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This paper is concerned with classes of models of stochasttion dynamics with time-scales separation.
We demonstrate that the existence of the time-scale separetturally leads to the application of the averaging
principle and elimination of degrees of freedom via the remaization of transition rates of slow reactions.
The method suggested in this work is more general than offpgoaches presented previously: it is not limited
to a particular type of stochastic processes and can beedptlidifferent types of processes describing fast
dynamics, and also provides crossover to the case whenasigpaof time scales is not well pronounced. We
derive a family of exact fluctuation-dissipation relatiavisich establish the connection between effective rates
and the statistics of the reaction events in fast reactiamiobls. An illustration of the technique is provided.
Examples show that renormalized transition rates exhilgeineral non-exponential relaxation behavior with a

broad range of possible scenarios.

PACS numbers: 02.50.-r,05.40.-a,82.20.Uv

I. INTRODUCTION

Chemical reaction networks are systems of molecular spedidifferent types interacting with
each other by means of multiple reactions [1]. In classib&ingical systems, the volume of the
reactor and population numbers of species of each typessagdly large giving the accurate de-
scription of the system in terms of the concentrations. Reaavith complex chemistry give rise
to complicated systems of nonlinear equations for the aunatons of chemical species that do
not lend themselves to analytic solution. Dynamics of thgsentities can be modeled via sets
of ordinary differential equations (ODESs) which are powetbols for predicting the dynamical

behavior of macroscopic chemical mixtures.
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There is a recent renewal of interest in stochastic modeficyemical systems which came with
the recent realization of importance of noise in celluldoimation processing. At the level of a
single cell, number of molecules involved in some procesaase very small and concentrations
are described as nano-molari[2, 3]. In addition to thatedéfiit processes are also characterized by
significantly different times scaled [4].

Presence of this time-scale separation and highly diftscepy numbers of molecular species
usually complicates the study of biological processes witmputer simulations. There is an obvi-
ous need for computationally tractable stochastic mode&smacro-scale that can provide insights
into joint, qualitative, effects arising from interactiohseveral sub-networks. In deterministic sys-
tems of ordinary differential equations, time-scale sapan is usually related to the concept of
stiffness. It is obviously hard to define the same concepase®f the stochastic systerns [5].

In spite of these obvious complications some progress harsiade in modeling of biochemical
networks which express the separation of time-scales. @imutty is heterogeneity of simulation
techniques used for simulation of ODEs/SDEs and stochsistialation algorithm. One strategy
exploited in the literature [%/ 6] is based on grouping tbgetf reaction events taking place in a
single reaction channel in a fast succession and applyffigsitin approximationi|7]. InLI8] Rao
et.al. discuss a computational approach for performimgiehition of the fast species based on rapid
equilibrium in the limit of the infinite time-scale separmati This method was termed quasi-steady
state approximation (QSSA). A somewhat similar approadakien in [9]. Formally, this method
stems from the classical deterministic QSSA applied to tledcal master equation itself rather
then to the (stochastic) differential equation underlytimg dynamics of the state vector (humbers
of molecular species). The method developed by Cao et @lihdan be viewed as generalization
of approach of Rao et.al.l[8] but still have the limitatiorfdeing derived through the application
of deterministic techniques and assumptions to the chémiaster equation. It also assumes that
averaging procedure can be done by solving the system diraligeesquations for the expectations
of the fast variables given slow, termed|ini[10] as a virtaakforocess. We note here that studies of
stochastic dynamics of diffusion-type processes evolainglifferent time scales were pioneered
by Bogolubov, Khasminski and Freidlin and we refer the reaolenonographs [11, 12, 13].

This paper has two purposes. First, we present the forrounlafistochastic reaction dynamics of



reaction network consisting of two subnetworks. Compapaniany previous results, where usual
description of stochastic reaction dynamics follows therapch based on chemical master equation
(CME), current publication follows the path-sampling aggch and represents the dynamics as a
jump-type stochastic differential equations (SDES).

Second purpose is to provide rigorous procedure for thernealization of the transition rates of
slow reactions in the presence of fast ones. Following tbiip of the stochastic dynamics devel-
oped in the first part of this paper, we outline the main gumgds for use of stochastic averaging
principle including error control analysis. Despite of tieeent rebirth of interest to the method of
stochastic averaging in applications to stochastic chalnkioetics, very few examples deal with
situations when this procedure might break down. We demateshere, in a constructive way,
how to perform the averaging over fast reaction events amdtbmbtain the effective slow-scale
transition rate.

