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This paper is concerned with classes of models of stochasticreaction dynamics with time-scales separation.

We demonstrate that the existence of the time-scale separation naturally leads to the application of the averaging

principle and elimination of degrees of freedom via the renormalization of transition rates of slow reactions.

The method suggested in this work is more general than other approaches presented previously: it is not limited

to a particular type of stochastic processes and can be applied to different types of processes describing fast

dynamics, and also provides crossover to the case when separation of time scales is not well pronounced. We

derive a family of exact fluctuation-dissipation relationswhich establish the connection between effective rates

and the statistics of the reaction events in fast reaction channels. An illustration of the technique is provided.

Examples show that renormalized transition rates exhibit in general non-exponential relaxation behavior with a

broad range of possible scenarios.

PACS numbers: 02.50.-r,05.40.-a,82.20.Uv

I. INTRODUCTION

Chemical reaction networks are systems of molecular species of different types interacting with

each other by means of multiple reactions [1]. In classical chemical systems, the volume of the

reactor and population numbers of species of each types are usually large giving the accurate de-

scription of the system in terms of the concentrations. Reactors with complex chemistry give rise

to complicated systems of nonlinear equations for the concentrations of chemical species that do

not lend themselves to analytic solution. Dynamics of thesequantities can be modeled via sets

of ordinary differential equations (ODEs) which are powerful tools for predicting the dynamical

behavior of macroscopic chemical mixtures.

http://arxiv.org/abs/physics/0510054v1
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There is a recent renewal of interest in stochastic modelingof chemical systems which came with

the recent realization of importance of noise in cellular information processing. At the level of a

single cell, number of molecules involved in some processescan be very small and concentrations

are described as nano-molar [2, 3]. In addition to that, different processes are also characterized by

significantly different times scales [4].

Presence of this time-scale separation and highly different copy numbers of molecular species

usually complicates the study of biological processes withcomputer simulations. There is an obvi-

ous need for computationally tractable stochastic models on a macro-scale that can provide insights

into joint, qualitative, effects arising from interactionof several sub-networks. In deterministic sys-

tems of ordinary differential equations, time-scale separation is usually related to the concept of

stiffness. It is obviously hard to define the same concept in case of the stochastic systems [5].

In spite of these obvious complications some progress has been made in modeling of biochemical

networks which express the separation of time-scales. One difficulty is heterogeneity of simulation

techniques used for simulation of ODEs/SDEs and stochasticsimulation algorithm. One strategy

exploited in the literature [5, 6] is based on grouping together of reaction events taking place in a

single reaction channel in a fast succession and applying diffusion approximation [7]. In [8] Rao

et.al. discuss a computational approach for performing elimination of the fast species based on rapid

equilibrium in the limit of the infinite time-scale separation. This method was termed quasi-steady

state approximation (QSSA). A somewhat similar approach istaken in [9]. Formally, this method

stems from the classical deterministic QSSA applied to the chemical master equation itself rather

then to the (stochastic) differential equation underlyingthe dynamics of the state vector (numbers

of molecular species). The method developed by Cao et al. in [10] can be viewed as generalization

of approach of Rao et.al. [8] but still have the limitations of being derived through the application

of deterministic techniques and assumptions to the chemical master equation. It also assumes that

averaging procedure can be done by solving the system of algebraic equations for the expectations

of the fast variables given slow, termed in [10] as a virtual fast process. We note here that studies of

stochastic dynamics of diffusion-type processes evolvingon different time scales were pioneered

by Bogolubov, Khasminski and Freidlin and we refer the reader to monographs [11, 12, 13].

This paper has two purposes. First, we present the formulation of stochastic reaction dynamics of
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reaction network consisting of two subnetworks. Compared to many previous results, where usual

description of stochastic reaction dynamics follows the approach based on chemical master equation

(CME), current publication follows the path-sampling approach and represents the dynamics as a

jump-type stochastic differential equations (SDEs).

