
HAL Id: hal-00995232
https://hal.science/hal-00995232

Submitted on 22 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient algorithms for description problems over finite
totally ordered domains

Angel Gil, Miki Hermann, Gernot Salzer, Bruno Zanuttini

To cite this version:
Angel Gil, Miki Hermann, Gernot Salzer, Bruno Zanuttini. Efficient algorithms for description prob-
lems over finite totally ordered domains. SIAM Journal on Computing, 2008, 38 (3), pp.922-945.
�hal-00995232�

https://hal.science/hal-00995232
https://hal.archives-ouvertes.fr

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 38, No. 3, pp. 922–945

EFFICIENT ALGORITHMS FOR DESCRIPTION PROBLEMS OVER

FINITE TOTALLY ORDERED DOMAINS∗

ÁNGEL J. GIL† , MIKI HERMANN‡ , GERNOT SALZER§ , AND BRUNO ZANUTTINI¶

Dedicated to the memory of Peter Ružička (1947–2003)

Abstract. Given a finite set of vectors over a finite totally ordered domain, we study the problem
of computing a constraint in conjunctive normal form such that the set of solutions for the produced
constraint is identical to the original set. We develop an efficient polynomial-time algorithm for
the general case, followed by specific polynomial-time algorithms producing Horn, dual Horn, and
bijunctive formulas for sets of vectors closed under the operations of conjunction, disjunction, and
median, respectively. Our results generalize the work of Dechter and Pearl on relational data, as
well as the papers by Hébrard and Zanuttini. They complement the results of Hähnle et al. on
multivalued logics and Jeavons et al. on the algebraic approach to constraints.

Key words. finite domain, description problems, algorithms, complexity

AMS subject classifications. 68Q25, 68T27, 68W40

DOI. 10.1137/050635900

1. Introduction and summary of results. Constraint satisfaction problems
constitute today a well-studied topic on the frontier of complexity, logic, combina-
torics, and artificial intelligence. It is indeed well known that this framework allows
us to encode many natural problems or knowledge bases. In principle, an instance
of a constraint satisfaction problem is a finite set of variable vectors associated with
an allowed set of values. A model is an assignment of values to all variables that
satisfies every constraint. When a constraint satisfaction problem encodes a decision
problem, the models represent its solutions. When it encodes some knowledge, the
models represent possible combinations that the variables can assume in the described
universe.

Constraints can be represented by means of a set of variable vectors associated
with an allowed set of values. This representation is not always well suited; therefore,
other representations have been introduced. The essence of the most studied alter-
native is the notion of a relation, making it easy to apply it within the database or
knowledge base framework. We focus on the representation by formulas in conjunc-
tive normal form with the literals taking the form (x ≤ d) and (x ≥ d), where x is
a variable and d is an element from the given finite domain D, totally ordered by
the relation ≤ (see Hähnle et al. [5, 6, 16]). We study in this paper the constraint
description problem, i.e., the problem of converting a set of vectors M to a formula ϕ

∗Received by the editors July 13, 2005; accepted for publication (in revised form) Febru-

ary 20, 2008; published electronically June 6, 2008. This work was supported by ÉGIDE 06606ZF,
ÖAD Amadeus 18/2004, ANR CANAR ANR-06-BLAN-0383-02, and Acciónes Integradas Hispano-
Austriacas HU2003-0043 and HU2005-0024. A preliminary extended abstract of this paper appeared
as [13].

http://www.siam.org/journals/sicomp/38-3/63590.html
†Department of Economics, Universitat Pompeu Fabra, 08005 Barcelona, Spain (angel.gil@upf.

edu).
‡LIX (UMR 7161), École Polytechnique, 91128 Palaiseau, France (hermann@lix.polytechnique.fr).
§Department of Computer Science, Technische Universität Wien, 1040 Wien, Austria (salzer@

logic.at).
¶GREYC (UMR 6072), Université de Caen, 14032 Caen, France (zanutti@info.unicaen.fr).

922

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DESCRIPTION PROBLEMS OVER FINITE ORDERED DOMAINS 923

in conjunctive normal form, such that its satisfying assignments Sol(ϕ) equals the
original set M . We consider this problem first in its general setting without any
restrictions imposed on the initial set of vectors. We continue by imposing several
properties on the initial set, like the closure under the minimum, maximum, and me-
dian operations. We subsequently discover that these closure properties induce the
description by Horn, dual Horn, and bijunctive constraints, respectively. Moreover,
we give an elegant and unified solution to the structure identification problem of these
three classes, as it was defined by Dechter and Pearl [11]. Given a set of vectors, this
problem asks whether it can be represented by a formula of a special type, computing
such a formula if the answer is affirmative.

The motivations to study description and identification problems are numerous.
From the artificial intelligence point of view, description problems formalize the notion
of exact acquisition of knowledge from examples. This means that they formalize
situations where a system is given access to a set of examples and it is asked to
compute a formula describing it exactly. Moreover, this representation takes usually
less space than the original set of examples; thus it can be stored more easily in a
knowledge base.

Satisfiability poses a keystone problem in artificial intelligence, automated de-
duction, databases, and verification. It is well known that the satisfiability problem
for arbitrary constraints is an NP-complete problem. Therefore, it is important to
look for restricted classes of constraints that admit polynomial algorithms deciding
satisfiability. Horn, dual Horn, bijunctive, and affine constraints, in the Boolean case,
constitute exactly these tractable classes, as was proved by Schaefer [24]. Thus the
description problem for these four classes can be seen as storing specific knowledge
into a knowledge base while we are required to respect its format. This problem is also
known as structure identification, studied by Dechter with Pearl [11] and by Hébrard
with Zanuttini [17, 25]. Another motivation for studying description problems comes
from combinatorics. Indeed, since finding a solution for an instance of a constraint
satisfaction problem is difficult in general but tractable in the four aforementioned
cases, it is important to be able to recognize constraints belonging to these tractable
cases.

The study of Boolean constraint satisfaction problems, especially their complex-
ity questions, was started by Schaefer in [24], although he did not yet consider con-
straints explicitly. During the last ten years, constraints gained considerable interest
in theoretical computer science. An excellent complexity classification of existing
Boolean constraint satisfaction problems can be found in the monograph [10]. Jeav-
ons et al. [9, 19, 20] started to study constraint satisfaction problems from an algebraic
viewpoint. Feder, Kolaitis, and Vardi [12, 22] posed a general framework for the study
of constraint satisfaction problems. A part of the research in constraint satisfaction
problems requires the existence of efficient description and identification methods for
special constraint classes.

Recently, there has been much progress on constraint satisfaction problems over
domains with larger cardinality. Hell and Nešetřil [18] studied constraint satisfaction
problems by means of graph homomorphisms. Bulatov [7] made a significant break-
through with a generalization of Schaefer’s result to three-element domains. He also
proved a dichotomy theorem for conservative constraints over arbitrary domains [8].
On the other hand, Hähnle et al. [5, 6, 16] studied the complexity of satisfiability
problems for many-valued logics that present yet another viewpoint of constraint sat-
isfaction problems. We realized reading the previous articles on many-valued logics
that in the presence of a total order the satisfiability problems for the Horn, dual

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

924 Á. J. GIL, M. HERMANN, G. SALZER, AND B. ZANUTTINI

Horn, and bijunctive many-valued formulas of signed logic are decidable in polyno-
mial time. We also noticed that Jeavons and Cooper [21] studied some aspects of
tractable constraints on finite ordered domains from an algebraic standpoint. This
led us to the idea to look more carefully at constraint description problems over fi-
nite totally ordered domains, developing a new formalism for constraints based on an
already known concept of inequalities.

The purpose of our paper is manifold. We want to generalize the work of Dechter
and Pearl [11], based on the more efficient algorithms for Boolean description problems
by Hébrard and Zanuttini [17, 25]. We also want to complement the work of Hähnle
et al. on many-valued logics. Finally, we want to provide a characterization by closure
properties of polynomial-time decidable subcases of constraint satisfaction problems
over finite totally ordered domains, which are straightforward generalizations of the
known polynomial-time decidable Boolean cases.

2. Preliminaries. Let D = {0, . . . , n− 1} be a finite, totally ordered domain of
cardinality n, and let V be a set of variables. For a variable x ∈ V and a value d ∈ D,
the inequalities x ≥ d and x ≤ d are called positive and negative literal, respectively.
The set of formulas over D and V is inductively defined as follows:

• the logical constants false and true are formulas;
• literals are formulas;
• if ϕ and ψ are formulas, then the expressions (ϕ∧ψ) and (ϕ∨ψ) are formulas.

We write ϕ(x1, . . . , xℓ) to indicate that formula ϕ contains exactly the variables
x1, . . . , xℓ. For convenience, we use the following shorthand notation:

• x > d means x ≥ d + 1 for d ∈ {0, . . . , n− 2}, and false otherwise;
• x < d means x ≤ d− 1 for d ∈ {1, . . . , n− 1}, and false otherwise;
• x = d means x ≥ d ∧ x ≤ d;
• ¬false and ¬true mean true and false, respectively;
• ¬(x ≥ d), ¬(x ≤ d), ¬(x > d), and ¬(x < d) mean x < d, x > d, x ≤ d, and
x ≥ d, respectively;

• ¬(x = d) and x �= d both mean x < d ∨ x > d;
• ¬(ϕ ∧ ψ) and ¬(ϕ ∨ ψ) mean ¬ϕ ∨ ¬ψ and ¬ϕ ∧ ¬ψ, respectively.

Note that x = d and x �= d asymptotically require the same space as their alternative
notation, i.e., O(logn). Indeed, since d is bounded by n, its binary coding has length
O(logn).

A clause is a disjunction of literals. It is a Horn clause if it contains at most one
positive literal, dual Horn if it contains at most one negative literal, and bijunctive
if it contains at most two literals. A formula is in conjunctive normal form (CNF)
if it is a conjunction of clauses. It is a Horn, a dual Horn, or a bijunctive formula
if it is a conjunction of Horn, dual Horn, or bijunctive clauses, respectively. Since
the considered formulas in what follows are all in CNF, we will use the expression
“formula” with a slight abuse of terminology also for CNF formulas, without explicitly
specifying it.

