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ANALYSIS OF A MODEL OF THE GLUCOSE-INSULIN
REGULATORY SYSTEM WITH TWO DELAYS∗

JIAXU LI† AND YANG KUANG‡

Abstract. We continue a recent attempt to better understand the glucose-insulin regulatory
system via a mathematical model of delay differential equations with two discrete time delays. With
explicit delays, the model is more realistic in physiology, more accurate in mathematics, and more
robust in applications. We study this model analytically and perform carefully designed numerical
simulations by allowing two parameters to vary. Our analytical and numerical results confirm most
current existing physiological observations and reveal more insightful information. The following
factors are critical for ensuring the sustained oscillatory regulation and insulin secretion: (1) the
time lag for insulin secretion stimulated by glucose and the newly synthesized insulin becoming
“remote insulin” (Theorem 4.2 (b) and Theorem 5.6); (2) the delayed effect of hepatic glucose
production (Theorem 4.2 (c) and Theorem 5.6); (3) moderate insulin clearance rate (Theorem 5.6
and simulations in section 6.4); and (4) nonoverwhelming glucose infusion (simulations in section 6.2,
6.3, and 6.4).
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1. Introduction. Beginning with the pioneering work of Bolie [5] in the 1960s,
several attempts at modeling the glucose-insulin regulatory system have been pro-
posed in recent decades [2], [17], [25], [26]. These studies are, at least partially, moti-
vated by the fact that diabetes mellitus is one of the worst diseases in the world due to
the large size of the diabetic population, especially among Native Americans [14], as
well as severe complications [10] and high health expenses (http://www.diabetes.org).
Providing more efficient, effective, and economic treatments is the ultimate goal of
these efforts (see [2], [3], [4], [5], [17], [18], [25], [26], and the references therein). The
minimal model [3] and its siblings [9], [16], [19] study the insulin sensitivity, while
the mathematical models proposed in [2], [5], [17], [25], [26] aim to better understand
the glucose-insulin regulatory system.

In the glucose-insulin endocrine metabolic regulatory system, the pancreatic hor-
mone insulin and glucagon are the two key players. Both in-vivo and in-vitro ex-
periments have revealed that the insulin is secreted from the pancreas in oscillatory
manners in two time scales. It is widely believed that the rapid pulsatile oscillation
is caused by the insulin secretory bursts from the millions of Langerhans islets in
hundreds of β-cells in the pancreas at a periodicity of 5–15 minutes [20]. The much
slower ultradian oscillation refers to the oscillation of insulin secretion with period
in the range of 50–150 minutes [23], [25]. The amplitude of the ultradian oscillation
dominates that of the rapid pulsatile oscillation. There exist two time delays in this
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system. One naturally occurring time delay is the time needed for the insulin to
release from the β-cells stimulated by elevated glucose concentration and the newly
synthesized insulin to cross the endothelial barriers and become the so-called remote
insulin, now known as interstitial insulin. The remote insulin helps the cells, e.g.,
muscle and adipose, to uptake glucose. The other time delay refers to the delayed
effect of hepatic glucose production. Applying the standard compartment transition
technique to mimic the time delays, Sturis et al. [25] formulated a model consisting
of six ordinary differential equations (ODEs) that successfully captured some of the
basic features (oscillations with periods and amplitudes comparable to experiment
observations) of ultradian oscillation. Recently, Li, Kuang, and Mason [17] proposed
an alternative model of the glucose-insulin regulatory system consisting of two delay
differential equations with two naturally explicit discrete time delays. This two-delay
model uses only physiologically meaningful and measurable parameters. It is shown
that this two-delay model provides the best overall fit among five plausible model sys-
tems with the experimental data given in [2], [17], and [25]. It is also shown [17] that
the two-time-delay model is more robust compared to the model proposed in [25].
The authors of [17] concluded that the time delay of insulin responding to glucose
stimulation plays a key role in generating the oscillatory behavior of insulin secretion.

This paper attempts to provide a systematical study of the two-delay model of
[17] with focuses on analytical studies, bifurcation analysis, and carefully designed
numerical simulations. In the following sections, we first introduce the model pro-
posed in [17], then present some preliminary results on positivity, boundedness, and
persistence of solutions. Local stability analyses are carried out in details whenever
feasible. These analytical results are complemented and confirmed by the bifurcation
diagrams produced from our extensive and carefully designed simulations. This paper
ends with a discussion section containing a list of observations.

2. The two-delay model. By applying the mass conservation law, the ap-
proach used in [27], Li, Kuang, and Mason [17] proposed a glucose-insulin regulatory
system model with two explicit time delays based on a set of well-known observations
[1], [6], [13], [17], [21], [25], [26], [27]. The model can be expressed by the following
word equations.

Glucose change rate = glucose production rate − glucose utilization rate.

Insulin change rate = insulin production rate − insulin removal rate.

Throughout this paper, we use G(t) to represent the plasma glucose concentration
and I(t) to represent the plasma insulin concentration at time t ≥ 0.

In the glucose-insulin endocrine metabolic system, the β-cells, contained in the
Langerhans islets in the pancreas, are the only source of insulin production. When
the plasma glucose concentration level is elevated, the β-cells secrete insulin after a
complex series of cascading physiological processes [1], [17]. The newly synthesized
insulin crosses the endothelial barriers to become remote insulin, which readily helps
the cells, e.g., muscle and fat cells, to utilize the plasma glucose and convert it to
energy [17]. These processes take a total of approximately 5–15 minutes [25], [26]. In
the model, this is denoted by f1(G(t − τ1)), where τ1 > 0 represents the time delay
of the insulin response to the glucose stimulation and the time needed for the newly
synthesized insulin crossing endothelial barrier to become remote insulin.

Insulin is degraded by all insulin sensitive tissues, and the degradation is medi-
ated primarily by the insulin receptor with a smaller contribution from nonspecific
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processes. The liver and kidney are the primary sites of portal insulin degradation and
peripheral insulin clearance, respectively. Insulin not cleared by the liver and kidneys
is ultimately removed mainly by muscle and adipose cells [11], [17]. The function of
insulin clearance is to remove and inactivate circulating insulin in order to control
insulin action [11]. The degradation is almost linearly proportional to insulin [27]. So
the degradation rate is denoted by a constant di > 0. Since I(t) stands for plasma
insulin concentration, it is easier to measure clinically.

In muscle and adipose tissue, insulin facilitates the transport of glucose into cells.
The glucose is then metabolized by the cells. This type of glucose consumption is
called insulin-dependent glucose utilization. Not all glucose consumption depends
on the attendance of insulin. For example, the brain and nerve cells consume the
glucose without the aid of insulin. This is referred to as insulin-independent glucose
utilization. (See [17] for more details.) Respectively, the insulin-independent and
insulin-dependent glucose utilization are represented by f2(G(t)) and f3(G(t))f4(I(t)).

Glucose enters the circulation in two ways: glucose infusion and hepatic glucose
production. Glucose infusion includes meal ingestion, oral glucose intake, continu-
ous enteral nutrition absorption, and constant infusion. Hence the model includes a
constant glucose infusion term Gin that may model the continuous enteral glucose
absorption and constant glucose infusion [17], [25], [27].

Hepatic glucose production is due to glucose dispensation by the liver endoge-
nously. When the plasma glucose concentration level becomes low, the β-cells stop
releasing insulin. Instead, the α-cells, also contained in Langerhans islets, start to
release glucagon. Glucagon exerts control over pivotal metabolic pathways in the
liver and leads the liver to dispense glucose [1]. The liver also converts the previously
stored glycogen into glucose. Opposite to the fact that glucagon secretion triggers
the liver to dispense glucose, insulin secretion inhibits glucose production by the liver
[6], [21]. Thus the hepatic glucose production is primarily controlled by insulin con-
centration in both inhibitory effect by insulin secretion and recovery effect by insulin
suppression. Some time is needed for hepatic glucose production to take significant
effect, e.g., half maximal suppression or recovery takes time [17], [21]. However, both
the pathways and the length of the delay remain unknown. Nevertheless, this time
delay is approximately between a few minutes and a half hour, or even longer [17],
[21]. The hepatic glucose production is presented by f5(I(t− τ2)), where τ2 > 0 rep-
resents the time taken for a noticeable effect on hepatic glucose production, e.g., half
maximal suppression or recovery rate.