Second purpose is to provide rigorous procedure for the renormalization of the transition rates of

slow reactions in the presence of fast ones. Following the picture of the stochastic dynamics devel-

oped in the first part of this paper, we outline the main guidelines for use of stochastic averaging

principle including error control analysis. Despite of therecent rebirth of interest to the method of

stochastic averaging in applications to stochastic chemical kinetics, very few examples deal with

situations when this procedure might break down. We demonstrate here, in a constructive way,

how to perform the averaging over fast reaction events and how to obtain the effective slow-scale

transition rate.

Organization of this paper is as follows. In the next sectionwe discuss the general probabilistic

framework for stochastic dynamics of reaction networks andintroduce a scheme for the partition of

species and reactions. In Section III we investigate the consequences of possible time-scales sepa-

ration and present a procedure based on renormalization of transition rates. We also put emphasis

on error analysis, outlining main sources of the numerical error on different steps of the procedure.

Our paper will end with discussion of examples.

II. NETWORK PARTITIONING

We begin our discussion with a general set-up, introducing basic concepts and notation.

Assume that a well mixed, isothermal system hasS different molecular species indexed by

i = 1 . . . S and there areR reaction channels, index byr = 1 . . . R, transforming the molecualr

composition of these species. For the basic notation and examples we direct reader to [14, 15].

State vector of the system can be represented as following:

(X,Z) (1)

where fist part of the state vectorXi ∈ Z+, i = 1 . . . SX representsmainspecies while the second

part Zi ∈ Z+, i = 1 . . . Sz representsintermidiatespeciesZi, i = 1 . . . SZ . Total number of



4

all types of species:SX + SZ = S. VectorsνX
r , νZ

r andν
XZ
r are stoichiometric changes of

componentsX andZ if reaction eventr takes place. We will not make any assumptions about

actual number of molecular species of each type, i.e. we willnot assume low or large copy numbers.

We assume, however, that there are three subsets of reactions in the system:

(i) reactions which transform only speciesX (we denote this subsetR1),

(ii) reactions which transform only speciesZ (subsetR2)

(iii) ”linker” reactions which mix speciesX andZ (subsetR3).

Each reaction channel can be specified by the transition rates ar (a positive function) which

describes the probabilityardt of reaction event to take place in the interval of timedt. Transition

ratear can be further specified as positive functions ofX, Z, or,in general, on both componentsX

andZ. Based on the definition of subsetsR1,2,3 we have:

ar(X), r ∈ R1 (2a)

ar(Z), r ∈ R2 (2b)

ar(X,Z), r ∈ R3 (2c)

We do not assume specific dependence ofar(·) on the state variablesX andZ but usually, in

the framework of mass action kinetics, it is a product of kinetic ratekr and functionhr(·) which

represents the number of reactive configurations availableat a given stateX,Z [14].

There exist different methods to characterize the stochastic chemical dynamics. One of the most

popular approach is to provide an equation for the joint probability densitypt(X,Z), which gives

all information about instantaneous state of the system at generic moment of timet. Such equation

is known as chemical master equation (CME) [14, 16] and it hasbeen intensively described and

utilized in recent literature [8, 9, 10]. But even if we can obtain [17] the solution of CME, which

is usually a very hard problem even for simple chemical networks, this approach still have certain

limitations, coming from instantaneous description provided by the densitypt(·).

To describe the stochastic dynamics of the chemical networkone can introduce the set of inde-

pendent point processesNr(t), Nr(0) = 0 representing the numbers of reaction events which took
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place in channelsr ∈ R up to timet and use the mass balance relations:

Xt = X(0) +
∑

r∈R1

ν
X
r Nr(t) +

∑

r∈R3

ν
XZ
r Nr(t), (3a)

Zt = Z(0) +
∑

r∈R2

ν
Z
r Nr(t) +

∑

r∈R3

ν
XZ
r Nr(t), (3b)

where vectorsνZ
r ,ν

X
r andνXZ

r describe the composition change of the system due to the reaction

event in the channelr. Average number of reaction events in each reaction channelr ∈ R1,2,3

during the small time interval[t, t+ δt) are proportional to the transition rates (2):

E(Nr(t+ δt) −Nr(t)|Xt,Zt) = ar(Xt,Zt)δt+O(δt2) (4)