Organization of this paper is as follows. In the next sectiendiscuss the general probabilistic
framework for stochastic dynamics of reaction networksiatrdduce a scheme for the partition of
species and reactions. In Sectiom Il we investigate theseguences of possible time-scales sepa-
ration and present a procedure based on renormalizatioardition rates. We also put emphasis
on error analysis, outlining main sources of the numericalreon different steps of the procedure.

Our paper will end with discussion of examples.

. NETWORK PARTITIONING

We begin our discussion with a general set-up, introducagjdconcepts and notation.

Assume that a well mixed, isothermal system Isaglifferent molecular species indexed by
i+ = 1...5 and there ardk reaction channels, index by= 1... R, transforming the molecualr
composition of these species. For the basic notation anchges we direct reader to_[14,115].

State vector of the system can be represented as following:
(X, 2) 1)

where fist part of the state vectdi; € Z,i = 1... Sx representsnainspecies while the second

part Z; € Zy,i = 1...S5, representsntermidiatespeciesZ;,i = 1...Sz. Total number of



all types of speciesSx + S; = S. VectorsvX, vZ andvX? are stoichiometric changes of
componentX and Z if reaction event takes place. We will not make any assumptions about
actual number of molecular species of each type, i.e. wewatlassume low or large copy numbers.

We assume, however, that there are three subsets of resittitive system:

(i) reactions which transform only speciXs(we denote this subs&, ),

(i) reactions which transform only specigs(subsetR )

(iii) "linker” reactions which mix specieX andZ (subsetR3).

Each reaction channel can be specified by the transitios tatéa positive function) which
describes the probability,.dt of reaction event to take place in the interval of tidte Transition
ratea, can be further specified as positive function&gfZ, or,in general, on both componerXs

andZ. Based on the definition of subs&s » 3 we have:

a-(X), reRy (2a)
a-(Z), r€ERy (2b)
a,(X,Z), r€R3 (2c)

We do not assume specific dependence,df) on the state variableX and Z but usually, in
the framework of mass action kinetics, it is a product of kneate k,. and functionh,.(-) which
represents the number of reactive configurations avaiktldegiven stat&X, Z [14].

There exist different methods to characterize the stoahats¢mical dynamics. One of the most
popular approach is to provide an equation for the joint phility densityp;(X, Z), which gives
all information about instantaneous state of the systemea¢igc moment of time. Such equation
is known as chemical master equation (CME) [14, 16] and itbeen intensively described and
utilized in recent literature.[8, 9, 10]. But even if we carntah [17] the solution of CME, which
is usually a very hard problem even for simple chemical nétajahis approach still have certain
limitations, coming from instantaneous description pdex by the density,(-).

To describe the stochastic dynamics of the chemical netenekcan introduce the set of inde-

pendent point processéé (t), NV, (0) = 0 representing the numbers of reaction events which took



place in channelg € R up to timet and use the mass balance relations:

X, =X(0)+ > vIN@b) + > vXN(), (3a)
reRy rERs

Z,=Z0)+ > VEN(t)+ > v)YIN(t), (3b)
rER2 rERs

where vectorg’Z, vX andv;XZ describe the composition change of the system due to théaeac

event in the channel. Average number of reaction events in each reaction chaneelR > 3

during the small time intervdt, ¢ + 6t) are proportional to the transition raté$ (2):
E(N,(t + 6t) — N, (t)|X¢, Z¢) = a,(Xy, Z;)6t + O(6t%) (4)

ProcessesV,.(t) can be considered as time-changed, unit-rate independésgdd processes

1L (¢) [2]:
t
N, (t) = I ( /0 ar(Xy, Zy)dt') (5a)

Thus, the large class of discrete event systems with tatadigcessible event times can be viewed

as a standarBoisson procesaith appropriate change of the time scale:
t
t— / CLT(Xt/, Zt/)dt, (Sb)
0

The time change generates path-dependent or self-afjeptimt processes whose dynamics de-
pend on the information generated by the arrivals of thegss(X,, Z;) . It is important to take
into account that the stochastic differential equationsdua only introduce the probability distri-
bution for the pair(X, Z) but also generates a measure on the paths, which contairsmure
information. For almost any realization of the setlof . R standard Poisson processHs(t,w),
parametrized by the elemedntof event space [4, 18] and any deterministic initial cormditthe
solution(X(¢,w), Z(t,w)) is a step-wise stochastic process.