Therefore the system [17] can be written as{
G′(t) = Gin − f2(G(t)) − f3(G(t))f4(I(t)) + f5(I(t− τ2)),
I ′(t) = f1(G(t− τ1)) − diI(t).

(2.1)

For convenience, the initial conditions of the two-time-delay model (2.1) are as-
sumed to be I(0) = I0 > 0, G(0) = G0 > 0, G(t) ≡ G0 for all t ∈ [−τ1, 0] and
I(t) ≡ I0 for t ∈ [−τ2, 0], τ1, τ2 > 0. In this paper, we assume that the functions fi,
i = 1, 2, 3, 4, 5, in model (2.1) satisfy the following conditions:

(i) Notice that β-cells release insulin due to glucose stimulation. We assume that
f1(x) > 0 and f ′

1(x) > 0 for x > 0. On the other hand, the capacity of the
insulin secretion from β-cells is saturated due to highly increased glucose con-
centration level, so we assume limx→∞ f1(x) = M1 and f ′

1(x) is bounded by a
constant M ′

1 > 0 for x > 0. Thus it is reasonable to assume that f1(x) is in sig-
moidal shape. Observing that the insulin can be secreted from the β-cells due
to bursting without the glucose stimulation, we assume that f1(0) := m1 > 0.
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(ii) As a term indicating the insulin-independent glucose utilization, it is clear
that f2(0) = 0, f2(x) > 0, and f ′

2(x) > 0 for x > 0. On the other hand, the
utilization is not unlimited, so we assume that limx→∞ f2(x) = M2 and there
exists a constant M ′

2 such that f ′
2(x) < M ′

2 for x > 0.
(iii) The insulin-dependent glucose utilization f3(G(t))f4(I(t)) can be depicted as

f3(0) = 0, f4(0) := m4 > 0, f ′
3(x) > 0, f4(x) > 0, and f ′

4(x) > 0 for x > 0.
As suggested by Sturis et al. [25], we also assume that there exist constants
k3 > 0,M4 > 0, and M ′

4 > 0 such that 0 < f3(x) ≤ k3x, limx→∞ f4(x) = M4,
and f ′

4(x) < M ′
4 for x > 0 and f4(x) is in sigmoidal shape.

(iv) Low glucose concentration will lead β-cells to stop releasing insulin and α-
cells to release glucagon. Thus, when insulin is deficit, liver dispenses glucose
caused by glucagon exerting control over pivotal metabolic pathways in the
liver, and also converts glycogen into glucose. On the other hand, the liver
stops this process when insulin is abundant. Hence we assume f5(0) > 0,
f5(x) > 0, and f ′

5(x) < 0 for x > 0, and limx→∞ f5(x) = 0 and f5 is in inverse
sigmoidal shape. Since the amount of glucose converted by the liver is small
and the process takes time, we assume ∃M5,M

′
5 > 0 such that f5(x) ≤ M5

and |f ′
5(x)| ≤ M ′

5 for x > 0. We can simply set M5 = f5(0).
The shapes of the functions are more important than their forms [13]. Figure 3 of

[17] shows the shapes of functions in model (2.1). In section 6, we adopt the functions,
(6.1)–(6.5), used in [17], [25], and [26], to perform numerical simulations.

3. Preliminaries. We first present some useful preliminary results of model
(2.1). The following fluctuation lemma is elementary and well known [12].

Lemma 3.1 (fluctuation lemma). Let f : R → R be a differentiable function. If
l = lim inft→∞ f(t) < lim supt→∞ f(t) = L, then there are sequences {tk} ↑ ∞, {sk} ↑
∞ such that for all k, f ′(tk) = f ′(sk) = 0, limk→∞ f(tk) = L, and limk→∞ f(sk) = l.

We will apply Lemma 3.1 in the proofs of Proposition 3.2 on solution boundedness
and Lemma 3.3 on a set of restrictions for the upper and lower limits of a solution.
The proofs are given in Appendices A and B.

Proposition 3.2. In model (2.1), the following hold:
(i) If limx→∞ f3(x) > (Gin−M2 +M5)/m4, then model (2.1) has unique positive

steady state (G∗, I∗) with I∗ = d−1
i f1(G

∗). Furthermore, all solutions exist
in (0,∞), and are positive and bounded.

(ii) If limx→∞ f3(x) < (Gin −M2)/m4, then lim supt→∞ G(t) = ∞.
Remark. Condition (i) indicates that the steady state is unique if insulin can help

the cells to metabolize enough glucose. Otherwise, if condition (ii) holds, the glucose
concentration level will be unbounded.

Remark. If f3(x) = k3x, where k3 > 0 is a constant, then

lim sup
t→∞

G(t) ≤ MG := (Gin + M5)/(m4k3).(3.1)

In fact, notice that m4 ≤ f4(x) ≤ M4 and f5(x) ≤ M5 and f3(x) = k3x for x > 0.
Thus G′(t) = Gin−f2(G(t))−f3(G(t))f4(I(t))+f5(I(t−τ2)) ≤ Gin−m4k3G(t)+M5.
A standard comparison argument yields (3.1).

Throughout this paper, we assume that condition (i) in Proposition 3.2 holds.
Let (G(t), I(t)) be a solution of (2.1). Throughout this paper, we denote

G = lim sup
t→∞

G(t), G = lim inf
t→∞

G(t), I = lim sup
t→∞

I(t), I = lim inf
t→∞

I(t).

Due to Proposition 3.2, it is clear that these limits are finite. Further, we have the
following lemma.
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Lemma 3.3. If (G(t), I(t)) is a solution of (2.1), then

f1(G) ≤ diI ≤ diĪ ≤ f1(Ḡ),(3.2)

f2(Ḡ) + f3(Ḡ)f4(I) ≤ Gin + f5(I),(3.3)

Gin + f5(Ī) ≤ f2(G) + f3(G)f4(Ī).(3.4)

Remark. Apparently, Ḡ = G implies Ī = I due to (3.2). If Ī = I, then (3.3) and
(3.4) together lead to f2(Ḡ) − f2(G) ≤ f4(Ī)(f3(G) − f3(Ḡ)) ≤ 0. That is, Ḡ = G.

Proposition 3.4. Model (2.1) is persistent, that is, the components of all solu-
tions are eventually uniformly bounded from above and away from zero.

Proof. Notice that f2(0) + f3(0) = 0 and f4(x) < M4 for all x ≥ 0. Then (3.4)
implies that Gin ≤ f2(G) + f3(G)M4 for all t > 0. Thus ∃δG > 0, tG > 0, such that
G(t) > δG for t > tG > 0. Hence G(t) is eventually and uniformly bounded away
from zero. Inequality (3.2) implies the same for I(t). The parts of boundedness from
above are implied in Proposition 3.2.

4. Local analysis: Case τ1τ2 = 0. We analyze the trivial case τ1τ2 = 0 in
this section. The study of the nontrivial case τ1τ2 > 0 will be carried out in the next
section.

Clearly the linearized system of model (2.1) about (G∗, I∗) is given by{
G′(t) = −AG(t) −BI(t) − CI(t− τ2),

I ′(t) = DG(t− τ1) − diI1(t),
(4.1)

where {
A := f ′

2(G
∗) + f ′

3(G
∗)f4(I

∗) > 0, B := f3(G
∗)f ′

4(I
∗) > 0,

C := −f ′
5(I

∗) > 0, D := f ′
1(G

∗) > 0.
(4.2)

The characteristic equation of (4.1) is given by

Δ(λ) = λ2 + (A + di)λ + diA + DBe−λτ1 + DCe−λ(τ1+τ2) = 0.(4.3)

Notice that Δ(0) = diA+DB+DC > 0. So λ = 0 is not a solution of the characteristic
equation (4.3). Thus, if there is any stability switch of the trivial solution of the
linearized system (4.1), there must exist a pair of pure conjugate imaginary roots of
the characteristic equation (4.3).

