first arXiv version of this paper. In the fall of 2004, Drton, Eriksson, and Leung
[21] conducted a new study based on improved alignments. Their work, and similar
studies by other groups [51], have now led to the identification of longer sequences
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8 LIOR PACHTER AND BERND STURMFELS

with similar properties. Thus, the Meaning of Life sequence no longer holds the record
in terms of length. However, since Conjecture 1 has been inspiration for our group,
and it still remains open today, we decided to stick with this example. It needs to be
emphasized that disproving Conjecture 1 would not invalidate any of the methodology
presented in this article. For a biological perspective we refer to [21].

3. Codons. Because of the genetic code, the set Ω3 of all three-letter words over
the alphabet Ω = {A,C,G, T} plays a special role in molecular biology. As was
discussed in section 2, these words are called codons, with each triplet coding for
one of 20 amino acids (Table 2.1). The map from 64 codons to 20 amino acids is
not injective, and so multiple codons code for the same amino acid. Such codons are
called synonymous. Eight amino acids have the property that the synonymous codons
that code for them all agree in the first two positions. The third positions of such
codons are called four-fold degenerate. The translation of a series of codons in a gene
(typically a few hundred) results in a three-dimensional folded protein.

A model for codons is a statistical model whose state space is the 64-element
set Ω3. Selecting a model means specifying a family of probability distributions p =
(pIJK) on Ω3. Each probability distribution p is a 4× 4× 4-table of nonnegative real
numbers which sum to one. Geometrically, a distribution on codons is a point p in
the 63-dimensional probability simplex

∆63 =

{
p ∈ RΩ3

:
∑

IJK∈Ω3

pIJK = 1 and pIJK ≥ 0 for all IJK ∈ Ω3

}
.

A model for codons is hence nothing but a subsetM of the simplex ∆63. Statistically
meaningful models are usually given in parametric form. If the number of parameters
is d, then there is a set P ⊂ Rd of allowed parameters, and the modelM is the image
of a map φ from P into ∆63. We illustrate this statistical point of view by means of
a very simple independence model.

Models for codons have played a prominent role in the work of Samuel Karlin,
who was one of the mathematical pioneers in this field. One instance of this is the
genome signature in [13]. We refer to [44, Example 4.3] for a discussion of this model
and more recent work on codon usage in genomes.

Consider a DNA sequence of length 3m which has been grouped into m con-
secutive codons. Let uIJK denote the number of occurrences of a particular codon
IJK. Then our data are the 4 × 4 × 4-table u = (uIJK). The entries of this table
are nonnegative integers, and if we divide each entry by m, we then get a new table
1
m · u which is a point in the probability simplex ∆63. This table is the empirical
distribution of codons in the given sequence.

LetM be the statistical model which stipulates that, for the sequence under con-
sideration, the first two positions in a codon are independent of the third position.
We may wish to test whether this independence model fits our data u. This question
makes sense in molecular biology because many of the amino acids are uniquely spec-
ified by the first two positions in any codon which represents that particular amino
acid (see Table 2.1). Therefore, third positions in synonymous codons tend to be
independent of the first two.

Our independence modelM has 18 free parameters. The set of allowed parame-
ters is an 18-dimensional convex polytope, namely, it is the product

P = ∆15 ×∆3.

D
ow

nl
oa

de
d 

03
/0

7/
17

 to
 1

31
.2

15
.2

25
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



THE MATHEMATICS OF PHYLOGENOMICS 9

Here ∆15 is the 15-dimensional simplex consisting of probability distributions α =
(αIJ) on Ω2, and ∆3 is the tetrahedron consisting of probability distributions β =
(βK) on Ω. Our modelM is parameterized by the map

φ : P → ∆63 , φ((α, β))IJK = αIJ · βK .

Hence M = image(φ) is an 18-dimensional algebraic subset inside the 63-dimensional
simplex. To test whether a given 4 × 4 × 4-table p lies inM, we write that table as
a two-dimensional matrix with 16 rows and 4 columns:

p′ =



pAAA pAAC pAAG pAAT
pACA pACC pACG pACT
pAGA pAGC pAGG pAGT
pATA pATC pATG pATT
pCAA pCAC pCAG pCAT

...
...

...
...

pTTA pTTC pTTG pTTT


.

Linear algebra furnishes the following characterizations of our model.
Proposition 2. For a point p ∈ ∆63, the following conditions are equivalent:
1. The distribution p lies in the modelM.
2. The 16× 4 matrix p′ has rank one.
3. All 2× 2-minors of the matrix p′ are zero.
4. pIJK · pLMN = pIJN · pLMK for all nucleotides I, J,K,L,M,N .

In the language of algebraic geometry, the modelM is known as the Segre variety.
More precisely, M is the set of nonnegative real points on the Segre embedding of
P

15×P3 in P63. Here and throughout, the symbol Pm denotes the complex projective
space of dimension m. One of the points argued in this paper is that many of the
more advanced statistical models, such as graphical models [44, section 1.5], actually
used in practice by computational biologists are also algebraic varieties with a special
combinatorial structure.

Returning to our original biological motivation, we are faced with the following
statistics problem. The DNA sequence under consideration is summarized in the data
u, and we wish to test whether or not the modelM fits the data. The geometric idea
of such a test is to determine whether or not the empirical distribution 1

m ·u lies close
to the Segre variety M. Statisticians have devised a wide range of such tests, each
representing a statistically meaningful notion of “proximity toM.” These include the
χ2-test, the G2-test, Fisher’s exact test, and others, as explained in standard statistics
texts such as [8] or [28]. A useful tool of numerical linear algebra for measuring the
distance of a point to the Segre variety is the singular value decomposition of the
matrix p′. Indeed, p′ lies onM if and only if the second singular value of p′ is zero.
Singular values provide a good notion of distance between a given matrix and various
determinantal varieties such asM.

One key ingredient in statistical tests is maximum likelihood estimation. The
basic idea is to find those model parameters αIJ and βK which would best explain
the observed data. If we consider all possible genome sequences of length 3m, then
the likelihood of observing our particular data u equals

γ ·
∏

IJK∈Ω3

puIJKIJK ,

where γ is a combinatorial constant. This expression is a function of (α, β), called the
likelihood function. We wish to find the point in our parameter domain P = ∆15×∆3

D
ow

nl
oa

de
d 

03
/0

7/
17

 to
 1

31
.2

15
.2

25
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



10 LIOR PACHTER AND BERND STURMFELS

Exons Introns

Transcription

Splicing

DNA

pre-mRNA

mRNA

Translation

protein

5' 3'

Intergenic DNA

Fig. 4.1 Structure of a gene.

which maximizes this function. The solution (α̂, β̂) to this nonlinear optimization
problem is said to be the maximum likelihood estimate for the data u. In our inde-
pendence model, the likelihood function is convex, and it is easy to write down the
global maximum explicitly:

α̂IJ =
1
m

∑
K∈Ω

uIJK and β̂K =,
1
m

∑
IJ∈Ω2

uIJK .

In general, the likelihood function of a statistical model will not be convex, and there
is no easy formula for writing the maximum likelihood estimate as a function of the
data. In practice, numerical hill-climbing methods are used to solve this optimization
problem, but, of course, there is no guarantee that a local maximum found by such
methods is actually the global maximum.

4. Gene Finding. In order to find genes in DNA sequences, it is necessary to iden-
tify structural features and sequence characteristics that distinguish genic sequence
from nongenic sequence. We begin by describing more of the detail of gene structure
which is essential in developing probabilistic models.

Genes are not contiguous subsequences of the genome, but rather are split into
pieces called introns and exons. After transcription, introns are spliced out and only
the remaining exons are used in translation (Figure 4.1). Not all of the sequence in
the exons is translated; the initial and terminal exons may consist of untranslated
regions (indicated in gray in the figure). Since the genetic code is in (nonoverlapping)
triplets, it follows that the lengths of the translated portions of the exons must sum to
0 mod 3. In addition to the exon-intron structure of genes, there are known sequence
signals. The codon ATG initiates translation, and thus is the first codon following
the untranslated portion of the initial exons. The final codon in a gene must be one
of TAG, TAA, or TGA, as indicted in Table 2.1. These codons signal the translation

D
ow

nl
oa

de
d 

03
/0

7/
17

 to
 1

31
.2

15
.2

25
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



THE MATHEMATICS OF PHYLOGENOMICS 11

Fig. 4.2 The HMM of length three.

machinery to stop. There are also sequence signals at the intron-exon boundaries:
GT at the 5′ end of an intron and AG at the 3′ end.