Note also, that dynamics of each componEnor Z is non-Markovian if considered separately
but the dynamics of the pafX, Z) is Markovian.

So far we have introduced only the basic notation: quite gersgstem of SDEs given by](3)
outlined in this section have not invoked any assumptiongasticular relations between different

transition rates:, and was totally based on prior information about existerfcevo groups of



species, i.e.X; and Z; which uniquely identified the partition of the reactionsoirihe subsets
Rl, Rg anng .
In the next section we consider the particular implicatibtime-scale separation including the

extensions of the stochastic averaging principle and sliffu approximation.

. SEPARATION OF TIME-SCALES AND ELIMINATION OF FAST
STOCHASTIC VARIABLES.

In many situations, dynamics of main specdess propagated via large number of fast transitions
which transform mainly intermediate speci&s One usually desires to construct an approximate,
time coarse-grained model, which involve only main spedtés important that approximate prob-
lem describes the dynamics of the system on a large time andléhus is more advantageous for
performing simulations without significant sacrifice in aacy. This section deals with substitu-
tion of the original problem with approximate one and dentiates the form convergence of the
approximation under certain assumptions.

We assume that at certain region of state space the folloagsgmption can be made about
transition rates, (-):

Z ar < O(1) while Z ar < O(e™h) (6)
rERIUR; rER,
where separation of the time-scales is introduced via tredlgrarametee < 1. Problems of this
type are challenge for direct application of Stochastici8ation Algorithm (SSA)I[15,, 19] because
they will require the time steps of the ord@¥¢) with a total computational cost of order!. If
we want to advance through the time interi@al], ¢ ~ O(1) most of the simulation time will be

spent on simulation of reaction events with the high intign@i_ ar < O(e71)). We would

TGRQ
like to find an effective transition rates (-) for the "linker” reactions (subsé®s), which describe
the transition events of the slow reactions "coarse-griioger the possible events corresponding
to the reaction events in subges.

It is instructive to consider a simple reaction scheme wingl three specieX;, Z; » similar to



one considered in_[10]:

2" 7,5 X, )

k367
where rateg: o< ¢~ 1 are parametrized by smallandks o« O(1). In this case reactiong; =2
forms the subseR, while reactionZ,— X; corresponds to the subget and subsek is empty,i.e

Ry = {0}. Then systems of equations for compon€tis, 7, Z,) is the following one:

Z1t = Z1o — Ng(t) + Ng(t), (88.)
Zot = Zao + Na(t) — N3(t) — Ni(1), (8b)
Xlt :Xl(O)—l-Nl(t) (8C)

Presence of the scaling facter! in reaction constants; 2! allows us to consider family
of solutions parameterized y We expectZ; » to follow adiabatically theX;;. To make that

apparent, one can apply the functional law of large numloetrset processes; 5(t) in time interval

[0,t] (see Eqn[(3a)):

1 t t
N2(t) - N3(t)—>z </ ]CQth/dt/ —/ k3ZQt/dt/> -+ (9)
0 0
1 t t
T (WZ(/ ko Zypdt') — Ws(/ k322t'dt/)> ,€—0 (10)
Ve 0 0

whereWs 5(-) are two independent Wiener processes [7]. Since pararetes large, we can

t t
/ kzZlSdS — / ngQSdS
0 0

also converges to zero for times< ¢/(k2 + k3) in the limit of smalle, and we can conclude that:

conclude that difference

sup V@th/ — ngQt/’ —0 (11)
0<t'<t

This means that variableg$; andZ,; reach a stationary binomial distribution:

7721, 25| X1) o< P (1 — ), (12)
ko Zg

Zo = Z1(0) + Z2(0) = Z1 + Zo, o =
0=21(0)+ Z2(0) = Z1 + Z3, « [

(13)
on the time scalé oc O(¢) while sumZy, + Z5; changes on the much larger time-scate O(1):

Ly + Loy =~ Zl(O) + ZQ(O) — Nl(t), (148.)

