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CYLINDER BUCKLING: THE MOUNTAIN PASS AS AN ORGANIZING
CENTER

JIŘÍ HORÁK∗, GABRIEL J. LORD† , AND MARK A. PELETIER‡

Abstract. We revisit the classical problem of the buckling of a long thin axially compressed cylindrical shell.
By examining the energy landscape of the perfect cylinder we deduce an estimate of the sensitivity of the shell to
imperfections. Key to obtaining this is the existence of a mountain pass point for the system. We prove the existence
on bounded domains of such solutions for all most all loads and then numerically compute example mountain pass
solutions. Numerically the mountain pass solution with lowest energy has the form of a single dimple. We interpret
these results and validate the lower bound against some experimental results available in the literature.

Key words. Imperfection sensitivity, subcritical bifurcation, single dimple

1. Introduction.

1.1. Buckling of cylinders under axial loading. A classical problem in structural en-
gineering is the prediction of the load-carrying capacity of an axially-loaded cylinder. As well
as being a commonly used structural element, the axially-loaded cylinder is also the archetype
of unstable, imperfection-sensitive buckling, and this has led to a large body of theoretical and
experimental research.

In the decades before and after the second world war a central problem was to understand
the large discrepancy between theoretical predictions and experimental observations, as shown in
Figure 1.1. A variety of different explanations has been put forward, but with the experimental
work of Tennyson [30] and the theoretical work of Almroth [1] it became clear that this discrepancy
is mostly due to imperfections in loading conditions and in the shape of the specimens. Further
experimental and theoretical work by many others has confirmed this conclusion [14, 33, 36].

For near-perfect cylinders the linear and weakly non-linear theories (see Section 1.2) ade-
quately describe the experimental buckling load1 and the deformation just before failure (see
e.g. [4]). Cylinders used in practical applications, however, are far too imperfect for this weakly
non-linear theory to apply, and from a practical point of view the problem of predicting the failure
load is still open.

In fact there is good reason to believe that it will never be possible to accurately predict
failure loads for cylinders that are used in practice. For simple materials, such as metals, it is
believed that current numerical methods can describe the local material behaviour with enough
accuracy that correct prediction of the complete behaviour of the cylinder—including its failure—
is feasible. This could be achieved provided the geometrical and material imperfections as well as
the loading conditions are determined in sufficient detail. The difficulty lies in the qualifier “in
sufficient detail”, since an extremely accurate measurement of geometric imperfections would be
necessary [4], and in the design phase both the loading conditions and the geometrical and material
imperfections in the finalized product are only known in vague terms. Therefore, in recent decades
the attention of theoretical research has turned to characterizing the failure load in weaker ways,
preferably in the form of a lower (safe) bound.

1.2. Characterizing sensitivity to imperfections. Viewed as a bifurcation problem, the
buckling of the cylinder is a subcritical symmetry-breaking pitchfork bifurcation (Figure 1.2).
Generically, imperfections in the structure eliminate the bifurcation and round off the branch of
solutions2, resulting in a turning-point at a load Pimp strictly below the critical (bifurcation) load
Pcr of the perfect structure. In an experiment in which the load is slowly increased, the system
will fail (i.e. make a large jump in state space) at load Pimp.

∗Universität Köln, Germany
†Heriot-Watt University, Edinburgh, United Kingdom
‡Technische Universiteit Eindhoven, The Netherlands
1In this paper the terms “experimental buckling load” and “failure load” are used interchangeably
2Koiter actually used this elimination of a bifurcation point as a definition of “perfect system” and “perturbed

system” [22]
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Power law fit : y=1.03x−0.176
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Power law fit : y=0.511x−0.0879
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Power law fit : y=0.373x−0.00504
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Fig. 1.1. Experimental data from various research groups, all representing failure loads of axially-loaded
cylinders. The horizontal axis is the ratio of cylinder length and wall thickness; the vertical axis is the ratio of the
failure load and the theoretical critical load as predicted for perfect cylinders. Note that all tested cylinders fail at
loads significantly lower than that predicted by theory; in some cases failure occurred at less than one-fifth of the
theoretical load-carrying capacity. Power-law fitting lines are added to emphasize the dependence of failure load on
geometry. The data are from [10, 7, 5].
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perfect

imperfect

end shortening

Fig. 1.2. Illustration of perfect and imperfect bifurcation curves.

Again, if the imperfections in geometry and loading are fully known, then calculation of
Pimp is a practical problem rather than a theoretical one, and we do not address this problem
here. For the more difficult question of characterizing Pimp under incomplete information various
strategies have been proposed. A classical line of thought originates with Koiter [22], in which
the imperfections are chosen a priori within certain finite-dimensional sets. Common choices are
the sets spanned by an eigenvector at bifurcation, or by the eigenvectors associated with the first
n bifurcations. This approach might be termed weakly non-linear, as it is based on an expansion
of the energy close to the bifurcation point, in the directions suggested by the bifurcation point
itself. It gives predictions that are correct if the imperfections are very small—much smaller than
those encountered in practice.

Since the a priori choice of imperfections is a weak point of this method, a natural step is
to optimize over all possible perturbations. Deml and Wunderlich pioneered this approach, in
which a numerical algorithm is used to find a “worst geometric imperfection” [9]. This “worst
imperfection” is defined as the one that produces a turning-point of minimal load. Some constraint
on the magnitude of allowable perturbations is necessary, of course, to prevent running a steam
roller over the cylinder being interpreted as an admissible imperfection. The authors of [9] and [35]
first suggest constraining the L∞-norm of the perturbation displacement, but they immediately
replace the L∞-norm by an Lp-norm for computational convenience.

This method has an interesting aspect that is often glossed over in the engineering literature.
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By definition the failure load obtained by this method is a lower bound for the failure load of all
systems that have perturbations of less or equal magnitude. The measure of magnitude is defined
by the choice of constraint. Therefore the choice of constraint on the imperfections is a critical
one, since it implicitly defines a class of imperfections that produce the same or higher failure
load.

1.3. Main results. In this paper we follow a related, but distinct, line of reasoning. Instead
of studying actual behaviour of imperfect cylinders, we deduce an estimate of the sensitivity to
imperfections from the energy landscape of the perfect cylinder. The final result is a lower bound
on the failure load similar to above, and the approach gives additional insight into the problem.

The key result is the existence of amountain-pass point, an equilibrium state that sits astraddle
in the energy landscape between two valleys; one valley surrounds the unbuckled state, and the
other contains many buckled, large-deformation states.

This mountain-pass point has a number of interesting properties:
1. It has the appearance of a single-dimple solution, a small buckle in the form of a single

dent (see Figure 1.3 (a)). Single-dimple deformations have appeared in the engineering
literature in a number of different ways (see Section 6), but theoretical understanding of
this phenomenon is still lacking. Localization (concentration) of deformation is known
commonly to appear in extended structures [21], and in the cylinder localization in the
axial direction has been studied theoretically and numerically [20, 24, 25]. Whether local-
ization is possible in the tangential direction has been an open problem for some time; it is
interesting that our simulations for the perfect structure show solutions that are localized
in both axial and tangential directions.

2. Like all mountain-pass points this single-dimple solution is unstable, in the sense that there
are directions in state space in which the energy decreases. In one direction the dimple
roughly shrinks and disappears, and in the opposite direction it grows and multiplies
(Figure 1.3 (b-c)). It is remarkable, however, that our numerical results indicate that the
single-dimple solution has an alternative characterization as a constrained global minimizer
(a global minimizer of the strain energy under prescribed end shortening).

3. The equations can be rescaled so that the only remaining parameters are the load level
and the domain. The geometry of the mountain-pass solution we calculate even appears
to be independent of the domain size.

This mountain-pass point is central in an estimate of the sensitivity to perturbations. For
the system to escape from the neighbourhood of the unbuckled state, it must possess at least the
energy associated with this mountain-pass point. The mountain-pass energy level is therefore an
indication of the degree of stability of the unbuckled state. Implicitly it defines a class of perturba-
tions for which the unbuckled state is stable. This approach is related to the “perturbation-energy”
approach first suggested by Kröplin and co-workers [23, 11, 32], but differs in some essential points;
see the discussion in Section 5.

1.4. Methods. We use both analytical and numerical methods. In Section 2 we introduce
the Von Kármán-Donnell equations, which form the basis of this paper, and rescale them in an
appropriate manner. In Section 3 we present the functional setting that we use, show that the
energy functional has the geometry associated with a mountain pass, and prove the existence
of mountain-pass points (Lemma 3.5). There are certain interesting technical issues. By their
localized nature, single-dimple solutions are most naturally defined on an unbounded domain;
however, we are only able to prove existence of mountain-pass points on bounded domains, and
consequently we work on finite domains that become large in the limit of thin shells. Similarly,
the non-coercive nature of the energy functional implies that we prove existence of mountain-pass
points for almost all load levels (see Lemma 3.4).