A hidden Markov model (HMM) is a probabilistic model that allows for simul-
taneous modeling of the bases in a DNA sequence of length n and the structural fea-
tures associated with that sequence. The HMM consists of n observed random vari-
ables Y1, . . . , Yn taking on l possible states, and n hidden random variables X1, . . . , Xn
taking on k possible states. In the context of phylogenomics, the observed variables
Yi usually have l = 4 states, namely, Ω = {A,C,G, T}. The hidden random vari-
ables Xi serve to model features associated with the sequence which is generated by
Y1, Y2, . . . , Yn. An oversimplified scenario is k = 2, with the set of hidden states being
Θ = { exon, intron}.

The characteristic property of an HMM is that the distributions of the Yi depend
on the Xi, while the Xi form a Markov chain. This is illustrated for n = 3 in
Figure 4.2, where the unshaded circles represent the hidden variables X1, X2, X3 and
the shaded circles represent the observed variables Y1, Y2, Y3.

Computational biologists use HMMs to annotate DNA sequences. The basic idea
is this: it is postulated that the bases are instances of the random variables Y1, . . . , Yn,
and the problem is to identify the most likely assignments of states to X1, . . . , Xn that
could be associated with the observations. In gene finding, homogeneous HMMs are
used. This means that all transition probabilities Xi → Xi+1 are given by the same
k × k-matrix S = (sij), and all the transitions Xi → Yi are given by another k × 4-
matrix T = (tij). Here sij represents the probability of transitioning from hidden
state i to hidden state j; for instance, if k = 2, then i, j ∈ Θ = { exon, intron}. The
parameter tij represents the probability that state i ∈ Θ outputs letter j ∈ Ω.

In practice, the parameters sij and tij range over real numbers satisfying

sij , tij ≥ 0 and
∑
j∈Θ

s1j =
∑
j∈Ω

t1j = 1.(4.1)

However, just like in our discussion of the Segre variety in section 3, we may relax the
requirements (4.1) and allow the parameters to be arbitrary complex numbers. This
leads to the following algebraic representation [42, section 2].

Proposition 3. The homogeneous HMM is the image of a map φ : Ck(k+l) →
C
ln, where each coordinate of φ is a bihomogeneous polynomial of degree n− 1 in the

transition probabilities sij and degree n in the output probabilities tij.
The coordinate φσ of the map φ indexed by a particular DNA sequence σ ∈ Ωn

represents the probability that the HMM generates the sequence σ. The following
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12 LIOR PACHTER AND BERND STURMFELS

explicit formula for that probability establishes Proposition 3:

φσ =
∑
i1∈Θ

ti1σ1

(∑
i2∈Θ

si1i2ti2σ2

(∑
i3∈Θ

si2i3ti3σ3

(∑
i4∈Θ

si3i4ti4σ4

( · · · )))).(4.2)

The expansion of this polynomial has kn terms:

ti1σ1si1i2ti2σ2si2i3ti3σ3 · · · sin−1intinσn .(4.3)

For any fixed parameters one wishes to determine a string î = (i1, i2, . . . , in) ∈ Θn

which indexes a term (4.3) of largest numerical value among all kn terms of φσ. (If
there is more than one string with maximum value, then we break ties lexicographi-
cally.) We call î the explanation of the observation σ. In our example (k = 2, l = 4),
the explanation î of a DNA sequence σ is an element of Θn = { exon, intron}n. It
reveals the crucial information of Figure 4.1, namely, the location of the exons and
introns. In summary, the DNA sequence to be annotated by an HMM corresponds
to the observation σ ∈ Ωn, and the explanation î is the gene prediction. Thus gene
finding means nothing but computing the output î from the input σ.

In real-world applications, the integer n may be quite large. It is not uncommon
to annotate DNA sequences of length n ≥ 1,000,000. The size kn of the search
space for finding the explanation is enormous (exponential in n). Fortunately, the
recursive decomposition in (4.2), reminiscent of Horner’s Rule, allows us to evaluate a
multivariate polynomial with exponentially many terms in linear time (in n). In other
words, for given numerical parameters sij and tij , we can compute the probability
φσ(sij , tij) quite efficiently.

Similarly, the explanation î of an observed DNA sequence σ can be computed in
linear time. This is done using the Viterbi algorithm, which evaluates

max
i1∈Θ

Ti1σ1 +
(
max
i2∈Θ

Si1i2 +Ti2σ2 +
(
max
i3∈Θ

Si2i3 +Ti3σ3 +
(
max
i4∈Θ

Si3i4 +Ti4σ4 +
( · · · )))),

where Sij = log(sij) and Tij = log(tij). This expression is a piecewise linear con-
vex function on Rk(k+l), known as the tropicalization of the polynomial φσ. Indeed,
evaluating this expression requires exactly the same operations as evaluating φσ, with
the only difference that we are replacing ordinary arithmetic by the tropical semiring.
The tropical semiring (also known as the max-plus algebra) consists of the real num-
bers R together with an extra element∞, where the arithmetic operations of addition
and multiplication are redefined to be max (or equivalently min) and plus, respec-
tively. The tropical semiring and its use in dynamic programming optimizations are
explained in [44, section 2.1].

Every choice of parameters (sij , tij) specifies a gene finding function

Ωn → Θn, σ �→ î,

which takes a sequence σ to its explanation î. The number of all functions from Ωn

to Θn equals 2n·4
n

and hence grows double-exponentially in n. However, the vast
majority of these functions are not gene finding functions. The following remarkable
complexity result was proved by Elizalde [24].

Theorem 4. The number of gene finding functions grows at most polynomially
in the sequence length n.
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THE MATHEMATICS OF PHYLOGENOMICS 13

As an illustration consider the n = 3 example visualized in Figure 4.2. There
are 864 = 6.277 · 1057 functions {A,C,G, T}3 → {exon, intron}3 but only a tiny
fraction of these are gene finding functions. (It would be interesting to determine
the exact number.) It is an open problem to give a combinatorial characterization
of gene finding functions and to come up with accurate lower and upper bounds for
their number as n grows.

For gene finding HMMs, it is always the case that l is small and fixed (usually,
l = 4), and n is large. However, the size of k or structure of the state space for the
hidden variables Xi tends to vary a lot. While the k = 2 used in our discussion of
gene finding functions was meant to be just an illustration, a biologically meaningful
gene finding model could work with just three hidden states: one for introns, one for
exons, and one for intergenic sequences. However, in order to enforce the constraint
that the sum of the lengths of the exons is 0 mod 3, a more complicated hidden state
space is necessary. Solutions to this problem were given in [12, 37].

We conclude this section with a brief discussion of the important problem of
estimating parameters for HMMs. Indeed, so far nothing has been said about how
the values of the parameters sij and tij are to be chosen when running the Viterbi
algorithm. Typically, this choice involves a combination of biological and statistical
considerations. Let us concentrate on the latter aspect.

Recall that maximum likelihood estimation is concerned with finding parameters
for a statistical model which best explain the observed data. As was the case for the
codon model (section 3), the maximum likelihood estimate is an algebraic function
of the data. In contrast to what we did at the end of section 3, it is now prohibitive
to locate the global maximum in the polytope (4.1). The expectation-maximization
(EM) algorithm is a general technique used by statisticians to find local maxima of
the likelihood function [44, section 1.3]. For HMMs, this algorithm is also known
as the Baum–Welch algorithm. It takes advantage of the recursive decomposition
in (4.2) and it is fast (linear in n). The widely used book [18] provides a good
introduction to the use of the Baum–Welch algorithm in training HMMs for biological
sequence applications. The connection between the EM algorithm and the Baum–
Welch algorithm is explained in detail in [30]. In order to understand the performance
of EM or to develop more global methods [14], it would be desirable to obtain upper
and lower bounds on the algebraic degree [33] of the maximum likelihood estimate.

5. Sequence Alignment. Although tools such as the HMM are important for
modeling and analyzing individual genome sequences, the essence of phylogenomics
lies in the power of sequence comparison. Because functional sequences tend to accu-
mulate fewer mutations over time, it is possible, by comparing genomes, to identify
and characterize such sequences much more effectively.