Note that contrary to the Boolean case, a clause in our formalism can contain
the same variable twice, in both a negative and a positive literal, without being
reducible. However, such a clause can be assumed to contain not more than twice
the same variable, since x ≥ d ∨ x ≥ d′ can be reduced to x ≥ min(d, d′) and, dually,
x ≤ d ∨ x ≤ d′ can be reduced to x ≤ max(d, d′).

Example 2.1. Let D = {0, 1, 2, 3, 4} be the domain for our running example. The
expressions x ≤ 2 and y ≥ 4 are a negative and a positive literal, respectively. Instead
of x ≤ 2 and y ≥ 4, we can also write x < 3 and y > 3, respectively. The disjunction

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DESCRIPTION PROBLEMS OVER FINITE ORDERED DOMAINS 925

of literals (x ≤ 2 ∨ x ≥ 4 ∨ y ≤ 4) is a Horn clause, (x ≤ 2 ∨ x ≥ 4 ∨ y ≥ 3) is a dual
Horn clause, and (x ≤ 2 ∨ x ≥ 4) is a bijunctive clause. The formula

ϕ(x, y) = (x ≤ 2 ∨ x ≥ 4 ∨ y ≤ 4) ∧ (x ≤ 2 ∨ x ≥ 4 ∨ y ≥ 4) ∧ (x ≤ 2 ∨ x ≥ 3)

is in CNF.
An assignment for a formula ϕ(x1, . . . , xℓ) is a mapping m : {x1, . . . , xℓ} → D

assigning a domain element m(x) to each variable x. The satisfaction relation m |= ϕ

is inductively defined as follows:
• m |= true and m �|= false;
• m |= x ≤ d if m(x) ≤ d, and m |= x ≥ d if m(x) ≥ d;
• m |= ϕ ∧ ψ if m |= ϕ and m |= ψ;
• m |= ϕ ∨ ψ if m |= ϕ or m |= ψ.

The set of all assignments satisfying ϕ is denoted by Sol(ϕ), also called models of ϕ.
If we arrange the variables in some arbitrary but fixed order, say, as a vector x =
(x1, . . . , xℓ), then the models can be identified with the vectors in Dℓ. The jth
component of a vector m, denoted by m[j], gives the value of the jth variable, i.e.,
m(xj) = m[j]. The operations of conjunction, disjunction, addition, and median on
vectors m,m′,m′′ ∈ Dℓ are defined as follows:

m ∧m′ = (min(m[1],m′[1]), . . . ,min(m[ℓ],m′[ℓ])),

m ∨m′ = (max(m[1],m′[1]), . . . ,max(m[ℓ],m′[ℓ])),

med(m,m′,m′′) = (med(m[1],m′[1],m′′[1]), . . . ,med(m[ℓ],m′[ℓ],m′′[ℓ])).

The ternary median operator is defined as follows: for each choice of three values
a, b, c ∈ D such that a ≤ b ≤ c, we have med(a, b, c) = b. Moreover, median is a
permutative operator; i.e., the identity med(a, b, c) = med(π(a), π(b), π(c)) holds for
every permutation π on all domain elements a, b, c ∈ D. Note that the median can
also be defined by med(a, b, c) = min(max(a, b),max(b, c),max(c, a)) as well as by
med(a, b, c) = max(min(a, b),min(b, c),min(c, a)), which implies the identities

med(m1,m2,m3) = (m1 ∨m2) ∧ (m2 ∨m3) ∧ (m3 ∨m1)

= (m1 ∧m2) ∨ (m2 ∧m3) ∨ (m3 ∧m1)

for all vectors m1,m2,m3 ∈ Dℓ.
Example 2.2. Consider the set of vectors M = {010, 013, 220, 440, 444}. It is

closed under conjunction, since for each pair of vectors m,m′ ∈ M we have m∧m′ ∈
M . It is not closed under disjunction, since 013∨220 = 223 �∈ M . It is also not closed
under median, since med(013, 220, 444) = 223 �∈ M .

3. Formulas in conjunctive normal form. We investigate first the descrip-
tion problem for arbitrary sets of vectors.
Problem: description.
Input : A finite set of vectors M ⊆ Dℓ over a finite totally ordered domain D.
Output : A formula ϕ(x1, . . . , xℓ) over D in CNF such that Sol(ϕ) = M .

The naive approach to this problem is to compute first the complement set M̄ =
Dℓ

�M , followed by the construction of a clause c(m̄) for each vector m̄ ∈ M̄ missing
from M such that m̄ is the unique vector falsifying c(m̄). The formula ϕ is then
the conjunction of the clauses c(m̄) for all missing vectors m̄ ∈ M̄ . However, this
algorithm is essentially exponential, since the complement set M̄ can be exponentially
bigger than the original set of vectors M .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

926 Á. J. GIL, M. HERMANN, G. SALZER, AND B. ZANUTTINI

Example 3.1. Consider again the set of vectors M = {010, 013, 220, 440, 444}
as in Example 2.2. The complement set M̄ contains 53 − 5 = 120 vectors, where
the lexicographically first ones are 000, 001, . . . , 004, 011, 012 and the last ones are
434, 441, 442, 443. For example, the clause c(001) is (x1 �= 0 ∨ x2 �= 0 ∨ x3 �= 1),
equivalent to (x1 ≥ 1∨x2 ≥ 1∨x3 ≤ 0∨x3 ≥ 2). The only assignment to the variables
x1, x2, x3 which does not satisfy the clause c(001) is the vector 001. Similarly, the
clause c(223) is (x1 ≤ 1∨ x1 ≥ 3∨ x2 ≤ 1∨ x2 ≥ 3∨ x3 ≤ 2∨ x3 ≥ 4). The formula ϕ

describing M and built in this manner contains exactly 120 clauses.
We present a new algorithm running in polynomial time and producing a CNF for-

mula of polynomial length with respect to the cardinality of the set M , the dimension
of vectors ℓ, and the size O(log |D|) of the domain elements in binary notation.

In what follows we assume without loss of generality the set of vectors M to be
nonempty, which simplifies the presentation. Note, however, that the empty set ∅ is
easily recognized and described by the formula (x1 ≤ 0)∧ (x1 ≥ 1), which is logically
equivalent to false.

To construct the formula ϕ we proceed in the following way. We arrange the
set M into an ordered n-ary semantic tree TM [14], with branches corresponding to
the vectors in M . In case M contains all possible vectors, i.e., M = Dℓ, TM is a
complete tree of branching factor |D| and depth ℓ. Otherwise, some branches are
missing, leading to gaps in the tree. We characterize these gaps by conjunctions of
literals. Their disjunction yields a complete description of all vectors that are missing
from M . Finally, by negation and de Morgan’s laws we obtain ϕ.

Let TM be an ordered tree with edges labeled by domain elements such that each
path from the root to a leaf corresponds to a vector in M . The tree TM contains a
path labeled d1. · · · .di from the root to some node if there is a vector m ∈ M such
that m[j] = dj holds for every j = 1, . . . , i. The level of a node is its distance to the
root plus 1; i.e., the root is at level 1 and a node reachable via d1. · · · .di is at level
i + 1 (Figure 3.1(a)). Note that all leaves are at level ℓ + 1. If the edges between
a node and its children are sorted in ascending order according to their labels, then
traversing the leaves from left to right enumerates the vectors of M in lexicographic
order, say, m1, . . . ,m|M |. A vector m is lexicographically smaller than a vector m′ if
there is a level i such that m[i] < m′[i] holds, and for all j < i we have m[j] = m′[j].

Fig. 3.1. Tree representation of vectors.

Example 3.2. Let M = {m1 = 010, m2 = 013, m3 = 220, m4 = 440, m5 = 444}
be the set of vectors over the domain D = {0, 1, 2, 3, 4} for which we want to construct
a formula ϕ in CNF satisfying the condition Sol(ϕ) = M . The tree TM is depicted in
Figure 3.2 in solid lines.

Suppose that mk and mk+1 are immediate neighbors in the lexicographic enumer-
ation of M , and let m be a vector lexicographically in between, thus missing from M .
There are three possibilities for the path corresponding to m. It may leave the tree

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DESCRIPTION PROBLEMS OVER FINITE ORDERED DOMAINS 927

Fig. 3.2. Tree TM and the missing parts for the set M = {010, 013, 220, 440, 444}.

at the fork between mk and mk+1 (Figure 3.1(b)), or at the fork to the left of mk+1

(Figure 3.1(c)), or at the fork to the right of mk (Figure 3.1(d)). Let i be the least
position in which the consecutive vectors mk and mk+1 differ. In other words, we
have mk[i] �= mk+1[i] and mk[j] = mk+1[j] for all j < i. The set of missing vectors
can be characterized by the conjunctions middle(k, i), left(k + 1, i), and right(k, i),
defined as follows:

middle(k, i) =
∧

j<i

(xj = mk[j]) ∧ (xi > mk[i]) ∧ (xi < mk+1[i]),

left(k + 1, i) =
∧

j<i

(xj = mk+1[j]) ∧ (xi < mk+1[i]),

right(k, i) =
∧

j<i

(xj = mk[j]) ∧ (xi > mk[i]).

The situation depicted in Figure 3.1 is a snapshot at level i of the tree TM .

Example 3.3. The missing parts in the tree TM , displayed in Figure 3.2 by dotted
lines, are described by the following conjunctions. First are the parts missing between
two vectors,

middle(1, 3) = (x1 = 0) ∧ (x2 = 1) ∧ (x3 > 0) ∧ (x3 < 3),

middle(2, 1) = (x1 > 0) ∧ (x1 < 2),

middle(3, 1) = (x1 > 2) ∧ (x1 < 4),

middle(4, 3) = (x1 = 4) ∧ (x2 = 4) ∧ (x3 > 0) ∧ (x3 < 4),

followed by the parts missing to the left,

left(1, 2) = (x1 = 0) ∧ (x2 < 1),

left(3, 2) = (x1 = 2) ∧ (x2 < 2),

left(4, 2) = (x1 = 4) ∧ (x2 < 4),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

928 Á. J. GIL, M. HERMANN, G. SALZER, AND B. ZANUTTINI

and finally the parts missing to the right,

right(2, 2) = (x1 = 0) ∧ (x2 > 1),

right(2, 3) = (x1 = 0) ∧ (x2 = 1) ∧ (x3 > 3),

right(3, 2) = (x1 = 2) ∧ (x2 > 2),

right(3, 3) = (x1 = 2) ∧ (x2 = 2) ∧ (x3 > 0).