In Section 4 we turn to numerical investigation. We use a variety of different algorithms
to find solutions of the discretized Von Kármán-Donnell equations. With a discrete mountain
pass algorithm we find solutions that are, by construction, mountain-pass points. The solution
of Figure 1.3 (a) was found in this manner. With a constrained gradient flow we also find local
minima of the strain energy under prescribed end shortening. Some of these solutions appear
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(c)
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λ
(w

)

distance in X

(a) . . . V (λ) = Fλ(wMP) ≈ 4.84
(b) . . . Fλ(w) ≈ −15.57
(c) . . . Fλ(w) ≈ −5.5 · 104

Fig. 1.3. Part (a) shows a numerical computation of a solution w
MP

that is a mountain-pass point of the
energy Fλ for a load λ = 1.5. We show both the graph of w

MP
(x, y) as well as its rendering on a cylinder. At

wMP there exist two directions in the state space X in which the energy Fλ decreases. By perturbing wMP in these
directions and following a gradient flow of Fλ we move away from wMP. In one direction the dimple shrinks to
zero (not shown) and in the opposite it grows in amplitude and extent (figures (b) and (c)).

to coincide with those found by the discrete mountain pass algorithm, and the mountain pass
solutions are stable under this gradient flow. These observations lead us to conjecture that the
global mountain pass solution is also a global constrained minimizer of the strain energy. By a
constrained version of the discrete mountain pass algorithm we also find critical points of higher
Morse index.

Section 5 is devoted to an interpretation of these results in the context of imperfection sensi-
tivity, as mentioned above, and in Section 6 we wrap up with the main conclusions.

2. The Von Kármán-Donnell equations. We consider a cylindrical shell of radius R,
thickness t, Young’s modulus E, and Poisson’s ratio ν, that is subject to a compressive axial
force P . In dimensionless form the Von Kármán-Donnell equations are given by

ε2∆2w + λ̄wxx − φxx − 2[w, φ] = 0, (2.1)

∆2φ+ [w,w] + wxx = 0, (2.2)

where subscripts x and y denote differentiation with respect to the spatial variables, and the
bracket [·, ·] is defined as

[a, b] =
1

2
axxbyy +

1

2
ayybxx − axybxy.

The function w is the inward radial displacement measured from a unbuckled (fundamental) state,
φ is the Airy stress function, ε2 = t2(192π4R2(1− ν2))−1 and the nondimensional load parameter
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is given by λ̄ = P (8π3ERt)−1. The unknowns w and φ are defined on the two-dimensional spatial
domain (−ℓ, ℓ)× (−1/2, 1/2), where x ∈ (−ℓ, ℓ) is the axial and y ∈ (−1/2, 1/2) is the tangential
coordinate. Since the y-domain (−1/2, 1/2) represents the circumference of the cylinder, the
functions w and φ are periodic in y; at the axial ends x ∈ {−ℓ, ℓ} they satisfy the boundary
conditions

wx = (∆w)x = φx = (∆φ)x = 0.

In Appendix B we discuss the derivation of this formulation.

Equations (2.1-2.2) can be rescaled to be parameter-independent in all but the domain of
definition and load parameter, by substituting

w 7→ εw, φ 7→ ε2φ, x 7→ ε1/2x, y 7→ ε1/2y, λ̄ 7→ ελ. (2.3)

so that the equations become

∆2w + λwxx − φxx − 2 [w, φ] = 0, (2.4)

∆2φ+ [w,w] + wxx = 0. (2.5)

The domain of definition of w and φ is now

Ω := (−ℓε−1/2, ℓε−1/2)× (− 1
2ε

−1/2, 12ε
−1/2),

which expands to R
2 as ε → 0. When not indicated otherwise we choose the aspect ratio 2ℓ = 1;

in Section 4.3 we comment on the influence of domain size and aspect ratio.
The boundary conditions for w and φ now are

w is periodic in y, and wx = (∆w)x = 0 at x = ± 1
2ε

−1/2, (2.6a)

φ is periodic in y, and φx = (∆φ)x = 0 at x = ± 1
2ε

−1/2. (2.6b)

Equations (2.4–2.5) are related to the stored energy E and the average axial shortening S
given by

E(w) :=
1

2

∫

Ω

(

∆w2 +∆φ2
)

, and S(w) :=
1

2

∫

Ω

w2
x. (2.7)

Note that the function φ in (2.7) is determined from w by solving (2.5) with boundary condi-
tions (2.6b). Furthermore, solutions of (2.4–2.5) are stationary points of the total potential

Fλ(w) := E(w) − λS(w) (2.8)

and are also stationary points of E under the constraint of constant S. We use both properties
below.

3. The mountain pass: overview. We briefly recall the general context of the Mountain-
Pass Theorem of Ambrosetti and Rabinowitz [2]. Let I be a functional defined on a Banach space
X , and let w1, w2 be two distinct points in X . Consider the family Γ of all paths in X connecting
w1 and w2 and define

c = inf
γ∈Γ

max
w∈γ

I(w) , (3.1)

that is the infimum of the maxima of the functional I along paths in Γ. If c > max{I(w1), I(w2)},
then the paths have to cross a “mountain range” and one may conjecture that there exists a critical
point wMP of I at the level c, called a mountain pass point.

We will apply this idea to the Von Kármán-Donnell-equations in the following way. We take
for I the total potential Fλ (see (2.8)) at some fixed value of λ, and for the end point w1 the
origin. We will obtain a mountain-pass solution by the following steps:
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MP1. We first show that w1 = 0 is a local minimizer: there are ̺, α > 0 such that Fλ(w) ≥ α
for all w with ‖w‖X = ̺ (Lemma 3.1);

MP2. If ε is small enough, then there exists w2 with Fλ(w2) ≤ 0 (Corollary 3.3).
MP3. Given a sequence of paths γn that approximates the infimum in (3.1), we extract a (Palais-

Smale) sequence of points wn ∈ γn, each one close to the maximum along γn, and show
that this sequence converges in an appropriate manner (Lemmas 3.4 and 3.5).

In this way it follows that there exists a mountain-pass critical point w with Fλ(w) = c,
provided that ε is sufficiently small (or that the domain is sufficiently large). For technical reasons
(lack of coerciveness of the functional Fλ) this procedure can be performed only for almost all
0 < λ < 2 (see Lemma 3.4).

In the rest of this section we detail the steps outlined above.

3.1. Choice of spatial domain. We are interested in mountain-pass solutions of the system
of equations (2.4–2.5) that are quasi-independent of the domain size ε−1/2, in the sense that they
converge to a non-trivial solution on R

2 as ε → 0. This point of view suggests considering the
problem on the whole of R2 rather than on a sequence of domains of increasing size; however,
there are two reasons not to do this. To start with, the numerical calculations described below are
necessarily done on a bounded domain; more importantly, for the proof of existence of mountain-
pass points boundedness of the domain is necessary. For these reasons we concentrate on bounded
domains, while keeping the context of the unbounded domain in mind.

3.2. Functional setting and linearization. We introduce a functional setting for the
functions w that is suggested by the linearization of the stored energy functional E. Writing
φ = φ1 + φ2, where

∆2φ1 = −wxx and ∆2φ2 = −[w,w], (3.2)

we can expand the energy functional E as

E(w) =
1

2

∫

Ω

∆w2 +
1

2

∫

Ω

∆φ21 +

∫

Ω

∆φ1∆φ2 +
1

2

∫

Ω

∆φ22. (3.3)

Since φ2 is quadratic in w, the second derivative of E is given by

d2E(0) · u · v =

∫

Ω

∆u∆v +

∫

Ω

∆φu1∆φ
v
1 ,

where φu,v1 are obtained from u and v by (3.2). Inspired by this linearization of E we define

X =

{

ψ ∈ H2(Ω) : ψx(±
1
2ε

−1/2, ·) = 0, ψ is periodic in y, and

∫

Ω

ψ = 0

}

with norm

‖w‖2X =

∫

Ω

(

∆w2 +∆φ21
)

,

where φ1 ∈ H2(Ω) is the unique solution of

∆2φ1 = −wxx, φ1 satisfies (2.6b), and

∫

Ω

φ1 = 0.

This norm is equivalent to the H2-norm on the set X , and with the appropriate inner product the
space X is a Hilbert space.

We now address the requirements of the mountain pass theorem mentioned above in MP1–
MP3.
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3.3. The origin is a local minimizer. The norm in X is related in a natural manner with
the shortening S, as is demonstrated by the (sharp) estimate

2S(w) =

∫

Ω

w2
x = −

∫

Ω

wwxx =

∫

Ω

w∆2φ1 =

∫

Ω

∆w∆φ1 ≤
1

2

∫

Ω

∆w2 +
1

2

∫

Ω

∆φ21 =
1

2
‖w‖

2
X .

(3.4)
This inequality strongly suggests that for λ < 2 the origin is a strict local minimum for the
functional Fλ(w) = E(w)− λS(w).

