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Abstract

The bifurcation theory and numerics of periodic orbits of general dynamical systems is
well developed, and in recent years there has been rapid progress in the development of a
bifurcation theory for symmetric dynamical systems. But there are hardly any results on
the numerical computation of those bifurcations yet. In this paper we show how spatio-
temporal symmetries of periodic orbits can be exploited numerically. We describe methods
for the computation of symmetry breaking bifurcations of periodic orbits for free group
actions and show how bifurcations increasing the spatiotemporal symmetry of periodic orbits
(including period halving bifurcations and equivariant Hopf bifurcations) can be detected
and computed numerically. Our pathfollowing algorithm is based on a multiple shooting
algorithm for the numerical computation of periodic orbits via an adaptive Poincaré section
and a a tangential continuation method with implicit reparametrization.
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1 Introduction

The bifurcation theory and numerics of periodic orbits of general dynamical systems is well
developed, see e.g. [1, 8, 13, 16, 17]. Frequently the considered problems possess certain sym-
metries. Symmetries change the generic behaviour of a dynamical system dramatically, and in
recent years there has been rapid progress in the development of a bifurcation theory for periodic
orbits of symmetric dynamical systems, see eg [9, 11, 18, 19, 24]. But there are hardly any results
on the numerical computation of those bifurcations yet. Gatermann and Hohmann [10] devel-
oped numerical methods for the exploitation of symmetry and the computation of symmetry
breaking and symmetry increasing bifurcations of stationary solutions and implemented those
methods in the mixed symbolic numerical code SYMCON. They treat finite symmetry groups.
Cliffe et al [2] developed numerical methods for the computation of bifurcations of stationary
solutions in the case of continuous rotational symmetries.

In this paper we start a systematic theory on numerical bifurcation of symmetric periodic
orbits by extending the methods of Gatermann and Hohmann [10] to periodic solutions. We
consider a parameter dependent dynamical system

ẋ = f(x, λ), f : R
n × R → R

n, (1.1)

which is equivariant with respect to a finite symmetry group Γ ⊂ GL(n), i.e.,

γf(x, λ) = f(γx, λ) ∀ γ ∈ Γ, x ∈ R
n, λ ∈ R.

In most parts of this paper we assume that Γ acts freely, i.e., γx 6= x for all γ 6= id and
x ∈ Rn. We numerically continue periodic solutions with respect to the parameter λ exploiting
possible symmetries and computing symmetry breaking and symmetry increasing bifurcations
of those periodic orbits. For the computation of periodic orbits we employ the multiple shooting
algorithm presented by Deuflhard [5], which we briefly recall in Section 2.1. Section 2.2 is
concerned with the exploitation of spatial and spatio-temporal symmetries of periodic orbits
in the multiple shooting context. In Section 2.4 the aspect of continuation is added and the
pathfollowing method of Deuflhard, Fiedler and Kunkel [7] is used for the continuation of periodic
solutions in the single and multiple shooting approach. A different method for the numerical
continuation of periodic solutions with symmetry based on Fourier expansions has been presented
by Dellnitz [4].

In Sections 3 and 4 bifurcations of symmetric periodic orbits are treated. First symmetry
breaking and symmetry increasing bifurcations of periodic orbits are considered (Section 3) and
then equivariant Hopf bifurcations along periodic orbits (Section 4). In these sections numerical
techniques of Gatermann and Hohmann [10] are extended from stationary solutions to periodic
solutions.

Generic symmetry breaking bifurcations of periodic orbits of free group actions correspond
to period doubling bifurcations in the space of group orbits, or equivalently, to period doubling
bifurcations of the symmetry reduced Poincaré map [18]. In Section 3.4 we show how such
symmetry breaking bifurcations can be detected and computed numerically by extending the
corresponding methods for non-symmetric systems, c.f. Section 3.1.

We have also developed methods for the computation of bifurcations which increase the
spatio-temporal symmetry of the periodic solution, in particular an algorithm for the compu-
tation of period halving points which is based on the methods for computing period doubling
bifurcation points, see Sections 3.2 and 3.5.

In Section 4 we derive methods for the detection of equivariant Hopf points along branches
of symmetric periodic orbits and present an extended system for the computation of equivariant
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Hopf points. The main problem is how to deal with multiple Hopf eigenvalues forced by sym-
metry. The issue of numerically dealing with multiple critical eigenvalues was treated by Cliffe
et al [2] in the case of continuation of stationary solutions with continuous rotation symmetry.

