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Abstract. We present new O(n3) algorithms that compute eigenvalues and eigenvectors to high
relative accuracy in floating point arithmetic for the following types of matrices: symmetric Cauchy,
symmetric diagonally scaled Cauchy, symmetric Vandermonde, and symmetric totally nonnegative
matrices when they are given as products of nonnegative bidiagonal factors. The algorithms are
divided into two stages: the first stage computes a symmetric rank revealing decomposition of the
matrix to high relative accuracy, and the second stage applies previously existing algorithms to
this decomposition to get the eigenvalues and eigenvectors. Rank revealing decompositions are also
interesting in other problems, such as the numerical determination of the rank and the approximation
of a matrix by a matrix with smaller rank.
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1. Introduction. When traditional algorithms are used to compute the eigen-
values and eigenvectors of ill-conditioned real symmetric matrices in floating point
arithmetic, only the eigenvalues with largest absolute values are computed with guar-
anteed relative accuracy. The tiny eigenvalues may be computed with no relative
accuracy at all—and even with the wrong sign. The eigenvectors are computed with
small error with respect to the absolute eigenvalue gap. This means that if ε is the
machine precision, and vi and v̂i are, respectively, the exact and computed eigenvec-
tors corresponding to an eigenvalue λi, then the acute angle between these vectors is
bounded as θ(vi, v̂i) ≤ O(ε)/gapi, where gapi = (minj �=i |λi − λj |)/maxk |λk|. This
implies that if there is more than one tiny eigenvalue, then the corresponding eigenvec-
tors are computed with large errors, even if the tiny eigenvalues are well separated in
the relative sense. See [1, section 4.7] for a survey on errors bounds for the symmetric
eigenproblem.

Our goal is to derive algorithms for computing eigenvalues and eigenvectors of
some structured n × n symmetric matrices to high relative accuracy by respecting
the symmetry of the problem, and with cost O(n3), i.e., roughly the same cost as
traditional algorithms for dense symmetric matrices. By high relative accuracy we
mean that the eigenvalues λi, the eigenvectors vi, and their computed counterparts
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†Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911

Leganés, Spain (dopico@math.uc3m.es).
‡Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

(plamen@math.mit.edu).

1126



EIGENDECOMPOSITIONS OF SYMMETRIC MATRICES 1127

λ̂i and v̂i will satisfy

|λ̂i − λi| ≤ O(ε)|λi| and θ(vi, v̂i) ≤
O(ε)

min
j �=i

∣∣∣λi−λj

λi

∣∣∣ for i = 1, . . . , n.(1)

These conditions guarantee that the new algorithms compute all eigenvalues, including
the tiniest ones, with correct sign and leading digits. Moreover, the eigenvectors
corresponding to relatively well separated tiny eigenvalues are accurately computed.
In the case of a multiple eigenvalue, or a cluster of very close eigenvalues in the relative
sense, the previous bound for θ(vi, v̂i) becomes infinite or very large. In this case, we
understand by high relative accuracy that the sines of the canonical angles between
the unperturbed and the perturbed invariant subspaces corresponding to the cluster of
eigenvalues are bounded by O(ε) over the relative gap between the eigenvalues inside
the cluster and those outside the cluster [27]. This means that the new algorithms
compute accurate bases of invariant subspaces corresponding to cluster of eigenvalues
well separated in the relative sense from the rest of the eigenvalues.

In this work, we focus on the following classes of symmetric matrices: diago-
nally scaled Cauchy matrices (this class includes usual symmetric Cauchy matrices),
Vandermonde matrices, and nonsingular totally nonnegative (TN) matrices. Sym-
metric diagonally scaled Cauchy matrices are defined through two ordered sets of real
numbers, {x1, x2, . . . , xn} and {s1, s2, . . . , sn}, and they are of the form

C = SC ′S, where C ′
ij =

1

xi + xj
, 1 ≤ i, j ≤ n, and S = diag(s1, s2, . . . , sn);

i.e., they are the two-sided product of a usual symmetric Cauchy matrix C ′ times a
diagonal matrix S. It should be noticed that if S is the identity matrix, then C = C ′,
and C is just a usual symmetric Cauchy matrix. Symmetric Vandermonde matrices
depend only on one real parameter a, and they are defined as

A =
[
a(i−1)(j−1)

]n
i,j=1

.

This is the only type of Vandermonde matrices that is symmetric. As far as we know,
this is the first time that the class of symmetric Vandermonde matrices has been
studied in the literature. TN matrices are the matrices with all minors nonnegative.
For symmetric diagonally scaled Cauchy matrices, we assume that the parameters
{xi}ni=1 and {si}ni=1 are given, i.e., we are not given just the entries of the matrices.
This is a very natural assumption in situations where Cauchy matrices appear, such
as, for instance, in rational interpolation theory. For symmetric Vandermonde ma-
trices, we adopt the (also natural) assumption that the parameter a is given. In the
case of TN matrices, we assume that the TN structure is explicitly revealed; i.e., any
TN matrix is represented as a product of nonnegative bidiagonal matrices [18, 19].
This bidiagonal decomposition is particularly attractive because its nontrivial entries
determine the eigenvalues of the matrix with high relative accuracy, and it can be
computed very accurately for many important classes of TN matrices [26]. To finish
this short presentation of the type of matrices we are dealing with, we want to stress
that the symmetric diagonally scaled Cauchy and the symmetric Vandermonde matri-
ces are, in general, indefinite matrices, while the symmetric nonsingular TN matrices
are positive definite.

There exist O(n3) algorithms for computing eigendecompositions of symmetric
diagonally scaled Cauchy and symmetric Vandermonde matrices with high relative
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accuracy, but these algorithms do not respect the symmetry of the problem. They are
based on the idea of rank revealing decomposition (RRD): an RRD of G ∈ R

m×n, m ≥
n, is a factorization G = XDY T , where D ∈ R

r×r is diagonal and nonsingular, and
X ∈ R

m×r and Y ∈ R
n×r are well-conditioned matrices of full column rank (notice

that this implies r = rank(G)). Demmel et al. presented in [6] an algorithm for
computing the singular value decomposition (SVD) of G with high relative accuracy

when the computed factors X̂, D̂, and Ŷ of an RRD satisfy the following forward
error bounds:

|Dii − D̂ii| = O(ε)|Dii|,

‖X − X̂‖2 = O(ε)‖X‖2,

‖Y − Ŷ ‖2 = O(ε)‖Y ‖2,

(2)

where ‖ · ‖2 is the spectral, or two-norm. Throughout this paper we will use the
expression accurate RRD to mean an RRD that satisfies the error bounds (2). Algo-
rithms for computing accurate RRDs of general diagonally scaled Cauchy and Van-
dermonde matrices were derived in [5], and therefore it is possible to compute the
SVD of these matrices with high relative accuracy. Finally, an algorithm for com-
puting a high relative accuracy eigendecomposition of a symmetric matrix, given an
SVD computed with high relative accuracy, was developed in [11]. We note that when
these algorithms are used, the symbols O(ε) appearing in (1) should be replaced with
O(max{κ2(X), κ2(Y )} ε), where κ2(X) ≡ ‖X‖2 · ‖X−1‖2 is the spectral condition
number of X.

The process outlined in the previous paragraph does not respect the symmetry of
the problem in two stages. First, the RRDs of diagonally scaled Cauchy and Vander-
monde matrices computed in [5] are not symmetric, i.e., X �= Y , when G is symmetric.
Second, even when G is symmetric and X = Y , the algorithm in [6] computes the
SVD of G without respecting the symmetry of the problem. Respecting the symmetry
is a very important property of eigenvalue algorithms (as well as other computations
in the field of numerical linear algebra) because it often leads to increased speed,
decreased storage requirements, and improved stability properties [3, 10, 21].

As two of our major contributions we present algorithms for computing accurate
symmetric RRDs of symmetric diagonally scaled Cauchy matrices and symmetric
Vandermonde matrices, i.e., decompositions G = XDXT with X well conditioned
and D diagonal, which satisfy the bounds (2). In this context, it is important to
stress that RRDs have been computed in practice as LDU factorizations provided
by Gaussian elimination with complete pivoting (GECP) [6]. As can be seen in [21,
section 4.4] and [22, Chapter 11], just preserving the symmetry of general dense
symmetric indefinite matrices in a stable factorization of LU type requires much more
complicated algorithms and pivoting strategies than the usual Gaussian elimination.
In our algorithms, we need to preserve the symmetry and also attain the accuracy (2).
This demands a careful exploitation of the structure of the problems that allows us to
get important benefits from the point of view of operational cost. The algorithm we
present for computing RRDs of symmetric diagonally scaled Cauchy matrices needs
only half the operations required by the general nonsymmetric algorithm presented in
[5]. In the case of symmetric Vandermonde matrices, the improvements are much more
significant: the cost of the algorithm in [5] is O(n3) and requires complex arithmetic,
and the cost of the algorithm we develop is 2n2 and requires only real arithmetic. We
note, however, that for symmetric Vandermonde matrices our algorithm computes
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accurate RRDs only if |a| ≤ 2
3 or |a| ≥ 3

2 . For the rest of the values of the parameter,
i.e., 2

3 < |a| < 3
2 , our algorithm computes LDLT factorizations with componentwise

relative errors of O(ε), but they are not RRDs because L may be ill conditioned. This
means that the factorizations A = LDLT we compute of symmetric Vandermonde
matrices cannot be used to compute accurate eigendecompositions for values of |a|
close to one. However, they can be potentially useful in other contexts such as, for
instance, in fast solvers of systems of linear equations Ax = b, where A is a symmetric
Vandermonde matrix. The operational savings we have just described may not be
of primary interest for computing accurate eigendecompositions, because in that case
an O(n3) algorithm with high cost has to be applied to the RRD, but they are very
important in other applications of RRDs.

Once an accurate symmetric RRD of a symmetric indefinite matrix G is computed,
the J-orthogonal algorithm, introduced in [35] and carefully analyzed in [33], can be
used to compute an eigendecomposition of G to high relative accuracy, preserving the
symmetry of the process. Also, the signed SVD algorithm of [11] may be used, but
then the symmetry is lost in this second stage. It should be noticed that the error
bounds for the J-orthogonal algorithm [33] are not exactly of type (1) because the
O(ε) symbols are rigorously κε, where κ is the maximum of the condition numbers of
some intermediate matrices appearing in the algorithm, which has not been bounded
by any moderate magnitude. The error bounds for the signed SVD algorithm [11]
are exactly of type (1) because the error for the eigenvectors depends on a different,
smaller eigenvalue relative gap than the one in (1). However, in practice, both the
J-orthogonal and signed SVD algorithms compute the eigenvalues and eigenvectors
to high relative accuracy.