There are no other missing parts in the tree TM .
To describe all vectors missing from M we form the disjunction of the above

conjunctions for appropriate values of k and i. We need to determine the levels at
which neighboring models fork by means of the following function:

fork(k) =

⎧

⎪

⎨

⎪

⎩

0 for k = 0,

min{i | mk[i] �= mk+1[i]} for k = 1, . . . , |M | − 1,

0 for k = |M |.

The values fork(0) and fork(|M |) correspond to imaginary models m0 and m|M |+1

forking at a level above the root. They allow us to write the conditions below in a
concise way at the left and right borders of the tree. The three situations in Figure 3.1
can now be specified by the following conditions:

i = fork(k) ∧ mk[i] + 1 < mk+1[i] (edges missing in between),
fork(k) < i ∧ mk+1[i] > 0 (. . . to the left),
fork(k) < i ∧ mk[i] < |D| − 1 (. . . to the right).

The second condition in each line ensures that there is at least one missing edge. It
avoids the conjunctions middle(k, i), left(k + 1, i), and right(k, i) to evaluate to false.

Example 3.4. The function fork for M = {m1 = 010, m2 = 013, m3 = 220,
m4 = 440, m5 = 444} is given by the following table:

0 1 2 3 4 5
fork 0 3 1 1 3 0

The aforementioned fork conditions for missing edges are satisfied in the following
cases.

(i) For the first condition, implying edges missing in between, we have four
cases where it is satisfied:

3 = fork(1) ∧ 1 = m1[3] + 1 < m2[3] = 3,

1 = fork(2) ∧ 1 = m2[1] + 1 < m3[1] = 2,

1 = fork(3) ∧ 3 = m3[1] + 1 < m4[1] = 4,

3 = fork(4) ∧ 1 = m4[3] + 1 < m5[3] = 4.

(ii) For the second condition, implying edges missing to the left, we have three
cases where it is satisfied:

fork(0) < 2 ∧ 1 = m1[2] > 0,

fork(2) < 2 ∧ 2 = m3[2] > 0,

fork(3) < 2 ∧ 4 = m4[2] > 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DESCRIPTION PROBLEMS OVER FINITE ORDERED DOMAINS 929

(iii) Finally, for the third condition, implying edges missing to the right, we have
also three cases where it is satisfied:

fork(2) < 2 ∧ 1 = m2[2] < 4,

fork(2) < 3 ∧ 3 = m2[3] < 4,

fork(3) < 2 ∧ 2 = m3[2] < 4,

fork(3) < 3 ∧ 0 = m3[3] < 4.

It can be easily seen that these conditions trigger the middle, left, and right formulas
shown in Example 3.3.

The disjunction of terms middle(k, i), left(k+1, i), and right(k, i) that satisfy the
first, second, and third condition, respectively, for all models and all levels represents a
disjunctive formula satisfied by the models missing from M . After applying negation
and de Morgan’s laws, we arrive at the required formula in CNF,

ϕ(M) =
∧

{ ¬middle(k, i) | 0 < k < |M | , i = fork(k), mk[i] + 1 < mk+1[i] }

∧
∧

{ ¬ left(k + 1, i) | 0 ≤ k < |M | , fork(k) < i ≤ ℓ, mk+1[i] > 0 }

∧
∧

{ ¬ right(k, i) | 0 < k ≤ |M | , fork(k) < i ≤ ℓ, mk[i] < |D| − 1 },

where the condition Sol(ϕ) = M holds. Note that we use the negation symbol not
as an operator on the syntax level but as a metanotation expressing that the formula
following the negation sign has to be replaced by its dual. Note also that the conjunct
left(k+1, i) is defined and used with the shifted parameter k+1 since it characterizes
a gap lexicographically before the vector mk+1.

Example 3.5. The set of vectors M = {010, 013, 220, 440, 444} is described by
the following CNF formula:

ϕ(M) = ¬middle(1, 3) ∧ ¬middle(2, 1) ∧ ¬middle(3, 1) ∧ middle(4, 3)

∧ ¬ left(1, 2) ∧ ¬ left(3, 2) ∧ ¬ left(4, 2)

∧ ¬ right(2, 2) ∧ ¬ right(2, 3) ∧ ¬ right(3, 2) ∧ ¬ right(3, 3).

After substitution and application of de Morgan laws, this amounts to

ϕ(M) = (x1 �= 0 ∨ x2 �= 1 ∨ x3 ≤ 0 ∨ x3 ≥ 3) ∧ (x1 ≤ 0 ∨ x1 ≥ 2)

∧ (x1 ≤ 2 ∨ x1 ≥ 4) ∧ (x1 �= 4 ∨ x2 �= 4 ∨ x3 ≤ 0 ∨ x3 ≥ 4)

∧ (x1 �= 0 ∨ x2 ≥ 1) ∧ (x1 �= 2 ∨ x2 ≥ 2) ∧ (x1 �= 4 ∨ x2 ≥ 4)

∧ (x1 �= 0 ∨ x2 ≤ 1) ∧ (x1 �= 0 ∨ x2 �= 1 ∨ x3 ≤ 3) ∧ (x1 �= 2 ∨ x2 ≤ 2)

∧ (x1 �= 2 ∨ x2 �= 2 ∨ x3 ≤ 0).

Replacing the shorthand notation �= by proper literals gives the following final formula:

ϕ(M) = (x1 ≥ 1 ∨ x2 ≤ 0 ∨ x2 ≥ 2 ∨ x3 ≤ 0 ∨ x3 ≥ 3) ∧ (x1 ≤ 0 ∨ x1 ≥ 2)

∧ (x1 ≤ 2 ∨ x1 ≥ 4) ∧ (x1 ≤ 3 ∨ x2 ≤ 3 ∨ x3 ≤ 0 ∨ x3 ≥ 4)

∧ (x1 ≥ 1 ∨ x2 ≥ 1) ∧ (x1 ≤ 1 ∨ x1 ≥ 3 ∨ x2 ≥ 2) ∧ (x1 ≤ 3 ∨ x2 ≥ 4)

∧ (x1 ≥ 1 ∨ x2 ≤ 1) ∧ (x1 ≥ 1 ∨ x2 ≤ 0 ∨ x2 ≥ 2 ∨ x3 ≤ 3)

∧ (x1 ≤ 1 ∨ x1 ≥ 3 ∨ x2 ≤ 2) ∧ (x1 ≤ 1 ∨ x1 ≥ 3 ∨ x2 ≤ 1 ∨ x2 ≥ 3 ∨ x3 ≤ 0).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

930 Á. J. GIL, M. HERMANN, G. SALZER, AND B. ZANUTTINI

Algorithm: description
Input : Nonempty set M ⊆ Dℓ of vectors.
Output : Formula ϕ(M) in CNF, satisfying Sol(ϕ) = M .
Method :

1: let M = (m1, . . . ,m|M |) be lexicographically sorted
2: ϕ(M) ← true
3: fork ← fork(M)
4: for k ← 0 to |M | do

5: f ← fork[k]
6: if f > 0 and mk[f] + 1 < mk+1[f] then

7: ϕ(M) ← ϕ(M) ∧ ¬middle(k, f)
8: end if

9: for i ← f + 1 to ℓ do

10: if k < |M | and mk+1[i] > 0 then

11: ϕ(M) ← ϕ(M) ∧ ¬ left(k + 1, i)
12: end if

13: if k > 0 and mk[i] < |D| − 1 then

14: ϕ(M) ← ϕ(M) ∧ ¬ right(k, i)
15: end if

16: end for

17: end for

18: return ϕ(M)

Algorithm: fork
Input : Lexicographically sorted nonempty list M ⊆ Dℓ of vectors without duplicates.
Output : Array fork: [0 . . . |M |] containing the fork function for M .
Method :

1: fork[0] ← 0
2: fork[|M |] ← 0
3: for k ← 1 to |M | − 1 do

4: i ← 1
5: while mk[i] = mk+1[i] do

6: i ← i + 1
7: end while

8: fork[k] ← i

9: end for

10: return fork

Fig. 3.3. Algorithm for the description problem.

It can be easily checked that the constructed formula ϕ(M) satisfies the condition
Sol(ϕ(M)) = M .

The main algorithm that implements the construction of a formula ϕ in CNF
for a given set of vectors M over a finite totally ordered domain D, satisfying the
condition Sol(ϕ) = M , and the algorithm computing the fork function are displayed
in Figure 3.3.

Theorem 3.6. For each set of vectors M ⊆ Dℓ over a finite ordered domain D

there exists a formula ϕ in CNF such that M = Sol(ϕ). It contains at most 2 |M | ℓ

clauses and its length is O(|M | ℓ2 log |D|). The algorithm constructing ϕ runs in time

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DESCRIPTION PROBLEMS OVER FINITE ORDERED DOMAINS 931

O(|M | ℓ2 log |D|).
Proof. The formula ϕ(M) contains at most |M | − 1 middle-clauses and at most

ℓ + (|M | − 1)(ℓ − 1) left/right-clauses. Summing up these partial bounds, we obtain
for the total number of clauses the bound

|M | − 1 + 2(ℓ + (|M | − 1)(ℓ− 1)) = 2 |M | ℓ− |M | + 1 ≤ 2 |M | ℓ (for M �= ∅).