In this section we examine models for sequence evolution that allow for insertions,
deletions, and mutations in the special case of two genomes. These are known as
pairwise sequence alignment models. The specific model to be discussed here is the
pair HMM. In the subsequent section we shall examine phylogenetic models for more
than two DNA sequences.

We have already seen two instances of statistical models that are represented by
polynomials in the model parameters (the codon model and the HMM). Models for
pairwise sequence alignment are also specified by polynomials, and are in fact close
relatives of HMMs. What distinguishes the sequence alignment problem is an extra
layer of complexity which arises from a combinatorial explosion in the number of pos-
sible alignments between sequences. Here we describe one of the simplest alignment
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14 LIOR PACHTER AND BERND STURMFELS

Table 5.1 Alignments for a pair of sequences of length 2 and 3.

IIIDD ( · · ·ij , klm · · ) tIksII tIlsII tImsIDtDisDDtDj
IIDID ( · · i · j , kl ·m· ) tIksII tIlsIDtDisDI tImsIDtDj
IIDDI ( · · ij · , kl · ·m ) tIksII tIlsIDtDisDDtDjsDI tIm
IDIID ( · i · ·j , k · lm· ) tIksIDtDisDI tIlsII tImsIDtDj
IDIDI ( · i · j· , k · l ·m ) tIksIDtDisDI tIlsIDtDjsDI tIm
IDDII ( · ij · · , k · ·lm ) tIksIDtDisDDtDjsDI tIlsII tIm
DIIID ( i · · · j , · klm· ) tDisDI tIksII tIlsII tImsIDtDj
DIIDI ( i · ·j· , · kl ·m ) tDisDI tIksII tIlsIDtDjsDI tIm
DIDII ( i · j · · , · k · lm ) tDisDI tIksIDtDjsDI tIlsII tIm
DDIII ( ij · · · , · · klm ) tDisDDtDjsDI tIksII tIlsII tIm
MIID ( i · ·j , klm · ) tMiksMI tIlsII tImsIDtDj
MIDI ( i · j· , kl ·m ) tMiksMI tIlsIDtDjsDI tIm
MDII ( ij · · , k · lm ) tMiksMDtDjsDI tIlsII tIm
IMID ( · i · j , klm· ) tIksIM tMilsMI tImsIDtDj
IMDI ( · ij · , kl ·m ) tIksIM tMilsMDtDjsDI tIm
IIMD ( · · ij , klm · ) tIksII tIlsIM tMimsMDtDj
IIDM ( · · ij , kl ·m ) tIksII tIlsIDtDisDM tMjm

IDMI ( ·ij· , k · lm ) tIksIDtDisDM tMjlsMI tIm
IDIM ( ·i · j , k · lm ) tIksIDtDisDI tIlsIM tMjm

DMII ( ij · · , · klm ) tDisDM tMjksMI tIlsII tIm
DIMI ( i · j· , · klm ) tDisDI tIksIM tMjlsMI tIm
DIIM ( i · ·j , · klm ) tDisDI tIksII tIlsIM tMjm

MMI ( ij · , klm ) tMiksMM tMjlsMI tIm
MIM ( i · j , klm ) tMiksMI tIlsIM tMjm

IMM ( · ij , klm ) tIksIM tMilsMM tMjm

models (for a pair of sequences), with a view toward connections with tree models
and algebraic statistics.

Given two sequences σ1 = σ1
1σ

1
2 · · ·σ1

n and σ2 = σ2
1σ

2
2 · · ·σ2

m over the alphabet
Ω = {A,C,G, T}, an alignment is a string over the auxiliary alphabet {M, I,D} such
that #M +#D = n and #M +#I = m. Here #M,#I,#D denote the number of
characters M, I,D in the word, respectively. An alignment records the “edit steps”
from the sequence σ1 to the sequence σ2, where edit operations consist of changing
characters, preserving them, or inserting/deleting them. An I in the alignment string
corresponds to an insertion from the first sequence to the second, a D is a deletion
from the first sequence to the second, and an M is either a character change or lack
thereof. The set An.m of all alignments depends only on the integers n and m, and
not on σ1 and σ2.

Proposition 5. The cardinality of the set An.m of all alignments can be com-
puted as the coefficient of the monomial xmyn in the generating function

1
1− x− y − xy

= 1 + x+ y + x2 + 3xy + y2 + · · ·+ x5 + 9x4y + 25x3y2 + · · · .

These cardinalities |An,m| are known as Delannoy numbers in combinatorics [55,
section 6.3]. For instance, there are |A2,3| = 25 alignments of two sequences of
length two and three. They are listed in Table 5.1 below.

The pair HMM is visualized graphically in Figure 5.1. The hidden random vari-
ables (unshaded nodes forming the Markov chain) take on the values M, I,D. De-
pending on the state at a hidden node, either one or two characters are generated; in
this way, pair HMMs differ from standard HMMs. The squares around the observed
states (called plates) are used to indicate that the number of characters generated
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THE MATHEMATICS OF PHYLOGENOMICS 15

Fig. 5.1 A pair HMM for sequence alignment.

may vary depending on the hidden state. The number of characters generated is a
random variable, indicated by unshaded nodes within the plates (called class nodes).
In pair HMMs, the class nodes take on the values 0 or 1 corresponding to whether
or not a character is generated. Pair HMMs are therefore HMMs where the structure
of the model depends on the assignments to the hidden states. The graphical model
structure of pair HMMs is explained in more detail in [2].

The next proposition gives the algebraic representation of the pair HMM. For a
given alignment a ∈ An,m, we denote the jth character in a by aj , we write a[i] for
#M +#D in the prefix a1a2 . . . ai, and we write a〈j〉 for #M +#I in the prefix
a1a2 . . . aj . Let σ1 and σ2 be two DNA sequences of lengths n,m, respectively. Then
the probability that our model generates these two sequences equals

φσ1,σ2 =
∑

a∈An,m
ta1(σ

1
a[1], σ

2
a〈1〉) ·

|a|∏
i=2

sai−1ai · tai(σ1
a[i], σ

2
a〈i〉),(5.1)

where the parameter sai−1ai is the transition probability from state ai−1 to ai, and
the parameter tai(σ

1
a[i], σ

2
a〈i〉) is the output probability for a given state ai and the

indicated output characters on the strings σ1 and σ2.
Proposition 6. The pair HMM for sequence alignment is the image of a poly-

nomial map φ : C33 → C
4n+m

. The coordinates of the map φ are the polynomials of
degree ≤ 2n+ 2m− 1 which are given in (5.1).

We need to explain why the number of parameters in our representation of the
pair HMM is 33. First, there are nine parameters

S =

 sMM sMI sMD
sIM sII sID
sDM sDI sDD


which play the same role as in section 4, namely, they represent transition probabilities
in the Markov chain. There are 16 parameters tM (a, b) =: tMab for the probability
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16 LIOR PACHTER AND BERND STURMFELS

that letter a in σ1 is matched with letter b in σ2. The insertion parameters tI(a, b)
depend only on the letter b, and the deletion parameters tD(a, b) depend only on the
letter a, so there are only 8 of these parameters. Hence the total number of (complex)
parameters is 9 + 16 + 8 = 33. Of course, in our applications, probabilities are non-
negative reals that sum to one, so we get a reduction in the number of parameters, just
like in (4.1). In the upcoming example, which explains the algebraic representation
of Proposition 6, we use the abbreviations tIb and tDa for these parameters.

Consider two sequences σ1 = ij and σ2 = klm of length n = 2 and m = 3 over
the alphabet Ω = {A,C,G, T}. The number of alignments is |A2,3| = 25, and they
are listed in Table 5.1. For instance, the alignment MIID, here written ( i··j , klm · ),
corresponds to i−−j

kl m− in standard genomics notation.
The polynomial φσ1,σ2 is the sum of the 25 monomials (of degree 9, 7, 5) in the

rightmost column. Thus the pair HMM presented in Table 5.1 is nothing but a
polynomial map

φ : C33 → C
1024.

Statistics is all about making inferences. We shall now explain how this is done
with this model. For any fixed parameters s·· and t·· , one wishes to determine the
alignment â ∈ An,m which indexes the term of largest numerical value among the
many terms (see Proposition 5) of the polynomial φσ1,σ2 . (If there is more than one
alignment with maximum value, then we break ties lexicographically.) We call â the
explanation of the observation (σ1, σ2).