Our third major contribution is to develop algorithms for computing accurate
RRDs of a nonsingular TN matrix whenever its bidiagonal factors are given. RRDs
of general, not necessarily symmetric, TN matrices can be computed by combin-
ing algorithms in [26] and in [6], but the computation of symmetric RRDs requires
a new approach. It should be remarked that algorithms for computing eigenval-
ues and singular values of general nonsingular TN matrices already have been pre-
sented in [26]. If the TN matrix is symmetric, the techniques in [26] allow us to
modify these algorithms to compute eigenvalues to high relative accuracy respecting
the symmetry. However, the algorithms in [26] do not use RRDs computed by a finite
process.

Nonsingular symmetric TN matrices are positive definite; thus a symmetric RRD
A = XDXT has positive elements on the diagonal matrix D. In this case we can
compute an accurate eigendecomposition of A starting from this RRD, using a simpler
and more efficient approach than the J-orthogonal or signed SVD algorithms. To do
so, we compute the singular values and left singular vectors of XD1/2 by using the
one-sided Jacobi method with the rotations applied on the left [10, section 5.4.3] (see
also the seminal reference [9]). This yields eigenvalues and eigenvectors with high
relative accuracy as in (1), where the O(ε) symbols are replaced with O(ε κ2(X)).
Obviously, this process preserves the symmetry.

In the previous paragraphs we have stressed the essential role of accurate RRDs
in computing spectral problems to high relative accuracy. However, the computation
of accurate RRDs is an interesting problem in its own right that can be used in other
problems, such as the numerical determination of the rank, and the approximation of
a matrix by a matrix with smaller rank [34, Chapter 5]. This is one of the reasons
why reducing the cost in computing accurate RRDs is an important issue.



1130 FROILÁN M. DOPICO AND PLAMEN KOEV

The three classes of symmetric matrices we consider—diagonally scaled Cauchy,
Vandermonde, and TN—require three very different techniques for computing their
accurate symmetric RRDs. In this regard, in [30] accurate symmetric RRDs of total
signed compound and diagonally scaled totally unimodular matrices are computed by
using an approach related to the one we used for diagonally scaled Cauchy matrices,
i.e., combining accurate computation of Schur complements with the Bunch–Parlett
pivoting strategy for the diagonal pivoting method [4]. Two other interesting classes
of structured matrices for which there are algorithms for computing accurate RRDs
are weakly diagonally dominant M-matrices [7, 31] and polynomial Vandermonde
matrices [8]. For symmetric weakly diagonally dominant M-matrices, the general
algorithm presented in [7] for nonsymmetric matrices respects the symmetry because it
performs only diagonal pivoting. The algorithm in [8] does not preserve the symmetry
for symmetric matrices, but the symmetric polynomial Vandermonde matrices are
nonsymmetric, except in very special cases.

The paper is organized as follows. In section 2 we study how the eigenvalues and
eigenvectors of a symmetric matrix are changed by errors of type (2) in a symmetric
RRD. In section 3 we present the algorithm, and its error analysis, for computing
symmetric RRDs of symmetric diagonally scaled Cauchy matrices. The same is done
in section 4 for symmetric Vandermonde matrices. Section 5 includes the algorithms
for computing accurate RRDs (symmetric and nonsymmetric) of nonsingular TN ma-
trices. We present numerical experiments in section 6. Finally, in the appendix the
technical proof of Theorem 3.1 for the rounding error analysis of diagonally scaled
Cauchy matrices is carefully developed in a more general setting.

2. Perturbation properties of symmetric RRDs. Let G be an m×n matrix,
and let G = XDY T be an RRD of G. It was shown in [6, Theorem 2.1] that the
RRD of G determines its SVD to high relative accuracy; i.e., small relative normwise
perturbations of X and Y , and small relative componentwise perturbations of D,
produce small relative changes in all singular values of G, and produce small changes in
the singular vectors with respect to the singular value relative gap. Next we prove that
a symmetric RRD of a symmetric matrix determines its eigenvalues and eigenvectors
to high relative accuracy.

Theorem 2.1. Let A = XDXT and Ã = X̃D̃X̃T be RRDs of the real symmetric
n×n matrices A and Ã. Let λ1 ≥ · · · ≥ λn be the eigenvalues of A and λ̃1 ≥ · · · ≥ λ̃n

be the eigenvalues of Ã. Let q1, . . . , qn and q̃1, . . . , q̃n be the corresponding orthonormal
eigenvectors. Let us assume that

‖X̃ −X‖2

‖X‖2
≤ β,

|D̃ii −Dii|
|Dii|

≤ β for all i,

where 0 ≤ β < 1. Let η = β (2 + β)κ2(X) be smaller than 1; then

|λi − λ̃i| ≤ (2η + η2) |λi|, 1 ≤ i ≤ n,

and

sin θ(qi, q̃i) ≤
η

1 − η

⎛⎝1 +
2 + η

minj �=i
|λ̃i−λj |

|λj |

⎞⎠, 1 ≤ i ≤ n,
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where θ(qi, q̃i) is the acute angle between qi and q̃i. In the case of multiple eigenvalues,
or clusters of very close eigenvalues in the relative sense, a similar bound holds for
the sines of the canonical angles of the corresponding invariant subspaces.

Proof. The proof is similar to that of Theorem 2.1 in [6]. The main idea is to

express Ã as a symmetric multiplicative perturbation of A, i.e., Ã = (I+E)A(I+E)T .
This is combined with [12, Theorem 2.1] and [27, Theorem 3.1].

A more general version of Theorem 2.1, including similar perturbation results
for invariant subspaces [27], can be developed. These bounds are useful when sev-
eral eigenvalues form a tight cluster, well separated from the remaining eigenvalues,
because in this case the invariant subspace is well conditioned, while the individual
eigenvectors are very ill conditioned. It is also possible to present perturbation results
for eigenvectors with the relative gap defined using exclusively eigenvalues of A, at
the cost of bounding the sine of the double angle, i.e., sin 2θ(qi, q̃i) [10, Theorem 5.7],
[28, Theorem 2.2].

3. Symmetric diagonally scaled Cauchy matrices. For a real symmetric
matrix A, the LU factorization computed using Gaussian elimination, with partial or
complete pivoting, does not always preserve the symmetry of the problem. Symmetric
pivoting strategies, i.e., permuting rows and columns in the same way, may be unstable
or may not exist. A trivial instance is when all the entries on the main diagonal are
zero. The most widely used factorization [1, 21, 22] for symmetric matrices is the
following special block LU factorization:

PAPT = LDb L
T ,

where P is a permutation matrix, L is unit lower triangular, and Db is block diagonal
with diagonal blocks of dimension 1 or 2. The 2 × 2 diagonal blocks are symmetric
indefinite matrices, and the corresponding diagonal blocks of L are the 2× 2 identity
matrix. This method is sometimes called the diagonal pivoting method [22] and can be
implemented with partial, complete, or rook pivoting. We are interested in computing
a symmetric RRD; therefore we will focus on the Bunch–Parlett complete pivoting
strategy [4], which in practice1 produces a well-conditioned matrix L. Notice that
LDb L

T is not an RRD because Db is not diagonal. To get an RRD, we will perform
a spectral factorization of each of the 2 × 2 blocks of Db; thus Db = V DV T with D
diagonal and V orthogonal and block diagonal as Db. Finally,

PAPT = LDb L
T = (LV )D(LV )T ≡ XDXT(3)

is a symmetric RRD. This procedure has been essentially introduced in [32] to compute
a symmetric indefinite decomposition GJGT , where J = diag(±1). Notice that a
GJGT factorization can be easily computed from XDXT as (X

√
|D|) J (

√
|D|XT ).

Moreover, if XDXT is accurately computed, then GJGT is also accurately computed,
and vice versa. In the rest of the paper we will focus on RRDs XDXT from the point
of view of both algorithms and error analysis.

To be more specific, the method can be described as follows. Let Π be a permu-
tation matrix such that

ΠAΠT =

[
E CT

C B

]
,(4)

1It can be proven that κ∞(L) < n (3.78)n, by using Theorem 8.12 and Problem 8.5 in [22].
This bound is similar to that appearing in GECP. Therefore, there exists a remote possibility of the
Bunch–Parlett pivoting strategy failing to compute a well-conditioned factor L.
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where E is a 1 × 1 or a 2 × 2 nonsingular matrix. The pivot E and the permutation
Π are chosen by comparing the numbers μ0 = maxi,j |aij | ≡ |ars| (r ≥ s) and μ1 =
maxi |aii| ≡ |app|. If μ1 ≥ αμ0, where α is a parameter (0 < α < 1), then E = app,
and if μ1 < αμ0, then E has dimension 2 and E21 = |ars|. The classical value for the
parameter is α = (1 +

√
17)/8 (≈ 0.64). Then we can factorize

ΠAΠT =

[
I 0

CE−1 I

] [
E 0
0 B − CE−1CT

] [
I E−1CT

0 I

]
.(5)

If E is a 2×2 matrix, let E = UΛUT be its orthogonal spectral factorization computed
by the Jacobi procedure [21, section 8.4]. Then

ΠAΠT =

[
U 0

CUΛ−1 I

] [
Λ 0
0 B − CE−1CT

] [
UT Λ−1UTCT

0 I

]
.(6)

The process is recursively repeated on the Schur complement B − CE−1CT .
In the case of diagonally scaled Cauchy matrices, it was shown in [5] how to

compute all the Schur complements with an entrywise small relative error. Therefore,
to compute an accurate symmetric RRD, the remaining task is to show that in (6)
the orthogonal diagonalization E = UΛUT of the 2× 2 pivot and the matrix CUΛ−1

can be accurately computed for each Schur complement.
Let us summarize some key results in [5]. The entries of an n × n symmetric

diagonally scaled Cauchy matrix C are Cij = sisj/(xi +xj), where the si and xi, 1 ≤
i ≤ n, are given real floating point numbers. Let S(m) be the mth Schur complement
of C (S(0) ≡ C). We enumerate the elements of S(m) as the corresponding elements
of C. The recurrence relation,

S(m)
rs = S(m−1)

rs

(xr − xm)(xs − xm)

(xm + xs)(xr + xm)
for m + 1 ≤ r, s ≤ n,(7)

allows us to compute accurately each Schur complement from the previous one. This
is what we need when the Bunch–Parlett pivoting strategy selects a 1 × 1 pivot. If a
2 × 2 pivot is selected, we apply (7) twice to obtain

S(m+1)
rs = S(m−1)

rs

(xr − xm)(xs − xm)

(xm + xs)(xr + xm)
· (xr − xm+1)(xs − xm+1)

(xm+1 + xs)(xr + xm+1)
.(8)

Combining (7) and (8) with (6), we get the following algorithm to compute a
symmetric RRD of a symmetric diagonally scaled Cauchy matrix.2

Algorithm 1. Symmetric RRD of a symmetric diagonally scaled Cauchy matrix.
Input: S = {s1, . . . , sn}; x = {x1, . . . , xn}
Output:

D is a rank× rank diagonal matrix, where rank is the rank of

the diagonally scaled Cauchy matrix defined by S and x.
X is an n× rank block lower triangular matrix, with diagonal

blocks of dimension 1 × 1 or 2 × 2.
IPIV is an n-dimensional vector containing a permutation of

{1, . . . , n} such that, if Q = In and P = Q(IPIV, :), then

P

[
sisj

xi + xj

]n
i,j=1

PT = XDXT .