Xy ~ Ni(t) (14b)



By exploiting the separation of time-scales using the atatiy distributionr<(Z;, Z2| X;) one
can replace dynamical quantitigéZ,,, Zo;, X1;) averaged on the time intervgl, ¢], s <

t < kil with their conditional averages:

1 t
f(Ze, Zor, X1t) = Z/ f(Z1p, Zop, Xy )dt' =~ (15)
0
~ (X)) =Y (21, Zo, Xae)n(Z1, Za| X1y) (16)
71,25

andeliminate fast variablesZ; » from the description even though the total number of mokgul
Z1 + Z, may be not a large quantity. Thus, takirfg-) to be the "linker” transition rates
ar(X,Z), r € R3 one obtains averaged transition ratg$X) which now depend only on the
slow variableX. Results of the large deviation theolry|[11] demonstratekvegavergence bounds
of the original problem with small but non-zeta@o the solution of the averaged system. But as we
mentioned it before, one of the goals of this publicatiomianalyze and extend averaging process
to the situation whem may be small, but not ’infinitesimally’ small. In the next sealllAlwe

will try to answer this question.

A. Renormalization of fast fluctuating reaction rates and reduced evolution equations

Recall that transition rates, (-) of a jump Markovian process can be used to describe distribu-
tions of the waiting times of the reaction events via the sahprobability of a given staté€X, Z)
has an exponential forfi(t) = e~ =+ a-(X.2)t and describes probability that no reaction event
take place in any of . .. R reaction channels in time intervi, ¢] [20].

Consider the first jump time of a particular reactioim the subset of the "linker” reactions, 3
and first jump times of any reaction in the subset of the fasttiens which we will denote, 5 .
Reaction in the grou®3 have both types of chemical speciéé &nd Z) as their substrates, that
means that reaction rates in this subset are fluctuate vathvéaiablesZ. If system is originally
prepared at the stat&X, Z,) att = 0 then at any moment of time> 0 one is interested in finding
the probabilities of eventr, 3 > t} and{r,.» < t}. In other words one has to find an averaged

survival probabilities:

S, (H1X) = P({rns > t}) = <exp(— /O 0 (Xo, f/)dt’)>Z, r e Ry (17)



Average(...)z stands for the average over the possible trajectories ofthehastic process
zZ*(]0,t)), Z§ = Z, atfixedX which depends oiX as on parameter [11].

Probabilities[(Il7) can be used to introduce time-depertdamsition rates, (X, t) which effec-
tively describe the dynamics for reactions in the groRps Taking the logarithm of the averaged

survival probabilities[(1]7) we obtain:

t
$:(11X) = exp(~ /0 at’ an(X, 1), (182)
t
a,(t,X) = —%ln <exp(—/0 dt’ ar(Xo,Zt/)> (18b)
Z

Equationd—I8a constitute one of the main results of the pdpehe field of chemical kinetics a
similar methodology is known under the label of the "rateatggent processes with dynamical dis-
order” 21,22 23| 24, 2%, 6] where it describes the inflgeofcthe non-equilibrium environmen-
tal degrees of freedom on transport and kinetic proper&ésilar approach was used to describe
guantum dynamics in fluctuating environmenti [27]. Usingphecedure of the cumulant expansion
[1€, 28] we can obtain the following interrelationship beema, and the multi-point cumulants

ctm (t1,...,tn|X) of the functions:,. (X, Z¥), taken at different temporal points, . . . , ¢,,:

_1\m t t
s.t1%) =exp | T ity [ttt X0 | (19)
m' 0 0 T
m>0
(_1)m—1 t t
a6, X) = (0 (X, Z))y + 3 T/ dtl.../ dt CO (81, tn]X) (20)
2 ! 0 0

Renormalized transition rates.(t, X) provide so-called semi-Markov approximatian![16] 20].
Term "semi-Markov” generally describes non-Markov pramsssince the statistical properties of
the waiting times can not be provided only by average ratéefprocess but all the multi-time
joint probability distributions for the considered prosesust be considered. Note that in our case
effective ratea,. depend on the statistics of fluctuations of fast varialdethrough the cumulants
™ (ty, . ] X).