When τ1 = τ2 = 0, the original model (2.1) is an ODE model. The characteristic
equation of its linearized equation is given by

Δ(λ) = λ2 + (A + di)λ + diA + DB + DC = 0.

Then, A + di > 0 and diA + DB + DC > 0 imply that (G∗, I∗) is stable.
For the cases of τ1τ2 = 0 and τ1 + τ2 > 0, we need the following lemma, which

can be obtained via a standard imaginary root crossing method [8], [15]. The details
can be found in [15, pp. 74–77] and [15, Theorem 3.1].

Lemma 4.1. Assume a, c, d > 0 in the following delay differential equation:

x′′(t) + ax′(t) + cx(t) + dx(t− τ) = 0, τ ≥ 0.(4.4)

Then the number of pairs of pure imaginary roots of the characteristic equation

λ2 + aλ + c + de−λτ = 0, τ ≥ 0,(4.5)

can be zero, one, or two only.
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(i) If c > d and 2c − a2 < 2
√
c2 − d2, then the number of such roots is zero for

τ > 0. The trivial solution of (4.4) is stable for all τ > 0.
(ii) If c < d or d = c and 2c − a2 > 0, then the number of such roots is one for

some τ > 0. The trivial solution of (4.4) is uniformly asymptotically stable
for τ < τ0, and it becomes unstable for τ > τ0, where τ0 > 0 is a constant. It
undergoes a supercritical Hopf bifurcation at τ = τ0.

(iii) If c > d and 2c − a2 > 2
√
c2 − d2, then the number of such roots is two for

some τ > 0. The stability of the trivial solution of (4.4) can change (when
changing from stable to unstable, the trivial solution undergoes a supercrit-
ical Hopf bifurcation) a finite number of times at most as τ increases, and
eventually it becomes unstable.

For the case of τ1 > 0 and τ2 = 0, the characteristic equation is

Δ(λ) = λ2 + (A + di)λ + diA + (DB + DC)e−λτ1 = 0.(4.6)

Notice that, in this case, 2c − a2 = −A2 − d2
i < 0 in Lemma 4.1. Then diA >

D(B + C) implies that the trivial solution of (4.1) is always stable for τ1 > 0. Also,
diA < D(B +C) implies that ∃τ10 > 0 such that the trivial solution of the linearized
system (4.1) is stable when τ1 ∈ (0, τ10) and unstable when τ1 ≥ τ10.

For the case of τ1 = 0 and τ2 > 0, the characteristic equation becomes

Δ(λ) = λ2 + (A + di)λ + (diA + DB) + DCe−λτ2 = 0.(4.7)

In Lemma 4.1, 2c−a2 = 2DB−A2−d2
i . Thus if d2

i > 2DB−A2 and diA > D(C−B),
the trivial solution of (4.1) is stable for all τ2 > 0. If diA < D(C − B), then the
stability of the trivial solution of (4.1) switches from stable to unstable when τ2
increases through a critical value τ20 > 0 and remains unstable for τ2 > τ20. If
diA > D(C − B) and 2DB − A2 − d2

i > 2
√

(diA + DB)2 −D2C2, then the trivial
solution of the linearized system (4.1) has at most a finite number of stability switches
and eventually is unstable.

Define

H1(di, Gin) = D(B + C) − diA.(4.8)

We summarize the above analysis in the following theorem for model (2.1).
Theorem 4.2. Consider model (2.1).
(a) If τ1 = 0 and τ2 = 0, then (G∗, I∗) is stable.
(b) If τ1 > 0 and τ2 = 0, and

(b.1) if H1(di, Gin) < 0, then (G∗, I∗) is stable for τ1 > 0;
(b.2) if H1(di, Gin) > 0, then ∃τ10 > 0 such that (G∗, I∗) is stable when

τ1 ∈ (0, τ10) and unstable when τ1 ≥ τ10.
(c) When τ1 = 0 and τ2 > 0,

(c.1) if D(C −B) − diA < 0 and d2
i > 2DB −A2, then (G∗, I∗) is stable;

(c.2) if D(C −B) − diA > 0, then ∃τ20 > 0 such that (G∗, I∗) is stable when
τ2 ∈ (0, τ20) and unstable when τ1 ≥ τ20;

(c.3) if D(C −B)− diA < 0 and 2DB−A2 − d2
i > 2

√
(diA + DB)2 −D2C2,

then there are at most a finite number of stability switches and eventually
(G∗, I∗) is unstable,

where A,B,C, and D are given in (4.2).
With the specific functions (6.1)–(6.5) in section 6, Figure 5.1 (right) demonstrates

the curve H1(di, Gin) = 0 in the (Gin, di)-plane. The curves in Figure 5.1 (right) are
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independent of delay τ1 and τ2. The steady state is stable when (Gin, di) ∈ Rs, that
is, di is small. Our computations show that conditions (b.1) and (c.3) in Theorem 4.2
do not hold. Condition (c.1) holds for some values (Gin, di), and thus the sustained
oscillations would not occur.

When condition (b.2) (τ2 = 0) or (c.2) (τ1 = 0) holds, the sustained oscillation
takes place if τ1 > τ10 or τ2 > τ20. Based on the arguments (3.12)–(3.17) from [15,
pp. 74–76], we have

τ10 = θ1/ω1+,

where ω1+ is the root of (4.6) given by

ω2
1+ =

1

2

{
− (A2 + d2

i ) +
[
(A2 − d2

i )
2 + 4D2(B + C)2

]− 1
2
}
,

and 0 ≤ θ1 < 2π, satisfying{
cos θ1 = (ω2

1+ − diA)/(DB + DC),
sin θ1 = ω1+(A + di)/(DB + DC).

Similarly, we have

τ20 = θ2/ω2+,

where ω2+ is the root of (4.7) given by

ω2
2+ =

1

2

{
2DB − (A2 + di2) +

[
(A2 − d2

i )
2 − 4DB(A + di)

2 + 4D2C2
]− 1

2
}
,

and 0 ≤ θ1 < 2π, satisfying{
cos θ2 = (ω2

2+ − diA−DB)/(DC),
sin θ2 = ω2+(A + di)/(DC).

When condition (b.2) (τ2 = 0) holds, our computations show that no sustained
oscillation occurs when τ1 < 9. Similarly, when (c.2) (τ1 = 0) holds, τ20 > 12 for Gin <
0.15 or Gin > 0.85, and di = 0.06. Specifically, if Gin = 1.35, di = 0.06, then the Hopf
bifurcation point τ20 > 40. These observations, with Theorem 4.2 (a), suggest that
both delay τ1 and τ2 are critical for sustained oscillations in physiologically meaningful
ranges. In addition, notice that condition (b.2) automatically holds if (c.2) holds. This
seems to suggest that the role of delay τ1 is more critical than the role of delay τ2 to
ensure the sustained oscillations of the glucose-insulin regulatory system.

5. Local analysis: Case τ1τ2 > 0. Now assume both τ1 > 0 and τ2 > 0. Let
λ = ωi, ω > 0, be such an eigenvalue in (4.3); then we have

Δ(ωi) = [−ω2 + diA + DB cosωτ1 + DC cosω(τ1 + τ2)]

+ i[(A + di)ω −DB sinωτ1 −DC sinω(τ1 + τ2)] = 0.

That is, {
−ω2 + diA + DB cosωτ1 + DC cosω(τ1 + τ2) = 0,
(A + di)ω −DB sinωτ1 −DC sinω(τ1 + τ2) = 0.

(5.1)

This leads to

ω4 + (A2 + d2
i )ω

2 + d2
iA

2 = D2(B2 + C2 + 2BC cosωτ2).(5.2)
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5.1. Stability of the steady state. We shall consider the stability of the steady
state first. From (5.2),

ω4 + (A2 + d2
i )ω

2 + d2
iA

2 ≤ D2(B2 + C2 + 2BC) = D2(B + C)2.

It is impossible if diA ≥ D(B +C). So, by definition of H1(Gin, di) in (4.8), we have
the following proposition.

Proposition 5.1. In the linearized system (4.1), when τ1 > 0 and τ2 > 0, if
H1(Gin, di) ≤ 0, then the steady state of the linearized system (4.1) is stable.