The explanation for a pair of DNA sequences can be computed in polynomial
time (in their lengths n and m) using a variant of the Viterbi algorithm. Just like in
the previous section, the key idea is to tropicalize the coordinate polynomials (5.1) of
the statistical model in question. Namely, we compute

max
a∈An,m

Ta1(σ
1
a[1], σ

2
a〈1〉) +

|a|∑
i=2

Sai−1ai + Tai(σ
1
a[i], σ

2
a〈i〉),(5.2)

where S·· = log(s··) and T·· = log(t··). The “arg max” of this piecewise linear convex
function is the optimal alignment â. Inference in the pair HMM means computing
the optimal alignment of two observed DNA sequences. In other words, by inference
we mean evaluating the alignment function

Ωn × Ωm → An,m , (σ1, σ2) �→ â.

There are doubly-exponentially many functions from Ωn × Ωm to An,m, but, by
Elizalde’s few inference functions theorem [24], at most polynomially many of them
are alignment functions. Like for gene finding functions (cf. Theorem 4), it is an open
problem to characterize alignment functions.

The function R33 → R given in (5.2) is the support function of a convex polytope
in R33, namely, the Newton polytope of the polynomial φσ1,σ2 . The vertices of this
polytope correspond to all optimal alignments of the sequences σ1, σ2 with respect
to all possible choices of the parameters, and the normal fan of the polytope divides
the logarithmic parameter space into regions which yield the same optimal alignment.
This can be used for analyzing the sensitivity of alignments to parameters, and for
the computation of posterior probabilities of optimal alignments. The process of
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THE MATHEMATICS OF PHYLOGENOMICS 17

computing this polytope is called parametric alignment or parametric inference. It is
known [27, 43, 60] that parametric inference can be done in polynomial time (in m
and n).

An important remark is that the formulation of sequence alignment with pair
HMMs is equivalent to combinatorial “scoring schemes” or “generalized edit dis-
tances” which can be used to assign weights to alignments [11]. The simplest scoring
scheme consists of two parameters: a mismatch score mis, and an indel score gap [29].
The weight of an alignment is the sum of the scores for all positions in the alignment,
where a match gets a score of 1. In the case where mis and gap are nonnegative,
this is equivalent to specializing the 33 logarithmic parameters S·· = log(s··) and
T·· = log(t··) of the pair HMM as follows:

Sij = 0, TIj = TDi = −gap for all i, j,

TMij = −1 if i = j, and TMij = −mis if i �= j.

The case where the scoring scheme consists of both positive and negative parameters
corresponds to a normalized pair HMM [18]. This specialization of the parameters
corresponds to projecting the Newton polytope of φσ1,σ2 into two dimensions. Para-
metric alignment means computing the resulting two-dimensional polygon. For two
sequences of length n, an upper bound on the number of vertices in the polygon is
O(n2/3). We have observed that for biological sequences the number may be much
smaller. See [27] for a survey from the perspective of computational geometry.

In the strict technical sense, our polynomial formulation (5.1) is not needed to
derive or analyze combinatorial algorithms for sequence alignment. However, the
translation from algebraic geometry (5.1) to discrete optimization (5.2) offers much
more than just esthetically pleasing formulas. We posit that (tropical) algebraic
geometry is a conceptual framework for developing new models and designing new
algorithms of practical value for phylogenomics.

6. Models of Evolution. Because organisms from different species cannot pro-
duce offspring together, mutations and genome changes that occur within a species
are independent of those occurring in another species. There are some exceptions
to this statement, such as the known phenomenon of horizontal transfer in bacteria
which results in the transfer of genetic material between different species; however, we
ignore such scenarios in this discussion. We can therefore represent the evolution of
species (or phyla) via a tree structure. The study of tree structures in genome evolu-
tion is referred to as phylogenetics. A phylogenetic X-tree is a tree T with all internal
vertices of degree at least 3, and with the leaves labeled by a set X which consists of
different species. In this section, we assume that T is known and that vertices in T
correspond to known speciation events. We begin by describing statistical models of
evolution that are used to identify regions between genomes that are under selection.

Evolutionary models attempt to capture three important aspects of evolving se-
quences: branch length, substitution, and mutation. Consider a single ancestral base
b at the root r of a phylogenetic tree T , and assume that there are no insertions or
deletions over time. Since the ancestral base changes, it is possible that at two leaves
x, y ∈ X we observe bases c1 �= c2. We say that there has been a substitution between
x and y. In a probabilistic model of evolution, we would like to capture the possibility
of change along internal edges of the tree, with the possibility of back substitutions
as well. For example, it is possible that b→ c1 → b→ c1 along the path from r to x.
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18 LIOR PACHTER AND BERND STURMFELS

Definition 7. A rate matrix (or Q-matrix) is a square matrix Q = (qij)i,j∈Ω
(with rows and columns indexed by the nucleotides) satisfying the properties

qij ≥ 0 for i �= j,∑
j∈Ω

qij = 0 for all i ∈ Ω,

qii < 0 for all i ∈ Ω.

Rate matrices capture the notion of instantaneous rate of mutation. From a given
rate matrix Q one computes the substitution matrices P (t) by exponentiation. The
entry of P (t) in row b and column c equals the probability that the substitution
b→ · · · → c occurs in a time interval of length t. We recall the following well-known
result about continuous-time Markov models.

Proposition 8. Let Q be any rate matrix and P (t) = eQt =
∑∞
i=0

1
i !Q

iti. Then
1. P (s+ t) = P (s) + P (t);
2. P (t) is the unique solution to P ′(t) = P (t) ·Q, P (0) = 1 for t ≥ 0;
3. P (t) is the unique solution to P ′(t) = Q · P (t), P (0) = 1 for t ≥ 0.

Furthermore, a matrix Q is a rate matrix if and only if the matrix P (t) = eQt is a
stochastic matrix (nonnegative with row sums equal to one) for every t.

The simplest model is the Jukes–Cantor DNA model, whose rate matrix is

Q =


−3α α α α
α −3α α α
α α −3α α
α α α −3α

 ,

where α ≥ 0 is a parameter. The corresponding substitution matrix equals

P (t) =
1
4


1 + 3e−4αt 1− e−4αt 1− e−4αt 1− e−4αt

1− e−4αt 1 + 3e−4αt 1− e−4αt 1− e−4αt

1− e−4αt 1− e−4αt 1 + 3e−4αt 1− e−4αt

1− e−4αt 1− e−4αt 1− e−4αt 1 + 3e−4αt

 .

The expected number of substitutions over time t is the quantity

3αt = −1
4
· trace(Q) · t = −1

4
· log det(P (t)

)
.(6.1)

This number is called the branch length. It can be computed from the substitution
matrix P (t) and is used to weight the edges in a phylogenetic X-tree.

One way to specify an evolutionary model is to give a phylogenetic X-tree T
together with a rate matrix Q and an initial distribution for the root of T (which we
here assume to be the stationary distribution on Ω). The branch lengths of the edges
are unknown parameters, and the objective is to estimate these branch lengths from
data. Thus if the tree T has r edges, then such a model has r free parameters, and,
according to the philosophy of algebraic statistics, we would like to regard it as an
r-dimensional algebraic variety.

Such an algebraic representation does indeed exist. We shall explain it for the
Jukes–Cantor DNA model on an X-tree T . Suppose that T has r edges and |X| = n
leaves. Let Pi(t) denote the substitution matrix associated with the ith edge of the
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THE MATHEMATICS OF PHYLOGENOMICS 19

tree. We write 3αiti = − 1
4 log det

(
Pi(t)

)
for the branch length of the ith edge, and

we set πi = 1
4 (1− e−4αiti) and θi = 1− 3πi. Thus

Pi(t) =


θi πi πi πi
πi θi πi πi
πi πi θi πi
πi πi πi θi

 .

In algebraic geometry, we would regard θi and πi as the homogeneous coordinates of
a (complex) projective line P1, but in phylogenomics we limit our attention to the
real segment specified by θi ≥ 0, πi ≥ 0, and θi + 3πi = 1.

Let ∆4n−1 denote the set of all probability distributions on Ωn. Since Ωn has 4n

elements, namely, the DNA sequences of length n, the set ∆4n−1 is a simplex of dimen-
sion 4n − 1. We identify the jth leaf of our tree T with the jth coordinate of a DNA
sequence (u1, . . . , un) ∈ Ωn, and we introduce an unknown pu1u2···un to represent the
probability of observing the nucleotides u1, u2, . . . , un at the leaves 1, 2, . . . , n. The 4n

quantities pu1u2···un are the coordinate functions on the simplex ∆4n−1, or, in the set-
ting of algebraic geometry, on the projective space P4n−1 obtained by complexifying
∆4n−1.