The numerical methods we present have been implemented in the C code SYMPERCON [20].
In Section 5, examples are presented to illustrate the performance of the developed algorithmic
tools. In Subsection 5.1 we use both SYMPERCON, AUTO [8] and CONTENT [17] for the
computation of the period doubling cascade of the Lorenz equations to demonstrate the better
performance of SYMPERCON. In Section 5.2 we compute symmetry breaking bifurcations of
periodic orbits of four coupled cells. In Section 5.3 we show how oscillations of an electric circuit
can be computed efficiently by exploiting their spatio-temporal symmetry.

We partly follow the unpublished manuscripts [20, 22, 23]. For a description of the program
SYMPERCON see [22, 20].
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2 Continuation of symmetric periodic orbits

In this section we review the multiple shooting method of Deuflhard [5] for the computation of
periodic orbits, show how symmetries of periodic orbits can be exploited within the multiple
shooting approach and present a continuation method for symmetric periodic orbits based on
the Gauss-Newton method.

2.1 Computation of single periodic orbits - single shooting method

In this subsection we briefly recollect the algorithm for the computation of periodic orbits of an
autonomous ordinary differential equation (ODE)

ẋ = f(x), f : R
n → R

n, (2.1)

which has been introduced in [5].
Let Φt(·) be the flow of (2.1) and let x(t) = Φt(x

∗) be a periodic solution of (2.1) of period
T ∗, i.e., x(T ∗) = x∗. Then any time shifted solution x(t+ t0), t0 ∈ R, is also a periodic solution,
because the system (2.1) is autonomous. All these solutions determine the same periodic orbit

P = Px(·) = {x(t), t ∈ R}.
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In order to avoid this non-uniqueness a well known analytical technique is to fix a Poincaré
section S = Sx∗ which is an (n − 1)-dimensional affine hyperplane transversal to the periodic
orbit P at the point x∗, see e.g. [16]. Let us use the Poincaré section orthogonal to the orbit

S = Sx∗ = x∗ + S′
x∗ where S′

x∗ = span(f(x∗))⊥.

Then x∗ is a fixed point of the Poincaré map (first return map) Π : S → S.

Definition 2.1 We say that a periodic orbit P with period T ∗ is non-degenerate if

DxΠ(x)|x=x∗ − id

is regular for x∗ ∈ P.

In this case x∗ is a locally unique fixed point of the Poincaré map Π and a locally unique root
of the equation

F(x) := Π(x) − x = 0, where F : S → S.

Numerically one can either fix the phase by an additional phase condition, as described eg in
[1, 16], or solve an underdetermined equation, as in [5]. We follow the latter approach and
compute a point x = x∗ on the periodic solution together with its period T = T ∗ by solving the
underdetermined equation F (y) = 0. Here F : Rn × R → Rn is given by

F (x, T ) = ΦT (x) − x = 0, where y = (x, T ). (2.2)

We solve (2.2) by an underdetermined Gauss-Newton method:

∆yk = −DF (yk)+F (yk),

yk+1 = yk + ∆yk,
(2.3)

where DF (yk)+ denotes the Moore-Penrose pseudo-inverse of DF (yk). Remember that for
A ∈ Mat(m, n), m ≤ n, rank A = m, x ∈ Rn, b ∈ Rm, x = A+b is defined by

Ax = b, x⊥ ker(A),

where ker(A) is the kernel of A. So x = A+b is the smallest in norm solution of Ax = b and
hence the Newton correction ∆yk is the smallest solution of the underdetermined linear system
in (2.3).

The Jacobian DF (x, T ) of (2.2) in the solution (x∗, T ∗) is given by

DF (x∗, T ∗) = [− id +DxΦT∗(x∗), f(ΦT∗(x∗))] = [− id+DxΦT∗(x∗), f(x∗)]. (2.4)

Therefore a kernel vector tf of DF (y∗) at the solution point y∗ = (x∗, T ∗) is the tangent
tf = (f(x∗), 0) to the trajectory.

Remark 2.2 This approach can be interpreted as computing periodic orbits in an adaptive
Poincaré section, which is approximately orthogonal to the periodic orbit: Since for the kernel
vectors tk = (tkx, tkT ) of DF (yk) we have tk → tf as k → ∞, the Gauss-Newton iterate xk+1 =
xk + ∆xk lies in the adaptive Poincaré section Sxk = xk + span(tkx)⊥ ≈ x∗ + span(f(x∗))⊥.

If x∗ lies on a non-degenerate periodic orbit, i.e., if DxΠ(x∗) − id is regular, then by (2.4)
the Jacobian DF (x∗, T ∗) is regular. Since this condition does not depend on the chosen point
x∗ on P we get the following convergence result:

Proposition 2.3 If the periodic orbit P through x∗ = ΦT∗(x∗) is non-degenerate then there is
a tubular neighbourhood U of the periodic orbit P where there is no other periodic solution with
period near T ∗ and which is such that the Gauss-Newton method (2.3) applied to (2.2) converges
for initial data x̂ ∈ U and T̂ ≈ T ∗.