ProcessesNr(t) can be considered as time-changed, unit-rate independent Poisson processes

Πr(t) [7]:

Nr(t) = Πr(

∫ t

0
ar(Xt′ ,Zt′)dt

′) (5a)

Thus, the large class of discrete event systems with totallyinaccessible event times can be viewed

as a standardPoisson processwith appropriate change of the time scale:

t 7→
∫ t

0
ar(Xt′ ,Zt′)dt

′ (5b)

The time change generates path-dependent or self-affecting point processes whose dynamics de-

pend on the information generated by the arrivals of the process(Xt,Zt) . It is important to take

into account that the stochastic differential equation does not only introduce the probability distri-

bution for the pair(X,Z) but also generates a measure on the paths, which contains much more

information. For almost any realization of the set of1 . . . R standard Poisson processes,Πr(t, ω),

parametrized by the elementω of event space [7, 18] and any deterministic initial condition the

solution(X(t, ω),Z(t, ω)) is a step-wise stochastic process.

Note also, that dynamics of each componentX or Z is non-Markovian if considered separately

but the dynamics of the pair(X,Z) is Markovian.

So far we have introduced only the basic notation: quite generic system of SDEs given by (3)

outlined in this section have not invoked any assumptions onparticular relations between different

transition ratesar and was totally based on prior information about existence of two groups of
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species, i.e.Xi andZi which uniquely identified the partition of the reactions into the subsets

R1,R2 andR3 .

In the next section we consider the particular implication of time-scale separation including the

extensions of the stochastic averaging principle and diffusion approximation.

III. SEPARATION OF TIME-SCALES AND ELIMINATION OF FAST

STOCHASTIC VARIABLES.

In many situations, dynamics of main speciesX is propagated via large number of fast transitions

which transform mainly intermediate speciesZ. One usually desires to construct an approximate,

time coarse-grained model, which involve only main species. It is important that approximate prob-

lem describes the dynamics of the system on a large time scaleand thus is more advantageous for

performing simulations without significant sacrifice in accuracy. This section deals with substitu-

tion of the original problem with approximate one and demonstrates the form convergence of the

approximation under certain assumptions.

We assume that at certain region of state space the followingassumption can be made about

transition ratesar(·):

∑

r∈R1∪R3

ar ∝ O(1) while
∑

r∈R2

ar ∝ O(ǫ−1) (6)

where separation of the time-scales is introduced via the small parameterǫ ≪ 1. Problems of this

type are challenge for direct application of Stochastic Simulation Algorithm (SSA) [15, 19] because

they will require the time steps of the orderO(ǫ) with a total computational cost of orderǫ−1. If

we want to advance through the time interval[0, t], t ∼ O(1) most of the simulation time will be

spent on simulation of reaction events with the high intensity (
∑

r∈R2
ar ∝ O(ǫ−1)). We would

like to find an effective transition rates̄ar(·) for the ”linker” reactions (subsetR3), which describe

the transition events of the slow reactions ”coarse-grained” over the possible events corresponding

to the reaction events in subsetR2.

It is instructive to consider a simple reaction scheme involving three speciesX1,Z1,2 similar to
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one considered in [10]:

Z1
k2ǫ

−1

⇋
k3ǫ−1

Z2
k1→ X1 (7)

where ratesk1,2 ∝ ǫ−1 are parametrized by smallǫ andk3 ∝ O(1). In this case reactionsZ1⇋Z2

forms the subsetR2 while reactionZ2→X1 corresponds to the subsetR3 and subsetR1 is empty,i.e

R1 = {∅}. Then systems of equations for components(X1, Z1, Z2) is the following one:

Z1t = Z10 −N2(t) +N3(t), (8a)

Z2t = Z20 +N2(t)−N3(t)−N1(t), (8b)

X1t = X1(0) +N1(t) (8c)

Presence of the scaling factorǫ−1 in reaction constantsk1,2ǫ−1 allows us to consider family

of solutions parameterized byǫ. We expectZ1,2 to follow adiabatically theX1t. To make that

apparent, one can apply the functional law of large numbers to the processesN2,3(t) in time interval