Proposition 9. In the Jukes–Cantor model on a tree T with r edges, the prob-
ability pu1u2···un of making the observation (u1, u2, . . . , un) ∈ Ωn at the leaves is
expressed as a polynomial which is multilinear of degree r in the model parameters
(θ1, π1), (θ2, π2), . . . , (θn, πn). Equivalently, in more geometric terms, the Jukes–
Cantor model on T is the image of a multilinear map

φ : (P1)r −→ P
4n−1.(6.2)

The coordinates of the map φ are easily derived from the assumption that the
substitution processes along different edges of T are independent. It turns out that
the 4n coordinates of φ are not all distinct. To see this, we work out the formulas
explicitly for a very simple tree with three leaves.

Example 10. Let n = r = 3, and let T be the tree with three leaves, labeled by
X = {1, 2, 3}, directly branching off the root of T . We consider the Jukes–Cantor
DNA model with uniform root distribution on T . This model is a three-dimensional
algebraic variety, given as the image of a trilinear map

φ : P1 × P1 × P1 → P
63.

The number of states in Ω3 is 43 = 64 but there are only five distinct polynomials
occurring among the coordinates of the map φ. Let p123 be the probability of observing
the same letter at all three leaves, pij the probability of observing the same letter at
the leaves i, j and a different one at the third leaf, and pdis the probability of seeing
three distinct letters. Then

p123 = θ1θ2θ3 + 3π1π2π3,

pdis = 6θ1π2π3 + 6π1θ2π3 + 6π1π2θ3 + 6π1π2π3,

p12 = 3θ1θ2π3 + 3π1π2θ3 + 6π1π2π3,

p13 = 3θ1π2θ3 + 3π1θ2π3 + 6π1π2π3,

p23 = 3π1θ2θ3 + 3θ1π2π3 + 6π1π2π3.
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20 LIOR PACHTER AND BERND STURMFELS

All 64 coordinates of φ are given by these five trilinear polynomials, namely,

pAAA = pCCC = pGGG = pTTT =
1
4
· p123,

pACG = pACT = · · · = pGTC =
1
24
· pdis,

pAAC = pAAT = · · · = pTTG =
1
12
· p12,

pACA = pATA = · · · = pTGT =
1
12
· p13,

pCAA = pTAA = · · · = pGTT =
1
12
· p23.

This means that our Jukes–Cantor model is the image of the simplified map

φ′ : P1 × P1 × P1 → P
4,
(
(θ1, π1), (θ2, π2), (θ3, π3)

) �→ (p123, pdis, p12, p13, p23).

In order to characterize the image of φ′ algebraically, we perform the following linear
change of coordinates:

q111 = p123 +
1
3
pdis − 1

3
p12 − 1

3
p13 − 1

3
p23 = (θ1 − π1)(θ2 − π2)(θ3 − π3),

q110 = p123 − 1
3
pdis + p12 − 1

3
p13 − 1

3
p23 = (θ1 − π1)(θ2 − π2)(θ3 + 3π3),

q101 = p123 − 1
3
pdis − 1

3
p12 + p13 − 1

3
p23 = (θ1 − π1)(θ2 + 3π2)(θ3 − π3),

q011 = p123 − 1
3
pdis − 1

3
p12 − 1

3
p13 + p23 = (θ1 + 3π1)(θ2 − π2)(θ3 − π3),

q000 = p123 + pdis + p12 + p13 + p23 = (θ1 + 3π1)(θ2 + 3π2)(θ3 + 3π3).

This reveals that our model is the hypersurface in P4 whose ideal equals

IT = 〈 q000q
2
111 − q011q101q110 〉.

If we set θi = 1− 3πi, then we get the additional constraint q000 = 1.
The construction in this example generalizes to arbitrary trees T . There exists

a change of coordinates, simultaneously on the parameter space (P1)r and on the
probability space P4n−1, such that the map φ in (6.2) becomes a monomial map in
the new coordinates. This change of coordinates is known as the Fourier transform
or as the Hadamard conjugation (see [25, 31, 57, 58]).

We regard the Jukes–Cantor DNA model on a tree T with n leaves and r edges as
an algebraic variety of dimension r in P4n−1, namely, it is the image of the map (6.2).
Its homogeneous prime ideal IT is generated by differences of monomials qa − qb in
the Fourier coordinates. In the phylogenetics literature (including the books [26, 50]),
the polynomials in the ideal IT are known as phylogenetic invariants of the model.
The following result was shown in [57].

Theorem 11. The ideal IT which defines the Jukes–Cantor model on a binary
tree T is generated by monomial differences qa − qb of degree at most three.

It makes perfect sense to allow arbitrary distinct stochastic matrices P (t) on the
edges of the tree T . The resulting model is the general Markov model on the tree T .
Allman and Rhodes [4, 5] determined the complete system of phylogenetic invariants
for the general Markov model on a trivalent tree T .
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THE MATHEMATICS OF PHYLOGENOMICS 21

An important problem in phylogenomics is that of identifying the maximum like-
lihood branch lengths, given a phylogenetic X-tree T , a rate matrix Q, and an align-
ment of sequences. For the Jukes–Cantor DNA model on three taxa, described in
Example 10, the exact “analytic” solution of this optimization problem leads to an
algebraic equation of degree 23. See [33, section 6] for details.

Let us instead consider the maximum likelihood estimation problem in the much
simpler case of the Jukes–Cantor DNA model on two taxa. Here the tree T has only
two leaves, labeled X = {1, 2}, directly branching off the root of T . The model is
given by a surjective bilinear map

φ : P1 × P1 → P
1 , ((θ1, π1), (θ2, π2)) �→ ( p12, pdis ).(6.3)

The coordinates of the map φ are

p12 = θ1θ2 + 3π1π2,

pdis = 3θ1π2 + 3θ2π1 + 6π1π2.

As before, we pass to affine coordinates by setting θi = 1− 3πi for i = 1, 2.
One crucial difference between the model (6.3) and Example 10 is that the param-

eters in (6.3) are not identifiable. Indeed, the inverse image of any point in P1 under
the map φ is a curve in P1×P1. Suppose we are given data consisting of two aligned
DNA sequences of length n where k of the bases are different. The corresponding
point in P1 is u = (n− k, k). The inverse image of u under the map φ is the curve in
the affine plane with the equation

12nπ1π2 − 3nπ1 − 3nπ2 + k = 0.

Every point (π1, π2) on this curve is an exact fit for the data u = (n − k, k). Hence
this curve equals the set of all maximum likelihood parameters for this model and the
given data. We rewrite the equation of the curve as follows:

(1− 4π1)(1− 4π2) = 1− 4k
3n

.(6.4)

Recall from (6.1) that the branch length from the root to leaf i equals

3αiti = −1
4
· log det(Pi(t)) = −3

4
· log(1− 4πi).

By taking logarithms on both sides of (6.4), we see that the curve of all maximum
likelihood parameters becomes a line in the branch length coordinates:

3α1t1 + 3α2t2 = −3
4
· log

(
1− 4k

3n

)
.(6.5)

The sum on the left-hand side is the distance from leaf 1 to leaf 2 in the tree T . Our
discussion of the two-taxa model leads to the following formula which is known in
evolutionary biology [26] under the name Jukes–Cantor correction.

Proposition 12. Given an alignment of two sequences of length n, with k dif-
ferences between the bases, the ML estimate of the branch length equals

δ12 = −3
4
· log

(
1− 4k

3n

)
.
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22 LIOR PACHTER AND BERND STURMFELS

There has been recent progress on solving the likelihood equations exactly for
small trees [15, 16, 33, 46]. We believe that these results will be useful in designing
new algorithms for computing maximum likelihood branch lengths, and in better
understanding the mathematical properties of existing methods (such as fastDNAml
[40]) which are widely used by computational biologists.

It may also be the case that T is unknown, in which case the problem is not to
select a point on a variety, but to select from (exponentially many) varieties. This
problem is discussed in the next section.