Therefore we have the following theorem.
Theorem 5.2. In model (2.1), if τ1 > 0, τ2 > 0 and

H1(di, Gin) = D(B + C) − diA ≤ 0,(5.3)

then the steady state (G∗, I∗) of system (2.1) is stable.
Remark. When τ1 > 0, the same condition H1(di, Gin) = D(B + C) − diA < 0

ensures the steady state of system (2.1) to be stable regardless of whether τ2 = 0 or
τ2 > 0.

5.2. Instability of the steady state. We now study the instability of the
steady state (G∗, I∗). We will apply Rouchè’s theorem [7, pp. 125–126] to identify the
case that the characteristic equation (4.3) has roots with positive real part.

Rouchè’s theorem. Given two functions f(z) and g(z) analytic in a simple
connected region A ⊂ C with boundary γ, a simple loop homotopic to a point in A, if
|f(z)| > |g(z)| on γ, then f(z) and f(z) + g(z) have the same number of zeros in A.

Let

S1 =

{
2m

2n− 1
: m,n ∈ Z+,m, n ≥ 1

}
and S2 =

{
2m− 1

2n
: m,n ∈ Z+,m, n ≥ 1

}
.

Clearly Q+ = S1 ∪ S2 and S1 ∩ S2 = ∅. Furthermore, S1 and S2 are dense in Q+,
and thus in R+.

In fact, given r ∈ Q+ \ S1,∃p, q ∈ Z+ such that r = 2p−1
2q . Thus

rk =
2p− 1 − 2

2k

2q − 1
2k

=
(4kp− 2k − 2)/2k

(4kq − 1)/2k
=

2(2kp− 2k − 1)

2(2kq) − 1
∈ S1 ∀k = 1, 2, 3, . . .

and limk→∞ rk = (2p− 1)/2q = r. That is, S1 ⊇ Q+. Similarly, S2 ⊇ Q+.
Proposition 5.3. For characteristic equation

λk +

k−1∑
j=1

ajλ
j + b + ce−λσ1 + de−λσ2 = 0, k ≥ 2, σ1, σ2 > 0,(5.4)

where b, c, d > 0, aj ∈ R, j = 1, 2, 3, . . . , k, if b < d− c or b < c−d, then ∃σ10 > 0 and
σ20 > 0 such that the characteristic equation (5.4) has at least one root with positive
real part for σ1 > σ10 and σ2 > σ20 provided σ1/σ2 ∈ S1 or σ1/σ2 ∈ S2.

We need the following lemma to prove Proposition 5.3.
Lemma 5.4. For the equation

εkzk +

k−1∑
j=1

ajε
jzj + b + ce−p1z + de−p2z = 0, k ≥ 2, p1, p2 > 0, z ∈ C,(5.5)

where b, c, d > 0, aj ∈ R, j = 1, 2, 3, . . . , k − 1, assume
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(i) b < d− c and p1/p2 ∈ S1, or
(ii) b < c− d and p1/p2 ∈ S2.

Then, ∃ε0 > 0 such that for all ε, 0 < ε < ε0, equation (5.5) has at least one root with
positive real part.

The proof of Lemma 5.4 is given in Appendix C. Now we prove Proposition 5.3.
Proof. Assume b < d − c and σ1/σ2 ∈ S1 (or b < c − d and σ1/σ2 ∈ S2). In

Lemma 5.4, choose p10 and p20 such that p10/p20 ∈ S1 (or p10/p20 ∈ S2). Suppose
ε0 is given by inequality (C.2) in the proof of Lemma 5.4. Let σ10 = p10/ε0 and
σ20 = p20/ε0. Then given σ1 > σ10, σ2 > σ20, and σ1/σ2 ∈ S1 (or σ1/σ2 ∈ S2), ∃ε,
0 < ε < ε0, such that

σ1 = p1/ε > σ10 and σ2 = p2/ε > σ20.

Let λ = εz. Then (5.4) becomes (5.5) in Lemma 5.4 and the conclusion follows.
Remark. In Lemma 5.4, given p1 and p2, p1/p2 ∈ S1 in case (i) or p1/p2 ∈ S2 in

case (ii), if we carefully choose ε0 in the proof of Lemma 5.4, an estimate of unstable
region of σ1 and σ2 can be given. For the special case k = 2, r0 and ε0 can be chosen as

r0 =
√
K2x2

0 + q2π2 and ε0 =

(√
a2
1 + 4η′0 − a1

)
/2r0.

Let k = 2 and apply Proposition 5.3 to the linearized system (4.1). We have the
following.

Proposition 5.5. If diA < D|C −B|, then there exist τ10 > 0 and τ20 > 0 such
that the characteristic equation of system (4.1) has at least one root with positive real
part if

(i) diA < D(C −B), τ1 > τ10, τ1 + τ2 > τ20, and τ1/(τ1 + τ2) ∈ S1, or
(ii) diA < D(B − C), τ1 > τ10, τ1 + τ2 > τ20, and τ1/(τ1 + τ2) ∈ S2.
Proof. This is straightforward if in Proposition 5.3 we choose k = 2, a1 = A +

di, b = diA, c = DB, d = DC, σ1 = τ1, and σ2 = τ1 + τ2.
Therefore, we have the following theorem.
Theorem 5.6. In model (2.1), let

H2(di, Gin) := D|C −B| − diA.(5.6)

If τ1 > 0, τ2 > 0, and H2(di, Gin) > 0, then there exist τ10 > 0 and τ20 > 0 such
that the steady state (G∗, I∗) is unstable when τ1 > τ10, τ1 + τ2 > τ20 and

(i) τ1/(τ1 + τ2) ∈ S1 and diA < D(C −B), or
(ii) τ1/(τ1 + τ2) ∈ S2 and diA < D(B − C).
Remark. Using the function (6.1)–(6.5), if Gin = 1.35 and di = 0.06, then

H2(di, Gin) > 0 and H1(di, Gin) < 0. According to Theorem 5.6, the steady state
will lose its stability as the delays increase. Let τ1 = 7 and τ2 = 30. The simulation
result is shown in Figure 5.1 (left). There exists a periodic solution bifurcating from
the steady state. This periodic solution can be regarded as the sustained oscillation of
the insulin and glucose concentration. The period of the periodic solution is approxi-
mately 149 minutes. In each cycle, the glucose concentration peaks about 18 minutes
ahead of the insulin concentration peaks. The varying range of glucose concentration
is within physiological meaningful scope [70, 109].

Remark. It is clear that H2(di, Gin) ≤ H1(di, Gin). When H1(di, Gin) ≤ 0, the
steady state of model (2.1) is stable due to Theorem 5.2. On the other hand, when
H2(di, Gin) > 0, according to Theorem 5.6, the steady state is unstable for appropri-
ate delay values given in Theorem 5.6. With specific function (6.1)–(6.5), Figure 5.1
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Fig. 5.1. Left: The periodic solution of model (2.1) when Gin = 1.35, di = 0.06, τ1 = 7, and
τ2 = 30. The period is approximately 149 minutes and the glucose concentration peaks about 18
minutes before the insulin concentration peaks. Right: Regions in the (Gin, di)-plane divided by
curves H1(di, Gin) = 0 and H2(di, Gin) = 0. When di ∈ Rs, the steady state of model (2.1) is
stable; when di ∈ Ru1 ∪Ru2, the steady state is unstable.

(right) shows the delay-independent stable region Rs and delay-dependent unstable
region Ru1 and Ru2 in the (di, Gin)-plane determined by Theorems 5.2 and 5.6, re-
spectively. The shaded region RΔ is where H1(di, Gin) > 0 and H2(di, Gin) ≤ 0. The
local stability problem of (G∗, I∗) is open when (di, Gin) ∈ RΔ. Our intensive numer-
ical simulations reveal that RΔ is also a delay-dependent unstable region, that is, with
appropriate delay parameters, the steady state is unstable. For example, when di =
0.051 and Gin = 1.50, H1(0.051, 1.50) = 0.0019 and H2(0.051, 1.50) = −0.00042570.
The steady state is unstable when τ1 ≥ 15 and τ2 ≥ 32. When di = 0.0320 and
Gin = 1.40, H1(0.0320, 1.40) = 0.00099732 and H2(0.051, 1.50) = −0.00026753. The
steady state is unstable when τ1 ≥ 18 and τ2 ≥ 36. Periodic solutions are also
observed in these cases.