2We will use MATLAB [29] notation for submatrices, e.g., A(i : j, k : l) will indicate the submatrix
of A consisting of rows i through j and columns k through l, and A(:, k : l) will indicate the submatrix
of A consisting of columns k through l.
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% Initializing variables

α = (1 +
√

17)/8 ≈ 0.64
rank = n
IPIV = 1 : n
D = zeros(n)
for p = 1 : n and q = 1 : p

A(p, q) = spsq/(xp + xq)
A(q, p) = A(p, q)

endfor
% Main loop

k = 1
while k ≤ n

μ0 = maximum entry of |A(k : n, k : n)| ≡ |A(r, s)| (r ≥ s)
μ1 = maximum entry of diag(|A(k : n, k : n)|) ≡ |A(p, p)|
if μ1 ≥ αμ0

if μ1 = 0
rank = k − 1
k = n + 1

else
swap entries k ↔ p in IPIV

swap entries k ↔ p in x

swap rows k ↔ p and swap columns k ↔ p in A
for r = k + 1 : n and s = k + 1 : r

A(r, s) = A(r, s)
(xr − xk)(xs − xk)

(xk + xs)(xr + xk)
A(s, r) = A(r, s)

endfor
D(k, k) = A(k, k)
A(k : n, k) = A(k : n, k)/A(k, k)
A(k, k + 1 : n) = zeros(1, n− k)
k = k + 1

endif
else

swap entries k ↔ s and swap entries k + 1 ↔ r in IPIV

swap entries k ↔ s and swap entries k + 1 ↔ r in x

swap rows k ↔ s and swap rows k + 1 ↔ r in A

swap columns k ↔ s and swap columns k + 1 ↔ r in A

for r = k + 2 : n and s = k + 2 : r

A(r, s) = A(r, s)
(xr − xk)(xs − xk)(xr − xk+1)(xs − xk+1)

(xk + xs)(xr + xk)(xk+1 + xs)(xr + xk+1)
A(s, r) = A(r, s)

endfor
% Orthogonal diagonalization of the 2 × 2 pivot A(k : k + 1, k : k + 1)

z = (A(k + 1, k + 1) −A(k, k))/A(k + 1, k)/2
if z = 0

t = 1
else

t = sign(z)/
(
abs(z) +

√
1 + z2

)
endif
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cs = 1/
√

1 + t2

sn = t · cs
U =

[
cs

−sn
sn
cs

]
D(k, k) = A(k, k) − t · A(k + 1, k)
D(k + 1, k + 1) = A(k + 1, k + 1) + t · A(k + 1, k)
A(k : k + 1, k : k + 1) = U
A(k + 2 : n, k : k + 1) = A(k + 2 : n, k : k + 1) · U

·diag[ 1
D(k,k) ,

1
D(k+1,k+1) ]

A(k : k + 1, k + 2 : n) =zeros(2, n− k − 1)
k = k + 2

endif
endwhile
X = A(:, 1 : rank)
D = D(1 : rank, 1 : rank)
Q =eye(n)
P = Q(IPIV, :)

The cost of Algorithm 1 is 4n3/3 + O(n2) flops, or 2n3/3 + O(n2) if all n2

possible values of (xr − xm) and 1/(xr + xm) are precomputed. Next, we show that
the computed symmetric RRD is accurate.

Theorem 3.1. Let

C =

[
sisj

xi + xj

]n
i,j=1

be a real symmetric diagonally scaled Cauchy matrix, where s1, . . . , sn and x1, . . . , xn

are floating point numbers. Let P, X̂, and D̂ be the matrices of the factorization
(3) computed by Algorithm 1 applied to C in floating point arithmetic with machine
precision ε. Let us apply Algorithm 1 in exact arithmetic to C, but choosing the same
dimensions and positions for the pivots as those selected in floating point arithmetic.
Let X and D be the exact factors; thus PCPT = XDXT . If

648 (n + 2) ε

1 − 648 (n + 2) ε
< 1,

then
1.

|D̂ii −Dii| ≤
146 (n + 4) ε

1 − 146 (n + 4) ε
|D(i, i)| for all i = 1, . . . , n.

2.

||X̂ −X||F ≤ 13
684 (n + 2) ε

1 − 684 (n + 2) ε
||X||F .

If, moreover,

12481n ε

1 − 12481n ε
<

1

2
,

then
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3.

||X̂(:, j) −X(:, j)||2 ≤ 144
√
n

684 (n + 2) ε

1 − 684 (n + 2) ε
||X(:, j)||2 for all j = 1, . . . , n.

According to Theorem 2.1 and (2), the third item in Theorem 3.1 is not necessary
for computing accurate eigenvalues and eigenvectors. It is included for the sake of
completeness and because it allows us to state error bounds for the column scaling
of X with minimum condition number. We remark that the numerical constants
appearing in the bounds above are not optimal: we have sometimes overestimated
the constants to get simpler bounds. However, the order of magnitude is correct up
to a factor smaller than 10. Theorem 3.1 remains valid if the rank, say ρ, of the
matrix is less that n. In this case, the last n − ρ diagonal elements of D are exactly
computed to be zero, and the corresponding columns of X are just the n− ρ columns
of the identity matrix, and they are also exactly computed.

The proof of Theorem 3.1 is technical and is presented in the appendix. However,
the argument explaining why Algorithm 1 accurately computes a symmetric rank
revealing factorization of the diagonally scaled Cauchy matrix C can be easily under-
stood. In the first place, the recurrence relation (7) allows us to compute the entries
of the Schur complements with a relative error bounded by 8nε/(1− 8nε). Therefore,
the elements of D and the entries of the columns of X corresponding to 1 × 1 pivots
are also computed with small relative errors. For the quantities corresponding to 2×2
pivots, the error analysis heavily depends on the properties of these pivots. As we
will prove in the appendix, the 2 × 2 pivots selected by the Bunch–Parlett complete
pivoting strategy are very well-conditioned indefinite matrices (with a spectral condi-
tion number less than 4.6 for the value α = 0.64 used in Algorithm 1), and the entries
of their unitary eigenvectors are greater than 0.47 (again for α = 0.64). Therefore,
the Jacobi algorithm computes with small relative error the eigenvalues (i.e., the ele-
ments of D) and the entries of the eigenvectors of the 2× 2 pivots. According to (6),
the upper 2 × 2 block of the corresponding two columns of X is just the eigenvector
matrix U , and therefore its entries are accurately computed. The rest of the elements
of these two columns of X are obtained through multiplying by U and by Λ−1, but
these two matrices are well conditioned and all their entries have been computed with
small relative error. This last step does not guarantee small entrywise relative errors
but it does guarantee small normwise relative errors for X.

4. Symmetric Vandermonde matrices. A symmetric Vandermonde matrix
is defined as

A =
[
a(i−1)(j−1)

]n
i,j=1

=

⎡⎢⎢⎢⎢⎢⎣
1 1 1 . . . 1
1 a a2 . . . an−1

1 a2 a4 . . . a2(n−1)

...
...

... . . .
...

1 an−1 a2(n−1) . . . a(n−1)2

⎤⎥⎥⎥⎥⎥⎦ ,(9)

where a is a real number. The class of symmetric Vandermonde matrices depends
only on one parameter, and it is the only class of matrices which are, simultaneously,
symmetric and of Vandermonde type. Symmetric Vandermonde matrices with n > 2
are singular when a = 0, a = 1, and a = −1. In these cases they have only, 2, 1, and
2, respectively, nonzero eigenvalues that can be accurately computed by any standard
symmetric eigenvalue algorithm because they are of similar magnitudes. In fact, when
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a = 1, the only nonzero eigenvalue is equal to n. We assume that a is different from
0, 1 and −1. The matrix A is positive definite if a > 1 and, in this case, A is also
totally positive. Therefore, when a > 1, an accurate bidiagonal factorization of A
can be computed [26, section 3], and its eigenvalues can be obtained to high relative
accuracy with the method presented in [26]. The algorithm we introduce in section 5
for computing accurate symmetric RRDs of symmetric totally positive matrices can
also be applied to symmetric Vandermonde matrices with a > 1.

In this section, we present a method for computing an accurate RRD of A, in the
sense of (2), by respecting the symmetry of A. This allows us to compute eigenvalues
and eigenvectors to high relative accuracy, as explained in the introduction.

The method we present to compute an accurate RRD of A is very different from
the one we used for diagonally scaled Cauchy matrices. The Schur complement of a
Vandermonde matrix does not inherit the Vandermonde structure. Moreover, row and
column permutations coming from any pivoting strategy also destroy the symmetric
Vandermonde structure. Our approach avoids the computation of the Schur comple-
ments and, also, avoids pivoting. To be more precise, in the case |a| < 1, we use exact
formulas for the elements of the LDLT factorization of A, where L is unit lower trian-
gular and D is diagonal, and we prove that the condition number of L in the 1-norm
is O(n2) when |a| ≤ 2

3 . In the case |a| > 1, we use exact formulas for the elements

of the L̄D̄L̄T factorization of the converse of A, i.e., A# ≡
[
An−i+1,n−j+1

]n
i,j=1

, and

we will prove that κ1(L̄) = O(n2) when |a| ≥ 3
2 . Note that in both cases |a| ≤ 2

3 and
|a| ≥ 3

2 , we are dealing with matrices whose elements vary widely and in which the
largest elements are in the first positions. This is the reason why we are able to get
RRDs without using pivoting strategies. The formulas we use allow us to compute
accurate LDLT factorizations for any value of a, but only when |a| ≤ 2

3 or |a| ≥ 3
2

can we guarantee that they are RRDs. These limits are somewhat arbitrary since we
can consider values of a closer to |a| = 1 at the cost of increasing the bound for κ1(L).
However, it should be stressed that we cannot consider values of a as close as we want
to |a| = 1 because κ1(L) approaches 2n as |a| approaches 1.

In plain words, there are three limits for which the matrix A is extremely ill
conditioned and that have eigenvalues that can vary widely: |a| small enough, |a|
large enough, and |a| close enough to 1. We are able to compute eigenvalues and
eigenvectors of A to high relative accuracy by respecting the symmetry only in the first
two cases, i.e., when A contains elements with very different magnitudes. Eigenvalues
and eigenvectors for any value of a can be computed to high relative accuracy by
combining the algorithm presented in [5] to compute a nonsymmetric RRD of A with
the signed SVD (SSVD) algorithm in [11], at the cost of not respecting the symmetry
of the problem.