The evolutionary models discussed above do not allow for insertion and deletion
events. They also assume that sites evolve independently. Although many widely
used models are based on these assumptions, biological reality calls for models that
include insertion and deletion events [32], site interactions [52], and the flexibility
to allow for genome dynamics such as rearrangements. Interested mathematicians
will find a cornucopia of fascinating research problems arising from such more refined
evolutionary models.

7. Phylogenetic Combinatorics. Fix a set X of n taxa. A dissimilarity map on
X is a function δ : X ×X → R such that δ(x, x) = 0 and δ(x, y) = δ(y, x). The set of
all dissimilarity maps on X is a real vector space of dimension

(
n
2

)
which we identify

with R(
n
2). A dissimilarity map δ is called a metric on X if the triangle inequality

holds:

δ(x, z) ≤ δ(x, y) + δ(y, z) for x, y, z ∈ X.

The set of all metrics on X is a full-dimensional convex polyhedral cone in R(
n
2), called

the metric cone. Phylogenetic combinatorics is concerned with the study of certain
subsets of the metric cone which are relevant for biology. This field was pioneered in
the 1980s by Andreas Dress and his collaborators; see Dress’s 1998 ICM lecture [19]
and the references given therein.

Let T be a phylogenetic X-tree whose edges have specified lengths. These lengths
can be arbitrary nonnegative real numbers. The tree T defines a metric δT on X as
follows: δT (x, y) equals the sum of the lengths of the edges on the unique path in T
between the leaves labeled by x and y.

The space of X-trees is the following subset of the metric cone:

TX =
{

δT : T is a phylogenetic X-tree
} ⊂ R(n2).(7.1)

Metric properties of the tree space TX and its statistical and biological significance
were studied by Billera, Holmes, and Vogtmann [9]. The following classical four point
condition characterizes membership in the tree space.

Theorem 13. A metric δ on X lies in TX if and only if, for any four taxa
u, v, x, y ∈ X, δ(u, v) + δ(x, y) ≤ max{δ(u, x) + δ(v, y), δ(u, y) + δ(v, x)}.

We refer to the book [50] for a proof of this theorem and several variants. To
understand the structure of TX , let us fix the combinatorial type of a trivalent tree
T . The number of choices of such trees is the Schröder number

(2n− 5)!! = 1 · 3 · 5 · · · · · (2n− 7) · (2n− 5).(7.2)

Since X has cardinality n, the tree T has 2n − 3 edges, and each of these edges
corresponds to a split (A,B) of the set X into two nonempty disjoint subsets A and
B. Let Splits(T ) denote the collection of all 2n− 3 splits (A,B) arising from T .
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THE MATHEMATICS OF PHYLOGENOMICS 23

Each split (A,B) defines a split metric δ(A,B) on X as follows:

δ(A,B)(x, y) = 0 if (x ∈ A and y ∈ A) or (x ∈ B and y ∈ B),
δ(A,B)(x, y) = 1 if (x ∈ A and y ∈ B) or (y ∈ A and x ∈ B).

The vectors
{
δ(A,B) : (A,B) ∈ Splits(T )} are linearly independent in R(

n
2). Their

nonnegative span is a cone CT isomorphic to the orthant R2n−3
≥0 .

Proposition 14. The space TX of all X-trees is the union of the (2n − 5)!!
orthants CT . It is hence a simplicial fan of pure dimension 2n− 3 in R(

n
2).

The tree space TX can be identified combinatorially with a simplicial complex of
pure dimension 2n− 4, to be denoted T̃X . The vertices of T̃X are the 2n−1 − 1 splits
of the set X. We say that two splits (A,B) and (A′, B′) are compatible if at least one
of the four sets A ∩ A′, A ∩ B′, B ∩ A′, and B ∩ B′ is the empty set. The following
proposition is a combinatorial characterization of the tree space.

Proposition 15. A collection of splits of the set X forms a face in the simplicial
complex T̃X if and only if that collection is pairwise compatible.

The phylogenetics problem is to reconstruct a tree T from n aligned sequences. In
principle, one can select from evolutionary models for all possible trees in order to find
the maximum likelihood fit. Even if the maximum likelihood problem can be solved for
each individual tree, this approach becomes infeasible in practice when n increases,
because of the combinatorial explosion in the number (7.2) of trees. A number of
alternative approaches have been suggested that attempt to find evolutionary models
which fit summaries of the data. They build on the characterizations of trees given
above.

Distance-based methods are based on the observation that trees can be encoded
by metrics satisfying the four point condition (Theorem 13). Starting from a multiple
sequence alignment, one can produce a dissimilarity map on the set X of taxa by
computing the maximum likelihood distance between every pair of taxa, using Propo-
sition 12. The resulting dissimilarity map δ is typically not a tree metric, i.e., it does
not actually lie in the tree space TX . What needs to be done is to replace δ by a
nearby tree metric δT ∈ TX .

The method of choice for most biologists is the neighbor-joining algorithm, which
provides an easy-to-compute map from the cone of all metrics onto TX . The algorithm
is based on the following “cherry-picking theorem” [47, 56].

Theorem 16. Let δ be a tree metric on X. For every pair i, j ∈ X set

Qδ(i, j) = (n− 2) · δ(i, j) −
∑
k 
=i

δ(i, k) −
∑
k 
=j

δ(j, k).(7.3)

Then the pair x, y ∈ X that minimizes Qδ(x, y) is a cherry in the tree, i.e., x and y
are separated by only one internal vertex z in the tree.

Neighbor-joining works as follows. Starting from an arbitrary metric δ on n taxa,
one sets up the n×n-matrix Qδ whose (i, j)-entry is given by the formula (7.3), and
one identifies the minimum off-diagonal entry Qδ(x, y). If δ were a tree metric, then
the internal vertex z which separates the leaves x and y would have the following
distance from any other leaf k in the tree:

δ(z, k) =
1
2
(
δ(x, k) + δ(y, k)− δ(x, y)

)
.(7.4)

One now removes the taxa x, y and replaces them by a new taxon z whose distance

D
ow

nl
oa

de
d 

03
/0

7/
17

 to
 1

31
.2

15
.2

25
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



24 LIOR PACHTER AND BERND STURMFELS

to the remaining n− 2 taxa is given by (7.4). This replaces the n× n-matrix Qδ by
an (n− 1)× (n− 1) matrix, and one iterates the process.

This neighbor-joining algorithm recursively constructs a tree T whose metric δT
is reasonably close to the given metric δ. If δ is a tree metric, then the method
is guaranteed to reconstruct the correct tree. More generally, instead of estimating
pairwise distances, one can attempt to (more accurately) estimate the sum of the
branch lengths of subtrees of size m ≥ 3.

We define an m-dissimilarity map on X to be a function δ : Xm → R such
that δ(i1, i2, . . . , im) = δ(iπ(1), iπ(2), . . . , iπ(m)) for all permutations π on {1, . . . ,m}
and δ(i1, i2, . . . , im) = 0 if the taxa i1, i2, . . . , im are not distinct. The set of all
m-dissimilarity maps on X is a real vector space of dimension

(
n
m

)
which we identify

with R(
n
m). Every X-tree T gives rise to an m-dissimilarity map δT as follows. We

define δT (i1, . . . , im) to be the sum of all branch lengths in the subtree of T spanned
by i1, . . . , im ∈ X.

The following theorem [17, 41] is a generalization of Theorem 16. It leads to a
generalized neighbor-joining algorithm which provides a better approximation of the
maximum likelihood tree and parameters.

Theorem 17. Let T be an X-tree and m < n = |X|. For any i, j ∈ X set

QT (i, j) =
(

n− 2
m− 1

) ∑
Y ∈(X\{i,j}m−2 )

δT (i, j, Y ) −
∑

Y ∈(X\{i}m−1 )
δT (i, Y ) −

∑
Y ∈(X\{j}m−1 )

δT (j, Y ).

Then the pair x, y ∈ X that minimizes QT (x, y) is a cherry in the tree T .
The subset of R(

n
m) consisting of all m-dissimilarity maps δT arising from trees T

is a polyhedral space which is the image of the tree space TX under a piecewise-linear
map R(

n
2) → R(

n
m). We do not know a simple characterization of this m-version of

tree space which extends the four point condition.
Here is another natural generalization of the space of trees. Fix an m-dissimilarity

map δ : Xm → R and consider any (m − 2)-element subset Y ∈ ( X
m−2

)
. We get an

induced dissimilarity map δ/Y on X\Y by setting

δ/Y (i, j) = δ(i, j, Y ) for all i, j ∈ X\Y.