[0, t] (see Eqn. (5a)):

N2(t)−N3(t)→
1

ǫ

(
∫ t

0
k2Z1t′dt

′ −
∫ t

0
k3Z2t′dt

′

)

+ (9)

+
1√
ǫ

(

W2(

∫ t

0
k2Z1t′dt

′)−W3(

∫ t

0
k3Z2t′dt

′)

)

, ǫ → 0 (10)

whereW2,3(·) are two independent Wiener processes [7]. Since parameterǫ−1 is large, we can

conclude that difference
∣

∣

∣

∣

∫ t

0
k2Z1sds−

∫ t

0
k3Z2sds

∣

∣

∣

∣

also converges to zero for timest ≤ ǫ/(k2 + k3) in the limit of smallǫ, and we can conclude that:

sup
0≤t′≤t

|k2Z1t′ − k3Z2t′ | → 0 (11)

This means that variablesZ1t andZ2t reach a stationary binomial distribution:

πǫ→0(Z1, Z2|X1) ∝ αZ1(1− α)Z2 , (12)

Z0 = Z1(0) + Z2(0) = Z1 + Z2, α =
k2Z0

k2 + k3
(13)

on the time scalet ∝ O(ǫ) while sumZ1t + Z2t changes on the much larger time-scalet ≥ O(1):

Z1t + Z2t ≈ Z1(0) + Z2(0)−N1(t), (14a)

X1t ≈ N1(t) (14b)
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By exploiting the separation of time-scales using the stationary distributionπǫ(Z1, Z2|X1) one

can replace dynamical quantitiesf(Z1t, Z2t,X1t) averaged on the time interval[0, t], ǫ
k2+k3

≪

t < 1
k1

with their conditional averages:

f(Z1t, Z2t,X1t) ≈
1

t

∫ t

0
f(Z1t′ , Z2t′ ,X1t′)dt

′ ≈ (15)

≈ f̄(X1t) =
∑

Z1,Z2

f(Z1, Z2,X1t)π
ǫ(Z1, Z2|X1t) (16)

andeliminate fast variablesZ1,2 from the description even though the total number of molecules

Z1 + Z2 may be not a large quantity. Thus, takingf(·) to be the ”linker” transition rates

ar(X,Z), r ∈ R3 one obtains averaged transition ratesār(X) which now depend only on the

slow variableX. Results of the large deviation theory [11] demonstrate weak convergence bounds

of the original problem with small but non-zeroǫ to the solution of the averaged system. But as we

mentioned it before, one of the goals of this publication is to analyze and extend averaging process

to the situation whenǫ may be small, but not ’infinitesimally’ small. In the next section III A we

will try to answer this question.

A. Renormalization of fast fluctuating reaction rates and reduced evolution equations

Recall that transition ratesar(·) of a jump Markovian process can be used to describe distribu-

tions of the waiting times of the reaction events via the survival probability of a given state(X,Z)

has an exponential formS(t) = e−
∑

R

r=1
ar(X,Z)t and describes probability that no reaction event

take place in any of1 . . . R reaction channels in time interval[0, t] [20].

Consider the first jump time of a particular reactionr in the subset of the ”linker” reactions,τr,3

and first jump times of any reaction in the subset of the fast reactions which we will denoteτr,2 .

Reaction in the groupR3 have both types of chemical species (X andZ) as their substrates, that

means that reaction rates in this subset are fluctuate with fast variablesZ. If system is originally

prepared at the state(X0,Z0) att = 0 then at any moment of timet > 0 one is interested in finding

the probabilities of events{τr,3 > t} and{τr,2 < t}. In other words one has to find an averaged

survival probabilities:

Sr(t|X) = P ({τr,3 > t}) =
〈

exp(−
∫ t

0
ar(X0,Z

x
t′)dt

′)

〉

Z

, r ∈ R3 (17)
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Average〈. . .〉Z stands for the average over the possible trajectories of thestochastic process

Z
x([0, t]), Zx

0 = Z0 atfixedX which depends onX as on parameter [11].