5.3. Hopf bifurcation. We show below that a local Hopf bifurcation takes place
when delay parameter τ1 or τ2 varies. It has been shown that when τ1 = 0 (τ2 = 0),
the steady state of system (2.1) is stable provided that τ2 (τ1) is small enough (see
Theorem 4.2). To show this system undergoes a unique local Hopf bifurcation at some
τ̄1 > 0 (τ̄2 > 0) as τ1 (τ2) increases from 0 and within a physiologically meaningful
range, we prove that the characteristic equation (4.3) has a pair of pure conjugate
imaginary simple roots at τ1 = τ̄1 > 0 (τ2 = τ̄2 > 0) and all such roots cross the
imaginary axis from left to right. This indicates that a periodic solution is generated
from this stability switch. Our numerical simulations show that the bifurcation is
indeed supercritical.

Consider equation

ω4 + (A2 + d2
i )ω

2 + d2
iA

2 = D2(B2 + C2 + 2BC).(5.7)

Clearly, (5.7) has a unique positive root ω̂ when diA < D(B + C), where

ω̂2 =
1

2

[
− (A2 + d2

i ) +
√

(A2 + d2
i ) − 4(d2

iA
2 −D2(B + C)2)

]
.(5.8)
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Let g(ω) = ω4 +(A2 +d2
i )ω

2 +d2
iA

2−D2(B2 +C2 +2BC cosωτ2). Then (5.2) can be
written as g(ω) = 0. If ω < ω̂ < π

2τ2
, then g(0) = d2

iA
2 −D2(B +C)2 < 0 and g(ω̂) =

2D2BC(1 − cosωτ2) ≥ 0. Further, g′(ω) = 4ω3 + 2(A2 + d2
i )ω + 2D2BC sinωτ2 > 0

for 0 < ω < ω̂ ≤ π
2τ2

. Therefore we have the following lemma.
Lemma 5.7. If diA < D(B + C) and τ2 < π

2ω̂ , then (5.2) has a unique root ω0

with 0 < ω0 ≤ ω̂.
The following propositions establish sufficient conditions for the existence of Hopf

bifurcation when τ1 or τ2 varies. We leave the proofs in Appendices D and E.
Proposition 5.8. If H1(Gin, di) = D(B +C)− diA > 0 and τ1 + τ2 < π

2ω̂ , then
(4.1) undergoes a Hopf bifurcation when τ1 increases from 0 to π

2ω̂ − τ2 for given τ2.
Proposition 5.9. If H1(Gin, di) = D(B + C) − diA > 0, τ1 + τ2 < π

2ω̂ , and

τ1 < A+di

DB , then (4.1) undergoes a Hopf bifurcation when τ2 increases from 0 to
π
2ω̂ − τ1 for given τ1.

Remark. Using the specific functions (6.1)–(6.5) given in section 6, for (Gin, di) ∈
[0, 150]×[0.001, 0.07], approximately, 47.2665 < π

2ω̂ < 214.3462 and 19.6857 < A+di

DB <

6361.7. Thus τ1 varies within its physiological range under the condition τ1 < A+di

DB .
Under the condition τ1 + τ2 < π

2ω̂ , both τ1 and τ2 are within their physiological
meaningful ranges in most situations for (Gin, di) ∈ [0, 150] × [0.001, 0.07]. When
τ1 + τ2 could be larger than 47.2665, our simulations show that the Hopf bifurcation
does exist and it is supercritical.

We summarize the above results in the following theorem.
Theorem 5.10. For model (2.1), assume H1(Gin, di) = D(B + C) − diA > 0

and τ1 + τ2 < π
2ω̂ .

(a) Then there exists a τ̄1 > 0 such that the steady state (G∗, I∗) is stable when
τ1 < τ̄1, and unstable when τ1 ≥ τ̄1. The system undergoes a Hopf bifurcation
at τ̄1 and generates a periodic solution.

(b) Further, assume τ1 < A+di

DB . Then there exists a τ̄2 > 0 such that the steady
state (G∗, I∗) is stable when τ2 < τ̄2, and unstable when τ2 ≥ τ̄2. The system
undergoes a Hopf bifurcation at τ̄2 and generates a periodic solution.

Remark. With the specific functions (6.1)–(6.5) in the next section, our intensive
numerical simulations show that the Hopf bifurcations determined by Theorem 5.10
are supercritical. Moreover, with Gin = 1.35 and di = 0.06, τ̄1 and τ̄2 approximately
satisfy 33.9τ̄1 + 17.3τ̄2 ≈ 36.9 for 0 ≤ τ̄1 ≤ 20 and 0 ≤ τ̄2 ≤ 60.

6. Numerical simulations. In this section, we present numerical analysis on
model (2.1) using DDE23 [22] in MATLAB 6.5. We use the same functions fi, i =
1, 2, 3, 4, 5, as [2], [17], [25], and [26] given in (6.1)–(6.5). The parameters, listed in
Table 6.1, were generated from experiments [25], [26].

f1(G) = Rm/(1 + exp((C1 −G/Vg)/a1)),(6.1)

f2(G) = Ub(1 − exp(−G/(C2Vg))),(6.2)

f3(G) = G/(C3Vg),(6.3)

f4(I) = U0 + (Um − U0)/(1 + exp(−β ln(I/C4(1/Vi + 1/Eti)))),(6.4)

f5(I) = Rg/(1 + exp(α(I/Vp − C5))).(6.5)
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Table 6.1

Parameters of the functions in two-time-delay model (2.1).

Parameters Units Values Parameters Units Values

Vg l 10 Rm μUmin−1 210

a1 mg · l−1 300 C1 mg · l−1 2000

Ub mg · min−1 72 C2 mg · l−1 144

C3 mg · l−1 1000 U0 mg · min−1 40

Um mg · min−1 940 β 1.77

C4 μUl−1 80 Rg mg · min−1 180

α lμU−1 0.29 C5 μUl−1 26
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Fig. 6.1. Limiting values or amplitudes of glucose (top) and insulin (bottom) concentrations
when τ1 and τ2 vary (left) or Gin and τ1 vary (right).

The simulations in [17] focused on the bifurcation when a single parameter varies
while other parameters are fixed. The detected bifurcation points of the varying pa-
rameters can determine when the sustained oscillations occur. In this section, we
carry out a sequence of two-parameter bifurcation analyses and depict their quan-
titative behaviors in three-dimensional meshes or two-dimensional curves formed by
transversal points.

For a specific subject, the insulin response time delay, the delayed effect of hepatic
glucose production, and the insulin degradation rate are intrinsic. But the exogenous
glucose infusion rate is controllable by diet, fasting, and so on. So, in addition to
the simulation on the two-delay parameters, we numerically analyze the relationships
of the glucose infusion rate Gin vs. the insulin response time delay τ1, the hepatic
glucose production time delay τ2, and the insulin degradation rate di, respectively.
We end this section by showing the significant impact of the two delays on generating
insulin ultradian oscillation.

6.1. Insulin response delay τ1 vs. hepatic glucose production delay τ2.
We analyzed the relationship between the insulin response delay τ1 and the hepatic
glucose production delay τ2 while Gin = 1.35 and di = 0.06 are fixed. Figure 6.1 (left)
shows that a simple curve (33.9τ1 + 17.3τ2 ≈ 36.9 for 0 ≤ τ1 ≤ 20 and 0 ≤ τ2 ≤ 60)
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Fig. 6.2. Left: Mesh of the periods of periodic solutions when (τ1, τ2) ∈ [0, 20] × [0, 60], where
Gin = 1.35 and di = 0.06 are fixed. Right: Meshes of the amplitudes of glucose and insulin
concentrations when (Gin, τ2) ∈ [0, 1.5] × [0, 60], where τ1 = 7 and di = 0.06 are fixed.

divides [0, 20] × [0, 60] in the (τ1, τ2)-plane into two regions. The steady state is
stable in one region and unstable in the other. The sustained oscillations occur in the
unstable region which requires both τ1 > 0 and τ2 > 0 to be sufficiently large. The
top and bottom meshes in Figure 6.1 (left) demonstrate the amplitudes of glucose and
insulin concentrations, respectively. The periods of periodic solutions are shown in
Figure 6.2 (left). According to Figure 6.1 (left) and Figure 6.2 (left), the amplitudes
of glucose concentration are between 70 and 109 and the periods of periodic solutions
are approximately within 90 and 150 when τ1 ∈ (5, 15) and τ2 ∈ (25, 50). There
is a sudden jump of amplitudes of glucose and insulin concentrations when τ1 > 10
approximately. Also, in such cases, the periods of periodic solutions decrease.