Taking a leading term at — 0, which sometimes calleBlarkovian limit we formally arrive to

the results of the QSS Approximatian [8]:

ar(X,t) = O (t1X) = lim »  a,(X, Z)75(2) (21)
Z
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where average is taken over ingariant measurer¢(Z|X) of the fast proces&? atfixed X. Note
that at this levek,, does not depend on time and correspond to the single expahfenin of the
survival probability. This level of approximation corresyls to the assumption that at fixXdall

state space o is totally accessible, i.eergodic[11] and for any functiory(-) : Z"# — R:

F(X) = lim ¢! /Otf(X, Z%)ds = lim Y~ f(X, Z°)n(2°|X) (22)
Z

t—o00

There is a general Jensen inequality , which gives the oelstiip between the mean value of a
convex function of a random variable an the value of this fiomcwhen its argument equals the

mean value of the random variable. According to this ineityual

S, (t]X) > exp <_ /O t dt'0,£1>(t'|X)> (23)

Application of this inequality leads to the important camibn that mean field ratE{R1) is larger
then the rate given by {19). The exponential and non-exgaletructure of the averaged survival
probability is governed by the hierarchy of the time scafdh® dynamics ofZ, at different values
of X. If dynamics ofZ is complicated and exhibit metastability at some valueX @ahen Marko-
vian approximatioid1 is no longer holds and additionalections corresponding to the high order
cumulants must be taken into consideration. CorrectiohédMarkovian approximation based on

the second order cumulants is:
t
Aay (£, X) = — / dt' CO (1 ¥1X), (24a)
0

CA(t,1'1X) = (ar(X, Z7)ar(X, Z1)) 4 — (ar(X, Z7)) 5 (ar(X, Z1)) 4 = (ar(X, Z7)ar(X, Z7))) 4
(24b)

The simples assumption for the time dependence of the cmnrﬂfé) is exponential decay:
O (t,1'1X) = K exp(—r(X)[t - ¢']) (25)

wherex(X)~! is a characteristic relaxation time of the regression oftfiaton of speciesZ and
K = {(Aa2(X, Z)))z. In this case correction to the Markovian term is given by:

Aa,(t,X) = —KR_I(X)% (t — k1 (X)[1 — exp(—r(X)t)])

Correction to the Markovian approximation given by (P4agxsict for the Gaussian and Markov

process since the only possible expression for the camal&inction of a stationary Markov and
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Gaussian process is the exponential of a fdrm (25). It is mlesesting to note that correlation
correction [[Z4ia) generally decreases the transition fielies is a result which can not be obtained
using only straightforward averaging method presentedibligations [8] 10].

Note that in general relations {18a) can be viewed as a tyflaatiation-dissipation relations;
they connect the effective dissipation rate in the slow searained dynamics and statistics of

fluctuations of the fast reaction events given by the cuntsiaf™ (t1, ... tm]X).

Iv. COARSE-GRAINED DYNAMICS AND ERROR CONTROL

Given the renormalized survival probabilities and tréositates at different points of state space

of main specieX:
dr(t,X) = ar(X), r e Ry

stochastic dynamics of the main speclégan be formulated in the straightforward way, similar to
the stochastic simulation algorithm (SSA)[14) 15]. At thed pointt = 0 stateX, we consider
an overall survival probability:
StXe)= [ S-(tXo) (26)
r€R1URs
and define a jump moment of the slow process as a firsttimehenS(¢|X,) crosses the value,

where the last one is a random number uniformly distributethe interval0, 1) [29]:
71 = inf{t > 0|S(t|Xo) < u}, uweU(0,1) (27)

Post-jump transition kernel is defined by the vector of titéars probabilities

0 = a, (11, Xo)
' 2oreRr, , @ (11, X0)’

I.e. reaction event* € R, 3 is selected based on the veciprand current state is updated:

re Rl,g (28)

X, =Xg+ v, t1 =11,

Then the same procedure is performed starting at the Xtatevith generation of the intervah

from the survival probabilityS(¢|X;,) and new stat& ., ,, and so on. As a result one obtains a
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coarse-grained trajectory:

n

(tn, X1,), tn=) 7 (29)

i=1
Question about the overall accuracy and the error contraldslicate question. Below we de-

compose the overall error of the method it into the followimgin factors:

1. Error in approximating by coarse grained dynamics:
e1 = sup E(|X; —X¢[?)
0<t<T

assuming that transition rates(-) can be obtained without error.

2. Approximation and Monte Carlo erres of a,.(-) via the finite number of samples represent-

ing the dynamics ofZ; at fixedX.

Below we discuss step by step leading terms;ines.

Estimation of the erroe; is related to the answer on the following question: what fxs®rror
is introduced while performing averaging of rates of remudiin the subse®, 3 atfixedX?