Probabilities (17) can be used to introduce time-dependenttransition rates̄ar(X, t) which effec-

tively describe the dynamics for reactions in the groupsR3. Taking the logarithm of the averaged

survival probabilities (17) we obtain:

Sr(t|X) = exp(−
∫ t

0
dt′ ār(X, t′)), (18a)

ār(t,X) = − ∂

∂t
ln

〈

exp(−
∫ t

0
dt′ ar(X0,Zt′)

〉

Z

(18b)

Equations 18a constitute one of the main results of the paper. In the field of chemical kinetics a

similar methodology is known under the label of the ”rate dependent processes with dynamical dis-

order” [21, 22, 23, 24, 25, 26] where it describes the influence of the non-equilibrium environmen-

tal degrees of freedom on transport and kinetic properties.Similar approach was used to describe

quantum dynamics in fluctuating environment [27]. Using theprocedure of the cumulant expansion

[16, 28] we can obtain the following interrelationship betweenār and the multi-point cumulants

C
(m)
r (t1, . . . , tm|X) of the functionsar(X,Zx

· ), taken at different temporal pointst1, . . . , tm:

Sr(t|X) = exp





∑

m≥0

(−1)m

m!

∫ t

0
dt1 . . .

∫ t

0
dtmC(m)

r (t1, . . . , tm|X)



 , (19)

ār(t,X) = 〈ar(X,Zt)〉Z +
∑

m≥ 2

(−1)m−1

m!

∫ t

0
dt1 . . .

∫ t

0
dtm C(m)

r (t1, . . . , tm|X) (20)

Renormalized transition rates̄ar(t,X) provide so-called semi-Markov approximation [16, 20].

Term ”semi-Markov” generally describes non-Markov processes since the statistical properties of

the waiting times can not be provided only by average rate of the process but all the multi-time

joint probability distributions for the considered process must be considered. Note that in our case

effective ratēar depend on the statistics of fluctuations of fast variablesZ through the cumulants

C
(m)
r (t1, . . . , tm|X).

Taking a leading term atǫ → 0, which sometimes calledMarkovian limit, we formally arrive to

the results of the QSS Approximation [8]:

ār(X, t) = C(1)
r (t|X) = lim

ǫ→0

∑

Z

ar(X,Z)πǫ
X(Z) (21)



10

where average is taken over theinvariant measureπǫ(Z|X) of the fast processZx
t atfixedX. Note

that at this level̄ar does not depend on time and correspond to the single exponential form of the

survival probability. This level of approximation corresponds to the assumption that at fixedX all

state space ofZ is totally accessible, i.e.ergodic[11] and for any functionf(·) : ZnZ → R:

f̄(X) = lim
t→∞

t−1

∫ t

0
f(X,Zx

s )ds = lim
ǫ→0

∑

Z

f(X,Zx)πǫ(Zx|X) (22)

There is a general Jensen inequality , which gives the relationship between the mean value of a

convex function of a random variable an the value of this function when its argument equals the

mean value of the random variable. According to this inequality:

Sr(t|X) ≥ exp

(

−
∫ t

0
dt′C(1)

r (t′|X)

)

(23)

Application of this inequality leads to the important conclusion that mean field rate (21) is larger

then the rate given by (19). The exponential and non-exponential structure of the averaged survival

probability is governed by the hierarchy of the time scales of the dynamics ofZt at different values

of X. If dynamics ofZ is complicated and exhibit metastability at some values ofX then Marko-

vian approximation 21 is no longer holds and additional corrections corresponding to the high order

cumulants must be taken into consideration. Correction to the Markovian approximation based on

the second order cumulants is:

∆ār(t,X) ∼= −
∫ t

0
dt′ C(2)

r (t, t′|X), (24a)

C(2)
r (t, t′|X) ≡ 〈ar(X,Zx

t )ar(X,Zx
t′)〉Z − 〈ar(X,Zx

t )〉Z 〈ar(X,Zx
t′)〉Z ≡ 〈〈ar(X,Zx

t )ar(X,Zx
t′)〉〉Z

(24b)

The simples assumption for the time dependence of the cumulantC(2)
r is exponential decay:

C(2)
r (t, t′|X) = K exp(−κ(X)|t− t′|) (25)

whereκ(X)−1 is a characteristic relaxation time of the regression of fluctuation of speciesZ and

K = 〈(∆a2r(X, Z))〉Z . In this case correction to the Markovian term is given by:

∆ār(t,X) ∼= −Kκ−1(X)
∂

∂t

(

t− κ−1(X)[1 − exp(−κ(X)t)]
)

Correction to the Markovian approximation given by (24a) isexact for the Gaussian and Markov

process since the only possible expression for the correlation function of a stationary Markov and
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Gaussian process is the exponential of a form (25). It is alsointeresting to note that correlation

correction (24a) generally decreases the transition rate.This is a result which can not be obtained

using only straightforward averaging method presented in publications [8, 10].

Note that in general relations (18a) can be viewed as a type offluctuation-dissipation relations;

they connect the effective dissipation rate in the slow coarse-grained dynamics and statistics of

fluctuations of the fast reaction events given by the cumulantsC(m)
r (t1, . . . , tm|X).

IV. COARSE-GRAINED DYNAMICS AND ERROR CONTROL

Given the renormalized survival probabilities and transition rates at different points of state space

of main speciesX:

ār(t,X) = ar(X), r ∈ R1

stochastic dynamics of the main speciesX can be formulated in the straightforward way, similar to

the stochastic simulation algorithm (SSA) [14, 15]. At the time pointt = 0 stateX0 we consider

an overall survival probability:

S(t|X0) =
∏

r∈R1∪R3

Sr(t|X0) (26)

and define a jump moment of the slow process as a first timeτ1 whenS(t|X0) crosses the valueu,

where the last one is a random number uniformly distributed on the interval(0, 1) [29]:

τ1 = inf{t > 0|S(t|X0) ≤ u}, u ∈ U(0, 1) (27)

Post-jump transition kernel is defined by the vector of transition probabilities

qr =
ār(τ1,X0)

∑

r′∈R1,3
ār′(τ1,X0)

, r ∈ R1,3 (28)

i.e. reaction eventr∗ ∈ R1,3 is selected based on the vectorqr and current state is updated:

Xτ1 = X0 + νr∗ , t1 = τ1,

Then the same procedure is performed starting at the stateXτ1 with generation of the intervalτ2

from the survival probabilityS(t|Xτ1) and new stateXτ1+τ2 and so on. As a result one obtains a
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coarse-grained trajectory:

(tn,Xtn), tn =

n
∑

i=1

τi (29)

Question about the overall accuracy and the error control isa delicate question. Below we de-

compose the overall error of the method it into the followingmain factors:

1. Error in approximating by coarse grained dynamics:

e1 = sup
0≤t≤T

E(|Xt − X̄t|2)

assuming that transition ratesār(·) can be obtained without error.

2. Approximation and Monte Carlo errore2 of ār(·) via the finite number of samples represent-

ing the dynamics ofZt at fixedX.

Below we discuss step by step leading terms ine1, e2.

Estimation of the errore1 is related to the answer on the following question: what possible error

is introduced while performing averaging of rates of reactions in the subsetsR1,3 atfixedX?

It is not hard to see that this error is proportional to the probability of the event that minimal jump

time over the reactions in groupR1 ∪R2 is smaller thent while the minimal jump-time of reaction

in the groupR3 is larger thent:

Sr(t|Z) = P

(

{min
r∈R3

τr,2 < t} ∪ { min
r∈R1,3

τr > t}
)

=

〈

exp(−
∫ t

0
dt′ ar(Xt′ ,Z0))

〉

X

, r ∈ R3

(30)

where average〈. . .〉X is taken over trajectoriesXz
t atfixedZ It is not hard to see that this probability

is exponentially small, i.e.∝ exp(−ǫ−1 t
const

) in the limit ǫ → 0.