6.2. Glucose infusion rate Gin vs. insulin response time delay τ1. Taking
both insulin response delay τ1 and glucose infusion rate Gin as bifurcation parameters,
we try to identify the stability regions when (τ1, Gin) ∈ [0, 20]× [0, 1.5]. Let di = 0.06
and τ2 = 36 be fixed. The computation results are shown in Figure 6.1 (right). The
bifurcation point value τ̄1 ≈ 1.0429Gin − 1.3740 > 0 exists for 1.3175 ≤ Gin ≤ 1.50.
The meshes are the amplitudes of glucose (top) and insulin (bottom) concentrations
when (τ1, Gin) ∈ [0, 20]× [0, 1.5]. It can be seen that a simple curve (τ1 ≈ 1.0429Gin−
1.3740 > 0 for 1.3175 ≤ Gin ≤ 1.50) divides the rectangular [0, 20] × [0, 1.5] in the
(τ1, Gin)-plane into two regions. The sustained oscillations of model (2.1) occur in the
unstable region. The exogenous glucose infusion rate can be larger when τ1 increases
from [5, 15] for sustained regulatory oscillations to occur.

6.3. Glucose infusion rate Gin vs. hepatic glucose production delay τ2.
As shown in Figure 6.2 (right), our simulation results indicate that when τ1 = 7 and
di = 0.06, the rectangular [0, 60]×[0, 1.50] in the (τ2, Gin)-plane is divided by a simple
curve into two regions. The steady state of model (2.1) is unstable in the unstable
region and the oscillations are sustained. The periods of periodic solutions are in a
range of 80 and 195 minutes (not shown). The simple curve is determined by the
Hopf bifurcation point values τ̄2(Gin) as Gin varies from 0 to 150. The relationship
between Gin and τ̄2 is nonlinear. For example, τ̄2 ≈ 6.1, 2.8, 6.1, 9, 12, 18, 33 when
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Fig. 6.3. Left: Insulin degradation rate di vs. glucose infusion rate Gin while τ1 = 7 and
τ2 = 36. The steady state of model (2.1) is stable in one region and unstable in the other. Right:
Stable and unstable regions of the steady state when τ1 = 5 and τ2 = 6.

Gin = 0, 0.60, 0.80, 1.10, 1.20, 1.30, 1.40, respectively. Similar to the case of Gin vs.
τ1, the exogenous glucose infusion rate can be larger when τ2 increases from 10 to 60
minutes for sustained regulatory oscillations to occur. When τ2 < 2, the steady state
is stable and no sustained oscillation will occur regardless of what value Gin assumes.

6.4. Glucose infusion rate Gin vs. insulin degradation rate di. Similarly,
taking both glucose infusion rate Gin and insulin degradation rate di as bifurcation
parameters while τ1 = 7 and τ2 = 36 are fixed, we identified the stability regions in
(Gin, di) ∈ [0, 1.35] × [0.001, 0.20]. Figure 6.3 shows that a simple curve divides the
rectangular (Gin, di) ∈ [0, 1.35] × [0.001, 0.20] into two regions (the figure shows the
part of [0, 1.35]× [0.001, 0.035] only). The steady state of model (2.1) is stable in one
region and unstable in the other region. It is clear that larger insulin degradation
rate di facilitates the oscillatory regulation. However, if di = 1.75 is large, then no
self-sustained oscillation occurs. This suggests that di needs to be in moderate range
for oscillations to be sustained. Let τ1 = 5 and τ2 = 6 be smaller. Figure 6.3 (right)
shows that the sustained oscillation occurs in a region surrounded by a closed curve,
which requires both di and Gin to be in moderate ranges. Our simulation shows
that the amplitudes of the sustained oscillations are very small (G ∈ (80, 100) and
I ∈ (10, 12)) with periods from 58 to 105 minutes. This shows that when the delays
τ1 and τ2 are smaller, both the insulin clearance rate and the glucose infusion rate
have to be in a moderate range to ensure the oscillatory behavior of insulin secretion.

7. Discussions. In this paper, we studied the glucose-insulin regulatory system
model (2.1) analytically and numerically. Compared with the observations obtained
in [2], [17], [25], and [26], our work confirms most of the known observations and
yields additional insightful information. Using the notation in [17], we refer to the
observations in [25] and [26] as [STx] ([ST1]–[ST4]), the observations in [2] as [BGx]
([BG1] and [BG2]), and the observations in [17] as [Ax] ([A1]–[A9]). We conclude this
paper with a list of remarks and new observations (denoted by [Bx]).

[B1] Theorem 4.2 reveals that the delays in the glucose-insulin regulatory sys-
tem are critical for ensuring the sustained oscillations of regulation and
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insulin secretions. Particularly, the role of delay of insulin secretion and
the newly synthesized insulin becoming remote insulin is more critical than
the role of delay of hepatic glucose production.

[B2] If the insulin secretion responds to elevated glucose instantaneously, that is,
τ1 = 0, Theorem 4.2 (c.1) and (c.2) reveal that the insulin degradation rate
for sustaining oscillation is likely to be lower than that in the case of τ1 > 0
and τ2 = 0 (Theorem 4.2 (b.1) and (b.2)). This suggests that the oscillatory
behavior of the glucose-insulin regulation requires the insulin removal rate to
be large enough (H2(di, Gin) > 0) and the delayed effect of hepatic glucose
production to be long enough (τ2 > τ20).

[B1] and [B2] analytically confirm the numerical observation of [ST3]. It demon-
strates that the effort of dividing insulin into two compartments in the model can be
and shall be naturally and explicitly replaced by the delay parameter τ1.

[B3] According to Theorem 4.2 (b.1) for τ1 = 0, and Theorem 5.2 for τ2 > 0,
the insulin degradation rate di has to be “large” enough for sustained oscilla-
tory regulation of the glucose-insulin metabolic system. Here the meaning of
“large” refers to the numerical simulation demonstrated in Figure 5.1 (right)
that H1(di, Gin) > 0. This confirms the observation [BG1] in [2].

[B4] When τ1τ2 > 0, Theorem 5.6, Theorem 5.10, and simulations in Figure 5.1
(right) reveal the intrinsic relationship among di, Gin, τ1, and τ2 to secure
the oscillatory behavior of the metabolic system. That is, for a subject, the
oscillatory regulation occurs if one’s insulin degradation rate and the glucose
infusion rate satisfy H2(di, Gin) > 0, and the time delays in the system are
long enough (τ1 > τ10 and τ1 + τ2 > τ20). The numerical observations in
Figure 6.3 (left) indicate that if the insulin degradation rate is sufficiently
small (H1(di, Gin) < 0), the oscillations cannot be sustained. Small di causes
the insulin concentration level to remain high in plasma, which prohibits the
glucose concentration level to rise. In such cases, the oscillatory regulation
does not occur. This provides more insightful information than the general
statements in [BG1] and [A7]. On the other hand, Figure 6.3 (right) indicates
that both the glucose infusion rate and the insulin clearance rate are sensitive
to the delays τ1 and τ2. Both rates are required to be in moderate ranges for
sustained oscillations when the delayed effects are shorter.

[B5] Figures 6.1 (right), 6.2 (right), and 6.3 (left) show that when the glucose
infusion rate is high, the oscillation of insulin secretion is unlikely to persist.
This is possibly due to the fact that the β-cells cannot produce and secrete
enough insulin to uptake the large amount of glucose infused into plasma.
Thus the glucose concentration remains at a high level. The result is that
the ultradian oscillations of insulin secretion and the oscillatory regulation
of the glucose-insulin metabolic system cannot be sustained. This may help
to explain the observed steady state behavior in models of the intravenous
glucose tolerance test (IVGTT) where initial glucose infusion values are high
[3], [9], [16], [19].