We say that δ is an m-tree if δ/Y is a tree metric for all Y ∈ ( X
m−2

)
. Thus, by

Theorem 13, an m-dissimilarity map δ on X is an m-tree if

δ(i, j, Y ) + δ(k, l, Y ) ≤ max{δ(i, k, Y ) + δ(j, l, Y ), δ(i, l, Y ) + δ(k, j, Y )}

for all Y ∈ ( X
m−2

)
and all i, j, k, l ∈ X\Y .

Let Grm,n denote the subset of R(
n
m) consisting of all m-trees. The space Grm,n

is a polyhedral fan which is slightly larger than the tropical Grassmannian studied
in [54]. For every m-tree δ ∈ Grm,n there is an (m − 1)-dimensional tree-like space
whose “leaves” are the taxa in X. This is the tropical linear space defined in [53]. This
construction, which is described in [54, section 6] and [44, section 3.5], specializes to
the construction of an X-tree T from its metric δT when m = 2. The study of m-trees
and the tropical Grassmannian was anticipated in [19, 20]. The Dress–Wenzel theory
of matroids with coefficients [20] contains our m-trees as a special case. The space
Grm,n of all m-trees is discussed in the context of buildings in [19]. Note that the
tree space TX in (7.1) is precisely the tropical Grassmannian Gr2,n.
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THE MATHEMATICS OF PHYLOGENOMICS 25

It is an open problem to find a natural and easy-to-compute projection from
R(

n
m) onto Grm,n which generalizes the neighbor-joining method. Such a variant of

neighbor-joining would be likely to have applications for more intricate biological data
that are not easily explained by a tree model. We close this section by discussing an
example.

Example 18. Fix a set of six taxa, X = {1, 2, 3, 4, 5, 6}, and let m = 3. The
space of 3-dissimilarity maps on X is identified with R20. An element δ ∈ R20 is a
3-tree if δ/i is a tree metric on X\{i} for all i. Equivalently,

δ(i, j, k) + δ(i, l,m) ≤ max
{
δ(i, j, l) + δ(i, k,m), δ(i, j,m) + δ(i, k, l)

}
for all i, j, k, l,m ∈ X. The set Gr3,6 of all 3-trees is a 10-dimensional polyhedral
fan. Each cone in this fan contains the 6-dimensional linear space L consisting of all
3-dissimilarity maps of the particular form

δ(i, j, k) = ωi + ωj + ωk for some ω ∈ R6.

The quotient Gr3,6/L is a 4-dimensional fan in the 14-dimensional real vector space
R

20/L. Let G̃r3,6 denote the 3-dimensional polyhedral complex obtained by intersecting
Gr3,6/L with a sphere around the origin in R20/L.

It was shown in [54, section 5] that G̃r3,6 is a 3-dimensional simplicial complex
consisting of 65 vertices, 550 edges, 1,395 triangles, and 1,035 tetrahedra. Each of the
1,035 tetrahedra parameterizes 6-tuples of tree metrics(

δ/1, δ/2, δ/3, δ/4, δ/5, δ/6
)
,

where the tree topologies on five taxa are fixed. The homology of the tropical Grass-
mannian G̃r3,6 is concentrated in the top dimension and is free abelian:

H3
(
G̃r3,6,Z

)
= Z126.

If T is an X-tree and δT the corresponding 3-dissimilarity map (as in Theorem
17), then it is easy to check that δT lies in Gr3,6. The set of all 3-trees of the special
form δ = δT has codimension 1 in Gr3,6. It is the intersection of Gr3,6 with the
15-dimensional linear subspace of R20 defined by the equations

δ(123) + δ(145) + δ(246) + δ(356) = δ(124) + δ(135) + δ(236) + δ(456),
δ(123) + δ(145) + δ(346) + δ(256) = δ(134) + δ(125) + δ(236) + δ(456),
δ(123) + δ(245) + δ(146) + δ(356) = δ(124) + δ(235) + δ(136) + δ(456),
δ(123) + δ(345) + δ(246) + δ(156) = δ(234) + δ(135) + δ(126) + δ(456),
δ(123) + δ(345) + δ(146) + δ(256) = δ(134) + δ(235) + δ(126) + δ(456).

Working modulo L and intersecting with a suitable sphere, the tree space T̃X is a 2-
dimensional simplicial complex, consisting of 105 = 5!! triangles. To be precise, the
simplicial complex in Proposition 15 is the join of this triangulated surface with the 5-
simplex on X. Theorem 17 relates to the following geometric picture: the triangulated
surface T̃X sits inside the triangulated threefold G̃r3,6, namely, as the solution set of
the five equations.
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8. Back to theData. In section 2, a conjecture was proposed based on our finding
that the “Meaning of Life” sequence (2.1) is present (without mutations, insertions,
or deletions) in orthologous regions in ten vertebrate genomes. In this section we
explain how the various ideas outlined throughout this paper can be used to estimate
the probability that such an extraordinary degree of conservation would occur by
chance. The mechanics of the calculation also provide a glimpse into the types of
processing and analyses that are performed in computational biology. Two research
papers dealing with this subject matter are [7, 21].

What we shall compute in this section is the probability under the Jukes–Cantor
model that a single ancestral base that is not under selection (and is therefore free to
mutate) is identical in the ten present day vertebrates.

Step 1 (genomes). The National Center for Biotechnology Information (NCBI—
http://www.ncbi.nlm.nih.gov/) maintains a public database called GENBANK which
contains all publicly available genome sequences from around the world. Large se-
quencing centers that receive public funding are generally required to deposit raw
sequences into this database within 24 hours of processing by sequencing machines,
and thus many automatic pipelines have been set up for generating and depositing
sequences. The growth in GENBANK has been spectacular. The database contained
only 680, 000 base pairs when it was started in 1982, and this number went up to 49
million by 1990. There are currently 44 billion base pairs of DNA in GENBANK.

The ten genomes of interest are not all complete, but are all downloadable from
GENBANK, either in pieces mapped to chromosomes (e.g., for human) or as collec-
tions of subsequences called contigs (for less complete genomes).

Step 2 (annotation). In order to answer our question we need to know where
genes are in the genomes. Some genomes have annotations that were derived experi-
mentally, but all the genomes are annotated using HMMs (section 4) shortly after the
release of the sequence. These annotations are performed by centers such as at UC
Santa Cruz (http://genome.ucsc.edu/) as well as by individual authors of programs.
It remains an open problem to accurately annotate genomes. But HMM programs are
quite good on average. For example, typically 98% of coding bases are predicted cor-
rectly to be in genes. On the other hand, boundaries of exons are often misannotated:
current state of the art methods only achieve accuracies of about 80% [6].

Step 3 (alignment). We start out by performing a genome alignment. Current
methods for aligning whole genomes are all based, to varying degrees, on the pair
HMM ideas of section 5. Although in practice it is not possible to align sequences
containing billions or even millions of base pairs with HMMs, pair HMMs are sub-
routines of more complex alignment strategies where smaller regions for alignment
are initially identified from the entire genomes by fast string matching algorithms
[10]. The ten vertebrate whole genome alignments which gave rise to Conjecture 1
are accessible at http://bio.math.berkeley.edu/genomes/.

Step 4 (finding neutral DNA). In order to compute the probability that a certain
subsequence is conserved between genomes, it is necessary to estimate the neutral rate
of evolution. This is done by estimating parameters for an evolutionary model of base
pairs in the genome that are not under selection, and are therefore free to mutate.
Since neutral regions are difficult to identify a priori, commonly used surrogates are
synonymous substitutions in codons (section 3). Because synonymous substitutions
do not change the amino acids, it is unlikely that they are selected for or against,
and various studies have shown that such data provide good estimates for neutral
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Table 8.1 Jukes–Cantor pairwise distance estimates.

gg hs mm pt rn cf dr tn tr xt
gg – 0.831 0.928 0.831 0.925 0.847 1.321 1.326 1.314 1.121
hs – – 0.414 0.013 0.411 0.275 1.296 1.274 1.290 1.166

mm – – – 0.413 0.176 0.441 1.256 1.233 1.264 1.218
pt – – – – 0.411 0.275 1.291 1.267 1.288 1.160
rn – – – – – 0.443 1.255 1.233 1.258 1.212
cf – – – – – – 1.300 1.251 1.269 1.154
dr – – – – – – – 1.056 1.067 1.348
tn – – – – – – – – 0.315 1.456
tr – – – – – – – – – 1.437

mutation rates. By searching through the annotations and alignments, we identified
n = 14,202 fourfold degenerate sites. These can be used for analyzing probabilities of
neutral mutations.