Error e2 depends on the number of cumulants we have included in Eqn. (19) and cumulant of

orderm usually gives contribution proportional toǫm. In Appendix we outline the exact method for

calculation of the renormalized survival probability based on eigenvalue decomposition of certain

linear operator which is a practical approach in situationswhen state space of the variableZ is not

very large.
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V. EXAMPLES

We now present a simple intuitive example to show that exponential or non-exponential structure

of the averaged survival probability is governed by the relationship between time-scales of ”fast”

and ”slow” species. Assume that for some reaction channel

X+ Z+ . . . → . . . (31)

ratear(X,Z) = krhr(X)h′r(Z) jumps reversibly between two valuesar(X, 0) andar(X, 1) with

the stochastic dynamics ofZt governed by simple master equation:






ṗt(0)

ṗt(1)






=







−k01 k10

k01 −k10













pt(0)

pt(1)






(32)

Equation (32) describes the switching transitions betweenthe two states0 and 1. Assum-

ing that state of variableZ is prepared according to the equilibrium densityπ = (π0, π1) =

( k10

k01+k10

, k01

k01+k10

). the average survival probability〈e−
∫

t

0
ar(X,Zx

t′
)dt′〉 can be obtained as follows

(see also Appendix section for the general computational framework):

Sr(t|X) =







1

1







T

exp






t







−ar(X, 0) − k01 k10

k01 −ar(X, 1) − k10



















π0

π1






(33)

This result is very similar in nature to the result obtained in [23] for the case of identical transition

rates. Remarkable and simple result outlined by Eqn. (33) allows us to capture in essence regimes

corresponding to the different ratios of the time-scales:ar ≪ (k10 + k01) andar ≥ (k10 + k01).

First regime (ar ≪ (k10 + k01)) corresponds to the situation when transitions between different

states ofZ happens much faster then the average ratear(X, 0), ar(X, 1) of the ”linker” process

and represents the mean-field (MF) regime. In this case dependence ofln(Sr(t)) on time t can

be very well characterized as linear Fig. 2. Not surprisingly, other regime, i.e.ar ≫ (k10 + k01)

can be characterized as gated: in this case effective transition rateār is characterized by the rate of

switching ofZ: k01 + k10.

Figure 3 demonstrates influence of the second order correlation correction Eqn. (25):

∆ār(t,X) = π1π0
t
κ
(1 − κ

t
(1 − e−κt)), κ = k01 + k10 which fluctuation correction to the ef-

fective ratēar(·)
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Dependence of survival probabilitySr(t|X) in the example of a two-state system can be shown

to be non-exponential on the longer time scale butln(Sr(t)) behaves linearly with time at small

timest ≤ 1/ar(X, ·).

Interesting case of non-exponential relaxation kinetics,and specifically non-exponential kinetics

at small times can be presented by the following example. Consider a fast reaction given by the

dimerization reaction:

S+ S
k2

⇄

k2Keq

S2 (34)

where the fast variableZt is the number of reaction event which took place up to timet which

relates the numbers of monomers and dimers with the total number of moleculesNm = 2S + S2

in the following way:

S = Nm − 2Z, S2 = Z (35a)

and a ”linker” process is described by the relaxation rate depending on the number of dimersX in

the following way:

ar(X,Z) =
k1X

Z +X
(36)

Current valueX serves as an activation threshold: at small values ofX (X ∝ 1) only small values

of Z contribute to the effective rate but probability thatZ takes values away from its average are

exponentially suppressed (Fig. 4). On the contrary, ifX is large i.e. X ≈ ∑

Z π(Z|X)Z then

rate given by Eqn. (36) depends on the typical value ofZ andSr(t|X) manifests time dependence

similar to the previous example. One can see that this relaxation process shows non-exponential

time dependence at small times due to the fact that processZt rarely visits the states contributing

to the maximum of the relaxation rate given by Eqn. (36). We investigate the dependence of the

averages survival probability on the level of activation thresholdX and value of the equilibrium

constantKeq. Results presented on the Fig. 5 show non-exponential behavior of averaged survival

probability for the system at small timest. It is evident that non-exponential behavior ofSr(t|X)

is less pronounced for large values ofX( X ≈ 〈Z〉).