Lemma 3.1.
1. There exists a constant C, dependent on Ω, such that

∣

∣

∣

∣

∫

Ω

∆φ1∆φ2

∣

∣

∣

∣

≤ C ‖w‖
3
X . (3.5)

2. For any 0 < λ < 2 there exists ̺ > 0 such that

inf
{

Fλ(w) : ‖w‖X = ̺
}

> 0.

Proof. Split φ = φ1 +φ2 as in (3.2), and note that the function ∇φ1 is bounded in L∞ by the
Sobolev imbedding {ψ ∈ H3 :

∫

ψ = 0} →֒ L∞:

‖∇φ1‖
2
L∞ ≤ C

∥

∥∆2φ1
∥

∥

2

L2
= C ‖wxx‖

2
L2 .

The third term on the right-hand side of (3.3) can now be rewritten as

∫

Ω

∆φ1∆φ2 =

∫

Ω

φ1[w,w] =

∫

Ω

φ1(wxxwyy − w2
xy) =

∫

Ω

(φ1ywxwxy − φ1xwxwyy),

which we estimate by

∣

∣

∣

∣

∫

Ω

∆φ1∆φ2

∣

∣

∣

∣

≤ 2 ‖∇φ1‖L∞ ‖wx‖L2 ‖∆w‖L2 ≤ C ‖wx‖L2 ‖∆w‖
2
L2 ≤ C

√

S(w) ‖w‖
2
X ,

thus proving the first part of the Lemma.
Since λ < 2, choose 0 < ̺ < (2−λ)/2C and define η = 1

2 (1−C̺−λ/2) > 0. Then on the set
C = {w : ‖w‖X = ̺}, using (3.4), we find that

Fλ(w) = E(w) − λS(w)

≥
1

2
‖w‖

2
X − C

√

S(w) ‖w‖
2
X − λS(w)

≥
̺2

2
− C̺3

1

2
− λ

̺2

4

=
̺2

2

(

1− C̺−
λ

2

)

= η̺2.

Part 2 of this lemma implies that by choosing w1 to be the origin we have shown condition
MP1.

Remark 3.1. Although the inequality (3.4) suggests that the origin should be a local minimizer
for any domain Ω, bounded or not, the proof above only applies to bounded domains. F. Otto
has constructed a proof of this result that is valid on any domain (personal communication).
Interestingly, this proof uses not only the cubic energy term

∫

Ω
∆φ1∆φ2 but also the quartic term

∫

Ω ∆φ22, and appears to break down without this latter term.
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3.4. Periodic solutions exist with negative Fλ. To satisfy MP2 we show in this section
that for any λ > 0 functions w ∈ X exist for which Fλ(w) = E(w) − λS(w) < 0. To do this we
construct a sequence of functions wδ with specific scaling properties:

Lemma 3.2. There exists a sequence of functions wδ, 1-periodic on R
2, such that

∫

[−1/2,1/2]2

w2
δx ∼ 1,

∫

[−1/2,1/2]2

∆w2
δ = O(δ−1),

and

∫

[−1/2,1/2]2

∆φ2δ = O(δ2−α) as δ → 0,

for any α > 0. Here the functions wδ and φδ solve equation (2.5) with periodic boundary conditions.
In addition, wδ and φδ satisfy the boundary conditions (2.6) on the boundary of [−1/2, 1/2]2.

The proof, given in the Appendix, is inspired by the so-called Yoshimura pattern [37], a
folding pattern by which a flat sheet of paper, or a cylindrical sheet of thin material, can be folded
into a macroscopically cylindrical structure with zero Gaussian curvature but locally infinite total
curvature (Figure 3.1). The functions wδ are smoothed versions of the Yoshimura pattern, adapted
to the geometrically linear setting of the von Kármán-Donnell equations, and δ measures the width
of the fold.

Corollary 3.3.
1. Fix λ > 0. If ε is sufficiently small, then there exists w ∈ X such that Fλ(w) < 0.
2. Fix ε sufficiently small. Then there exists λ0(ε) ∈ [0, 2) such that for all λ > λ0 there

exists w ∈ X with Fλ(w) < 0.
Proof. By scaling the functions wδ of Lemma 3.2 the claims can be fulfilled: let δ = ε2/3, and

set

w̃ε(x, y) = ε−1wε2/3(xε
1/2, yε1/2), φ̃ε(x, y) = ε−2φε2/3(xε

1/2, yε1/2);

then w̃ε ∈ X , and (2.5) is invariant under this scaling; in addition, choosing α = 1/6,

Qε :=

∫

Ωε

[

∆w̃2
ε +∆φ̃2ε

]

∫

Ωε

w̃2
εx

= O
(

ε1/6
)

as ε→ 0.

Therefore limε→0Qε = 0, proving the first claim. For the second claim we fix ε such that Qε < 2;
then for all λ > Qε, Fλ(w̃ε) < 0.

Fig. 3.1. Yoshimura folding pattern.
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3.5. Convergence of selected sequences. For given λ ∈ (0, 2) and for sufficiently small
ε > 0, the two previous sections provide two points: the origin w1 = 0 that satisfies MP1 and a
point w2 with Fλ(w2) < 0, such that

c(λ) := inf
γ∈Γ

max
w∈γ

Fλ(w) > 0, (3.6)

where Γ is the set of curves connecting 0 and w2,

Γ = {γ ∈ C([0, 1];X) : γ(0) = 0, γ(1) = w2},

(actually, Γ depends on λ through the dependence on w2, but w2 can be taken independent of λ
in a neighbourhood of a given λ ∈ (0, 2)).

We were unable to prove the classical Palais-Smale condition, which reads
For any sequence wn ∈ X such that Fλ(wn) → c and F ′

λ(wn) → 0 in X ′, there
exists a subsequence that converges in X .

The difficulty lies in the lack of coerciveness of the functional Fλ: the quotient Fλ(w)/ ‖w‖
2
X is

not bounded away from zero, implying that Palais-Smale sequences may be unbounded in X .
The “Struwe monotonicity trick” [29] provides a way of proving the boundedness of Palais-

Smale sequences for at least almost all λ ∈ (0, 2). The pertinent observation is that for fixed w,
Fλ(w) is decreasing in λ; by consequence c(λ) is a decreasing function of λ and therefore differen-
tiable in almost all λ ∈ (0, 2). If γ(t) is the highest point of a near-optimal curve γ at some λ0, then
c′(λ0) should be close to −S(γ(t)). Finiteness of c′ at λ0 thus implies that near-mountain-pass
points have bounded S, and this additional information suffices for the construction of bounded
sequences:

Lemma 3.4. Let λ ∈ (0, 2) be such that c′(λ) exists. Then there exists a bounded Palais-Smale
sequence wn, i.e. a sequence that satisfies

1. wn is bounded in X;
2. F ′

λ(wn) → 0 in X ′ and Fλ(wn) → c(λ);
3. there exists a sequence of curves (γn) ⊂ Γ such that wn ∈ γn([0, 1]) and maxt∈[0,1] Fλ(γn(t)) →

c(λ).
In [28] this same argument was used to study mountain-pass points for the related one-

dimensional functional

Jλ(u) =

∫

R

{1

2
u′′

2
−
λ

2
u′

2
+ F (u)

}

,

where F is a non-negative double- or single-well potential. The proof of Lemma 3.4 is a word-for-
word repeat of the proof of [28, Proposition 5], and we omit it here.

Lemma 3.5. The sequence wn given by Lemma 3.4 is compact in X, and a subsequence
converges to a stationary point w ∈ X of Fλ.

Strictly speaking the stationary point given by this lemma may not be a mountain-pass point
itself, in the sense that there may not be a curve γ ∈ Γ of which w is the highest point. Property 3
of Lemma 3.4, however, states that w has an approximate mountain-pass character.

Proof. We extract a subsequence that converges weakly in X and strongly in H1 and L∞ to
a limit w. Defining φ1n and φ2n by (3.2), we find that the right-hand sides in (3.2) are bounded
in L2 and L1, and therefore that φ1n and φ2n converge strongly (up to extracting a subsequence,
which we do without changing notation) in H2 to functions φ1,2. Both functions φ1,2 are again
related to w by (3.2); for φ2 this follows from remarking that for given ζ ∈ C∞

c (Ω),

lim
n→∞

∫

Ω

ζ[wn, wn] = lim
n→∞

∫

Ω

wn[ζ, wn] =

∫

Ω

w[ζ, w] =

∫

Ω

ζ[w,w],

so that the right-hand side converges in the sense of distributions. Similarly it follows from the
strong H2-convergence of φn = φ1n + φ2n that

lim
n→∞

∫

Ω

φn[wn, w − wn] = lim
n→∞

∫

Ω

wn[φn, w − wn] = 0.
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To show that wn converges strongly in X , note that the derivative F ′
λ(wn) can be characterized

as

F ′
λ(wn) · v =

∫

Ω

∆wn∆v −

∫

Ω

φn
(

vxx + 2[wn, v]
)

− λ

∫

Ω

wnxvx.