Step 5 (deriving a metric). We would ideally like to use maximum likelihood
techniques to reconstruct a tree T with branch lengths from the alignments of the
four-fold degenerate sites. One approach is to try to use a maximum likelihood ap-
proach, but this is difficult to do reliably because of the complexity of the likelihood
equations, even for the Jukes–Cantor models with |X| = 10. An alternative approach
is to estimate pairwise distances between species i, j using the formula in Proposition
12. The resulting metric on the set X = {gg,hs,mm,pt, rn, cf,dr, tn, tr, xt} is given
in Table 8.1. For example, the pairwise alignment between human and chicken (ex-
tracted from the multiple alignment) has n = 14,202 positions, of which k = 7,132
are different. Thus, the Jukes–Cantor distance between the genomes of human and
chicken equals

−3
4
· log

(
1− 4k

3n

)
= −3

4
· log

(
14078
42606

)
= 0.830536 . . . .

Step 6 (building a tree). From the pairwise distances in Table 8.1 we construct
a phylogenetic X-tree using the neighbor-joining algorithm (section 7). The tree with
the inferred branch lengths is shown in Figure 8.1. The tree is drawn such that the
branch lengths are consistent with the horizontal distances in the diagram. The root of
the tree was added manually in order to properly indicate the ancestral relationships
between the species.

At this point we wish to add a philosophical remark: The tree in Figure 8.1
is a point on an algebraic variety! Indeed, that variety is the Jukes–Cantor model
(Proposition 9), and the preimage coordinates (θi, πi) of that point are obtained by
exponentiating the branch lengths as described in section 6.

Step 7 (calculating the probability). We are now given a specific point on the
variety representing the Jukes–Cantor model on the tree depicted in Figure 8.1. Recall
from Proposition 9 that this variety, and hence our point, lives in a projective space of
dimension 410−1 = 1,048,575. What we are interested in are four specific coordinates
of that point, namely, the probabilities that the same nucleotide occurs in every
species:

pAAAAAAAAAA = pCCCCCCCCCC = pGGGGGGGGGG = pTTTTTTTTTT .(8.1)

As discussed in section 6, this expression is a multilinear polynomial in the edge
parameters (θi, φi). When we evaluate it at the parameters derived from the branch

D
ow

nl
oa

de
d 

03
/0

7/
17

 to
 1

31
.2

15
.2

25
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



28 LIOR PACHTER AND BERND STURMFELS

Fig. 8.1 Neighbor-joining tree from alignment of codons in ten vertebrates.

lengths in Figure 8.1, we find that

pAAAAAAAAAA = 0.009651 . . . .

Returning to the “Meaning of Life” sequence (2.1), this implies the following.
Proposition 19. Assuming the probability distribution on Ω10 given by the

Jukes–Cantor model on the tree in Figure 8.1, the probability of observing a sequence
of length 42 unchanged at a given location in the ten vertebrate genomes within a
neutrally evolving region equals (0.038604)42 = 4.3 · 10−60.

This calculation did not take into account the fact that the “Meaning of Life”
sequence may occur in an arbitrary location of the genome in question. In order to
adjust for this, we can multiply the number in Proposition 19 by the length of the
genomes. The human genome contains approximately 2.8 billion nucleotides, so it
is reasonable to conclude that the probability of observing a sequence of length 42
unchanged somewhere in the ten vertebrate genomes is approximately

2.8 · 109 × 4.3 · 10−60 � 10−50.

This probability is a very small number, i.e., it is unlikely that the remarkable prop-
erties of the sequence (2.1) occurred by “chance.” Despite the shortcomings of the
Jukes–Cantor model discussed at the end of section 6, we believe that Proposition 19
constitutes a sound argument in support of Conjecture 1.

Acknowledgments. The vertebrate whole genome alignments we have analyzed
were assembled by Nicolas Bray and Colin Dewey. We also thank Sourav Chatterji
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[35] R. M. Karp, Mathematical challenges from genomics and molecular biology, Notices Amer.

Math. Soc., 49 (2002), pp. 544–553.
[36] M. Kellis, B. Birren, and E. Lander, Proof and evolutionary analysis of ancient genome

duplication in the yeast Saccharomyces cerevisiae, Nature, 8 (2004), pp. 617–624.
[37] D. Kulp, D. Haussler, M. G. Reese, and F. H. Eeckman, A generalized hidden Markov

model for the recognition of human genes in DNA, in Proceedings of the Fourth Interna-
tional Conference on Intelligent Systems for Molecular Biology (ISMB ’96), AAAI Press,
Menlo Park, CA, 1996, pp. 134–142.

[38] E. S. Lander et al., Initial sequencing and analysis of the human genome, Nature, 409 (2001),
pp. 860–921.

[39] E. M. Myers et al., A whole-genome assembly of Drosophila, Science, 287 (2000), pp. 2196–
2204.

[40] G. J. Olsen, H. Matsuda, R. Hagstrom, and R. Overbeek, fastDNAml: A tool for con-
struction of phylogenetic trees of DNA sequences using maximum likelihood, Comput. Appl.
Biosci., 10 (1994), pp. 41–48

[41] L. Pachter and D. Speyer, Reconstructing trees from subtree weights, Appl. Math. Lett., 17
(2004), pp. 615–621.

[42] L. Pachter and B. Sturmfels, Tropical geometry of statistical models, Proc. Natl. Acad. Sci.
USA, 101 (2004), pp. 16132–16137

[43] L. Pachter and B. Sturmfels, Parametric inference for biological sequence analysis, Proc.
Natl. Acad. Sci. USA, 101 (2004), pp. 16138–16143.

[44] L. Pachter and B. Sturmfels, eds., Algebraic Statistics for Computational Biology, Cam-
bridge University Press, Cambridge, UK, 2005.

[45] P. Pevzner and G. Tesler, Human and mouse genomic sequences reveal extensive breakpoint
reuse in mammalian evolution, Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 7672–7677.

[46] R. Sainudiin and R. Yoshida, Applications of interval methods to phylogenetics, in Alge-
braic Statistics for Computational Biology, L. Pachter and B. Sturmfels, eds., Cambridge
University Press, Cambridge, UK, 2005, pp. 359–374.

[47] N. Saitou and M. Nei, The neighbor joining method: A new method for reconstructing phy-
logenetic trees, Mol. Bio. Evol., 4 (1987), pp. 406–425.

[48] A. Sandelin, P. Bailey, S. Bruce, P. Engström, J. M. Klos, W. W. Wasserman, J. Er-
icson, and B. Lenhard, Arrays of ultraconserved non-coding regions span the loci of key
developmental genes in vertebrate genomes, BMC Genomics, 5 (2004), p. 99.

[49] D. Sankoff and J. H. Nadeau, Chromosome rearrangements in evolution: From gene order
to genome sequence and back, Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 11188–11189.

[50] C. Semple and M. Steel, Phylogenetics. Oxford University Press, Oxford, UK, 2003.
[51] A. Siepel et al., Evolutionarily conserved elements in vertebrate, insect, worm and yeast

genomes, Genome Res., 15 (2005), pp. 1034–1050.
[52] A. Siepel and D. Haussler, Phylogenetic estimation of context-dependent substitution rates

by maximum likelihood, Mol. Bio. Evol., 21 (2004), pp. 468–488.
[53] D. Speyer, Tropical Linear Spaces, preprint, http://arxiv.org/abs/math/0410455.
[54] D. Speyer and B. Sturmfels, The tropical Grassmannian, Adv. Geom., 4 (2004), pp. 389–411.
[55] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Stud. Adv. Math. 49, Cam-

bridge University Press, Cambridge, UK, 1997.

D
ow

nl
oa

de
d 

03
/0

7/
17

 to
 1

31
.2

15
.2

25
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



THE MATHEMATICS OF PHYLOGENOMICS 31

[56] J. A. Studier and K. J. Keppler, A note on the neighbor-joining method of Saitou and Nei,
Mol. Bio. Evol., 5(1988), pp. 729–731.

[57] B. Sturmfels and S. Sullivant, Toric ideals of phylogenetic invariants, J. Comput. Biol., 12
(2005), pp. 204–228.
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