Eigenvalue-eigenvector decomposition and calculation ofexpansion coefficients was performed

via standard routines of LAPACK library available athttp://www.netlib.org .

http://www.netlib.org
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VI. DISCUSSION AND CONCLUSIONS

Let us summarize the main aspects of this paper. We have studied reduction approach to elimi-

nate a fast intermediate in the chemical reaction network. To develop this method it is important to

consider the time coarse-grained transition rates. We havediscussed the limitations of the principle

of stochastic averaging and its possible extensions through the rigorous technique for construction

of the effective transition rates. We outline the procedurefor re-normalization of the transition rates

and construction of the effective Markov chain for the slow reactions. The merit of the present ap-

proach is that it is based on a conceptually transparent probabilistic approach involving the waiting-

time distribution.Technique itself resembles a non-Markovian generalization of the Kubo-Anderson

theory of stochastic modulation. Our study clearly indicates importance of details of the statistical

structure of averaging process.
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VIII. FIGURES

FIG. 1: Schematic representation of the two-state model. Relaxation ratesar(·) depend on both stateZ andX and can

be quite general.
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FIG. 2: Time dependence of survival probabilitySr(t) for different ratios of transition ratesǫ = ar(X, 1)/(k01 + k10)

for the system withar(X, 1) 6= 0 andar(X, 0) = 0.

APPENDIX A: CALCULATION OF AVERAGED SURVIVAL PROBABILITY

Calculations of averaged survival probabilitiesSr(t|X) requires, in general, the calculation of

the cumulantsC(m)
r of different orderm but for some simple cases it can be obtained exactly. This

is possible for the class of systems which have only finite number of accessible states of the fast

variables.
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FIG. 3: Time dependence of the survival probabilitySr(t) calculated with mean-filed (dotted line) approximation and

second cumulant correction (dashed line) compared to exactdependence (solid line).

One can study the distribution of valuesS of the functional

exp(−
∫ t

0
ar(Zt′)dt

′), (A1)

where we have omitted the current stateX to simplify the notation. We introducing the joint
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FIG. 4: Trajectory and probability density of the processZ(t). Dotted and dash lines on the probability plot correspond

to the profile of the relaxation ratear(X,Z) for differentX.

probability densityq(S,Z, t) of the random variablesS andZ [30]:

∂q(S,Z , t)

∂t
= ar(Z)

∂

∂S
(Sq(S,Z, t))+ (A2a)

+
∑

r′∈R2

(ar′(Z − νr′))q(S,Z − νr′ , t)− ar′(Z))q(S,Z , t)) = (A2b)

= ar(Z)
∂

∂S
(Sq(S,Z, t)) +

∑

Z′

WZZ
′q(S,Z, t) (A2c)

Average survival probability can be expressed following:

Sr(t) =
∑

Z

∫ 1

0
Sq(S,Z, t)dS =

∑

Z

q̄r(Z, t) (A2d)

andq̄r(Z, t) is governed by the following master equation:

∂q̄r(Z, t)

∂t
= −ar(Z)q̄r(Z, t) +

∑

Z
′

WZZ
′ q̄r(Z

′, t) (A2e)

One can find an averaged survival probability via eigenvalue-eigenvector{λ, Vλ(Z)} decomposi-
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FIG. 5: Time dependence of the survival probabilitySr(t|X) for the system where dimerization dynamics of the fast

variableZ is described by parametersNm = 200, k1 = 1.0, k2 = 10.0, Keq = 102. Plots are shown for values

of X = 1 and50 clearly manifest non-exponential character of the relaxation process at small time for low values of

X. Note that kinetics is non-exponential on time larger then characteristic scaletnon−exp ≈ 0.02 of fluctuation ofZ (

k−1

1
(N/2)2 ≈ 10−3) i.e. on the relevant for time-coarsening interval.
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tion of the linear operatorWZZ
′ − ar(Z)δZZ

′ :

Sr(t) =
∑

Z

∑

λ

cλVλ(Z) exp(λt) (A3)

where coefficientscλ correspond to the decomposition of the invariant probability π(Z|·):

π(Z) =
∑

λ

cλVλ(Z) (A4)
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