We now calculate

lim
n→∞

{
∫

Ω

∆w2 −

∫

Ω

∆w2
n

}

= lim
n→∞

∫

Ω

∆wn∆(w − wn)

= lim
n→∞

{

F ′
λ(wn) · (w − wn) +

∫

Ω

φn
(

(w − wn)xx + 2[wn, w − wn]
)

+ λ

∫

Ω

wnx(w − wn)x

}

= 0.

The strong convergence of wn in X now follows from the uniform convexity of X .

4. Numerical Results.

4.1. Description of the algorithm. Our goal in this section is to find, numerically, critical
points of Fλ. Although we will focus on mountain-pass points described above and sketch the
method used to find them, numerical approximations of other critical points of Fλ will be shown
as well. More details on all the numerical methods used are given in a companion paper [17].

In order to employ the mountain-pass algorithm we discretize (2.4–2.8) using finite differences.
The algorithm was first proposed in [8] for a second order elliptic problem in 1D. It was later used
in [18] for a fourth-order problem in 2D.

The main idea of the algorithm is illustrated in Figure 4.1. We take a discretized path
connecting w1 = 0 with a point w2 such that Fλ(w2) < 0. After finding the point zm at which Fλ

is maximal along the path, this point is moved a small distance in the direction of the steepest
descent of Fλ. Thus the path has been deformed and the maximum of Fλ lowered. This deforming
of the path is repeated until the maximum along the path cannot be lowered any more: a critical
point wMP has been reached.

w1

w2

zm

znewm −∇Fλ(zm)

wMP

X

Fig. 4.1. Deforming the path in the main loop of the mountain pass algorithm: point zm is moved a small
distance in the direction −∇Fλ(zm) and becomes znewm . This step is repeated until the mountain pass point wMP

is reached.

Figure 4.2(a) shows a numerical solution of (2.4–2.5) obtained by the this algorithm with
λ = 1.1. The graph shows the radial displacement w as a function of x and y. Rendered on a
cylinder this solution represents a single dimple as can be seen below the graph.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.2. Numerical solutions found using the (constrained) mountain pass algorithm, constrained steepest
descent method, and the Newton algorithm. The figures show both the graph of w(x, y), as well as its rendering on
a cylinder.

We restrict our computations to functions that are even about the x- and y-axes, i.e. to the
subspace

S = {ψ ∈ X : ψ(x, y) = ψ(−x, y), ψ(x, y) = ψ(x,−y)} ,

thus reducing the computational domain Ω to one quarter, e.g. (0, 12ε
−1/2) × (0, 12ε

−1/2). The
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boundary conditions (2.6a) then become

wx = (∆w)x = 0 for x ∈ {0, 12ε
−1/2} and wy = (∆w)y = 0 for y ∈ {0, 12ε

−1/2}.

This symmetry assumption has many numerical advantages, but on the other hand it a priori
excludes solutions that do not belong to S .

For the mountain-pass algorithm we always use the unbuckled state w1 = 0 as the first
endpoint of the paths. The choice of the second endpoint w2 has a non-trivial influence on the
solution to which the mountain-pass algorithm converges. Corollary 3.3 guarantees the existence
of w2 ∈ S with Fλ(w2) < 0; in the numerical implementation, however, we found such a w2 by a
steepest descent method (rather than taking the function constructed in the proof of Lemma 3.2):
starting from a function w0 that has one peak located in the center of the domain Ω, we solved
the initial value problem

d

dt
w(t) = −∇Fλ(w(t)), w(0) = w0, (4.1)

on an interval (0, T ) until Fλ(w(T )) < 0. We then defined w2 = w(T ).
A different choice of w2 (or, more precisely, of the starting point w0 of (4.1)) can lead to

a different solution of the problem, as Figure 4.2 (b,f) shows. Here w0 was chosen to have two
peaks with centers on the axes x = 0 and y = 0, respectively. The algorithm then converged to a
numerical solution with two dimples in the circumferential and axial direction, respectively.

Note that the numerical solution wMP selected by the mountain-pass algorithm has the
mountain-pass property in a certain neighbourhood only: there exists a ball Bρ(wMP) and two
points w̃1, w̃2 ∈ Bρ(wMP) such that

Fλ(wMP) = inf
γ∈Γ̃

max
w∈γ

Fλ(w) > max{Fλ(w̃1), Fλ(w̃2)} ,

where Γ̃ is the set of curves in Bρ(wMP) connecting w̃1 and w̃2. The reason for this is that the
algorithm deforms a certain initial path connecting w1 and w2 which is fixed. In order to recover
the global character one would need to run the algorithm for all possible initial paths.

The rest of the numerical solutions shown in Figure 4.2 were obtained under a prescribed
value of shortening S by the constrained steepest descent method and the constrained mountain
pass algorithm [16, 17].

4.2. Calculation of Fλ(wMP
). In the preceding sections we have showed that

1. for a sufficiently large domain Ω, a function w2 on Ω exists with Fλ(w2) < 0;
2. for each such function w2 and for almost all 0 < λ < 2, a mountain-pass solution wMP =
wMP(λ,Ω, w2) exists.

Different end points w2 may give rise to different mountain-pass points, as we have observed in the
numerical experiments described above. We therefore define the mountain-pass energy function
V on (0,2) by

V (λ,Ω) := inf
w2

{

Fλ

(

wMP(λ,Ω, w2)
)

: Fλ(w2) < 0
}

. (4.2)

For a given λ, the value of V (λ,Ω) is the lowest height (or energy level) at which one may pass
from the neighbourhood of the origin to any point with negative total potential Fλ. We now derive
some of its properties and calculate it numerically.

Lemma 4.1 (Properties of V (λ,Ω)).
1. For sufficiently large Ω there exists λ0(Ω) ≥ 0 such that V (λ,Ω) < ∞ for almost all

λ ∈ (λ0, 2);
2. V is a decreasing function of λ;
3. For sufficiently large Ω, there exists c(Ω) > 0 such that

V (λ,Ω) ≤ c(2− λ)3

for sufficiently small 2− λ > 0.
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Proof. Part 1 is a reformulation of the main result of Section 3, making use of Corollary 3.3.
For part 2 we remark that for each fixed w, Fλ(w) is a decreasing function of λ; the infimum of a
set of decreasing functions is again decreasing.

For part 3, let us set

E(w) = E2(w) + E3(w) + E4(w),

where

E2(w) :=
1

2
‖w‖

2
X =

1

2

∫

Ω

(

∆w2 +∆φ21
)

, E3(w) :=

∫

Ω

∆φ1∆φ2, and E4(w) :=
1

2

∫

Ω

∆φ22,

where φ1 and φ2 are determined from w by (3.2) (see also (3.3)). Note that En has homogeneity
n, i.e. En(µw) = µnEn(w).

A classical result in the engineering literature of cylinder buckling (see e.g. [20]) states that
there exists a periodic function w on R

2 such that

E2(w) = 2S(w) and E3(w) + E4(w) < 0.

Here and below we consider the integrals that define En(w) and S(w) as taken over a single
period cell. For sufficiently small 2−λ > 0 the inequality above gives that Fλ(w) = (2−λ)S(w)+
E3(w) +E4(w) is negative, implying that w is an admissible end point w2 for the definition (4.2)
of V (λ,Ω), and the connecting line segment {µw : 0 ≤ µ ≤ 1} therefore an admissible curve in Γ.
Consequently

V (λ) ≤ sup
0≤µ≤1

Fλ(µw) = sup
0≤µ≤1

µ2(2− λ)S(w) + µ3E3(w) + µ4E4(w)

The supremum on the right-hand side is obtained at

µ =
3 |E3(w)|

8E4(w)

{

1−

√

1−
32(2− λ)S(w)E4(w)

9E3(w)2

}

=
2S(w)

3 |E3(w)|
(2− λ) + o(1) as λ→ 2,

implying that the claim holds for periodic functions. The generalization to non-periodic functions
on large domains Ω (i.e. for small ε) is made by filling the domain with a large number of periodic
cells of the function w, and connecting the function smoothly to the boundary of Ω.

Figure 4.3 shows graphs of the mountain-pass energy V (λ,Ω) computed for various sizes of
domain Ω. For each domain, the mountain-pass algorithm was employed to compute wMP for
several values of λ. These mountain-pass solutions were then continued in λ using numerical
continuation.