Each clause contains at most 2ℓ literals, namely at most one positive and one nega-
tive for each variable. Each literal has length O(log |D|), since the domain elements
are written in binary notation. Hence, the overall length of the formula ϕ(M) is

O(|M | ℓ2 log |D|).
The vectors in M can be lexicographically sorted in time O(|M | ℓ log |D|) using

a decision tree (trie) or a radix sort. The factor log |D| stems from the comparison
of domain elements. The fork levels can also be computed in time O(|M | ℓ log |D|),
in parallel with sorting the set M . The formula ϕ(M) is produced by two loops,
where the outer loop is going through each vector in M and the inner loop through
the variables. The three clauses ¬middle(k, i), ¬ left(k + 1, i), and ¬ right(k, i) are
potentially written in each step inside the combined loops. This makes an algorithm
with time complexity O(|M | ℓ2 log |D|).

An important property of our algorithm is its linearity with respect to the number
of models |M | being the most relevant parameter. In fact, the paper by Amilhastre,
Fargier, and Marquis [1] mentions an industrial problem provided by Renault DVI,
where the cardinality of the set of vectors is |M | = 1.5 · 1012 with the vector arity ℓ =
101 over a domain of size |D| = 43. The complement set M̄ contains 43101 − 1.5 · 1012

vectors; therefore, the naive algorithm is inapplicable in this situation.

4. Prime formulas. The formulas in CNF computed by Algorithm descrip-
tion in section 3 are of a particular form: The variables in each clause form a prefix
of the variable vector (x1, . . . , xℓ). As a consequence, although polynomial in the size
of the initial relation M , the size of the formulas is not minimal. In Example 3.5, for
instance, it can be easily seen that several literals and even clauses can be removed
from the formula. We investigate in this section a way to shorten formulas. To this
aim we generalize the notion of a prime formula in propositional logic to the case
of finite domains and show how to obtain such a prime formula in CNF describing
the given relation M . Note that although we apply the minimization process to the
formulas produced by our algorithm, it can be applied to any formula in CNF.

The notion of primality and prime clauses in many-valued logic was considered
for the first time by Murray and Rosenthal in [23].

4.1. Notions of primality. Recall that a clause of a propositional formula ϕ in
CNF is said to be prime (with respect to ϕ) if ϕ implies none of its proper subclauses.
This leads to the following straightforward generalization. Let ϕ be a CNF formula
over some finite totally ordered domain. A clause c = (l1 ∨ · · · ∨ lq) of ϕ is said to be
prime (with respect to ϕ) if for each i = 1, . . . , q there exists a model mi ∈ Sol(ϕ) not
satisfying the reduced clause c � li = (l1 ∨ · · · ∨ li−1 ∨ li+1 · · · ∨ lq). The formula ϕ is
said to be prime if all its clauses are prime.

However, this notion of primality considers each literal as a whole. This is ade-
quate in the case of classical propositional logic but does not meet our requirements
in the case of larger domains. The following more sophisticated notion of primality
also considers the value d involved in a literal x ≤ d or x ≥ d.

Definition 4.1 (primality). For a variable x and a pair of values d, d′ ∈ D

satisfying the relation d′ > d (resp., d′ < d), the literal x ≥ d′ (resp., x ≤ d′) is said

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

932 Á. J. GIL, M. HERMANN, G. SALZER, AND B. ZANUTTINI

to be stronger than the literal x ≥ d (resp., x ≤ d). The constant false is stronger
than any other nonfalse literal. Removal of a literal from a clause is a particular case
of strengthening, namely, of this literal to the constant false.

Let ϕ be a CNF formula over a finite totally ordered domain D. A clause c in ϕ

is prime with respect to ϕ if strengthening any literal in c yields a clause which is not
implied by ϕ. A formula ϕ is prime if all its clauses are prime.

As in the propositional case, it is easily seen that for a given formula ϕ there
always exists at least one prime formula ϕ′ which is logically equivalent to ϕ and can
be obtained from ϕ by strengthening and removing some of its literals. If ϕ is already
prime, then ϕ and ϕ′ are identical.

The interest in this new, stronger notion of primality comes from efficiency re-
quirements. In fact, the presence of a literal x ≤ d or x ≥ d instead of x ≤ d′ or
x ≥ d′′, respectively, for d < d′ or d > d′′ reduces the search space during a search for
a suitable satisfying assignment.

4.2. Algorithm. Given a CNF formula ϕ, we show how to efficiently compute
a prime formula ϕ′ satisfying the equality Sol(ϕ) = Sol(ϕ′). Our algorithm, specified
in Figure 4.1, is inspired by the one presented in [25] for the Boolean domain. The
algorithm considers each clause l1 ∨ · · · ∨ lq of ϕ separately. First, it determines for
each model mk the last literal satisfied by it and stores the index of the literal in the
array last [k] (lines 3–9). Then the literals are strengthened in turn, starting with the
first one.

Suppose that the literal is positive; i.e., it is of the form xi ≥ d (lines 12–20).
Strengthening means to increase the value of d. Some models that satisfied the literal
before might not satisfy the literal after strengthening. This is a problem only for
those models for which the literal was the last possibility to make the clause true
(remember that for a model to satisfy a clause it suffices to satisfy a single literal).
Therefore, we choose the new value d′ as the minimum of all such models (lines 14–19)
and construct the new literal as xi ≥ d′. Negative literals are handled dually by taking
the maximum (lines 21–30). If the literal is redundant, i.e., if no model depends on
it as its last literal, the minimum (maximum) would have to be taken over the empty
set; in this case we set d′ to n (resp., −1).

Line 31 checks whether the literal is redundant. If it is not redundant, it is added
to the new clause constructed to replace the old one (line 32). Finally, all models
mk satisfying the new literal are marked by setting last [k] to zero (lines 33–37). As
a consequence, the minimum/maximum computations for the remaining literals will
ignore these models.

Example 4.2. Let x1 ≤ 3 ∨ x2 ≤ 3 ∨ x3 ≤ 0 ∨ x3 ≥ 4 be the clause under
consideration, and let M be as in Example 3.5. The array last is set to the values

010 013 220 440 444
last 3 2 3 3 4

The first literal is eliminated since there is no model mk such that last [k] = 1. The
second literal is strengthened to x2 ≤ 1 since d′ = 1 for j = 2. The last two literals
remain unchanged, since the maximum for j = 3 is d′ = 0 and the minimum for j = 4
is d′ = 4. Hence the reduced clause is equal to x2 ≤ 1 ∨ x3 ≤ 0 ∨ x3 ≥ 4.

The primality algorithm applied to the whole formula ϕ(M) from Example 3.5

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DESCRIPTION PROBLEMS OVER FINITE ORDERED DOMAINS 933

Algorithm: primality
Input : A formula ϕ in conjunctive normal form and a nonempty set M ⊆ Dℓ of
vectors such that Sol(ϕ) = M .
Output : A reduced prime formula ϕ′ such that Sol(ϕ) = Sol(ϕ′).
Method :

1: ϕ′ ← true
2: for all clauses c = (l1 ∨ · · · ∨ lq) ∈ ϕ do ⊲ compute the vector last
3: for k ← 1 to |M | do

4: for j ← 1 to q do

5: if mk satisfies lj then

6: last [k] ← j

7: end if

8: end for

9: end for

10: c′ ← false ⊲ greedy strengthening of literals
11: for j ← 1 to q do

12: if lj is positive then

13: let lj = xi ≥ d

14: d′ ← n ⊲ d′ = min({n} ∪ {mk[i] | 1 ≤ k ≤ |M | , last [k] = j})
15: for k ← 1 to |M | do

16: if last [k] = j then

17: d′ ← min(d′,mk[i])
18: end if

19: end for

20: l′ ← xi ≥ d′

21: else

22: let lj = xi ≤ d

23: d′ ← −1 ⊲ d′ = max({−1} ∪ {mk[i] | 1 ≤ k ≤ |M | , last [k] = j})
24: for k ← 1 to |M | do

25: if last [k] = j then

26: d′ ← max(d′,mk[i])
27: end if

28: end for

29: l′ ← xi ≤ d′

30: end if

31: if 0 ≤ d′ ≤ n− 1 then

32: c′ ← c′ ∨ l′

33: for k ← 1 to |M | do

34: if mk satisfies l′ then

35: last [k] ← 0
36: end if

37: end for

38: end if

39: end for

40: ϕ′ ← ϕ′ ∧ c′

41: end for

42: return ϕ′

Fig. 4.1. Reduction to a prime formula.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

934 Á. J. GIL, M. HERMANN, G. SALZER, AND B. ZANUTTINI

returns the reduced formula

ϕ′(M) = (x3 ≤ 0 ∨ x3 ≥ 3) ∧ (x1 ≤ 0 ∨ x1 ≥ 2) ∧ (x1 ≤ 2 ∨ x1 ≥ 4)

∧ (x2 ≤ 1 ∨ x3 ≤ 0 ∨ x3 ≥ 4) ∧ (x2 ≥ 1) ∧ (x1 ≤ 0 ∨ x2 ≥ 2)

∧ (x1 ≤ 2 ∨ x2 ≥ 4) ∧ (x1 ≥ 2 ∨ x2 ≤ 1) ∧ (x2 ≥ 4 ∨ x3 ≤ 3)

∧ (x1 ≥ 4 ∨ x2 ≤ 2) ∧ (x2 ≤ 1 ∨ x2 ≥ 4 ∨ x3 ≤ 0) .

Note that ϕ′(M) is a Horn formula with at most three literals per clause.
Theorem 4.3. For a formula ϕ in conjunctive normal form (CNF) there exists

a logically equivalent prime formula ϕ′ such that Sol(ϕ) = Sol(ϕ′), which can be
computed in time O(|ϕ| |M | ℓ log |D|), where |ϕ| is the number of clauses in ϕ.

Proof. The time complexity directly follows from Figure 4.1. To prove the cor-
rectness of the algorithm, let c be a clause of ϕ and c′ be the clause obtained from c

by running Algorithm primality.
We first show that the models satisfying c are the same as those satisfying c′.