It is not hard to see that this error is proportional to thebatality of the event that minimal jump
time over the reactions in grodp; U R, is smaller thert while the minimal jump-time of reaction
in the groupRs is larger thert:

t
Sy(t|Z) =P ({min Tro < t}U{ min 7. > t}> = <exp(—/ dt' a,(Xy, ZO))> , TER3
r€Rs r€R13 0 X

(30)
where averagé . .) x is taken over trajectorieX? atfixedZ It is not hard to see that this probability
is exponentially small, i.ex exp(—e~!—L_) in the limite — 0.

Error e; depends on the number of cumulants we have included in E8p.afid cumulant of
orderm usually gives contribution proportional t&'. In Appendix we outline the exact method for
calculation of the renormalized survival probability bagm eigenvalue decomposition of certain

linear operator which is a practical approach in situatiwhen state space of the varial#feis not

very large.
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v. EXAMPLES

We now present a simple intuitive example to show that exptialeor non-exponential structure
of the averaged survival probability is governed by thetrefship between time-scales of "fast”

and "slow” species. Assume that for some reaction channel
X+Z+...—>... (31)

ratea, (X, Z) = k.h,(X)h.(Z) jumps reversibly between two values(X,0) anda, (X, 1) with

the stochastic dynamics &f governed by simple master equation:

pt(0) _ —kor k1o pt(0) (32)
p(1) kor  —kio ) \pe(1)
Equation [3R) describes the switching transitions betwdentwo states) and 1. Assum-
ing that state of variable is prepared according to the equilibrium density= (7o, 7)) =

x

k k ; kg — [ L ar (X, Z5)dt! ;
(79 7). the average survival probability Jo ar(X,25)dt"y can be obtained as follows

(see also Appendix section for the general computatioaatéwork):

T

1 —a,(X,0) — k k T
Sp(tX) = exp | ¢ (£,0) = Fon 0 ’ (33)
1 kOl —CLT(X, 1) — klO 1

This result is very similar in nature to the result obtaine{l3] for the case of identical transition
rates. Remarkable and simple result outlined by Hgn. (38valus to capture in essence regimes
corresponding to the different ratios of the time-scalesx (k1o + ko1) anda, > (kig + ko1)-
First regime ¢, < (k10 + ko1)) corresponds to the situation when transitions betwedardift
states ofZ happens much faster then the average ¢atel, 0), a, (X, 1) of the "linker” process
and represents the mean-field (MF) regime. In this case depee ofin(S,(t)) on timet can
be very well characterized as linear K. 2. Not surprisingther regime, i.ea, > (k19 + ko1)
can be characterized as gated: in this case effective ti@nsatea, is characterized by the rate of
switching of Z: ko1 + k1g-

Figure 3 demonstrates influence of the second order caoelatorrection Eqn. [(25):
AG,(t,X) = mmoL(l — £(1 — ")), Kk = ko1 + k1o Which fluctuation correction to the ef-

fective ratea, (-)
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Dependence of survival probability,. (¢|X) in the example of a two-state system can be shown
to be non-exponential on the longer time scalelngs, (t)) behaves linearly with time at small

timest < 1/a,(X,-).

Interesting case of non-exponential relaxation kinetiogl specifically non-exponential kinetics
at small times can be presented by the following example.sftien a fast reaction given by the

dimerization reaction:

ko
S+S & 5 (34)
kZKeq

where the fast variabl€; is the number of reaction event which took place up to tinvehich
relates the numbers of monomers and dimers with the totabeuwf moleculesv,,, = 25 + S,

in the following way:
S=Ny,—2Z, S,=2 (35a)

and a "linker” process is described by the relaxation rafgedding on the number of dimek§ in

the following way:

k1 X

aT(X7Z): Z+X

(36)

Current valueX serves as an activation threshold: at small valuek @& o 1) only small values
of Z contribute to the effective rate but probability tHatakes values away from its average are
exponentially suppressed (Fifj. 4). On the contranXifs large i.e. X ~ >, n(Z|X)Z then
rate given by Eqn[{36) depends on the typical valug @nd S, (t| X ) manifests time dependence
similar to the previous example. One can see that this ritaxarocess shows non-exponential
time dependence at small times due to the fact that pro¢esarely visits the states contributing
to the maximum of the relaxation rate given by Ednl (36). Westigate the dependence of the
averages survival probability on the level of activatioreghold X and value of the equilibrium
constanti,,. Results presented on the Hijj. 5 show non-exponential bhafvaveraged survival
probability for the system at small timeéslt is evident that non-exponential behavior$f(t|X)
is less pronounced for large valuesXt X ~ (7)).