[B6] In the IVGTT, the initial glucose infusion is large. Compared to such large
exogenous glucose infusion, the hepatic glucose production is negligible. For
this reason, IVGTT models are justified not to include the hepatic glucose
production term explicitly (set f5 ≡ 0 thus τ2 = 0) [3], [9], [16], and [19]. The
main goal of these models is to accurately monitor the dynamical behavior
of the glucose level, which must return to its basal level after the biphasic
insulin secretions have been triggered. Thus the insulin sensitivity can be
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tested. The simulations (Figures 1 and 2) in [16] reveal that the delay τ1 has
to be extremely large (> 400 minutes) to produce any sustainable oscillations.
Such a huge delay τ1 clearly falls out of the normal physiological range.

Since we normally eat three meals per day, it is more plausible to consider periodic
exogenous glucose infusion. That is, the constant glucose infusion rate Gin in model
(2.1) shall be replaced by a periodic function Gin(t) with a positive period ω between
180 and 300 minutes. Our simulation results reveal that there exists a harmonic
solution in such a system. For more details, interested readers can refer to [24].

Appendix A. Proof of Proposition 3.2. For the first part of (i), let

H(x) = Gin − f2(x) − f3(x)f4(d
−1
i f1(x)) + f5(d

−1
i f1(x)) = 0, x ≥ 0.(A.1)

We shall show that (A.1) has a unique root in [0,∞). Observing that f ′
1(x) > 0,

f ′
2(x) > 0, f ′

4(x) > 0, f ′
3(x) > 0, and f ′

5(x) < 0, we have H ′(x) < 0. Notice that
H(0) = Gin − f2(0) − f3(0)f4(d

−1
i f1(0)) + f5(d

−1
i f1(0)) = Gin + f5(d

−1
i f1(0)) > 0,

and

lim
x→∞

H(x) = Gin − lim
x→∞

f2(x) − lim
x→∞

f3(x)f4(d
−1
i lim

x→∞
f1(x)) + f5(d

−1
i lim

x→∞
f1(x))

= Gin −M2 − f4(d
−1
i M1) lim

x→∞
f3(x) + f5(d

−1
i M1)

< Gin −M2 −m4 lim
x→∞

f3(x) + M5 < 0.

In addition, f1(x) is strictly monotone increasing, so the proof is complete. It is
obvious that G∗ is the root of (A.1) and I∗ = d−1

i f1(G
∗).

For the second part of (i), observing that |f ′
i(x)|, i = 1, 2, 3, 4, 5, are bounded,

fi(x), i = 2, 3, 4, and fj(xt), j = 1, 5, are Lipschitzian and completely continuous
in x ≥ 0 and xt ∈ C([−max{τ1, τ2}, 0]), respectively. Then by Theorems 2.1, 2.2,
and 2.4 on pp. 19 and 20 in [15], the solution of (2.1) with given initial condition
exists and is unique for all t ≥ 0. If there exists a t0 > 0 such that G(t0) = 0 and
G(t) > 0 for 0 < t < t0, then G′(t0) ≤ 0. So

0 ≥ G′(t0) = Gin − f2(G(t0)) − f3(G(t0))f4(I(t0)) + f5(I(t0 − τ2))

= Gin − f2(0) − f3(0)f4(I(t0)) + f5(I(t0 − τ2))

= Gin + f5(I(t− τ2)) > 0.

This contradiction implies that G(t) > 0 for all t > 0. If ∃t′0 > 0 such that I(t′0) = 0
and I(t) > 0 for all 0 < t < t′0, then I(t

′

0) < 0. Therefore, 0 > I(t′0) = f1(G(t
′

0) −
diI(t

′
0 − τ1) ≥ f1(G(t′0)) > 0 . This implies that I(t) > 0 for all t > 0.
Now we show that any given solution (G(t), I(t)) of model (2.1) is bounded for

t > 0. In fact, if lim supt→∞ G(t) = ∞, there exists a sequence {tn}∞n=1 ↑ ∞ such
that limn→∞ G(tn) = ∞ and G′(tn) ≥ 0. Thus 0 < G′(tn) = Gin − f2(G(tn)) −
f3(G(tn))f4(I(tn)) + f5(I(tn − τ2)) ≤ Gin − f2(G(tn)) − f3(G(tn))m4 + M5, and
therefore

0 ≤ lim
n→∞

G′(tn) ≤ Gin − lim
n→∞

f2(G(tn)) −m4 lim
n→∞

f3(G(tn)) + M5

≤ Gin −M2 −m4 lim
x→∞

f3(x) + M5 < 0.

This contradiction shows that there is an MG > 0 such that G(t) < MG for all t > 0.
From the second equation in (2.1), since |f1(x)| ≤ M1, for all ε > 0, I ′(t) ≤ f1(MG +
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ε)−diI(t) for sufficiently large t > 0. Then we have lim supt→∞ I(t) ≤ d−1
i f1(MG+ε).

Since ε > 0 is arbitrary, lim supt→∞ I(t) ≤ d−1
i f1(MG) := MI .

If (ii) is not true, assume lim supt→∞ G(t) = MG < ∞. Then ∃{tn}∞n=1 ↑ ∞ such
that G′(tn) = 0, n = 1, 2, 3, . . . , and limn→∞ G(tn) = MG according to Lemma 3.1.
Thus G′(tn) = Gin−f2(G(tn))−f3(G(tn))f4(I(tn))+f5(I(tn−τ2)) ≥ Gin−f2(G(tn))−
f3(G(tn))m4. Let n → ∞; then 0 ≥ Gin − f2(MG) − f3(MG)m4, that is, f3(MG) ≥
(Gin−f2(MG))/m4. On the other hand, f3(MG) ≤ limx→∞ f3(x) < (Gin−M2)/m4 ≤
(Gin − f2(MG))/m4.

Appendix B. Proof of Lemma 3.3. First we show that (3.2) holds. Due
to Lemma 3.1 and part (i) of Proposition 3.2, there exists a sequence {tk}∞k=1 ↑ ∞,
such that I ′(tk) = 0, limk→∞ I(tk) = I. Thus, 0 = I ′(tk) = f1(G(tk − τ1)) − diI(tk)
for all k = 1, 2, 3, . . . . Therefore, f1(G) − diI(tk) ≥ f1(G(tk − τ1)) − diI(tk) for
k = 1, 2, 3, . . . . Thus, f1(G) − diI ≥ 0. On the other hand, there exists a sequence
{sk}∞k=1 ↑ ∞ such that limk→∞ I(sk) = I and I ′(sk) = 0 for all k > 0. Hence,
f1(G)− diI(sk) ≤ f1(G(sk − τ1))− diI(sk) for k = 1, 2, 3, . . . . Thus, f1(G)− diI ≤ 0.

Now we show that (3.3) holds. Again, due to Proposition 3.2 and Lemma 3.1,
there exists a sequence {t′k}∞k=1 ↑ ∞ as k → ∞ such that limk→∞ G(t

′

k) = G and

0 = G′(t
′

k) = Gin − f2(G(t
′

k)) − f3(G(t
′

k))f4(I(t
′

k)) + f5(I(t
′

k − τ2)), k = 1, 2, 3, . . . .
Notice that f5 ↓ 0 and f4 is monotone increasing and bounded from above by M4;
thus 0 = Gin − f2(G(t

′

k)) − f3(G(t
′

k))f4(I(t
′

k)) + f5(I(t
′

k − τ2)) ≤ Gin − f2(G(t
′

k)) −
f3(G(t

′

k))f4(I)+f5(I), k = 1, 2, 3, . . . , and thus Gin−f2(G)−f3(G)f4(I)+f5(I) ≥ 0.
Similarly we can show that (3.4) is true. According to part (i) of Proposi-

tion 3.2 and Lemma 3.1, there exists a sequence {s′

k}∞k=1 ↑ ∞ as k → ∞ such

that limk→∞ G(s
′

k) = G and 0 = G′(s
′

k) = Gin − f2(G(s
′

k)) − f3(G(s
′

k))f4(I(s
′

k)) +

f5(I(s
′

k − τ2)), k = 1, 2, 3, . . . . Notice that f5 ↓ 0 and f4 is monotone increasing

and bounded from above by M4; thus 0 = Gin − f2(G(s
′

k)) − f3(G(s
′

k))f4(I(s
′

k)) +

f5(I(s
′

k − τ2)) ≥ Gin − f2(G(s
′

k))− f3(G(s
′

k))f4(I) + f5(I), k = 1, 2, 3, . . . . This leads
to Gin − f2(G) − f3(G)f4(I) + f5(I) ≤ 0.