The lines 3–9 set last [k] to a value in {1, . . . , q} for every k, since every model in M

satisfies at least one literal in c. Moreover, last [k] is set to zero if and only if the
corresponding model satisfies the literal added to c′. Obviously every element of last
will eventually be set to zero: either the model “accidentally” satisfies a new literal
before the last one, or otherwise the new literal derived from the literal identified by
last [k] is satisfied by mk. Therefore, we have Sol(ϕ) = Sol(ϕ′).

It remains to show that c′ is prime. According to Definition 4.1 we have to prove
that no literal from c′ can be removed or strengthened. Consider the start of the jth
iteration of the for-loop in lines 11–39. Construct the set M (j) = {mk | 1 ≤ k ≤ |M | ,
last [k] = j}. The models in M (j) satisfy none of the literals added to c′ so far
(otherwise their last-entry would have been set to zero, preventing their inclusion into
the set M (j)), nor will they satisfy any future literal since the jth literal is the last
one satisfied by the models. Therefore, the literal constructed in this iteration cannot
be dropped from c′ without changing the set of satisfying models. Now suppose that
the literal considered in this round is lj = xi ≥ d (the other case is dual). Let m(j) be
one of the models in M (j) for which the ith component is minimal, i.e., m(j)[i] = d′.
It satisfies xi ≥ d′ but clearly no other literal xp ≥ dp satisfying dp > d′. We conclude
that the literals added to c′ can be neither removed nor strengthened, which implies
that c′ is prime.

Combining Algorithms description and primality, i.e., first describing M by
means of a CNF formula ϕ(M), followed by a reduction of ϕ(M) to a prime formula,
we get the following result.

Corollary 4.4. For each set of vectors M ⊆ Dℓ over a finite totally ordered do-
main D there exists a prime formula ϕ in CNF such that M = Sol(ϕ). The algorithm

constructs ϕ in time O(|M |2 ℓ2 log |D|).

5. Horn formulas. Horn clauses and formulas constitute a frequently stud-
ied subclass of propositional formulas. This is due to the fact that there exists a
polynomial-time algorithm for deciding their satisfiability problem. It turns out that
this is still the case for Horn formulas over finite domains [4], which motivates our
study of their description and identification problems. As we will see, the sets of
vectors described by Horn formulas are closed under the minimum operation.

A question may arise about the usefulness and practical implications of computing
a Horn formula ϕ(M) for a given set of vectors M whenever it is possible. Since
the complexity of the description algorithm is determined by the cardinality of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DESCRIPTION PROBLEMS OVER FINITE ORDERED DOMAINS 935

set of vectors M , it may seem superfluous to compute a Horn formula describing
them. However, imagine a two-stage procedure, where first a describing formula ϕ

is computed offline for the set of vectors M , followed by its extensive use during a
second stage for online reasoning. It is obvious that we prefer a structurally simpler
formula ϕ for the second stage reasoning process. There exist numerous examples
in logic and automated deduction (see, e.g., the survey [3] in case of many-valued
logics), like resolution or several tableau methods, where it is more efficient to work
with Horn clauses or Horn formulas, compared with general formulas in CNF.
Problem: description[horn].
Input : A finite set of vectors M ⊆ Dℓ, closed under conjunction, over a finite totally
ordered domain D.
Output : A Horn formula ϕ over D such that Sol(ϕ) = M .

The general construction in section 3 does not guarantee that the final formula
is Horn whenever the set M is closed under conjunction. For instance, there exists a
Horn formula describing the set M presented in Example 2.2, but the formula ϕ(M)
computed by the description algorithm in Example 3.5 is not Horn. Therefore, we
must reduce the clauses of the formula ϕ, produced in section 3, to obtain only Horn
clauses. For this, we will modify a construction proposed by Jeavons and Cooper
in [21]. Their method is exponential, since it proposes to construct a Horn clause
for each vector in the complement set Dℓ

� M . We will first adapt the method of
Jeavons and Cooper to get a polynomial-time algorithm and then propose a more
sophisticated implementation of the approach that will guarantee us an algorithm
with even lower asymptotic complexity.

Let ϕ(M) be a formula produced by the description algorithm in section 3, and
let c be a clause from ϕ(M). We denote by c− the disjunction of the negative literals
in c. The vectors in M satisfying a negative literal in c also satisfy the restricted
clause c−. Hence we have only to care about the vectors that satisfy a positive literal
but no negative literals in c, described by the set

Mc = {m ∈ M | m �|= c−}.

If Mc is empty, we can replace the clause c by h(c) = c− in the formula ϕ(M)
without changing the set of models Sol(ϕ). Otherwise, note that Mc is closed under
conjunction, since M is already closed under this operation. Indeed, if the vectors m

and m′ falsify every negative literal x ≤ d of c−, then the conjunction m∧m′ falsifies
the same negative literals. Hence Mc contains a unique minimal model m∗ =

∧

Mc.
Every positive literal in c satisfied by m∗ is also satisfied by all vectors in Mc. Let l be
a positive literal from c and satisfied by m∗. There exists at least one such literal since
otherwise m∗ would satisfy neither c− nor any positive literal in c; hence it would
not be in Mc. Then c can be replaced with the Horn clause h(c) = l ∨ c−, without
changing the set of models Sol(ϕ). We obtain a Horn formula h(M) for a Horn set M
by replacing every non-Horn clause c in ϕ(M) by its Horn restriction h(c).

Example 5.1. Consider again the set of vectors M = {010, 013, 220, 440, 444} and
the non-Horn clause c = (x1 ≥ 1∨x2 ≤ 0∨x2 ≥ 2∨x3 ≤ 0∨x3 ≥ 3) from Example 3.5.
We have c− = (x2 ≤ 0 ∨ x3 ≤ 0); thus any subclause of c containing c− is already
satisfied by the vectors 010, 220, and 440. We need to keep a positive literal from c in
order to satisfy the reduced clause also by the vectors 013, 444 ∈ M . In other words,
we have Mc = {013, 444}. The unique minimal model is m∗ = 013∧ 444 = 013. Since
the minimal model m∗ satisfies the positive literal (x3 ≥ 3) in c, we can reduce the
clause c to h(c) = (x3 ≥ 3 ∨ x2 ≤ 0 ∨ x3 ≤ 0).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

936 Á. J. GIL, M. HERMANN, G. SALZER, AND B. ZANUTTINI

The length of h(M) is basically the same as that of ϕ(M). The number of clauses
is the same and the length of clauses is O(ℓ log |D|) in both cases. There are at most
2ℓ literals in each clause of ϕ(M) (one positive and one negative literal per variable)
versus ℓ + 1 literals in each clause of h(M) (one negative literal per variable plus a
single positive literal).

The construction of each Horn clause h(c) requires time O(|M | ℓ log |D|). Indeed,
for every vector m ∈ M we have to evaluate at most ℓ negative literals in c to find out
whether m belongs to Mc. The evaluation of a literal takes time O(log |D|). Hence the
computation of the set Mc takes time O(|M | ℓ log |D|). To obtain m∗ =

∧

Mc, we have
to compute |Mc|−1 conjunctions between vectors of length ℓ, each of the ℓ conjunctions
taking time O(log |D|). Therefore, m∗ can also be computed in time O(|M | ℓ log |D|).
Since there are at most 2 |M | ℓ clauses in ϕ(M), the transformation of ϕ(M) into

h(M) can be done in time O(|M |2 ℓ2 log |D|). Hence, the whole algorithm producing

the Horn formula h(M) from the set of vectors M runs in time O(|M |2 ℓ2 log |D|).

Note that we can also use the primality algorithm to reduce a CNF formula ϕ

to a Horn formula h(ϕ) whenever there exists a Horn formula logically equivalent
to ϕ. The application of the primality algorithm yields the same asymptotic time
complexity as the aforementioned method according to Corollary 4.4. However, nei-
ther the application of the primality algorithm nor the aforementioned method are
asymptotically optimal.

Another interest for using the primality algorithm comes from the fact that this
method does not need the assumption that M is closed under conjunction. Indeed,
once we compute a prime formula describing M , we can conclude that M is Horn
if the obtained prime formula is Horn. We will return to this issue in section 6 on
bijunctive formulas.

We now describe a new algorithm that significantly outperforms the previous
methods in terms of running time. This new algorithm is inspired by the one from [17]
for the Boolean case. The basic idea is to describe the set M directly by means of
a CNF formula as in section 3, but keeping only one or no positive literal in each
obtained clause. For this purpose, we define the terms hmiddle(k, i), hleft(k+1, i), and
hright(k, i) that replace the corresponding terms defined in section 3. The replacement
of the previous terms by the new ones is based on the following lemma.

Lemma 5.2. Let M ⊆ Dℓ be a finite set of vectors closed under conjunction and
let c be a clause satisfied by each model m ∈ M . Then there exists a Horn subclause
h(c) of c that is satisfied by every model from M .

Proof. If c contains only one or no positive literals, then we set h(c) equal to c.
Otherwise, let c = (xi ≥ a ∨ xj ≥ b ∨ c′) be a clause containing two different positive
literals, where i �= j since otherwise one of the two positive literals would be implied
by the other and could therefore be eliminated. Assume that neither xi ≥ a nor xj ≥ b

can be removed from c if the truth of c with respect to M has to be preserved. Then
there must be two models m,m′ ∈ M satisfying the conditions m[i] ≥ a, m[j] < b

and m′[i] < a, m′[j] ≥ b. Moreover, neither m nor m′ satisfy the rest of the clause c′.
Then it can be easily seen that (m ∧m′)[i] < a, (m ∧m′)[j] < b, and that the model
m∧m′ does not satisfy c′. Hence, the model m∧m′ ∈ M does not satisfy the clause
c. This contradicts the hypothesis because M is closed under conjunction.

We now define the terms for the Horn formulas by distinguishing the cases
hmiddle, hleft, and hright. The conditions of their application are inherited from

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DESCRIPTION PROBLEMS OVER FINITE ORDERED DOMAINS 937

section 3. The first two cases are relatively easy to determine:

hmiddle(k, i) =
∧

j<i

(xj ≥ mk[j]) ∧ (xi > mk[i]) ∧ (xi < mk+1[i]),

hleft(k + 1, i) =
∧

j<i

(xj ≥ mk+1[j]) ∧ (xi < mk+1[i]).