4.3. Influence of the domain. The localized nature of the solutions calculated above sug-
gests that they should be independent of domain size, in the sense that for a sequence of domains
of increasing size the solutions converge (for instance pointwise on compact subsets). Such a con-
vergence would also imply convergence of the associated energy levels. Similarly, we would expect
that the aspect ratio of the domain is of little importance in the limit of large domains.

We have tested these hypotheses by computing mountain-pass solutions on domains of different
sizes and aspect ratios. Generally solutions on different domains compare well; the maximal
difference in the second derivatives of w is two or three orders of magnitude smaller than the
supremum norm of the same derivative (the details of this comparison are given in [17]).

Here we only include a calculation of the mountain-pass energy level V (λ,Ω) for domains Ω
of different aspect ratio and size (Figure 4.3).

The comparison of solutions computed on different domains and their respective energies
suggests that for each λ we are indeed dealing with a single, localized function defined on R

2, of
which our computed solutions are finite-domain adaptations. In the rest of this paper we adopt
this point of view, and consequently we will write V (λ) instead of V (λ,Ω).

A consequence of this point of view is that dimples in cylinders with different geometric
parameters are mapped to the same rescaled solution, or equivalently, that the same single-dimple
solution of (2.4-2.5) corresponds to differently-sized dimples on an actual cylinder, as a function
of the parameters (Figure 4.4).
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Ω = (−a, a) × (−b, b):
(i) . . . a = b = 50
(ii) . . . a = b = 100
(iii) . . . a = 100, b = 200
(iv) . . . a = 200, b = 100
(v) . . . a = b = 200V

(λ
)

λ

‖
w

M
P
(λ

)‖
2

λ

Fig. 4.3. Left: the mountain-pass energy V (λ) found numerically for various domains Ω. Right: solid line
shows the same computation as on the left, just plotted for the norm of w

MP
(λ) squared. The dashed curve was

obtained by continuation of the solid curve; the solutions on the dashed curve do not represent mountain-pass
points any more.

(a) (b)

Fig. 4.4. The numerical mountain-pass solution w
MP

of the scaled equations (2.4-2.5) for a given value of λ
rendered on two cylinders of the same radius R but a different thickness t: (a) t/R = 0.003, (b) t/R = 0.04.

5. Interpretation: imperfection-sensitivity. We now turn to the relevance of the moun-
tain pass in the context of a loading problem. This relevance can best be understood in the context
of imperfections in the loading conditions (rather than geometric imperfections) such as in the
case of a (small) lateral loading.

Under a small lateral load an equilibrium w0, a local minimum of the functional Fλ, may be
perturbed into an equilibrium w̃0 of a perturbed functional F̃λ. Since w0 is a local minimum,
Fλ(w̃0) > Fλ(w0), i.e. with respect to the unperturbed system w̃0 has a higher total potential
than w0. The level of Fλ that is reached is a measure of the magnitude of the imperfection—a
different measure than is commonly used, but one that has distinct advantages.

By definition the number V (λ) is the lowest energy level at which it is possible to move between
the basins of attraction of w1 and w2 (Figure 5.1). If the loading imperfection is interpreted, as
above, as a mechanism capable of maintaining the system at a higher energy level than that of the
neighbouring fundamental minimizer, then the number V (λ) is critical: as long as the imperfection
is so small that the energy is never raised by more than V (λ), the new stationary point will be
part of the same basin of attraction as w1. For larger imperfections, however, it becomes possible
to leave the fundamental basin of attraction, resulting in a large jump in state space.

This line of reasoning provides a natural measure of the size of imperfections, namely the
maximal increase in energy (in the perfect structure) that an imperfection can achieve. It also
provides a natural measure of the stability of the unbuckled state, since a higher mountain-pass
energy level implies a larger class of loading imperfections under which the state remains in the
fundamental basin of attraction. This observation allows us to connect systems with different
geometrical characteristics, and compare their relative sensitivity to imperfections.
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V (λ)

w1

Fλ

w2

Fig. 5.1. In order to leave the basin of attraction of w1, the surplus energy should exceed V (λ)

5.1. Calibrating the mountain-pass energy. Comparing cylinders of varying geometry
requires a common measure of imperfection sensitivity. It is not a priori clear which measure to
take; e.g., one might consider either the mountain-pass energy itself or the average spatial density
of this energy, which will result in different comparisons for cylinders of different wall volume.
Here we choose to rescale the mountain-pass energy level by the other energy level present in the
loaded cylinder: the energy that is stored in homogeneous compression of the unbuckled shell.

This calculation can be done in two slightly different ways. The first and most straightforward
is to rescale the dimensional mountain-pass energy (see (B.11) and (2.3))

64π6EtR2ε3V (λ) =
Et4

8(3(1− ν2))3/2R
V (λ),

by the elastic strain energy stored in the full length of the compressed cylinder of length L,

L

4πERt
P 2 =

πt3EL

12(1− ν2)R
λ2,

to give an energy ratio, or a rescaled mountain-pass energy level,

α =
1

2π
√

3(1− ν2)

t

L

V (λ)

λ2
. (5.1)

From this expression and the calculation shown in Figure 4.3 curves may be drawn in a plot of
load versus the ratio L/t (see Figure 5.2). Note that to obtain this figure from Figure 4.3 the
curve V (λ) was fitted to extend the range of λ. This figure shows two remarkable features:

1. The general trend of the constant-α curves is very similar to the trend of the experimental
data;

2. The α = 1 curve, which indicates the load at which the mountain-pass energy equals the
stored energy in the prebuckled cylinder, appears to be a lower bound to the data.

One may also consider an alternative way of rescaling energy. The cylinder is a long structure,
and it is not clear to which extent the length of the structure is relevant for the imperfection
sensitivity. It may be reasonable to compare the energy of the mountain pass with the stored
energy contained in a representative section of the cylinder; the radius R provides a natural
length scale for such a representative section.

Similar to Figure 5.2, in Figure 5.3 we present curves of constant β, where β is the ratio of
mountain-pass energy to stored energy in a section of length 2πR:

β =
1

4π2
√

3(1− ν2)

t

R

V (λ)

λ2
. (5.2)

Once again to obtain Figure 5.3 we fitted V (λ) from Figure 4.3 to extend the range of λ.

6. Discussion and conclusions. The mathematical results and their interpretation in the
context of a loading problem have brought a number of new and improved insights.
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Donnell (steel)

Power law fit : y=1.03x−0.176

Donnell (brass)
Power law fit : y=0.511x−0.0879

Bridget et al
Power law fit : y=0.373x−0.00504

Ballerstedt & Wagner
Power law fit : y=4.22x−0.374

Vmp fit with α=1,
Vmp fit with α=0.1

Pfail/Pcr

L/t

Fig. 5.2. Same data as Figure 1.1; added are two curves of constant α = 1, α = 0.1 where α is given in (5.1).
Note that the load at which the mountain-pass energy equals the stored energy in the prebuckled cylinder (α = 1),
appears to be a lower bound to the data.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Donnell (steel)

Power law fit : y=2.53x−0.358

Donnell (brass)
Power law fit : y=1.61x−0.297

Bridget et al
Power law fit : y=1.93x−0.279

Ballerstedt & Wagner
Power law fit : y=3.2x−0.318

Vmp fit with β=1,
Vmp fit with β=0.1

Pfail/Pcr

R/t

Fig. 5.3. Experimental data and fit to Vmp with β = 1 and β = 0.1 in (5.2). Again the load at which
the mountain-pass energy equals the stored energy in a representative portion of the prebuckled cylinder (β = 1)
appears to be a lower bound to the data.

6.1. The cylinder has doubly-localized solutions. The subcritical nature of the bifur-
cation in Figure 1.2 strongly suggests that equilibria exist with deformation localized to a small
portion of the cylinder length. In [20, 24, 25] such solutions are indeed calculated numerically and
investigated analytically; these solutions are periodic around the cylinder and have exponential
decay in the axial direction.

The localization in the axial direction demonstrated by these solutions is consistent with results
on simpler systems such as the laterally supported strut [21, 26]. The behaviour of the cylinder in
the tangential direction is not as well understood. The lack of localization in the simply-supported
flat plate [13] suggests that the cylinder should also prefer tangentially delocalized solutions, as do
most of the experiments. The single- and multiple-dimple solutions of this paper, however, clearly
demonstrate that doubly-localized solutions do exist, and that some of these can be stable under
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constrained shortening.

6.2. The mountain pass is a single-dimple solution. The fact that the mountain-pass
solution exists follows essentially from two features, the local minimality of the unbuckled state
and the existence of a large-deflection state of lower energy. The former is a simple consequence3

of the subcritical load level, but the latter is based on an essential property of the cylinder: for
a sequence of cylinders for which R/t → ∞, the nondimensionalized load-carrying capacity (the
highest load at which the unbuckled state is not only a local but also a global energy minimizer)
decreases to zero. This property was demonstrated implicitly by Hoff et al. [15], and Lemma 3.2
provides a simplified proof of this result and a simple sequence of functions that illustrates the
property.