Appendix C. Proof of Lemma 5.4. Let f(z) = b+ ce−p1z + de−p2z. We show
that f(z) has a zero with positive real part. Since p1/p2 ∈ S1 in case (i) (p1/p2 ∈ S2

in case (ii)), there exist integers m,n ≥ 1 such that p1

p2
= 2m

2n−1 for case (i), or
p1

p2
= 2m−1

2n for case (ii). Let z = x+ qπi, where q = 2m/p1 = (2n− 1)/p2 for case (i)

or q = (2m− 1)/p1 = 2n/p2 for case (ii). Then

f(z) = b + ce−p1xe−p1qπi + de−p2xe−p2qπi

= b + ce−p1x cos 2mπ + de−p2x cos (2n− 1)π

(= b + ce−p1x cos (2m− 1)π + de−p2x cos 2nπ for case (ii))

= b + ce−p1x − de−p2x (= b− ce−p1x + de−p2x for case (ii))

:= H(x).

Notice that H(0) = b+c−d < 0 (H(0) = b−c+d < 0 for case (ii)) and limx→∞ H(x) =
b > 0; therefore H(x) has at least one zero x0 ∈ (0,∞). So f(z) has at least one zero
z0 = x0 + qπi with x0 > 0.

We perturb f(z) by gε(z) given by

gε(z) = εkzk +

k−1∑
j=1

ajε
jzj , ε > 0,(C.1)
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with small ε > 0 and show that f(z) + gε(z) has the same number of zeros as f(z)
if ε is small. To this end, we first construct a simple loop γ homotopic to a point
and then show |f(z)| > |gε(z)| on γ. Let z = x, x ∈ (−∞,∞); then |f(z)| =
b + ce−p1x + de−p2x > b. Let z = x + 2qπi, x ∈ (−∞,∞); then

|f(z)| = |b + ce−p1xe2qp1πi + de−p2xe2qp2πi|
= |b + ce−p1x cos 4mπ + de−p2x cos 2(2n− 1)π|

(= |b + ce−p1x cos 2(2m− 1)π + de−p2x cos 4nπ| for case (ii))

= b + ce−p1x + de−p2x > b.

Let z = Kx0 +yi, y ∈ [0, 2qπ], where K > 1 such that b−ce−p1Kx0 −de−p2Kx0 > b/2.
Then

|f(z)| = |b + ce−p1Kx0e−p1yi + de−p2Kx0e−p2yi|
≥ b− ce−p1Kx0 − de−p2Kx0 > b/2.

Let z = yi, y ∈ [0, 2qπ]; then

|f(z)| = |b + ce−p1yi + de−p2yi| ≥
{

d− c− b for case (i),
c− d− b for case (ii)

:= η0 > 0.

Let η′0 := min{η0, b/2}. Denote

γ := {z = x + yi ∈ C : z = x or z = x± 2qπi, x ∈ [0,Kx0],

or z = yi or z = Kx0 + yi, y ∈ [0, 2qπ].

γ◦ := {z = x + yi ∈ C : 0 < x < Kx0, − 2qπ < y < 2qπ}.

Clearly, γ is a simple loop homotopic to the original, z0 = x0+qπi ∈ γ◦ and |f(z)| > η′0
on γ. Choose r0 > 0 such that γ ⊂ A := {z ∈ C : |z| < r0}. Denote ∂A := {z ∈ C :
|z| = r0}. Thus for all z ∈ ∂A, z = r0e

θi, θ ∈ [0, 2π], we have

|gε(z)| = |εkzk +

k−1∑
j=1

ajε
jzj | ≤ εkrk0 +

k−1∑
j=1

|aj |εjrj0.(C.2)

Obviously ∃ε0 > 0 such that for all ε, 0 < ε < ε0, |gε(z)| < η′0, z ∈ ∂A. For all
z ∈ A, z = reθi; then r < r0, and

|gε(z)| = |εkzk +

k−1∑
j=1

ajε
jzj | ≤ εkrk +

k−1∑
j=1

|aj |εjrj < εkrk0 +

k−1∑
j=1

|aj |εjrj0.

Thus |gε(z)| < η′0 for all z ∈ γ. Therefore |f(z)| > |gε(z)| on γ. By Rouchè’s theorem
[7, pp. 125–126], f(z) and f(z) + gε(z) have the same number of zeros in γ◦. That is,
f(z) + gε(z) = 0 has at least one root ẑε ∈ γ◦.

Appendix D. Proof of Proposition 5.8. We need only show that the conju-
gate roots of (4.3) cross the imaginary axis from left to right. Assume τ1 + τ2 < π

2ω̂ .
From (4.3), we have[

2λ + (A + di) −DBe−λτ1τ1 −DCe−λ(τ1+τ2)(τ1 + τ2)
] dλ
dτ1

=
(
DBe−λτ1 + DCe−λ(τ1+τ2)

)
λ.
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If the root λ(τ̄1) = iω is not simple for some τ̄1 > 0, then dλ
dτ1

∣∣
τ1=τ̄1

= 0. Thus,

−DBe−iωτ̄1 −DCe−iωτ̄1+τ2iω = 0 and (B + C cosωτ2) − i sinωτ2 = 0.

This is impossible since τ2 < π
2ω̂ . Therefore,

( dλ

dτ1

)−1

=
[2λ + (A + di)]e

λ(τ1+τ2) − τ2DC

(DBeλτ2 + DC)λ
− τ1

λ
.

Notice that at λ = iω,

sign
{dRe(λ)

dτ1

}
= sign

{
Re

(( dλ

dτ1

)−1)}

= sign
{

Re
( (i(A + di) − 2ω)(cosω(τ1 + τ2) + i sinω(τ1 + τ2)) − τ2DCi

−(DB cosωτ2 + iDB sinωτ2)ω

)}
= sign

{
(DB cosωτ2 + DC)2ω cosω(τ1 + τ2) + DB sinωτ2(2ω sinω(τ1 + τ2) + τ2DC)

+ DB(A + di) sinωτ1

}
= 1.

Appendix E. Proof of Proposition 5.9. Similar to the proof of Proposition 5.8
in Appendix D, assume τ1 + τ2 < π

2ω̂ . From (4.3), we have[
2λ + (A + di) − τ1DBeλτ1 −DC(τ1 + τ2)e

−λ(τ1+τ2)
] dλ
dτ2

= DCλe−λ(τ1+τ2).

If λ(τ̄2) = iω is a root of (4.3) for some τ̄2 > 0 with ω > 0, then it must be simple.
Otherwise, dλ

dτ2

∣∣
τ2=τ̄2

= 0 and leads to a contradiction, DCω cos τ1 + τ̄2 = 0. We show

that if a root of (4.3) crosses the imaginary axis while τ2 increases, it must cross from
left to right. Obviously,( dλ

dτ2

)−1

=
(2λ + (A + di))e

λ(τ1+τ2) − τ1DBe−λτ2

DCλ
− τ1 + τ2

λ
.

Thus, at λ = iω,( dλ

dτ2

)−1

=
2ω cosω(τ1 + τ2) + (A + di) sinω(τ1 + τ2) − τ1DB sinωτ2

DCω
.

Then, if τ1DB < A + di,

sign
{dRe(λ)

dτ2

}
= sign

{
Re

(( dλ

dτ2

)−1)}
= sign

{
2ω cosω(τ1 + τ2) + (A + di) sinω(τ1 + τ2) − τ1DB sinωτ2

}
= 1.
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