We can easily see that ¬hmiddle(k, i) and ¬hleft(k + 1, i) are Horn clauses. Ob-
serve that ¬hleft(k + 1, i) implies ¬ left(k + 1, i). We will show that the rightmost
literal cannot be removed from ¬ left(k + 1, i) when we compute the Horn subclause
¬hleft(k + 1, i). From the tree TM and the term left(k + 1, i) observe that the clause
c = ¬ left(k+1, i) � (xi ≥ mk+1[i]) is falsified by at least one model in M . Therefore,
there is no Horn subclause h(c) of c that is satisfied by all models in M . Since M

is closed under conjunction, from Lemma 5.2 it follows that there must be a Horn
subclause h(c) of c that is satisfied by all models of M . Hence, the clause h(c)
must contain the literal xi ≥ mk+1[i] and since it is Horn, it must be a subclause
of ¬hleft(k + 1, i). Similarly for hmiddle(k, i), the construction ensures that the
rightmost literal cannot be removed from ¬middle(k, i), since otherwise the clause
¬middle(k, i) would be equal to ¬ right(k, i). Thus all other positive literals can be
removed from ¬middle(k, i) to obtain the Horn subclause ¬hmiddle(k, i).

The construction of the term hright(k, i) is more involved. Recall that for all
convenient parameters k and i we have the clause

¬ right(k, i) =
∨

j<i

(xj < mk[j] ∨ xj > mk[j]) ∨ (xi ≤ mk[i]).

We look for the positive literals that can be removed from ¬ right(k, i) in order to
derive the term hright(k, i). For this purpose, construct the set

M(k, i) = {m ∈ M | m[i] > mk[i] and ∀j < i, m[j] ≥ mk[j]}

for the given parameters k and i. Clearly, M(k, i) is the set of all vectors from M

that falsify all negative literals in ¬ right(k, i). The set M(k, i) corresponds to the
previously defined set Mc for c = ¬ right(k, i).

We distinguish the cases M(k, i) = ∅ and M(k, i) �= ∅. When the set M(k, i) is
empty, this means that every model m ∈ M satisfies at least one negative literal in
¬ right(k, i). Thus we can construct ¬hright(k, i) from ¬ right(k, i) by removing all
positive literals. In other words, hright(k, i) is obtained from right(k, i) by removing
all negative literals.

When the set M(k, i) is nonempty, we know from Lemma 5.2 that there exists a
positive literal in ¬ right(k, i) which is satisfied by all models in M(k, i). This amounts
to the computation of intersection

∧

M(k, i) followed by a choice of a model from it,
but we need to do it in a more sophisticated way than in the previous Horn method
if we wish to obtain an algorithm with lower asymptotic complexity. Let us define a
function that will compute the position of the kept literal:

pos(k, i) = max
1≤j≤k

{j | ∃m ∈ M(k, i) such that ∀p, p < j implies m[p] ≤ mk[p]}.

Note that since every model m ∈ M(k, i) satisfies the clause ¬ right(k, i) and thus at
least one of its positive literals, the condition pos(k, i) < i is satisfied.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

938 Á. J. GIL, M. HERMANN, G. SALZER, AND B. ZANUTTINI

Algorithm: pos
Input : Nonempty set M ⊆ Dℓ of vectors and a parameter k.
Output : The position function pos(k).
Method :

1: for i ← 1 to ℓ do

2: pos(k)[i] ← 0
3: end for

4: for k′ ← 1 to |M | do

5: if k′ �= k then

6: i0 ← 1
7: while i0 < ℓ and mk′ [i0] ≤ mk[i0] do

8: i0 ← i0 + 1
9: end while

10: i ← 1
11: while i ≤ ℓ and mk′ [i] ≥ mk[i] do

12: if i > fork(k) and mk[i] < |D| − 1 and mk′ [i] > mk[i] then

13: pos(k)[i] ← max(pos(k)[i], i0)
14: end if

15: i ← i + 1
16: end while

17: end if

18: end for

19: return pos(k)

Fig. 5.1. Position function pos(k, i).

The term hright(k, i) is defined as follows:

hright(k, i) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∧

j<i(xj ≥ mk[j]) ∧ (xi > mk[i]) if M(k, i) = ∅,

∧

j<i(xj ≥ mk[j]) ∧ (xi > mk[i]) ∧ (xpos(k,i) ≤ mk[pos(k, i)])

otherwise.

We can finally present the Horn formula h(M) for a set of vectors M closed under
conjunction that satisfies the equality Sol(h(M)) = M . It resembles the formula ϕ(M)
from section 3 modulo some syntactic changes.

h(M) =
∧

{ ¬hmiddle(k, i) | 0 < k < |M | , i = fork(k), mk[i] + 1 < mk+1[i] }

∧
∧

{ ¬hleft(k + 1, i) | 0 ≤ k < |M | , fork(k) < i ≤ ℓ, mk+1[i] > 0 }

∧
∧

{ ¬hright(k, i) | 0 < k ≤ |M | , fork(k) < i ≤ ℓ, mk[i] < |D| − 1 }.

Our algorithm computing the Horn formula h(M) for a given set of vectors M

is equivalent to Algorithm description, where the terms middle(k, i), left(k + 1, i),
and right(k, i) are replaced by the terms hmiddle(k, i), hleft(k+1, i), and hright(k, i),
respectively. Computing the clauses ¬hmiddle(k, i) and ¬hleft(k + 1, i) does not
pose any problems, whereas the clause ¬hright(k, i) heavily depends on the position
function pos(k, i) which must be computed efficiently. For a given k, Algorithm pos
in Figure 5.1 computes the values of pos(k, i) for all positions i = 1, . . . , ℓ at the same

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DESCRIPTION PROBLEMS OVER FINITE ORDERED DOMAINS 939

time. This is what makes our algorithm efficient. The result is returned in the form
of an array pos(k), where the equality pos(k)[i] = pos(k, i) holds for all positions i.

The algorithm is based on the following principle. Given a vector mk, it considers
every vector mk′ ∈ M different from mk. For a pair of vectors mk and mk′ , the
algorithm considers each index i in increasing order. While the condition mk′ [i] ≥
mk[i] (line 11) holds, we are sure that the model mk′ belongs to M(k, i), and therefore
mk′ is taken into account for the value of pos(k, i) (line 13). On the other hand, as
soon as the condition does not hold any more, then we are sure that for all j > i the
vector mk′ does not belong to M(k, i), and therefore mk′ does not need to be taken
into account for the value of pos(k, i). Note that the value pos[k, i] has no meaning
for a nonconvenient i, and therefore it is set to 0, which also means M(k, i) = ∅.

Example 5.3. We already know from Example 4.2 that there exists a Horn formula
describing the set of vectors M = {010, 013, 220, 440, 444}. Let us transform the terms
middle, left, and right from Example 3.3 to hmiddle, hleft, and hright, respectively.
We will get the middle terms

hmiddle(1, 3) = (x1 ≥ 0) ∧ (x2 ≥ 1) ∧ (x3 > 0) ∧ (x3 < 3),

hmiddle(2, 1) = (x1 > 0) ∧ (x1 < 2),

hmiddle(3, 1) = (x1 > 2) ∧ (x1 < 4),

hmiddle(4, 3) = (x1 ≥ 4) ∧ (x2 ≥ 4) ∧ (x3 > 0) ∧ (x3 < 4)

and the left terms

hleft(1, 2) = (x1 ≥ 0) ∧ (x2 < 1),

hleft(3, 2) = (x1 ≥ 2) ∧ (x2 < 2),

hleft(4, 2) = (x1 ≥ 4) ∧ (x2 < 4)

easily. To transform the terms right(2, 2), right(3, 2), and right(3, 3) to hright(2, 2),
hright(3, 2), and hright(3, 3), respectively, we need first to compute the arrays pos(2)
and pos(3). We get

pos 1 2 3
2 0 1 1
3 0 1 1

which implies the terms

hright(2, 2) = (x1 ≥ 0) ∧ (x2 > 1) ∧ (x1 ≤ 0),

hright(2, 3) = (x1 ≥ 0) ∧ (x2 ≥ 1) ∧ (x3 > 3) ∧ (x1 ≤ 0),

hright(3, 2) = (x1 ≥ 2) ∧ (x2 > 2) ∧ (x1 ≤ 2),

hright(3, 3) = (x1 ≥ 2) ∧ (x2 ≥ 2) ∧ (x3 > 0) ∧ (x1 ≤ 2).

The final Horn formula will be

h(M) = (x2 ≤ 0 ∨ x3 ≤ 0 ∨ x3 ≥ 3) ∧ (x1 ≤ 0 ∨ x1 ≥ 2) ∧ (x1 ≤ 2 ∨ x1 ≥ 4)

∧ (x1 ≤ 3 ∨ x2 ≤ 3 ∨ x3 ≤ 0 ∨ x3 ≥ 4) ∧ (x2 ≥ 1) ∧ (x1 ≤ 1 ∨ x2 ≥ 2)

∧ (x1 ≤ 3 ∨ x2 ≥ 4) ∧ (x1 ≥ 1 ∨ x2 ≤ 1) ∧ (x1 ≥ 1 ∨ x2 ≤ 0 ∨ x3 ≤ 3)

∧ (x1 ≤ 1 ∨ x1 ≥ 3 ∨ x2 ≤ 2) ∧ (x1 ≤ 1 ∨ x1 ≥ 3 ∨ x2 ≤ 1 ∨ x3 ≤ 0).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

940 Á. J. GIL, M. HERMANN, G. SALZER, AND B. ZANUTTINI

Theorem 5.4. For each set of vectors M ⊆ Dℓ over a finite totally ordered
domain D that is closed under conjunction, there exists a Horn formula ϕ such
that M = Sol(ϕ). The formula ϕ contains at most 2 |M | ℓ clauses, its length is

O(|M | ℓ2 log |D|), and it can be computed in time O(|M | ℓ(|M | + ℓ) log |D|).
Proof. Time complexity is straightforward since we essentially run the descrip-

tion algorithm from section 3 with the computation of pos(k) added. As for correct-
ness, it is a consequence of the previously written reasoning in this section.