Consider first the case |a| < 1. We start with the LDU decomposition A = LDLT .
The entries of L and D are quotient of minors of A [15, section 1.II]:

di =
detA(1 : i, 1 : i)

detA(1 : i− 1, 1 : i− 1)
= a

1
2 (i−2)(i−1) ·

i−1∏
t=1

(at − 1),(10)

lij =
detA([1 : j − 1, i], 1 : j)

detA(1 : j, 1 : j)
=

j−1∏
t=1

1 − ai−j+t

1 − at
.(11)

Next, we prove that when |a| ≤ 2
3 , the entries of L and L−1 are bounded by e6;

thus L is well conditioned.
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Lemma 4.1. If 0 ≤ x ≤ 2
3 and j ≥ 1, then

j−1∏
t=1

1

1 − xt
≤ e6.

Proof. We start by observing that log(1 − xt) ≥ −3xt for t ≥ 1: If f(z) =
log(1− z)+ 3z, then f ′(z) = 1

z−1 +3 = 3z−2
z−1 ≥ 0, meaning f(z) is increasing on [0, 2

3 ]
and f(z) ≥ f(0) = 0 on the same interval. Therefore,

log

( ∞∏
t=1

(1 − xt)

)
≥ −3

∞∑
t=1

xt =
−3x

1 − x
≥ −6

and

j−1∏
t=1

1

1 − xt
≤

∞∏
t=1

1

1 − xt
≤ e6.

Next, we bound the entries lij of L: If 0 < a ≤ 2
3 , or − 2

3 ≤ a < 0 and i − j is
even, we have

1 − ai−j+t

1 − at
≤ 1

1 − |a|t ,

and using (11) and Lemma 4.1 we get

lij =

j−1∏
t=1

1 − ai−j+t

1 − at
≤

j−1∏
t=1

1

1 − |a|t ≤ e6.

Otherwise, if − 2
3 ≤ a < 0 and i− j is odd, we again have

lij =

j−1∏
t=1

1 − ai−j+t

1 − at
=

1 − ai−1

1 − ai−j
·
j−1∏
t=1

1 − ai−j−1+t

1 − at
≤ 1 + |a|i−1

1 + |a|i−j
· e6 ≤ e6.

Either way, lij ≤ e6 and ‖L‖1 ≤ e6n.
The entries of L−1 are also quotients of minors of A, as we now describe. From

the LDU decomposition A = LDU we get A−T# = L−T#D−T#U−T#. Therefore, by
formula (1.31) in [2],(

L−1
)
ij

=
(
L−T#)n−j+1,n−i+1

=
detA−T#([1 : n− i, n− j + 1], 1 : n− i + 1)

detA−T#(1 : n− i + 1, 1 : n− i + 1)

=
detA−1(i : n, [j, i + 1 : n])

detA−1(i : n, i : n)

= (−1)i+j · detA([1 : j − 1, j + 1 : i], 1 : i− 1)

detA(1 : i− 1, 1 : i− 1)

= (−1)i+j · a 1
2 (i−j−1)(i−j) ·

j−1∏
t=1

1 − ai−j+t

1 − at
.(12)
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Similarly,
∣∣(L−1)ij

∣∣ ≤ e6 when |a| ≤ 2
3 , and

κ1(L) = ‖L‖1 · ‖L−1‖1 ≤ e12n2;

i.e., L is well conditioned when |a| ≤ 2
3 . The constant e12 and the factor n2 in the

previous bound are pessimistic, and the true values of κ1(L) are much smaller. They
are shown in the following table for some values of a in 30×30 Vandermonde matrices:

a −2/3 −0.5 −0.3 −0.05 0.05 0.3 0.5 2/3
κ1(L) 92.12 79.25 69.83 61.50 64.16 126.98 379.12 2694.99

When |a| > 1 we consider the converse of A:

A# ≡
[
An−i+1,n−j+1

]n
i,j=1

=
[
a(n−i)(n−j)

]n
i,j=1

.

The matrices A and A# are similar via an orthogonal similarity transformation,

A = JA#J,

where the matrix J = [δn−i+1,j ]
n
i,j=1 is the reverse identity (which is orthogonal and

involutary: J = JT = J−1). Therefore, it suffices to compute an accurate RRD of A#.
Consider the LDU decomposition A# = L̄D̄L̄T . The entries of L̄ and D̄ are quotients
of minors of A#; thus, after some long but elementary manipulations, we get

d̄i = a(n−i)2− i(i−1)
2 ·

i−1∏
t=1

(at − 1),(13)

l̄ij = a(n−1)(j−i)

j−1∏
t=1

ai−j+t − 1

at − 1
.(14)

For |a| ≥ 3
2 , the entries l̄ij are bounded as

l̄ij ≤
j−1∏
t=1

1

1 − |a|−t
≤ e6.

For the entries of L̄−1, we obtain analogously to (12),

(
L̄−1

)
ij

= (−1)i+j · a(j−i)(n− 1
2 (i−j+1)) ·

j−1∏
t=1

ai−j+t − 1

at − 1
.

Finally, since n− 1
2 (i− j − 1) ≥ j − 1 we have

∣∣(L̄−1
)
ij

∣∣ = a(j−i)(n− 1
2 (i−j+1)) ·

j−1∏
t=1

ai−j+t − 1

at − 1
≤

j−1∏
t=1

1

1 − |a|−t
≤ e6.
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Again, κ1(L̄) ≤ e12n2. Therefore, L̄ is well conditioned when |a| ≥ 3
2 , and

A = (JL̄)D̄(JL̄)T is an RRD of A. The true values of κ1(L̄) are much smaller
than the bound—in particular, for 30 × 30 matrices κ1(L̄) = 13.37 for a = 3

2 and
κ1(L̄) = 2.35 for a = − 3

2 . We have observed that κ1(L̄) decreases as |a| increases.
In order to guarantee high relative accuracy in each computed entry of L, L̄, D,

and D̄, we compute all expressions ai − 1 to high relative accuracy as ai − 1 when
ai < 0 and as (|a| − 1)(|a|i−1 + |a|i−2 + · · · + 1) when ai > 0.

The cost of computing factorizations with the formulas (10) and (11), or (13) and
(14), is O(n2). We need n2 flops to compute ai for i = 1, 2, . . . , n2, and n flops to

compute
∑j

p=0 |a|p for j = 1, 2, . . . , n. With this, at most n extra flops are needed to

compute ai − 1 for i = 1, 2, . . . , n. All the diagonal elements di, i = 1, 2, . . . , n, are
computed in 6n flops. If i− j = k, the n − k off-diagonal elements lij are computed
in 2(n − k) flops. Taking into account that k = 1, 2, . . . , n − 1, n2 + O(n) flops are
needed to compute all off-diagonal elements lij . The total cost of computing the
LDLT factorization using (10) and (11) is 2n2 + O(n) flops. A similar argument
shows that the total cost of computing the L̄D̄L̄T factorization using (13) and (14) is
2n2 + O(n) flops. This extremely fast performance is important in its own right, but
for the purpose of computing eigenvalues and eigenvectors to high relative accuracy
the cost of applying the J-orthogonal or SSVD algorithms to the RRD is O(n3),
and the cost O(n2) in the RRD computation does not significantly improve the total
cost.

5. Computing an RRD of a TN matrix. The matrices with all minors non-
negative are called totally nonnegative (TN). They appear in a wide range of problems
and applications (see [2, 14, 17, 24, 26] and references therein). One of the most im-
portant application is to one-dimensional oscillatory problems [16].

It has been recently shown [26, 25] that many accurate computations with nonsin-
gular n×n TN matrices are possible when these matrices are appropriately represented
as products of nonnegative bidiagonal matrices:

A = L(1) · L(2) · · ·L(n−1) ·D · U (n−1) · · ·U (2) · U (1),(15)

where D is diagonal. This decomposition was introduced in [18, 19], and it is a unique,
intrinsic representation for any nonsingular TN matrix A. This bidiagonal decomposi-
tion will be denoted by BD(A). We refer to [26, section 2.2] for a detailed explanation
of the structure of the factorization (15), and also for the essential relationship be-
tween this factorization and Neville elimination, an alternative process to Gaussian
elimination that allows one to compute (15) and to check whether a matrix is TN or
not.

The numerical virtues of BD(A) are discussed at length in [26, 25]. This decompo-
sition reveals the TN structure of A, and its nontrivial entries accurately determine the
eigenvalues, the SVD, the inverse, and other properties of a nonsingular TN matrix.
Starting with the representation (15), one can perform many highly accurate matrix
computations with nonsingular TN matrices [26, 25], and, in particular, the SVD of
a TN matrix A can certainly be computed given (15) (see Algorithm 6.1 from [26]).
The SVD is, of course, an RRD. This approach, however, relies on the convergence
properties of an algorithm for computing the SVD of a bidiagonal matrix.

Our goal in this section is to design algorithms that compute an accurate RRD
of a nonsingular TN matrix given its bidiagonal factorization (15) in O(n3) time by
using a finite process and respecting the symmetry; i.e., a symmetric TN matrix will
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have a symmetric RRD. This last requirement forces us to develop two algorithms:
one for general TN matrices and another specifically for symmetric TN matrices.

5.1. RRD of a nonsymmetric TN matrix. Given the bidiagonal decomposi-
tion (15) of a nonsingular TN matrix A, we can accurately compute a decomposition
A = QBHT , where Q and H are orthogonal and B is bidiagonal, using the first part
of Algorithm 6.1 from [26]. All entries of B are computed with relative errors of order
ε, while Q and H are computed by accumulating Givens rotations with normwise
errors of order ε, i.e., ‖Q − Q̂‖2 = O(ε). A similar bound holds for H. If B = D̄Ū ,
where D̄ is diagonal and Ū is unit upper bidiagonal, then B = D̄Ū need not be an
RRD of B.

How do we compute an RRD of B? We can simply run GECP on B. Since B is
acyclic (the bipartite graph of B does not have any cycles), the process of Gaussian
elimination with complete pivoting will not involve any subtractions and will therefore
be highly accurate (see section 6 and Algorithm 10.1 in [6]). More precisely, if P1

and PT
2 are the permutation matrices coming from the complete pivoting strategy

and B = P1LDUPT
2 , with L unit lower triangular, U unit upper triangular, and D

diagonal, then all the entries of the L, D, and U factors are computed with relative
errors of order ε.

Once we have B = P1LDUPT
2 , we obtain an RRD of A:

A = (QP1L) ·D · (UPT
2 HT ) ≡ XDY T .