However, the fact that the mountain-pass solution is localized, and even is the most localized
solution that is possible—a single dimple—is interesting in its own right, and provides a comple-
mentary view of the discussion of localization above. A different way of formulating this result is
that “creating the first dimple is the major obstacle”; afterwards one may increase the size of the
dimple and add further dimples without ever returning to the same high energy level. In itself
this interpretation points to a relationship between single dimples and imperfection sensitivity.

6.3. Single dimples in other contexts. Interestingly, single dimples have appeared in the
literature in a number of seemingly unrelated ways:

• In the celebrated high-speed camera images of Eßlinger [12] the first visible deformation
is a single, well-developed dimple half-way between the ends of the cylinder. New dimples
quickly appear next to this first dimple, and the deformation then spreads around the
cylinder and in axial direction. It is remarkable, though, that the first visible deformation
is a single dimple.

• Some of the “worst” imperfections calculated by Deml and Wunderlich [9] and Wunderlich
and Albertin [35] are in the form of a single dimple; as the load decreases, the dimple
contracts and becomes even more concentrated.

• Hühne et al. [19] assert that single dimples are also realistic and stimulating imperfections
in the sense of [34].

• Zhu et al. [38] base their analysis of the scaling behaviour of the experimental buckling
load on the behaviour of a single dimple in other structural situations (the point-loaded
cylinder and the sphere under uniform external pressure).

Note that the single-dimple appearances above are of three different types. Eßlinger’s dimple
is an experimental observation; the dimples of Wunderlich and co-workers and of Hühne et al. are
geometric imperfection profiles; and the dimples studied by Zhu et al. are only analogies, since
they are solutions of different problems.

6.4. Scale-invariance of the localized solutions. It is an interesting observation that
the Von Kármán-Donnell-equations can be rescaled to depend only on the (rescaled) load level.
For localized solutions, for which the boundary plays no role of importance, this implies that the
set of solutions reduces to a one-parameter family. This allows for efficient computation of the
behaviour of such solutions but also gives interesting insight into the relationship between dimples
in cylinders of varying geometry (see e.g. Figure 4.4).

Naturally the scale-invariance is expected to break upon replacing the Von Kármán-Donnell-
equations by a different (probably more detailed) shell model. Nonetheless, it may reasonably
be expected that much of the understanding of the relationship between cylinders of different
geometries remains roughly correct.

We certainly also expect that the large-scale geometry of the energy landscape does not depend
on the specific model of the cylinder. Using a discrete mountain-pass algorithm to find mountain-
pass points therefore does not depend on the Von Kármán-Donnell-equations, and should give
similar results regardless which shell model is used.

3On a finite domain this consequence is indeed simple; on an infinite domain it appears that besides the
third-order term also the fourth-order term in the energy has to be taken into account, as remarked in Section 3
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6.5. Connection with sensitivity to imperfections and “Perturbation energy”.
Kröplin and co-workers [23, 11, 32] were the first to suggest an estimate of the stability of the
unbuckled state in terms of the ratio of a “perturbation energy” (Störenergie) to the pre-buckling
energy. In early papers [23, 11] the perturbations are still fixed rather than determined, but from
both the introduction and the final results in [32] it may be deduced that an optimization is done
over all perturbations (although this is simultaneously contradicted on page 333 of this paper).
Unfortunately, these papers do not provide enough details to determine exactly what the authors
calculate.

There is one aspect in which our method can clearly be seen to differ from these earlier
approaches. The discrete mountain-pass algorithm takes into account global features of the energy
landscape, and provides a global measure of the separation barrier between two states that lie
far apart. This is different from the papers mentioned above, in which the method uses only
local information (reflected, for instance, in the assumption that the equilibria in question lie on
the same bifurcation branch). This difference is illustrated in Figure 6.1, where a local analysis
might find stationary point w2, but the mountain-pass algorithm will find the more important
obstacle w4.

w1

w2

w3

w4

Fig. 6.1. While a local algorithm to find a critical point may settle on a minor critical point such as w3, the
mountain-pass algorithm, by its global setup, will converge on to the essential obstacle w4.

Appendix A. Proof of Lemma 3.2.
Lemma 3.2 states that there exists a sequence of functions wδ, 1-periodic on R

2, such that

∫

[−1/2,1/2]2

w2
δx ∼ 1,

∫

[−1/2,1/2]2

∆w2
δ = O(δ−1),

and

∫

[−1/2,1/2]2

∆φ2δ = O(δ2−α) as δ → 0, (A.1)

for any α > 0. Here the function φδ solves equation (2.5) with periodic boundary conditions. In
addition, wδ and φδ satisfy (2.6) on the boundary of [−1/2, 1/2]2.

The proof consists of three parts. In the first part we construct the functions wδ; in the second
part we study the symmetry properties and the support of the right-hand side of (2.5); and in the
third part we show that this sequence has the asserted scaling.

A.1. Construction of wδ. Let fδ be given by

f ′′
ε (s) =







1

4δ
dist(s,Z) < δ

0 otherwise,
with fδ(0) = f ′

δ(0) = 0.

Note that f is even and that f(1) = 1/4. Define

wδ(x, y) = fδ(y + x) + fδ(y − x)−
1

2
fδ(2x)−

1

2
y2.
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Fig. A.1. The functions f and −w; on the right the plotting area is slightly larger than one period.

We shall drop the subscript δ and simply write w and f .
The function w is periodic on R

2 with period 1 in each direction. To show this, we prove that
the first two derivatives match up on opposite sides of [−1/2, 1/2]× [−1/2, 1/2]:

• By the symmetry of f the function w is even in both x and y. Consequently w takes the
same values on (1/2, y) and (−1/2, y); the same holds for (x,±1/2).

• For the comparison of the first derivatives we calculate

∫ 1/2

−1/2

wxx(x, y) dx =

∫ 1/2

−1/2

f ′′(y + x) dx+

∫ 1/2

−1/2

f ′′(y − x) dx − 2

∫ 1/2

−1/2

f ′′(2x) dx = 0,

implying that wx(−1/2, y) = wx(1/2, y); by the symmetry of w it follows that wx(−1/2, y) =
wx(1/2, y) = 0. Similarly, using the definition of fδ we find that

∫ 1/2

−1/2

wyy(x, y) dy =

∫ 1/2

−1/2

f ′′(y + x) dy +

∫ 1/2

−1/2

f ′′(y − x) dy − 1 = 0,

implying that wy(x,−1/2) = wy(x, 1/2) = 0.
Periodicity on R

2 then follows from the remark that all second derivatives of w are periodic with
period 1 in x and y.

A.2. Support, symmetry, and boundary conditions. Next we investigate the right-
hand side of (2.5). We find

[w,w] + wxx =
{

(f ′′(y + x) + f ′′(y − x)− 2f ′′(2x))(f ′′(y + x) + f ′′(y − x)− 1)

− (f ′′(y + x) − f ′′(y − x))2
}

+ (f ′′(y + x) + f ′′(y − x)− 2f ′′(2x))

= 4f ′′(y + x)f ′′(y − x)− 2f ′′(2x)(f ′′(y + x) + f ′′(y − x)).

This expression has zero integral over [−1/2, 1/2]2. This follows from the periodicity of w:

∫ 1/2

−1/2

∫ 1/2

−1/2

wxxwyy dxdy =

∫ 1/2

−1/2

∫ 1/2

−1/2

w2
xy dxdy (A.2)

by partial integration. More is true, however; we analyse the support of [w,w]+wxx in [−1/2, 1/2]2

in more detail.
The value of f ′′ is either (4δ)−1 or zero; in order to determine [w,w] + wxx it is therefore

sufficient to calculate the measures of the pairwise intersections of the supports of f ′′(y + x),
f ′′(y − x), and f ′′(2x):

• The intersection of the supports of f ′′(y + x) and f ′′(y − x) has total area 4δ2 (see
Figure A.2).

• The intersection of the supports of f ′′(y + x) and f ′′(2x) also has total area 4δ2 (see
Figure A.3).
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2δ

y = −
1

2
y =

1

2

x = −
1

2

x =
1

2

Fig. A.2. The areas of the black regions add up to 4δ2

δ

Fig. A.3. The areas of the black regions add up to 4δ2

Since the support of [w,w]+wxx concentrates onto a discrete set of points, let us examine the
behaviour at one of these points. For small δ the support forms disjoint sets in [−1/2, 1/2]2, and
we can restrict our attention to the origin alone.

If |s| < 1/2, then f ′′
δ (s) can be written as

f ′′
δ (s) =

1

δ
g
(s

δ

)

,

where

g(σ) =







1

4
|σ| < 1

0 otherwise.