Using Theorem 5.4, we are able to prove a generalization of a well-known charac-
terization of the set of models Sol(ϕ) of a Horn formula ϕ. We wish to point out that
this characterization is not new and was proved before. Indeed, a related character-
ization in a different setting can be found in [15], and a similar proof can be found
in [21]. We mention the result here for completeness.

Proposition 5.5. A set of vectors M over a finite totally ordered domain is
closed under conjunction if and only if there exists a Horn formula ϕ satisfying the
identity Sol(ϕ) = M .

Proof. Theorem 5.4 shows that there exists a Horn formula ϕ describing a set of
vectors M if M is closed under conjunction. It remains to show the converse, namely,
that the set Sol(ϕ) is closed under conjunction if ϕ is a Horn formula. We need to
show that for any two models m and m′ of ϕ, their conjunction m∧m′ is also a model
of ϕ. A model satisfies a Horn formula ϕ if and only if it satisfies every clause of ϕ.
Therefore, we need to show for each clause c that m∧m′ satisfies c whenever both m

and m′ satisfy c. We distinguish two cases.
(i) Clause c contains a positive literal x ≥ d that is satisfied by both m

and m′. Then we have m(x) ≥ d and m′(x) ≥ d, which implies (m ∧ m′)(x) =
min(m(x),m′(x)) ≥ d. This proves that m ∧m′ satisfies the clause c.

(ii) Clause c contains no positive literal satisfied by both m and m′. Then at
least one model, say, m, must satisfy a negative literal x ≤ d in c, i.e., m(x) ≤ d.
We obtain (m ∧ m′)(x) = min(m(x),m′(x)) ≤ m(x) ≤ d. Hence also m ∧ m′ satis-
fies c.

If we interchange conjunctions with disjunctions of models, as well as positive
and negative literals throughout section 5, we obtain identical results for dual Horn
formulas.

Theorem 5.6. A set of vectors M ⊆ Dℓ over a finite ordered domain D is
closed under disjunction if and only if there exists a dual Horn formula ϕ satisfying
the identity M = Sol(ϕ). Given M closed under disjunction, the dual Horn formula

ϕ contains at most 2 |M | ℓ clauses, and its length is O(|M | ℓ2 log |D|). It can be
constructed in time O(|M | ℓ(|M | + ℓ) log |D|).

6. Bijunctive formulas. Bijunctive clauses and formulas present another fre-
quently studied subclass of propositional formulas, once more because there exists
a polynomial-time algorithm for deciding their satisfiability which generalizes to the
finite-domain case [5]. We investigate in this section the description problem for a
generalization of bijunctive formulas to ordered finite domains, namely, for sets of
vectors closed under the median operation.
Problem: description[bijunctive].
Input : A finite set of vectors M ⊆ Dℓ, closed under median, over a finite totally
ordered domain D.
Output : A bijunctive formula ϕ over D such that Sol(ϕ) = M .

Once again, the general construction in section 3 does not guarantee that the
final formula is bijunctive whenever the set M is closed under median. Therefore,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DESCRIPTION PROBLEMS OVER FINITE ORDERED DOMAINS 941

we add a postprocessing step that transforms the formula ϕ into a bijunctive one
b(ϕ). Let ϕ(M) be the formula produced by the method of section 3, and let c be a
clause from ϕ(M). We construct a bijunctive restriction b(ϕ) by removing appropriate
literals from ϕ such that no more than two literals remain in each clause. Since ϕ is a
CNF, any model of b(ϕ) is still a model of ϕ. The converse does not hold in general.
However, if Sol(ϕ) is closed under median, the method presented below preserves the
models; i.e., every model of ϕ remains a model of b(ϕ). In the proof we need the
following simple lemma.

Lemma 6.1. The model med(m1,m2,m3) satisfies a literal l if and only if at
least two of the models m1, m2, and m3 satisfy l.

Proof. Recall the identities med(m1,m2,m3) = (m1∨m2)∧(m2∨m3)∧(m3∨m1) =
(m1∧m2)∨ (m2∧m3)∨ (m3∧m1). Recall also that m∧m′ and m∨m′ are shorthand
for the more cumbersome prefix notation min(m,m′) and max(m,m′), respectively.
Let l be satisfied by at least two models, say, m1 and m2. If the literal l is positive,
then it is also satisfied by the models m1 ∨m2, m2 ∨m3, and m3 ∨m1. If the literal
l is negative, then it is also satisfied by the models m1 ∧m2, m2 ∧m3, and m3 ∧m1.
Hence, in both cases, l is also satisfied by med(m1,m2,m3).

Conversely, if l is satisfied only by one model, say, m1, or if l is not satisfied by
any of the three models, then it is falsified by the model m2 ∨m3 if l is positive and
by the model m2 ∧ m3 if l is negative. Hence, the literal l cannot be satisfied by
med(m1,m2,m3).

Definition 6.2. We say that a literal l is essential for a clause c with respect to
a set of models M if there is a model m ∈ M that satisfies l, but no other literal in c.
We also say that m is a justification for l with respect to M .

Obviously, we may remove nonessential literals from c without losing models. It
remains to show that no clause from ϕ contains more than two essential literals.

To derive a contradiction, suppose that c is a clause from ϕ containing at least
three essential literals, say, l1, l2, and l3. Let m1, m2, and m3 be their justifications;
i.e., for each i we have mi |= li and mi does not satisfy any other literal in c. According
to Lemma 6.1, in this case the model med(m1,m2,m3) satisfies no literal at all. Hence
med(m1,m2,m3) satisfies neither c nor ϕ, which contradicts the assumption that
Sol(ϕ) is closed under median.

The previous discussion suggests applying the following algorithm to every clause c
of ϕ. For every literal l in c = c′ ∨ l, check whether the remaining clause c′ is still
satisfied by all models in M . If the answer is yes, the literal is not essential and can be
removed. Otherwise, it is one of the (at most) two literals in the final bijunctive clause
b(c). As we can easily see, this operation is performed by the primality algorithm
from section 4.

Theorem 6.3. For each set of vectors M ⊆ Dℓ over a finite ordered domain D

that is closed under median, there exists a bijunctive formula ϕ such that M = Sol(ϕ).
The length of ϕ is O(|M | ℓ(log ℓ + log |D|)), and it contains at most 2 |M | ℓ clauses.

The algorithm constructing ϕ runs in time O(|M |2 ℓ2 log |D|).
Proof. The main part of the result follows from Theorems 3.6 and 4.3. Concerning

the length of ϕ, note that each clause contains at most two literals. Each literal
consists of a variable and one domain element. Hence we can represent a literal by
the index of its variable and the domain value, both written in binary. Therefore,
the length of a literal and subsequently of each bijunctive clause is O(log ℓ+ log |D|).
Since there are at most 2 |M | ℓ clauses, this implies the length of ϕ.

Similarly to the Horn and dual Horn formulas, we get a nice relation between
bijunctive formulas by means of a closure property.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

942 Á. J. GIL, M. HERMANN, G. SALZER, AND B. ZANUTTINI

Proposition 6.4. A set of vectors M over a finite totally ordered domain is
closed under median if and only if there exists a bijunctive formula ϕ satisfying the
identity M = Sol(ϕ).

Proof. Theorem 6.3 shows that there exists a bijunctive formula for every set of
vectors M closed under median. It remains to show the converse, namely, that Sol(ϕ)
is closed under median if ϕ is a bijunctive formula. Since ϕ is a conjunction of clauses,
it is sufficient to show the closure property for a bijunctive clause c = l ∨ l′. Let m1,
m2, and m3 be three models of c. From the pigeonhole principle it follows that one
of the two literals l or l′ of the clause c is satisfied by at least two models. Hence, by
Lemma 6.1, at least one of the two literals l and l′, and therefore also the clause c, is
satisfied by med(m1,m2,m3).

We wish to point out that contrary to the Horn case, the most efficient known
algorithm for the bijunctive description problem does not seem to lift well from the
Boolean to the finite domain. Dechter and Pearl [11] showed that in the Boolean

case this problem can be solved in time O(|M | ℓ2), which is better than our result
even when ignoring the unavoidable factor log |D|. Their algorithm generates first all

the O(ℓ
2
) bijunctive clauses built from the variables of the formula, followed by an

elimination of those falsified by a vector from M , where the bijunctive formula is the
conjunction of the retained clauses. However, there are O(ℓ

2 |D|2) bijunctive clauses

for a finite domain D yielding an algorithm with time complexity O(|M | ℓ2 |D|2),
which is exponential in the size O(log |D|) of the domain elements.

Another idea, not applicable more efficiently in the finite domain case, is that of
projecting M onto each pair of variables and then computing a bijunctive formula for
each projection. This requires time O(|M | ℓ2) in the Boolean case, since we need only
to compute a CNF for each projection. A CNF for a projection is always bijunctive;
thus only the general Algorithm description has to be used. However, in the finite
domain case, computing a formula with Algorithm description does not necessarily
yield a bijunctive CNF. Each clause can contain up to four literals, a positive and
a negative one for each variable. Thus we need to use an algorithm for computing
a bijunctive CNF, like that of Theorem 6.3, yielding an overall time complexity of
O(|M |2 ℓ2 log |D|).

Finally, let us return to the identification problem. As was mentioned in the
introduction, our results present an elegant and unified algorithm for identification of
Horn, dual Horn, and bijunctive sets of vectors. Given a set of vectors M , the method
presented by the primality algorithm computes a prime formula ϕ satisfying the
identity Sol(ϕ) = M . Then we check in linear time whether it is Horn, dual Horn,
or bijunctive. The results in sections 5 and 6 ensure that the resulting formula ϕ is
Horn, dual Horn, or bijunctive if and only if M is a Horn, dual Horn, or bijunctive
set of vectors, respectively. This generalizes the result presented by Zanuttini and
Hébrard in [25].

7. Changing the literals. We finish the paper with a short discussion of the
description problems for a slightly different formalism, where only the literals are
changed.