A direct and standard error analysis shows that the computed factors satisfy the error
bounds (2). The cost of computing B is at most 16

3 n3 +O(n2) flops [26], and forming
Q and H requires not more than 6n3 +O(n2) flops. The cost of GECP on B does not

exceed 2
3n

3 + O(n2) flops and n3

3 comparisons. Finally, the last two matrix multipli-
cations require not more than 2n3 flops. The total cost does not exceed 14n3 +O(n2)

flops and n3

3 comparisons.

5.2. RRD of a symmetric TN matrix. The techniques of section 5.1 can
certainly be used to compute an RRD of a nonsingular symmetric TN matrix given
its bidiagonal decomposition. This approach does not, however, respect the symmetry
of the matrix. In this subsection we present a different RRD algorithm, which does
respect the symmetry.

Let the bidiagonal decomposition of a symmetric and nonsingular TN matrix A
be given. Then in (15) we have L(i) = (U (i))T . We can use the techniques of [26] to
apply highly accurate Givens rotations to A and reduce A to tridiagonal form T :

A = QTQT ,

where Q is orthogonal and T = LDLT is TN. All entries in the lower unit bidiagonal
factor L and in the diagonal factor D are computed with relative errors of order ε,
while the error in Q is ‖Q− Q̂‖2 = O(ε). Notice that the previous process computes
BD(T ) and Q starting from BD(A), and that the decomposition T = LDLT need not
reveal the rank of T since L need not be well conditioned.

The remaining task in getting an accurate symmetric RRD is to compute, given
BD(T ), an accurate RRD of T by using symmetric GECP:

T = PL̄D̄L̄TPT ,
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where P is a permutation matrix, L̄ is unit lower triangular, and D̄ is diagonal. Then
the symmetric RRD of A is

A = (QPL̄)D̄(QPL̄)T .

We will show how to compute P and all the entries of L̄ and D̄ with relative
errors of order ε. Our approach is based on two key ideas: the first is that T is
positive definite, and thus the pivoting strategy in GECP will be diagonal, and the
second is that the elements of L̄ and D̄ are signed quotients of minors of T . We
will proceed in three steps as follows: (a) The bidiagonal factorization of a principal
submatrix of T is accurately computed starting from BD(T ) in Algorithm 3; (b) this
is used in Algorithm 4 to compute accurate minors of T ; and (c) the elements of L̄
and D̄ are computed as quotients of minors in Algorithm 5, together with P .

We can summarize the algorithm to compute a symmetric RRD of a nonsingular
symmetric TN matrix A as follows.

Algorithm 2. Computing a symmetric RRD A = XDXT of a symmetric
nonsingular TN matrix A given BD(A).

1. Apply Givens rotations as in [26, section 4.3] to compute an orthogonal matrix
Q and BD(T ) of a symmetric TN tridiagonal matrix T such that A = QTQT .

2. Compute a symmetric RRD of T = PL̄D̄L̄TPT using Algorithm 5.
3. Multiply to get A = (QPL̄)D̄(QPL̄)T ≡ XDXT .

Step 1 requires not more than 8
3n

3 +O(n2) flops to get BD(T ) (see [26]) and not
more than 3n3 + O(n2) additional flops to compute Q. We will see that the cost of
step 2 does not exceed 14 1

3n
3 +O(n2). Finally, the cost of step 3 does not exceed n3.

The total cost of Algorithm 2 does not exceed 21n3 + O(n2) flops.
We will show that the computation of the symmetric RRD T = PL̄D̄L̄TPT is

subtraction free. Combining this with the errors in Q, BD(T ), and matrix multipli-
cation, it can be easily shown that the computed RRD satisfies (2).

Once a symmetric RRD, A = XDXT , of the TN matrix A is computed, the
eigenvalues and eigenvectors of A can be accurately computed by using the one-sided
Jacobi algorithm to get the singular values and left singular vectors of XD1/2 [10,
section 5.4.3], [9]. The Jacobi rotations in this procedure have to be applied on the
left, and the whole process respects the symmetry. The techniques introduced in [26]
allow us to develop another symmetric method to compute accurate eigenvalues of a
nonsingular symmetric TN matrix A: First, step 1 of Algorithm 2 is performed to
get T = LDLT ; next, the differential quotient-difference algorithm with shifts (dqds)
[13] is applied on the Cholesky factor LD1/2 to compute its accurate singular values.
This approach does not use RRDs.

5.2.1. The bidiagonal decomposition of a principal submatrix of a TN
tridiagonal symmetric matrix. Let T be a nonsingular symmetric TN tridiagonal
matrix3 and S be a principal submatrix of T . The purpose of this section is to accu-
rately compute BD(S) given BD(T ).

Consider first the simple special case when the principal submatrix S is obtained

3The results of this section remain valid for positive definite tridiagonal matrices because a
positive definite tridiagonal matrix is TN if and only if its off-diagonal elements are nonnegative
[16, p. 81]. Therefore, any positive definite tridiagonal matrix is similar to a TN matrix through a
diagonal similarity transformation with elements ±1.
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by erasing the ith row and the ith column of T :

T =

⎡⎢⎢⎢⎢⎣
t11 t12

t21
. . .

. . .

. . .
. . . tn−1,n

tn,n−1 tnn

⎤⎥⎥⎥⎥⎦ ;

S = T ([1 : i− 1, i + 1 : n], [1 : i− 1, i + 1 : n])

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t11 t12

t21
. . .

. . .

. . .
. . . ti−2,i−1

ti−1,i−2 ti−1,i−1

ti+1,i+1 ti+1,i+2

ti+2,i+1
. . .

. . .

. . .
. . . tn−1,n

tn,n−1 tnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Once we figure out how to compute BD(S) from BD(T ), we can proceed by induc-
tion and erase other rows and columns of S to obtain the bidiagonal decomposition
of any principal submatrix of T .

Since the process of Neville elimination of S and T does not differ for the first
i−1 rows and columns, we have BD(S(1 : i−1, 1 : i−1)) = BD(T (1 : i−1, 1 : i−1)),
and we need only compute BD(S(i+1 : n, i+1 : n)). Therefore, we may assume that
i = 1 without any loss of generality.

Let BD(T ) and BD(S) be given as

T = LDLT and S = T (2 : n, 2 : n) = L̄D̄L̄T ,

where D = diag(di)
n
i=1, D̄ = diag(d̄i)

n
i=2, and the unit lower bidiagonal matrices L

and L̄ have off-diagonal elements li, i = 1, 2, . . . , n − 1, and l̄i, i = 2, 3, . . . , n − 1,
respectively. From T = LDLT we have

t11 = d1; tii = l2i−1di−1 + di; ti−1,i = li−1di−1, i = 2, 3, . . . , n,(16)

and from T (2 : n, 2 : n) = L̄D̄L̄T we get

t22 = d̄2; tii = l̄2i−1d̄i−1 + d̄i; ti−1,i = l̄i−1d̄i−1, i = 3, 4, . . . , n.(17)

By comparing (16) and (17), we obtain

d̄2 = l21d1 + d2,

d̄i = di + l2i−1di−1 − l̄2i−1d̄i−1, i = 3, 4, . . . , n,(18)

l̄id̄i = lidi, i = 2, 3, . . . , n− 1.

We introduce auxiliary variables zi ≡ d̄i − di and get rid of the subtraction in (18):

z2 = l21d1,

d̄2 = z2 + d2,

l̄i = lidi/d̄i, i = 2, . . . , n− 1,(19)

zi+1 = d̄i+1 − di+1 = l2i di − l̄2i d̄i = (d̄i − di)l
2
i di/d̄i = li l̄izi, i = 2, . . . , n− 1,

d̄i+1 = zi+1 + di+1, i = 2, . . . , n− 1.
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The iterations (19) need only be performed for those i ≥ 2 for which li �= 0. These
iterations therefore cost 5(j − 1), where j < n is the smallest index such that lj = 0
(or j = n if lk �= 0 for k = 1, 2, . . . , n − 1). In the general case, when we remove the
ith row and the ith column of T , the cost is 5(j − i), where j ≥ i is defined as above.

We now implement the recurrences (19).
Algorithm 3. Let T = LDLT be a nonsingular symmetric TN tridiagonal ma-

trix, where D = diag(di)
n
i=1, di > 0, i = 1, 2, . . . , n, and L is a unit lower bidiagonal

matrix with off-diagonal entries li ≥ 0, i = 1, 2, . . . , n − 1. Let α = {α1, α2, . . . , αr},
1 ≤ α1 < α2 < · · · < αr ≤ n be a subset of indices. Given the vectors d =
(d1, d2, . . . , dn) and l = (l1, . . . , ln−1), the following subtraction-free algorithm com-
putes the decomposition T (α, α) = L̄D̄L̄T in at most 5r time:

function [d̄, l̄] = TNTridiagSubmatrix(d, l, α)
n = length(d)
d̄ = d; l̄ = l; l̄n = 0
Let β be the complement of α in the set {1, 2, . . . , n}
(In MATLAB notation: β = [1 : n]; β(α) = 0; β = β(β > 0))
for k = length(β) : −1 : 1

if βk < n
z = dβk

l2βk

j = βk + 1
d̄j = z + dj
while l̄j �= 0

l̄j = ljdj/d̄j
z = lj l̄jz
d̄j+1 = z + dj+1

j = j + 1
end

end

l̄βk−1 = 0; l̄βk
= 0

end

d̄ = d̄(α); l̄ = l̄(α); l̄ = l̄(1 : (r − 1))

5.2.2. A minor of a TN tridiagonal symmetric matrix. Next we consider
the problem of accurately computing the value of any minor of a nonsingular sym-
metric TN tridiagonal matrix T :

T (α, β) = T ([i1, . . . , ik], [j1, . . . , jk]),

where α = [i1, i2, . . . , ik], 1 ≤ i1 < i2 < . . . < ik ≤ n, and β = [j1, j2, . . . , jk],
1 ≤ j1 < j2 < . . . < jk ≤ n.

Let 1 ≤ k1 < k2 < · · · < kr ≤ k be all indices such that iks �= jks , s = 1, 2, . . . , r,
and let γ = {i1, i2, . . . , ik}\{ik1 , . . . , ikr}. Then [16, p. 80]

detT (α, β) = detT (γ, γ)tik1
jk1

· · · tikr jkr
.(20)

The minor detT (γ, γ) can be computed by first computing the bidiagonal decom-
position of T (γ, γ) using Algorithm 3 (then detT (γ, γ) = d̄1d̄2 · · · d̄k−r). Any entry
tiks jks

, iks �= jks , equals either zero, tm,m+1, or tm+1,m. The latter two are easily
computed from T = LDLT : tm,m+1 = tm+1,m = dmlm. The total cost of computing
any minor detT (α, β) following this procedure does not exceed 6k flops.
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Remark 1. A set of indices z ⊂ {1, 2, . . . , n} can be sorted in increasing order in
4n time by using the following MATLAB commands:

x=1:n; x(z)=0; y=1:n; z=y(x==0);

therefore, we can sort the index sets in T (α, β) in 8n time and allow index sets in
arbitrary order in Algorithm 4 below.