Eigenvalue-eigenvector decomposition and calculatioexpinsion coefficients was performed

via standard routines of LAPACK library availableraitp: //www.net1ib.org .
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vi. DISCUSSION AND CONCLUSIONS

Let us summarize the main aspects of this paper. We haveestuoeliluction approach to elimi-
nate a fast intermediate in the chemical reaction netwasldévelop this method it is important to
consider the time coarse-grained transition rates. We thiaeeissed the limitations of the principle
of stochastic averaging and its possible extensions thrtheg rigorous technique for construction
of the effective transition rates. We outline the procedaree-normalization of the transition rates
and construction of the effective Markov chain for the sl@actions. The merit of the present ap-
proach is that it is based on a conceptually transparengpitidtic approach involving the waiting-
time distribution.Technique itself resembles a non-Maié&n generalization of the Kubo-Anderson

theory of stochastic modulation. Our study clearly indisatmportance of details of the statistical

structure of averaging process.

VIl. ACKNOWLEDGMENTS

Author thanks A. Alekseyenko for stimulating discussiontbe subject of this publication, T.
Ham for valuable suggestions. Author would like to acknalgie DARPA grant # BAA-01-26-
0126517 and Prof. A.P.Arkin for support during the coursthisf research.

[1] M. Feinberg. The existence and uniqueness of steadgsstat a class of chemical reaction networkgchive for
Rational Mechanics and Analysis32:311-370, 1995.

[2] H. H. McAdmas and A.P. Arkin. Stochastic mechanisms ineggexpressionPNAS 94(3):814-819, 1997.

[3] E. Ozbudak, M. Thattai, and I. Kurtserand A. D. Grossmarda. van Oudenaarden. Regulation of Noise in the
Expression of a Single Genblature Genetics31, 2002.

[4] R. Erban and H. G. Othmer. From signal transduction tdiappattern formation irE. Coli: A paradigm for
multiscale modeling in biologyMultiscale Model. Simu).3(2):362—-394, 2005.

[5] M.Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespieiff§ess in stochastic chemically reacting systems: The
implicit tau-leaping methodJ. Chem. Phys119:12784-12794, 2003.

[6] D.T. Gillespie. The Chemical Langevin equatigh.of Chem. Phys113(1):297-306, 2001.



16

[7] S. Ethier and T. KurtzMarkov Processes: Characterization and Convergariehn Wiley & Sons, 1986.
[8] C. V. Rao and A. P. Arkin. Stochastic chemical kineticsl dine Quasi-Steady-State assumption: Application to the
Gillespie algorithm.Journal of Chemical Physic418(11):4999-5010, 2003.
[9] E. L. Hasiltine and J.B. Rawlings. Approximate simutetiof coupled fast and slow reactions for stochastic chdmica
systems.J. Chem. Phys117(15):6569-6969, 2002.
[10] Y. Cao, D. T. Gillespie, and L. R. Petzold. The slow-scatochastic simulation algorithmJ. Chem. Phys.
122:014116, 2005.
[11] M.I. Freidlin and A.D. WentzelRandom Perturbations of Dynamical Systei@pringer,New York, 1984.
[12] 1.1.Gihman and A.V.SkorohodStochastic Differential Equation$Springer Verlag, 1972.
[13] A.V.Skorohod.Asymptotic Methods in the Theory of Stochastic Differé&tpations AMS, 1989.
[14] D.T. Gillespie.Markov Processes: An Introduction for Physical Scientistsademic,San Diego, 1992.
[15] D.T. Gillespie. Exact simulation of coupled chemcie@actions.J. of Phys. Chem81(25):2340-2361, 1977.
[16] N.G. van KampenStochastic Processes in Physics and Chemidiigrth-Holland Pub. Co., 1992.
[17] M. Samoilov and John Ross. One-dimensional chemicatensequations: Uniqueness and analytical form of
certain solutionsJournal of Chem. Phys102(20):7983-7987, 1995.
[18] I. Karatzas and S. E. ShrevBrownian Motion and Stochastic CalculuSpringer-Verlag, 1988.
[19] A.B. Bortz, M.Kalos, and J. L. Lebowitz. A new algorithfor Monte Carlo simulation of Ising spin systems.
Journal of Computational Physic$7:10-18, 1975.
[20] I.I. Gihman and A. V. SkorohodTheory of Stochastic Processes, vol3pringer Verlag, 2004.
[21] S.F. Burlatsky, G.S. Oshanin, and A.V. Mogutov. Directergy transfer in polymer system®hys. Rev. Lett
65(25):3205, 1990.
[22] R. Zwanzig. Dynamical disorder: Passage through adatotg bottleneckJ. Chem. Phys97:3587-3589, 1992.
[23] N. Agmon and J.J. Hopfield. Transient kinetics of cheahméactions with bounded diffusion perpendicular to the
reaction coordinate: Intramolecular processes with slomfarmational changesJ. Chem. Phys.78(11):6947—
6959, 1983.
[24] M. O. Vlad, J. Ross, and M. C. Mackey. Nonequilibrium &luation-Dissipation Relations for independent random
rate processes with Dynamical Disordérof Math. Physics37(2):803—-835, 1996.
[25] D. Chandler, J.N. Gehlen, and M.Marchiltrafast Reaction Dynamics and Solvent Effe&#P. New York, 1994.
[26] J. Wang and P. G. Wolynes. Survival Path for Reactiondgics in Fluctuating Environmenthem. Phys180:141,
1994.