If we change the underlying notion of literals, using the expressions x = d and
x �= d as basic building blocks, the situation changes drastically. Former positive
literal x ≥ d becomes shorthand for the disjunction (x = d) ∨ (x = d + 1) ∨ · · · ∨
(x = n− 1), whereas the former negative literal x ≤ d now represents the disjunction
(x = 0) ∨ (x = 1) ∨ · · · ∨ (x = d). Even if we compress literals containing the same
variable into a bit vector, the new representation still needs n bits; i.e., its size is O(n).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DESCRIPTION PROBLEMS OVER FINITE ORDERED DOMAINS 943

Compared to the former literals of size O(logn), this amounts to an exponential blow-
up. As an immediate consequence, the algorithms given in the preceding sections
become exponential, since we have to replace literals like xi < mk[i], xi > mk[i], and
xi < mk+1[i] by disjunctions of equalities.

The satisfiability problem for formulas in CNF over finite totally ordered do-
mains with basic operators ≤ and ≥ is defined similarly to Boolean satisfiability.
The complexity of these problems was studied for fixed domain cardinalities, from
the standpoint of many-valued logics, by Béjar, Hähnle, and Manyà [6] and Hähnle
[16]. The NP-completeness proof for Boolean satisfiability generalizes uniformly to
finite ordered domains. Béjar, Hähnle, and Manyà [6] and Hähnle [16] proved that
the satisfiability problems restricted to Horn, dual Horn, and bijunctive formulas are
decidable in polynomial time for a fixed domain cardinality. These algorithms can
be generalized to arbitrary domain cardinalities, adding only the unavoidable factor
log |D|.

The satisfiability of formulas in CNF is also affected when switching to = and �=
as basic operators. While the satisfiability problem for general formulas remains NP-
complete, the restrictions to Horn, dual Horn, and bijunctive formulas change from
polynomially solvable to NP-complete for |D| ≥ 3. This can be shown by encoding,
for example, the graph problem of k-coloring [2, 9]. When we use the Horn and
bijunctive clause (u �= d∨v �= d), we can express by C(u, v) = (u �= 0∨v �= 0)∧· · ·∧(u �=
k−1∨v �= k−1) that the adjacent vertices of the edge (u, v) are “colored” by different
“colors.” On the other hand, Beckert, Hähnle, and Manyà [5] proved that bijunctive
formulas restricted to positive literals can be solved in linear time.

8. Concluding remarks. The studied formula description problems constitute
a generalization of the Boolean structure identification problems, studied by Dechter
and Pearl [11], with more efficient algorithms as a byproduct. Our paper presents a
complement to the work of Hähnle et al. [5, 6, 16] on the complexity of the satisfiability
problems in many-valued logics. It also completes the study of tractable formulas
[9, 20, 21] by Jeavons and his group.

We have constructed an efficient polynomial-time algorithm for the formula de-
scription problem over a finite totally ordered domain, where the produced formula is
in CNF. We have then presented a subsequent algorithm that eliminates in polyno-
mial time redundancies from the previously computed formula, given the original set
of vectors, producing in this way the prime formula. The notion of primality that we
use is an extension of the same notion used in Boolean formulas. It not only captures
irrelevant literals in clauses but also strengthens the value d in the literals x ≤ d or
x ≥ d, respectively. If the original set of vectors is closed under the operation of con-
junction, disjunction, or median, we have presented specific algorithms that produce a
Horn, a dual Horn, or a bijunctive formula, respectively. These algorithms generalize
the well-known ones from the Boolean domain. It is interesting to note that they
are compatible, with respect to asymptotic complexity, with known algorithms for
the Boolean case presented in [17, 25]. This means that the restriction of the new
algorithms presented in our paper to domains D with cardinality |D| = 2 produces
the aforementioned algorithms for the Boolean case. We also found that in the case
when the finite domain is totally ordered, the three well-known special cases, namely,
Horn, dual Horn, and bijunctive, display the same behavior as in the Boolean case:
(1) they have polynomial satisfiability algorithms and (2) they have the same closure
properties.

It would be interesting to know if more efficient algorithms exist or whether

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

944 Á. J. GIL, M. HERMANN, G. SALZER, AND B. ZANUTTINI

our algorithms are asymptotically optimal. Certainly a more involved lower bound
analysis is necessary to answer this open question. Another possible extension of our
work would be a generalization of our algorithms to partially ordered domains and
to domains with a different structure, like lattices. An additional direction for future
work is to look at infinite domains. Some related complexity results for satisfiability
problems in the infinite domain case can be found in [4].

REFERENCES

[1] J. Amilhastre, H. Fargier, and P. Marquis, Consistency restoration and explanations in

dynamic CSPs—application to configuration, Artificial Intelligence, 135 (2002), pp. 199–
234.

[2] C. Ansótegui and F. Manyà, New logical and complexity results for signed-SAT, in Proceed-
ings of the 33rd IEEE International Symposium on Multiple-Valued Logic (ISMVL 2003),
Tokyo, Japan, 2003, IEEE Computer Society, Washington, DC, 2003, pp. 181–187.

[3] M. Baaz, C. G. Fermüller, and G. Salzer, Automated deduction for many-valued logics, in
Handbook of Automated Reasoning, Vol. 2, J. A. Robinson and A. Voronkov, eds., Elsevier
Science, New York, 2001, pp. 1355–1402.

[4] B. Beckert, R. Hähnle, and F. Manyà, Transformations between signed and classical clause

logic, in Proceedings of the 29th IEEE International Symposium on Multiple-Valued Logic
(ISMVL 1999), Freiburg im Breisgau, Germany, 1999, IEEE Computer Society, Washing-
ton, DC, 1999, pp. 248–255.

[5] B. Beckert, R. Hähnle, and F. Manyà, The 2-SAT problem of regular signed CNF formu-

las, in Proceedings of the 30th IEEE International Symposium on Multiple-Valued Logic
(ISMVL 2000), Portland, OR, 2000, IEEE Computer Society, Washington, DC, 2000, pp.
331–336.

[6] R. Béjar, R. Hähnle, and F. Manyà, A modular reduction of regular logic to classical logic, in
Proceedings of the 31st IEEE International Symposium on Multiple-Valued Logic (ISMVL
2001), Warsaw, Poland, 2001, IEEE Computer Society, Washington, DC, 2001, pp. 221–
226.

[7] A. A. Bulatov, A dichotomy theorem for constraints on a three-element set, in Proceedings of
the 43rd ACM Symposium on Foundations of Computer Science (FOCS 2002), Vancouver,
British Columbia, Canada, 2002, pp. 649–658.

[8] A. A. Bulatov, Tractable conservative constraint satisfaction problems, in Proceedings of the
18th IEEE Symposium on Logic in Computer Science (LICS 2003), Ottawa, Canada, 2003,
pp. 321–330.

[9] M. C. Cooper, D. A. Cohen, and P. Jeavons, Characterising tractable constraints, Artificial
Intelligence, 65 (1994), pp. 347–361.

[10] N. Creignou, S. Khanna, and M. Sudan, Complexity Classifications of Boolean Constraint

Satisfaction Problems, SIAM Monographs on Discrete Mathematics and Applications 7,
SIAM, Philadelphia, 2001.

[11] R. Dechter and J. Pearl, Structure identification in relational data, Artificial Intelligence,
58 (1992), pp. 237–270.

[12] T. Feder and M. Y. Vardi, The computational structure of monotone monadic SNP and

constraint satisfaction: A study through Datalog and group theory, SIAM J. Comput., 28
(1998), pp. 57–104.

[13] A. Gil, M. Hermann, G. Salzer, and B. Zanuttini, Efficient algorithms for constraint

description problems over finite totally ordered domains, in Proceedings of the 2nd In-
ternational Joint Conference on Automated Reasoning (IJCAR’04), Cork, Ireland, 2004,
Lecture Notes in Comput. Sci. 3097, D. Basin and M. Rusinowitch, eds., Springer-Verlag,
New York, 2004, pp. 244–258.

[14] R. Hähnle, Short conjunctive normal forms in finitely valued logics, J. Logic Comput., 4
(1994), pp. 905–927.

[15] R. Hähnle, Exploiting data dependencies in many-valued logics, J. Appl. Non-Classical Logics,
6 (1996), pp. 49–69.

[16] R. Hähnle, Complexity of many-valued logics, in Proceedings of the 31st IEEE International
Symposium on Multiple-Valued Logic (ISMVL 2001), Warsaw, Poland, 2001, IEEE Com-
puter Society, Washington, DC, 2001, pp. 137–148.

[17] J.-J. Hébrard and B. Zanuttini, An efficient algorithm for Horn description, Inform. Pro-
cess. Lett., 88 (2003), pp. 177–182.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DESCRIPTION PROBLEMS OVER FINITE ORDERED DOMAINS 945

[18] P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford University Press, Oxford,
UK, 2004.

[19] P. Jeavons, On the algebraic structure of combinatorial problems, Theoret. Comput. Sci., 200
(1998), pp. 185–204.

[20] P. Jeavons, D. Cohen, and M. Gyssens, Closure properties of constraints, J. ACM, 44 (1997),
pp. 527–548.

[21] P. Jeavons and M. C. Cooper, Tractable constraints on ordered domains, Artificial Intelli-
gence, 79 (1995), pp. 327–339.

[22] P. G. Kolaitis and M. Y. Vardi, Conjunctive-query containment and constraint satisfaction,
J. Comput. System Sci., 61 (2000), pp. 302–332.

[23] N. V. Murray and E. Rosenthal, Adapting classical inference techniques to multiple-valued

logics using signed formulas, Fund. Inform., 21 (1994), pp. 237–253.
[24] T. J. Schaefer, The complexity of satisfiability problems, in Proceedings of the 10th ACM

Symposium on Theory of Computing (STOC’78), San Diego, CA, 1978, pp. 216–226.
[25] B. Zanuttini and J.-J. Hébrard, A unified framework for structure identification, Inform.

Process. Lett., 81 (2002), pp. 335–339.