Algorithm 4 (minor of a TN tridiagonal matrix). Let T = LDLT be a non-
singular symmetric TN tridiagonal matrix with notation as in Algorithm 3. Given
the vectors d and l, and two sets of indices α and β, the following subtraction-free
algorithm computes |detT (α, β)| to high relative accuracy in at most 14n time:

function f = TNTridiagMinor(d, l, α, β)
. . .first sort α and β in increasing order (see Remark 1 above). . .

f = 1; γ = [ ]
for i = 1 : length(α)

if αi = βi

γ = [γ, αi]
elseif |αi − βi| = 1

f = fdsls, where s = min(αi, βi)
else

f = 0; return
end

end

[d̄, l̄] = TNTridiagSubmatrix(d, l, γ)
f = fd̄1d̄2 · · · d̄s, where s = length(γ)

5.2.3. Computing an RRD of a TN tridiagonal symmetric matrix. In
this section we present an O(n3) algorithm which, given the factorization T = LDLT

of a nonsingular symmetric TN tridiagonal matrix T , computes an accurate, sym-
metric RRD of T . The RRD in question is the LDU decomposition of T resulting
from GECP, with L (resp., U) being a unit lower (resp., upper) triangular matrix.
We compute each entry of this LDU decomposition as a quotient of minors of T . We
compute each minor of T accurately using Algorithm 4.

Since T is positive definite, the pivoting in GECP will be diagonal. The pivot
order is determined by comparing the diagonal entries in the Schur complements; if
γ = [γ1, γ2, . . . , γk] is the current pivot order at step k, and α = {1, 2, . . . , n}\γ, then
the diagonal entries of the kth Schur complement are4

detT ([γ, αj ], [γ, αj ])

detT (γ, γ)
, j = 1, 2, . . . , n− k.(21)

We need only compare the numerators in (21) and we compute those using Algo-
rithm 4.

4These expressions for the entries of the Schur complements are valid if for each step of Gaussian
elimination the row and column containing the chosen pivot are moved to the first positions in the
corresponding Schur complement and the rows and columns between the first and the ones containing
the pivot are displaced down one position. This is not the usual implementation of pivoting in
Gaussian elimination, which simply interchanges the first row and the first column with the pivot
row and the pivot column, respectively [21, 22]. Obviously both implementations produce similar
bounds on the elements of L and U , and, therefore, they are equivalent from the point of view of
computing RRDs.
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Once we obtain the pivot order γ, the entries of the LDU decomposition T =
PL̄D̄L̄TPT resulting from GECP are computed as

D̄ii =
detT (γ(1 : i), γ(1 : i))

detT (γ(1 : i− 1), γ(1 : i− 1))
;(22)

L̄ji =
detT (γ(1 : i), γ([1 : i− 1, j]))

detT (γ(1 : i), γ(1 : i))
, j > i,(23)

with each minor in (22) and (23) computed using Algorithm 4.
The sign of the minor detT (γ(1 : i), γ([1 : i−1, j])) equals sgn(γ(1 : i)) ·sgn(γ([1 :

i − 1, j])). Here sgn(δ) is the sign of [δ1, δ2, . . . ] as a permutation of the ordered set
{δ1, δ2, . . . }, defined as sgn(δ) ≡ (−1)t, where t ≡ #{(k, l)|k < l and δk > δl}; i.e., t is
the minimum number of transpositions necessary to sort the elements of δ in increasing
order. The first i− 1 entries of γ(1 : i) and γ([1 : i− 1, j]) coincide; therefore the sign

of detT (γ(1 : i), γ([1 : i− 1, j])) equals (−1)s, s =
∑i−1

k=1 xor(γi < γk, γj < γk).
Algorithm 5 (GECP on a TN tridiagonal matrix). Let T = LDLT be a

nonsingular symmetric TN tridiagonal matrix. Given the vectors d and l (defined in
Algorithm 3), the following subtraction-free algorithm computes the decomposition of
T = PL̄D̄L̄TPT resulting from Gaussian elimination with complete pivoting. Every
entry of D̄ and L̄ is computed to high relative accuracy, and the total cost does not
exceed 14 1

3n
3 + O(n2).

function [P, L̄, D̄] = TNTridiagGECP(d, l)
n = length(d)
L̄ = eye(n); P = eye(n); D̄ = eye(n);
α = 1 : n; γ = [ ]

. . .First, determine the pivot order. . .
for i = 1 : n

for j = 1 : n− i + 1
zj = TNTridiagMinor(d, l, [γ, αj ], [γ, αj ])

end

Let m be such that zm = max
1≤j≤n−i+1

zj

γi = αm

α = α([1 : m− 1,m + 1 : n− i + 1])
ti = zm

end

. . .Next, compute the entries of D̄ and L̄ using (22) and (23). . .
for i = 1 : n

D̄ii = ti/ti−1 ( . . . assume t0 = 1)
for j = i + 1 : n

. . .Compute the sign of L̄ji . . .
s = 1
for k = 1 : i− 1

s = s · (−1)^xor(γi < γk, γj < γk)
end

L̄ji = s · TNTridiagMinor(d, l, γ(1 : i), γ([1 : i− 1, j]))/ti
end

end

P = P (:, γ)
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6. Numerical experiments. We performed extensive numerical tests and con-
firmed the accuracy and cost of our algorithms. More precisely, we combined Al-
gorithm 1 and the one-sided J-orthogonal algorithm [33, Algorithm 3.3.1, page 66]
to compute, preserving the symmetry, accurate eigenvalues and eigenvectors of sym-
metric diagonally scaled Cauchy matrices with different dimensions and several dis-
tributions of random Cauchy parameters. The output was compared with that of
another O(n3) accurate algorithm (nonsymmetric RRD computed as in [5] combined
with the SSVD algorithm from [11]), and also with the output from the MATLAB
eig function in variable precision arithmetic (with precision set to log10 κ2(C) + 20
decimal digits, guaranteeing at least 16 correct significant digits in each eigenvalue).
The output of all three algorithms agreed to at least 14 digits for all the eigenvalues,
including the ones with tiniest absolute values. The computed eigenvectors also satis-
fied the bounds (1). Most test matrices had condition numbers well in excess of 1016,
so conventional eigenvalue algorithms (e.g., the MATLAB function eig in double [23]
precision) failed to get any correct digits in the eigenvalues with tiniest absolute values
and in the direction of the eigenvectors corresponding to these eigenvalues (when at
least two tiny eigenvalues λi such that |λi| ≤ 10−16‖C‖2 were present). We performed
similar tests on symmetric Vandermonde matrices for several dimensions and choices
of the parameter a, and also for symmetric TN matrices. In the case of symmetric
Vandermonde matrices, we also tested matrices with 2

3 < |a| < 3
2 and verified that the

factorizations obtained with the approach in section 4 are not RRDs when |a| is close
to one (κ2(L) → 2n as |a| → 1). For these matrices, eigenvalues and eigenvectors to
high relative accuracy can be obtained, at present, only through the nonsymmetric
procedure by first computing a nonsymmetric RRD as in [5] and then applying the
SSVD algorithm from [11].

We present in detail one of our tests. We consider the 20×20 symmetric Vander-
monde matrix A with a = 1

2 ; see (9). The condition number of A is κ2(A) ≈ 3.5 ·1053.
We compute its eigenvalues using the following algorithms:

• Algorithm A: The MATLAB eig function with 75-digit arithmetic.
• Algorithm B: Compute a symmetric RRD using the formulas in section 4

followed by the J-orthogonal algorithm [33, Algorithm 3.3.1, page 66].
• Algorithm C: Compute a nonsymmetric RRD as in [5] followed by the SSVD

algorithm of [11].
• Algorithm D: The MATLAB eig function in double [23] precision arithmetic.

The output of Algorithms A, B, and C agreed to at least 14 digits, so we plotted only
the output of Algorithms B and D in Figure 6.1. Since κ2(A) ≈ 3.5 · 1053, Algorithm
A computed all eigenvalues with at least 16 significant decimal digits of accuracy.
Algorithms B and C guarantee high relative accuracy for the computed eigenvalues.
The results from those algorithms agreed with the ones from Algorithm A to at least
14 digits. In contrast, the traditional Algorithm D returned only the eigenvalues of
largest absolute value accurately, with the accuracy gradually decreasing until the
eigenvalues with magnitude smaller than O(ε)||A||2 were computed with no correct
digits at all.

Appendix. Rounding error analysis for diagonally scaled Cauchy ma-
trices. Theorem 3.1 is proved in this appendix in a more general setting. The error
analysis we present remains valid when the Bunch–Parlett method is applied on any
matrix for which it is possible to compute the entries of its Schur complements with
relative errors bounded by kε/(1 − kε), where k is an integer positive number and ε
is the machine precision. For scaled Cauchy matrices, k = 8n according to (7).
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Eigenvalues of 20×20 symmetric Vandermonde matrix with a=1/2

Fig. 6.1. Plots of the absolute values of the eigenvalues of the 20×20 symmetric Vandermonde
matrix with a = 1

2
. The “�” and “©” symbols represent, respectively, the negative and positive

eigenvalues computed with an accurate algorithm. The “×” and “+” symbols represent, respectively,
the negative and positive eigenvalues computed by Algorithm D (implemented as the MATLAB
function eig in double precision arithmetic). Data below the dotted line may be inaccurate for
Algorithm D.

We use the conventional error model for floating point arithmetic [22, section 2.2]:

fl(a b) = (a b)(1 + δ),

where a and b are real floating point numbers,  ∈ {+,−,×, /}, and |δ| ≤ ε. Moreover,
we assume that neither overflow nor underflow occurs. We also use the following
notation introduced in [22, Chapter 3]: θq is any number such that

|θq| ≤
qε

1 − qε
≡ γq.(24)

Moreover, the results in [22, Lemma 3.3] will be frequently used throughout this
section without being explicitly referred to. We will assume that 0 < γq for all the
symbols γq appearing in this section.

In what follows, α is the parameter used in the Bunch–Parlett pivoting strategy
to decide whether a 1× 1 or 2× 2 pivot is selected (see Algorithm 1). We present the
error bounds in this section depending on α, where 0 < α < 1. Thus values different
from the classical one, α = (1 +

√
17)/8, are also considered.