[27] I. Goychuk. Quantum dynamics with non-Markovian fluating parameters?hys. Rev. E70:016109, 2004.



[28] R. Kubo.Adv. Chem. Physi¢cd45(101), 1969.
[29] M.H.A. Davis. Markov Models and OptimizatiortChapman and Hall, London, 1993.

[30] H. Risken.The Fokker-Planck Equation : Methods of Solutions and Agfilbns Springer-Verlag, 1996.

17



18

vil. FIGURES

FIG. 1: Schematic representation of the two-state moddbxagon rates:(-) depend on both staté and X and can

be quite general.
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FIG. 2: Time dependence of survival probabilBy(¢) for different ratios of transition rates= a.,(X,1)/(ko1 + k10)

for the system withu,- (X, 1) # 0 anda,(X,0) = 0.

APPENDIX A: CALCULATION OF AVERAGED SURVIVAL PROBABILITY

Calculations of averaged survival probabiliti€s(t|X) requires, in general, the calculation of
the cumulantaﬁ,ﬁm) of different orderm but for some simple cases it can be obtained exactly. This
is possible for the class of systems which have only finite lmemof accessible states of the fast

variables.
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FIG. 3: Time dependence of the survival probability(¢) calculated with mean-filed (dotted line) approximation and

second cumulant correction (dashed line) compared to eepetindence (solid line).

One can study the distribution of valugf the functional

t
exp(—/0 ar(Zy)dt'), (A1)

where we have omitted the current st&eto simplify the notation. We introducing the joint
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FIG. 4: Trajectory and probability density of the proce&s). Dotted and dash lines on the probability plot correspond

to the profile of the relaxation rate.(X, Z) for different X

probability densityy(S, Z, t) of the random variableS and Z [3(]:

WELY) _ o(2) 5 (54(5,2,6)+ (n22)
+ Z ar(Z —vy))q(S, Z —vp,t) —ar(Z))q(S, Z,t)) = (A2b)
r’ER,
— a,(Z )%(Sq(S Z0)+ > Waza(S, 2,1) (A2¢)
Z/

Average survival probability can be expressed following:

1
=Y [ sas.z.0ds =Y a2 (A2d)
0 z
andg,(Z,t) is governed by the following master equation:
04, (Z,t _ _
WBY) - 23 (2.0 + Y Wz 21) (A2e)
ZI

One can find an averaged survival probability via eigenvaigenvectof \, V\(Z)} decomposi-
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FIG. 5: Time dependence of the survival probabilfty(¢| X) for the system where dimerization dynamics of the fast
variable Z is described by parameteP§,, = 200, k1 = 1.0, k2 = 10.0, K., = 102. Plots are shown for values
of X = 1 and50 clearly manifest non-exponential character of the relaraprocess at small time for low values of
X. Note that kinetics is non-exponential on time larger thearacteristic scal€,on—ezp ~ 0.02 of fluctuation ofZ (

k7' (N/2)? =~ 107®) i.e. on the relevant for time-coarsening interval.



tion of the linear operatoW z z» — a,(Z)dzz:
Se(t) =) eaVa(Z) exp(At)
Z A
where coefficients, correspond to the decomposition of the invariant probghil{ Z|-):

m(Z) =) _ cVa(Z)
A

23

(A3)

(A4)
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