Therefore, as long as |(x, y)| < 1/4,

4f ′′
δ (y + x)f ′′

δ (y − x)− 2f ′′
δ (2x)(f

′′
δ (y + x) + f ′′

δ (y − x)) =

=
4

δ2
g

(

y + x

δ

)

g

(

y − x

δ

)

−
2

δ2
g

(

2x

δ

)[

g

(

y + x

δ

)

+ g

(

y − x

δ

)]

=
1

δ2
F
(

δ−1(x, y)
)

, (A.3)

where we introduce a new function F , which does not depend on δ, to summarize the line above.
Note that suppF ⊂ [−2, 2]2. Note also that by (A.2) the function F has zero integral; in addition,
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since f ′′
δ is even, the function 4f ′′

δ (y + x)f ′′
δ (y − x) − 2f ′′

δ (2x)(f
′′
δ (y + x) + f ′′

δ (y − x)) is also even
in x and in y. Therefore

∫

R2

xF
(

(x, y)
)

dxdy =

∫

R2

yF
(

(x, y)
)

dxdy = 0.

This property will be used below.

The assertion also states that the functions w and φ satisfy (2.6) on the boundary of [−1/2, 1/2]2.
We first note that w and φ are periodic in the following sense:

w(x ± 1/2, y± 1/2) = w(x, y) and φ(x ± 1/2, y± 1/2) = φ(x, y). (A.4)

For w this is a simple consequence of the functional form of w; for φ it is a consequence of the
uniqueness of solutions of (2.5) under periodic boundary conditions. The periodicity of w and φ in
the y-direction in (2.6) then follows from a repeated application of (A.4). Similarly, the symmetry
conditions in x in (2.6) follow from a combination of the symmetry of w and φ around {y = 0} in
combination with (A.4).

A.3. Scaling properties. We now use the information gathered above to show that the
sequence wδ has the scaling properties of (A.1). All function spaces are on [−1/2, 1/2]2.

First, f ′
δ remains bounded on bounded sets as δ → 0; therefore

∫

Ω
w2

δx converges to a finite,
positive value. In addition, all second derivatives of wδ remain bounded in L1, so that

‖∆wδ‖L1 ≤ C.

The second derivative f ′′
δ is bounded by 1/4δ, so that we can estimate

‖∆wδ‖
2
L2 ≤ ‖∆wδ‖L1 ‖∆wδ‖L∞ ≤

C

δ
.

Turning to φδ, we start by remarking that [wδ, wδ] + wδxx is bounded in L1, since

∫

|(x,y)|<1/4

∣

∣[wδ, wδ] + wδxx

∣

∣ =
1

δ2

∫

|(x,y)|<2δ

∣

∣F
(

δ−1(x, y)
)∣

∣ = O(1).

Since W 2,p →֒ L∞ for all p > 1, the solution of

∆2ψ = h

satisfies

‖∆ψ‖Lp′ = sup
ζ

∫

Ω
∆ψ∆ζ

‖∆ζ‖Lp

= sup
ζ

∫

Ω
hζ

‖∆ζ‖Lp

≤ C ‖h‖L1

‖ζ‖L∞

‖ζ‖W 2,p

≤ C ‖h‖L1 ,

so that

‖φδ‖W 2,p′ ≤ C ‖[wδ, wδ] + wδxx‖L1 ≤ C,

where 1/p+ 1/p′ = 1. Using W 2,p′

→֒ C1,1−2/p′

we find

‖φδ‖C1,1−2/p′ ≤ C ‖φδ‖W 2,p′ ≤ C.

Writing, locally at the origin,

φδ(x, y) = φδ(0, 0) +∇φδ(0, 0) · (x, y) +O
(

|(x, y)|
2(1−1/p′))

,
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we find by multiplying the equation (2.5) by φδ and integrating,

‖∆φδ‖
2
L2([−1/2,1/2]2) = 2

∫

[−1/4,1/4]2
φδ
{

[wδ, wδ] + wδxx

}

= 2
φδ(0, 0)

δ2

∫

[−1/4,1/4]2
F
(

δ−1(x, y)
)

+ 2
∇φδ(0, 0)

δ2
·

∫

[−1/4,1/4]2
(x, y)F

(

δ−1(x, y)
)

+O
(

δ2(1−1/p′)
)

= O
(

δ2(1−1/p′)
)

,

since the zeroth and first moments of F are zero. Since p′ may be chosen arbitrary large, this
estimate concludes the proof.

Appendix B. Derivation of the Von Kármán-Donnell equations.
The common aim of the many elastic shell theories is to approximate three-dimensional elas-

ticity by a reduced description in which the unknowns are functions of not three but two spatial
variables, see for example [6]. For the Von Kármán-Donnell cylinder the central approximation
is the director Ansatz, which states that a normal to the centre surface remains normal through
deformation. By this Ansatz the displacement is fully characterized by the displacement vector
(u, v, w), a function of the two in-plane spatial variables x and y, where u is the displacement
in axial (x-), v in tangential (y-), and w in the radial direction. Apart from some rescaling the
function w is the same as the unknown w in the rest of this paper.

In the formulation of Section 2 the unknowns u and v are replaced by the Airy stress function φ,
which is derived by minimization with respect to the displacements u and v for fixed w. This
minimization argument is well known in the context of the Von Kármán plate theory and can
be found in many textbooks. Determining the boundary conditions that the function φ satisfies,
however, is not straightforward (see also the discussion in [27]), and it is for this reason that we
now describe the argument in detail. The main goal is to show that the function φ is periodic in
the tangential direction.

B.1. Energy and shortening. All quantities in this appendix are dimensional. We assume
a cylinder of thickness t, length L, and radius R, and we set Ω = [0, L] × [0, 2πR]. The stored
energy given by [31] is

E1 =
t3E

24(1− ν2)

∫

Ω

∆w2 +
t

2E

∫

Ω

[

(σ11 + σ22)
2 − 2(1 + ν)(σ11σ22 − σ2

12)
]

for a linear material of Young’s modulus E and Possion’s ratio ν. Under the assumption of plane
stress the stress and strain tensors are related by

σ =
E

1− ν2
[

(1− ν)ε+ ν tr ε I
]

=
E

1− ν2

(

ε11 + νε22 (1− ν)ε12

(1− ν)ε12 ε22 + νε11

)

, (B.1)

and under the small-angle approximation the strain tensor can be expressed in the displacements
as

ε =

(

ux +
1
2w

2
x

1
2uy +

1
2vx + 1

2wxwy

1
2uy +

1
2vx + 1

2wxwy vy +
1
2w

2
y − ρw

)

. (B.2)

These choices for the energy and for the stress and strain tensors are very similar to those for a
flat plate. The intrinsic curvature of the cylinder, of magnitude ρ = 1/R, only appears in the last
term of ε22, −ρw, which expresses the fact that radial displacement creates extensional strain in
the y-direction.
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The average axial shortening is given by

S1 = −
1

2πR

∫ 2πR

0

[

u(L, y)− u(0, y)
]

dy = −
1

2πR

∫

Ω

ux dxdy,

and an equilibrium (u, v, w) at load level P is a stationary point of the total potential V1 =
E1 − PS1.

B.2. Boundary conditions. At the boundaries y = 0, 2πR it is natural to assume that u,
v, and w are periodic, but at x = 0, L there is a certain amount of choice.

The boundary conditions on w (see (2.6a)) are

wx = (∆w)x = 0, at x = 0, L, (B.3)

and these conditions signify a fixed angle (wx = 0) and zero radial force ((∆w)x = 0). They may
also be understood as symmetry boundary conditions, as in the case of a sequence of cylinders
stacked on top of each other. For u and v we assume boundary conditions

uy = 0 and σ12 = 0, at x = 0, L, (B.4)

which signify that the ends of the cylinder are rigid in the x-direction and that there is no friction
between the cylinder and the apparatus holding it. Note that the pair of boundary conditions
σ12 = 0 and (∆w)x = 0 together states that the loading apparatus exerts only axial forces on the
cylinder.

The boundary conditions on w are invariant under addition of a constant to w, i.e. under
replacing w by w + c; for stationary points we may exploit this fact.

Lemma B.1. If (u, v, w) is a stationary point of E1 − PS1 under boundary conditions (B.3-
B.4), then

∫

Ω

σ22 = 0. (B.5)

Proof. Under the replacement w 7→ w + c, we have

dσ

dc
= −

Eρ

1− ν2

(

ν 0
0 1

)

,

and therefore

0 =
d

dc
(E1 − PS1) = −

tρ

1− ν2

∫

Ω

[

(σ11 + σ22)(ν + 1)− (1 + ν)(σ11 + νσ22)
]

= −tρ

∫

Ω

σ22.