A.1. Auxiliary results on the Jacobi method. Let us write the Jacobi pro-
cedure [21] to orthogonally diagonalize a 2 × 2 real symmetric matrix as a matrix
factorization. The following equation holds:[

a c
c b

]
=

[
cs sn
−sn cs

] [
a− c t 0

0 b + c t

] [
cs −sn
sn cs

]
,(25)
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where

ζ =
b− a

2c
, t =

sign(ζ)

|ζ| +
√

1 + ζ2
,(26)

cs =
1√

1 + t2
, sn = cs · t,(27)

and sign(0) = 1.
In general, disastrous cancellations may appear in the Jacobi procedure above,

and the eigenvalues computed in floating point arithmetic may be inaccurate. How-
ever, it is well known that the Jacobi procedure is backward stable because only
orthogonal matrices are involved. Theorem A.1 below shows this, providing precise
error bounds that we will use in the detailed error analysis of the next subsections.
The Jacobi method computes accurate eigenvalues for well-conditioned matrices be-
cause it is backward stable. We will see that this is the case for the 2 × 2 pivots
selected by the Bunch–Parlett pivoting strategy.

Theorem A.1. Let

Ã =

[
ã c̃

c̃ b̃

]
be a matrix of real floating point numbers. Let us apply to Ã the Jacobi procedure
(25) in floating point arithmetic with machine precision ε. Let c̃s, s̃n, λ̃1 = ã − c̃ t̃,

and λ̃2 = b̃ + c̃ t̃ be the exact magnitudes for Ã, and let ĉs, ŝn, λ̂1, and λ̂2 be the
corresponding computed counterparts. Then

1. ĉs = c̃s (1 + θ113).
2. ŝn = s̃n (1 + θ141).

3. λ̂1 = λ̃1 + e1 with |e1| ≤ (|ã| + |c̃ t̃|)γ29.

4. λ̂2 = λ̃2 + e2 with |e2| ≤ (|b̃| + |c̃ t̃|)γ29.
Moreover, the computed eigendecomposition[

ĉs ŝn
−ŝn ĉs

] [
λ̂1 0

0 λ̂2

] [
ĉs −ŝn
ŝn ĉs

]
is nearly the exact eigendecomposition of Ã + E; more precisely,

Ã + E =

[
c̃s s̃n
−s̃n c̃s

] [
λ̂1 0

0 λ̂2

] [
c̃s −s̃n
s̃n c̃s

]
,

where ‖E‖2 ≤
√

2 γ29‖Ã‖F ≤ 2 γ29 ‖Ã‖2.

Proof. The bounds for ĉs, ŝn, λ̂1, and λ̂2 follow from a direct application of
Lemmas 3.1 and 3.3 in [22]. For the backward error bound, notice that

E =

[
c̃s s̃n
−s̃n c̃s

] [
e1 0
0 e2

] [
c̃s −s̃n
s̃n c̃s

]
.

Then ‖E‖2 = max{|e1|, |e2|} ≤ γ29 max{|ã| + |c̃ t̃|, |b̃| + |c̃ t̃|} ≤ γ29 max{|ã| + |c̃|, |b̃| +
|c̃|} ≤

√
2 γ29‖Ã‖F .



EIGENDECOMPOSITIONS OF SYMMETRIC MATRICES 1149

A.2. Properties of 2 × 2 Bunch–Parlett pivots. The 2 × 2 pivots selected
by the Bunch–Parlett complete pivoting strategy are very well conditioned symmetric
indefinite matrices. The next lemma quantifies this fact.

Lemma A.2. Let H be a real symmetric 2 × 2 matrix such that α |h21| >
max{|h11|, |h22|}, where 0 < α < 1. Then the spectral condition number, κ2(H),
of H is bounded as

κ2(H) <
1 + α

1 − α
.

This bound cannot be improved. In particular, if α = 0.6404, then κ2(H) < 4.6.
Proof. Let us write the matrix H as

H =

[
0 h21

h21 0

]
+

[
h11 0
0 h22

]
≡ H0 + H1.

The singular values of H0 are both equal to |h21|. Then using Weyl’s perturbation
theorem for singular values (see, for instance, [10, Corollary 5.1]), we get

κ2(H) ≤ |h21| + ‖H1‖2

|h21| − ‖H1‖2
<

|h21| + α|h21|
|h21| − α|h21|

=
1 + α

1 − α
.

The bound cannot be improved because the matrix H =
[
α
1

1
α

]
has κ2(H) =

1+α
1−α .

The entries of the eigenvectors of the 2 × 2 pivots selected by the Bunch–Parlett
strategy are bounded below by 1/3. This means that small normwise variations in
the eigenvectors imply small variations in the components.

Lemma A.3. Let H be a real symmetric 2 × 2 matrix such that α |h21| >
max{|h11|, |h22|}, where 0 < α < 1. Let

[
cs

−sn
sn
cs

]
be the orthogonal eigenvector matrix

of H; then

1√
2
≤ cs ≤ α +

√
1 + α2√

1 +
(
α +

√
1 + α2

)2 ,
1√

1 +
(
α +

√
1 + α2

)2 ≤ sn ≤ 1√
2
.

In particular, if α = 0.6404, then 0.47 ≤ sn and cs ≤ 0.88. The following simple
lower bound for sn is valid for any α: 1/3 < sn.

Proof. From (26), |ζ| ≤ α and 1/(α +
√

1 + α2) ≤ |t| ≤ 1. Combining these
bounds with (27), the lemma is proved.

A.3. Forward errors in RRDs. The entries of the Schur complements of diag-
onally scaled Cauchy matrices are computed by (7) with relative errors less than γ8n.
In this section we assume that the entries of the Schur complements are computed
with relative errors less than γk; thus the error analysis remains valid for other cases.

A nagging problem will arise in the analysis: the computed 2× 2 pivots fulfill the
conditions of Bunch and Parlett, i.e., α |ĥ21| > max{|ĥ11|, |ĥ22|}, but the exact pivots
may not. This justifies the following lemma.

Lemma A.4. Let

Ã =

[
a(1 + βa) c(1 + βc)
c(1 + βc) b(1 + βb)

]
≡
[

ã c̃

c̃ b̃

]



1150 FROILÁN M. DOPICO AND PLAMEN KOEV

be a matrix of real floating point numbers, where max{|βa|, |βb|, |βc|} ≤ γk, and α |c̃| >
max{|ã|, |b̃|}, with 0 < α < 1. Denote A ≡

[
a
c
c
b

]
. If

4
√

2
1 + α

1 − α
γk ≤ 1,(28)

then

κ2(A) ≤ 2
1 + α

1 − α
.(29)

Proof. Notice that

Ã = A + E1 with ‖E1‖F ≤ γk‖A‖F ≤
√

2 γk‖A‖2.(30)

Let σ1 ≥ σ2 and σ̃1 ≥ σ̃2 be the singular values of A and Ã, respectively. Now
Corollary 5.1 from [10] implies

κ2(Ã) =
σ̃1

σ̃2
≥ σ1 −

√
2 γk‖A‖2

σ2 +
√

2 γk‖A‖2

= κ2(A)
1 −

√
2 γk

1 +
√

2 γk κ2(A)
.

From this we get

κ2(A) ≤ κ2(Ã)

1 − 2
√

2 γk κ2(Ã)
.

The result follows from (28) and Lemma A.2, which implies

κ2(Ã) ≤ (1 + α)/(1 − α).

Obviously the rigorous factor 2 in (29) is pessimistic, and in practice κ2(A) ≈
κ2(Ã) ≤ (1+α)/(1−α). However, at the cost of the nonessential factor 2, Lemma A.4
allows us to get rigorous error bounds instead of first-order error bounds. In particular,
we can prove the following lemma.

Lemma A.5. Let

Ã ≡
[

ã c̃

c̃ b̃

]
=

[
a(1 + βa) c(1 + βc)
c(1 + βc) b(1 + βb)

]
be a matrix of real floating point numbers, where max{|βa|, |βb|, |βc|} ≤ γk, and α |c̃| >
max{|ã|, |b̃|}, with 0 < α < 1. Denote A ≡

[
a
c
c
b

]
. Let the eigenvalues of A be

λ1 ≥ λ2; v1 and v2 be the corresponding orthonormal eigenvectors; and cs and sn be
the components of the eigenvectors, i.e., v1 = [cs , −sn]T and v2 = [sn , cs]T or vice

versa. Let λ̂1, λ̂2, v̂1, v̂2, ĉs, and ŝn be their corresponding computed counterparts by
applying the Jacobi process in (25)–(27) to Ã in floating point arithmetic with machine
precision ε. If

4
√

2
1 + α

1 − α
γk+29 ≤ 1 and γ141+48k ≤ 1,(31)

then
1.

|λ̂i − λi|
|λi|

≤ 4
1 + α

1 − α
γk+29, i = 1, 2;(32)
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2.

‖v̂i − vi‖2 ≤ γ4k+141, i = 1, 2;(33)

3.

ĉs = cs (1 + θ16k+113) and ŝn = sn (1 + θ48k+141).(34)

We have chosen to get error bounds for cs and sn that do not depend on α. At
the cost of complicating the bounds, it is possible to get sharper bounds depending on
α. Moreover, we have frequently overestimated the bounds to get simpler expressions.
It is well known that the precise value of the constants appearing in roundoff error
bounds are, in any case, pessimistic.

Proof of Lemma A.5. According to Theorem A.1, λ̂1 and λ̂2 are the exact eigen-
values of

Ã + E with ‖E‖2 ≤
√

2γ29‖Ã‖F ,

while v̂1 and v̂2 differ from the exact eigenvectors of Ã + E by only small relative
changes in each component. Therefore, by taking into account (30), we get that λ̂1

and λ̂2 are the exact eigenvalues of

A + E2 ≡ A + E1 + E with ‖E2‖2 ≤
√

2 γk+29‖A‖F ≤ 2 γk+29‖A‖2,(35)

and v̂1, v̂2 are small relative componentwise perturbations of the eigenvectors of A +
E2. Weyl’s perturbation theorem for eigenvalues implies that |λ̂i − λi| ≤ ‖E2‖2 ≤
2 γk+29‖A‖2. By using (29) we obtain (32):

|λ̂i − λi|
|λi|

≤ 2 γk+29κ2(A) ≤ 4
1 + α

1 − α
γk+29, i = 1, 2.

Let us focus on the eigenvectors. In the first place, we are going to relate the
eigenvectors v1 and v2 of A to the eigenvectors ṽ1 and ṽ2 of Ã. Notice that according
to Theorem A.1, the components of v̂1 and v̂2 are small relative perturbations of the
components of ṽ1 and ṽ2. Therefore, once ṽ1 and ṽ2 are related to v1 and v2, the
difference between v̂i and vi, i = 1, 2, is easily obtained. Let θ(vi, ṽi) be the acute
angle between vi and ṽi. Then [10, Theorem 5.4] and (30) lead to

1

2
sin 2 θ(vi, ṽi) ≤

√
2 γk ‖A‖2

|λ1 − λ2|
.(36)

Let λ̃1 ≥ λ̃2 be the eigenvalues of Ã. Using again Weyl’s theorem, we obtain |λ̃i−λi| ≤√
2γk‖A‖2, i = 1, 2. Therefore, |λ̃i − λi|/|λi| ≤

√
2γkκ2(A). Lemma A.4 implies

|λ̃i − λi|
|λi|

≤ 2
√

2
1 + α

1 − α
γk,(37)

and the first assumption in (31) leads to |λ̃i − λi|/|λi| ≤ 1/2. Therefore, λ̃i and λi

have the same sign. The matrix Ã is indefinite, as is A, thus |λ1 − λ2| > ‖A‖2, and

1

2
sin 2 θ(vi, ṽi) ≤

√
2 γk.(38)
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The first assumption in (31) implies sin 2 θ(vi, ṽi) < 1/2; thus 1/
√

2 ≤ cos θ(vi, ṽi).
From this bound and (38), we obtain sin θ(vi, ṽi) ≤ 2 γk, and, by using that ‖vi−ṽi‖2 ≤√

2 sin θ(vi, ṽi),

‖vi − ṽi‖2 ≤ 2
√

2 γk < γ4k, i = 1, 2.(39)

Now, notice that the error bounds for ĉs and ŝn appearing in Theorem A.1 lead to
‖v̂i − ṽi‖2 ≤ γ141. Finally,

‖v̂i − vi‖2 ≤ ‖v̂i − ṽi‖2 + ‖ṽi − vi‖2 ≤ γ4k+141, i = 1, 2,

which is (33).
Let us prove the third item. We prove only the error bound for sn. The bound

for cs is proved in a similar way. The bound (39) implies∣∣∣∣sn− s̃n

s̃n

∣∣∣∣ ≤ 2
√

2 γk
|s̃n| < 6

√
2 γk,

where we have used that 1/3 < |s̃n|, according to Lemma A.3. Then∣∣∣∣sn− s̃n

sn

∣∣∣∣ ≤ 6
√

2 γk

1 − 6
√

2 γk
≤ (2 +

√
2) 6

√
2 γk < γ48k,(40)

where we have used that 6
√

2γk ≤ 1/
√

2. The previous bound can also be written as
s̃n = sn(1 + θ48k). Combining this expression with Theorem A.1, we get the bound
in (34) for the sine.

Lemma A.5 allows us to prove the main theorem of this section. In this theorem,
we extend the symbols θx and γx introduced in (24) to noninteger values of x ≥ 1.
In particular, it is easy to check that Lemma 3.3 in [22] remains valid for these non-
integer values.

Theorem A.6. Let B = BT be an n × n real matrix, and let S(m) be its mth
Schur complement, 0 ≤ m ≤ n − 1. Let us assume that all the entries of the Schur
complements of B can be computed with relative error bounded by γk in floating point
arithmetic with machine precision ε, i.e.,

Ŝ
(m)
ij = S

(m)
ij (1 + β

(m)
ij ), |β(m)

ij | ≤ γk for all i, j,m,(41)

where Ŝ(m) are the computed Schur complements. Let us also assume that the Bunch–
Parlett pivoting strategy applied to B in floating point arithmetic does not permute
any rows or columns of B.

Let X̂D̂X̂T be the RRD of B computed in floating point arithmetic by applying

the Bunch–Parlett method to the Schur complements Ŝ(m), 0 ≤ m ≤ n − 1, followed
by the Jacobi spectral diagonalization of the 2 × 2 pivots, as in (6). Let us apply this
algorithm to B in exact arithmetic by choosing the same dimensions for the pivots
as those selected in floating point arithmetic. Let X and D be the exact factors, i.e.,
B = XDXT . If

4
√

2
1 + α

1 − α
γk+29 ≤ 1 and γ141+48k ≤ 1,

then
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1.

|D̂ii −Dii| ≤ 4
1 + α

1 − α
γk+29 |Dii|, 1 ≤ i ≤ n;

2.

‖X̂ −X‖F ≤ 2
√

2
1 + α

1 − α
γh(α) ‖X‖F ,(42)

where

h(α) =

(
8

1 + α

1 − α
+ 49

)
k + 232

1 + α

1 − α
+ 144;(43)

3.

‖X̂(:, j) −X(:, j)‖2 ≤ 4
√

2n(1 + α)

(1 − α)2(1 − γg(α))
γh(α)‖X(:, j)‖2, 1 ≤ j ≤ n;(44)

where

g(α) =

(
32

(
1 + α

1 − α

)2

+ 196
1 + α

1 − α

)
k,(45)

and it is assumed that γg(α) < 1.
Theorem 3.1 follows from Theorem A.6, taking k = 8n, α = 0.6404, and increas-

ing some of the bounds to get simpler expressions.
Proof of Theorem A.6. The first item is trivial in the case of 1 × 1 pivots, and it

is a consequence of (32) for the 2 × 2 pivots, selected by the Bunch–Parlett strategy.
If X(:, s) is a column of X corresponding to a 1 × 1 pivot, we simply combine

roundoff errors to get X̂(i, s) = X(i, s)(1 + θ2k+1), and then

‖X̂(:, s) −X(:, s)‖2 ≤ γ2k+1 ‖X(:, s)‖2.(46)

Therefore, we need only focus on the columns corresponding to 2 × 2 pivots.
Let us assume for the rest of the proof that X(:, j : j + 1) are two columns of

X corresponding to a 2 × 2 pivot. Let us denote the nontrivial part of X as follows:
X(j : j + 1, j : j + 1) ≡ X11 and X(j + 2 : n, j : j + 1) ≡ X21. We will also use
S21 ≡ S(j−1)(j+2 : n, j : j+1). The 2×2 pivot is S11 ≡ S(j−1)(j : j+1, j : j+1), and
its orthogonal diagonalization is denoted by S11 = UΛUT . Finally, Λ ≡ diag(λ1, λ2).
The corresponding computed magnitudes will be denoted by the same hatted letters.

According to (6),

‖X̂11 −X11‖F = ‖Û − U‖F ≤
√

2 γ4k+141 = γ4k+141‖X11‖F ,(47)

where (33) has been used. To study the error in X21, it is convenient to define

f(α) ≡ 4
1 + α

1 − α
.

Thus, (32) implies that λ̂p = λp(1 + θf(α) (k+29)), for p = 1, 2. Notice that, by (6),
X21 = S21UΛ−1. Then for the computed magnitude,

(X̂21)pq =

2∑
l=1

(Ŝ21)pl (Û)lq

λ̂q

(1 + θ
(p,l,q)
3 ) =

2∑
l=1

(S21)pl Ulq

λq
(1 + θ

(p,l,q)
h(α) ),
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where h(α) is given by (43), and (34) has been used to bound the errors in the entries
of U . The previous equation leads to

|X̂21 −X21| ≤ γh(α) |S21| |UΛ−1|,

where, for any matrix B, |B| is the matrix whose entries are the absolute values of
the entries of B. Now, we use that the Frobenius norm is unitarily invariant to get

‖X̂21 −X21‖F ≤ γh(α) ‖S21U‖F ‖Λ−1‖F
≤

√
2 γh(α) ‖S21UΛ−1 Λ‖F ‖Λ−1‖2

≤
√

2 γh(α) ‖S21UΛ−1‖F κ2(Λ)

≤ 2
√

2
1 + α

1 − α
γh(α) ‖X21‖F ,(48)

where (29) and κ2(S11) = κ2(Λ) have been used. This inequality and (47) imply

‖X̂(:, j : j + 1) −X(:, j : j + 1)‖F ≤ 2
√

2
1 + α

1 − α
γh(α) ‖X(:, j : j + 1)‖F .

The normwise bound (42) is finally obtained by combining the above inequality with
(46).

The proof of the columnwise error bound (44) needs more work in the case of
columns of X corresponding to 2 × 2 pivots. It relies on two properties. The first is
that the absolute values of the entries of the matrix Ŝ21Ŝ

−1
11 are bounded by 1/(1−α)

because Ŝ11 is a 2 × 2 pivot chosen by the Bunch–Parlett pivoting strategy [4, 22]
(see also [20, page 118] for a simple proof). The second is that X11 = U , and, as a
consequence, both columns of X(:, j : j + 1) have a norm greater than or equal to 1.

We will use some additional notation in the rest of the proof. Let Ŝ11 = Ũ Λ̃ŨT

be the exact orthogonal diagonalization of Ŝ11. Notice that we have previously used

S11 = UΛUT , the exact orthogonal diagonalization of the exact block S11, and Û Λ̂ÛT ,
the computed orthogonal diagonalization of Ŝ11. We will also use the matrices X̃11 ≡
Ũ and X̃21 = Ŝ21Ũ Λ̃−1. Finally, Λ̃ ≡ diag(λ̃1, λ̃2).

According to [20, page 118],

‖X̃21‖F = ‖Ŝ21Ŝ
−1
11 ‖F ≤

√
2(n− j − 1)

1 − α
≤

√
2n

1 − α
.(49)

Let us relate ‖X̃21‖F to ‖X21‖F . Notice that

(X̃21)pq =

2∑
l=1

(Ŝ21)pl (Ũ)lq

λ̃q

.(50)

The difference between the eigenvalues and eigenvectors of Ŝ11 and those of S11 can
be bounded as done in (37) and (40) for A and Ã. Therefore, λ̃q = λq (1 + θf(α) k)

and (Ũ)lq = Ulq(1 + θ48k). Moreover, (Ŝ21)pl = (S21)pl (1 + θk), and (50) implies

(X̃21)pq =

2∑
l=1

(S21)pl Ulq

λq
(1 + θ(2f(α)+49)k).
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This implies |X̃21 − X21| ≤ γ(2f(α)+49)k |S21| |UΛ−1|. An argument similar to that
leading to (48) implies

‖X̃21 −X21‖F ≤ γg(α) ‖X21‖F ,

where g(α) is given by (45). This bound and (49) yield

‖X21‖F ≤ ‖X̃21‖F + ‖X21 − X̃21‖F ≤
√

2n

1 − α
+ γg(α) ‖X21‖F

and

‖X21‖F ≤
√

2n

(1 − α)(1 − γg(α))
.

We substitute this bound in (48) to get

‖X̂21 −X21‖F ≤ 4
√
n (1 + α)

(1 − α)2 (1 − γg(α))
γh(α).

This inequality and (47) imply

‖X̂(:, j : j + 1) −X(:, j : j + 1)‖F ≤ 4
√

2n (1 + α)

(1 − α)2 (1 − γg(α))
γh(α).

The bound (44) follows from (46) and the previous bound because max{‖X̂(:, j) −
X(:, j)‖2, ‖X̂(:, j + 1) − X(:, j + 1)‖2} ≤ ‖X̂(:, j : j + 1) − X(:, j : j + 1)‖F and
1 ≤ ‖X(:, j)‖2, 1 ≤ ‖X(:, j + 1)‖2.
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