B.3. Derivation of the Airy stress function φ. The energy (2.7) and the Airy stress
function φ are derived from the total potential E1 − PS1 by minimization with respect to the
displacements u and v for fixed w. Performing this minimization on the second term in E1 yields
the classical plate equilibrium equations

σ11x + σ12y = 0 and σ12x + σ22y = 0.

Note that the derivative of S1 with respect to u only creates boundary terms. By applying three
times the well-known characterization of divergence-free vector fields as rotations of scalar fields
(see e.g. [3, Th. XII.3.5]) we obtain the local existence of a function φ satisfying

σ11 = Eφyy, σ12 = −Eφxy, and σ22 = Eφxx, (B.6)

where we use the traditional scaling of φ by Young’s modulus.
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B.4. Boundary conditions on φ. The existence of the function φ is the result of a local
differential-geometric argument, and as such gives no reason for φ to be periodic in y. The following
theorem shows that after a normalization transformation the function φ can indeed be assumed
to be periodic in y, and may be taken to satisfy the same boundary conditions as the function w.

Theorem B.2. If u, v, and w are periodic in y and satisfy boundary conditions (B.3-B.4),
then there exists a function φ that satisfies

σ11 −
1

|Ω|

∫

Ω

σ11 = Eφyy, σ12 = −Eφxy, and σ22 = Eφxx, (B.7)

is periodic in y, and satisfies boundary conditions

φx = (∆φ)x = 0 at x = 0, L. (B.8)

Remark B.1. Mechanically the normalization of φ with
∫

Ω
σ11 means that φ represents the

deviation from the unbuckled in-plane stress state.

Proof. As discussed above, there exists a function φ satisfying (B.6); we will construct in

stages a new function φ̂ which satisfies (B.7) and the boundary conditions.
We first convert condition (B.6) into (B.7). Set

p(x) :=
1

2πR

∫ 2πR

0

φyy(x, y) dy =
1

2πR

[

φy(x, 2πR)− φy(x, 0)
]

.

Since the second derivatives of φ can be expressed in terms of derivatives of u, v, and w, the second
and higher derivatives of φ are automatically periodic in y. Therefore

d

dx
p(x) =

1

2πR

[

φxy(x, 2πR)− φxy(x, 0)
]

= 0,

implying that p is actually independent of x. (A mechanical argument provides the same result:

Etp(x) = t−
∫ 2πR

0
σ11(x, y)dy is the total force applied at a virtual cut at level x, and mechanical

equilibrium implies that this force is independent of x). Therefore

|Ω| p = 2πR

∫ L

0

p dx =

∫

Ω

φyy =
1

E

∫

Ω

σ11,

so that the new function

φ̃(x, y) := φ(x, y) −
p

2
y2

satisfies (B.7). Note that this implies

∫

Ω

φ̃yy = 0. (B.9)

We now turn to the periodicity in the y-direction. It remains to show that φ̃, φ̃x, and φ̃y are
the same at y = 0 and y = 2πR. Again the periodicity of the second derivatives implies that

d2

dx2
[

φ̃(x, 2πR)− φ̃(x, 0)
]

= φ̃xx(x, 2πR)− φ̃xx(x, 0) = 0,

so that φ̃(x, 2πR)− φ̃(x, 0) = ax+ b for some a, b ∈ R. Defining

φ̂(x, y) := φ̃(x, y)−
by

2πR
= φ(x, y)−

p

2
y2 −

by

2πR
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the function φ̂ still satisfies (B.7), and

φ̂(x, 2πR)− φ̂(x, 0) = ax.

Finally, we find that

a = φ̂x(0, 2πR)− φ̂x(0, 0) =

∫ 2πR

0

φ̂xy(0, y) dy =
1

E

∫ 2πR

0

σ12(0, y) dy
(B.4)
= 0,

and therefore that φ̂(x, 2πR) − φ̂(x, 0) = 0 for all x. The same follows for φ̂x(x, 2πR) − φ̂x(x, 0)
by differentiation.

To show that φy also matches,

d

dx

[

φ̂y(x, 2πR)− φ̂y(x, 0)
]

=
[

φxy(x, 2πR)− φxy(x, 0)
]

= 0,

and therefore φy(x, 2πR) − φy(x, 0) is constant in x; by (B.9) this constant is zero. This proves

that φ̂ satisfies (B.7) and is periodic in y.
We finally discuss the boundary conditions at x = 0, L, and we follow the line of reasoning

of [27]. By (B.4) and (B.1) ε12 = 0 at x = 0, L, so that by (B.3) and (B.4)

vxy =
∂

∂y
(2ε12 − uy − wxwy) = 0 at x = 0, L.

Therefore

ε22x = vxy + wywxy − ρwx
(B.4)
= 0 at x = 0, L.

Using Eε22 = σ22 − νσ11, we then find

φ̂xxx − νφ̂xyy = φxxx − νφxyy =
1

E

d

dx
(σ22 − νσ11) = ε22x = 0,

and by adding (1 + ν)φ̂xyy = −(1/E)(1 + ν)σ12y = 0 it follows that

(∆φ̂)x = φ̂xxx + φ̂xyy = 0 at x = 0, L,

which proves one part of (B.8).

From φ̂xy = −σ12/E = 0 we find that

φ̂x(0, y) = c0 and φ̂x(L, y) = cL for all y ∈ [0, 2πR].

Writing

2πR(cL − c0) =

∫

Ω

φ̂xx =
1

E

∫

Ω

σ22
(B.5)
= 0

we find that cL = c0. Now the function

φ(x, y) := φ̂(x, y)− c0x = φ(x, y) −
p

2
y2 −

by

2πR
− c0x

satisfies (B.7) and (B.8) and is periodic in y. This concludes the proof.

Remark B.2. It is instructive to note that the periodicity of φ is a result of the specific choice
of boundary conditions, and will in fact not hold if different boundary conditions are taken. For
instance, if a tangential shear stress τ is applied at the cylinder ends (i.e. the cylinder is loaded
under torsion), then the coefficient a in the derivation above will not vanish, and φx will not be
periodic in y.
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B.5. Putting it all together. By an elementary but lengthy calculation we find that φ, as
provided by Theorem B.2, satisfies the equation

∆2φ+ ρwxx + [w,w] = 0 in Ω, (B.10)

and that the second term in E1 can be written as

tE

2

∫

Ω

[

∆φ2 − 2(1 + ν)[φ, φ]
]

.

By the boundary conditions given by Theorem B.2 the second term vanishes, and the total stored
energy functional can therefore be written as

E2(w) :=
t3E

24(1− ν2)

∫

Ω

∆w2 +
tE

2

∫

Ω

∆φ2.

Note that this energy is a function of w alone; the function φ in this definition is assumed to be
given by (B.10), with the boundary conditions of Theorem B.2. Similarly, we rewrite the average
shortening as

S2(w) := S1(u) = −
1

2πR

∫

Ω

ux

(B.2)
= −

1

2πR

∫

Ω

[

ε11 −
1
2w

2
x

]

(B.1)
= −

1

2πRE

∫

Ω

[

σ11 − νσ22
]

+
1

4πR

∫

Ω

w2
x

(B.7)
= −

1

2πR

∫

Ω

[

φyy − νφxx
]

+
1

4πR

∫

Ω

w2
x

=
1

4πR

∫

Ω

w2
x.

A stationary point w of E2 − PS2 satisfies the Euler equation

t2

12(1− ν2)
∆2w +

P

2πREt
wxx − ρφxx − 2[w, φ] = 0,

where again φ is related to w by (B.10). With the nondimensionalization

w = 4π2Rw, φ = 16π4R2 φ, x 7→ 2πRx, y 7→ 2πRy,

we then obtain equations (2.4) and (2.5), and the dimensional energy E2 and average shortening
S2 above can be expressed in these variables as

E2 =
π2t3E

6(1− ν2)

∫

∆w2 + 32π6tER2

∫

∆φ
2
, S2 = 4π3R

∫

w2
x. (B.11)
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[6] Z. P. Bažant and L. Cedolin, Stability of structures: elastic, inelastic, fracture and damage theories,
O.U.P., 1991. ISBN 0-19-5055529-2.

[7] F. J. Bridget, C. C. Jerome, and A. B. Vosseller, Some new experiments on buckling of thin-wall
construction, Trans. ASME Aero. Eng., 56 (1934), pp. 569–578.

[8] Y. S. Choi and P. J. McKenna, A mountain pass method for the numerical solution of semilinear elliptic
problems, Nonlinear Anal., 20 (1993), pp. 417–437.

[9] M. Deml and W. Wunderlich, Direct evaluation of the worst imperfection shape in shell buckling, Comput.
Methods Appl. Mech. Engrg., 149 (1997), pp. 201–222.

[10] L. H. Donnell, A new theory for buckling of thin cylinders under axial compression and bending, Trans.
ASME Aero. Eng., AER-56-12 (1934), pp. 795–806.
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