Before we review the extension of this basic shooting method to the multiple shooting context
we show how symmetries of periodic orbits can be exploited numerically.
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2.2 Symmetries of periodic orbits and how to exploit them

Let Γ ⊆ GL(n) be a finite group and let f be Γ-equivariant [11], ie:

f(γx) = γf(x) ∀ x ∈ R
n, γ ∈ Γ. (2.5)

This condition on the vectorfield (2.1) implies that if x(t) is a solution of the dynamical system
(2.1) then also γ x(t) is a solution. Hence the flow Φt(·) of (2.1) is also Γ-equivariant: γΦt(x0) =
Φt(γx0) for every γ ∈ Γ, x0 ∈ Rn.

For any x ∈ Rn the element γ x is called conjugate to x [11]. An element γ ∈ Γ is called a
symmetry of x ∈ Rn if γx = x; the set of all symmetries of x (isotropy subgroup of x) is given
by K = Γx = {γ ∈ Γ | γx = x}. It can be seen easily that the vectorfield f of (2.1) maps the
fixed point space of K

Fix(K) = {x ∈ R
n | γx = x ∀ γ ∈ K}

into itself. Thus we can restrict the ODE (2.1) to the fixed point space Fix(K) ' Rnred which has
a lower dimension nred ≤ n. In this way we obtain a symmetry reduced system fred : Rnred →
Rnred which can be computed symbolically (see Gatermann, Hohmann [10]). The symmetry
group acting on Fix(K) is N(K)/K where N(K) is the normalizer of K.

Remark 2.4 [11] If a finite group (or, more generally, a compact group) Γ acts linearly on the
phase space X = Rn, i.e., if

γx := ϑ(γ)x, γ ∈ Γ, x ∈ X,

where ϑ : Γ → GL(n) is a homomorphism, then the phase space X = Rn can be decomposed
into a sum Rn = X1 ⊕X2 ⊕ . . .⊕Xl where the Xi are Γ-invariant vector spaces and can not be
decomposed into smaller Γ-invariant subspaces. Such vectorspaces Xi are called Γ-irreducible
and their corresponding reduced group actions ϑi := ϑ|Xi

are called irreducible representations
of the action of Γ on R

n. If a Γ-irreducible subspace X is also irreducible as a vectorspace over
C, then its irreducible representation ϑ|X is called an absolutely irreducible representation. If
it is reducible over C it is called a complex irreducible representation. We will encounter the
concept of irreducible representations in the computation of bifurcations, c.f. Section 4.2.

The spatial symmetries K of periodic solutions x(t) are those group elements γ ∈ Γ which leave
each point on the periodic orbit invariant:

K := Γx(t) = {γ ∈ Γ | γx(t) = x(t) ∀ t}.

Since the flow Φt is Γ-equivariant the set of spatial symmetries K of a periodic solution x(t)
does not depend on the time t. In addition to spatial symmetries there are also spatio-temporal
symmetries which leave the periodic orbit P := Px(·) invariant as a whole but not pointwise,
i.e., the spatio-temporal symmetries of a periodic orbit P are given by

L := {γ ∈ Γ | γP = P}.

Each γ ∈ L corresponds to a phase shift Θ(γ) T ∗ of the T ∗-periodic solution x(t):

γ ∈ L ⇒ x(t) = γx(t + Θ(γ) T ∗), where Θ(γ) ∈ S1 ' R/Z. (2.6)

So spatio-temporal symmetries come in pairs (γ, Θ(γ)) ∈ Γ × S1. We define an action of the
spatio-temporal symmetry group Γ×S1, where S1 = R/Z, on T ∗-periodic solutions x(t) of (2.1)
as follows:

((γ, θ)x)(t) := γx(t + θT ∗), (γ, θ) ∈ Γ × S1. (2.7)
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Note that Θ : L → R/Z is a group homomorphism with the spatial symmetries K as kernel and
that

L/K ≡ Z`, ` ∈ N, (2.8)

see [11]. The spatial symmetries of periodic solutions can be exploited by restriction onto the
fixed point space Fix(K), i.e., by using a symmetry reduced system fred : Fix(K) → Fix(K).

From now on we assume that the spatial symmetry K of the periodic orbit is trivial. Then
the spatio-temporal symmetries of the periodic orbit form a finite cyclic group L = Z`. In
bifurcation theory the spatio-temporal symmetries of periodic orbits are taken into account by
studying the reduced Poincaré map. It was first introduced by Fiedler [9] and later used by
Lamb, Melbourne and Wulff [18, 19] in order to classify symmetry breaking bifurcations of
periodic orbits, see also Section 3. Let α ∈ L = Z` be that element in L that corresponds to the
smallest possible non-zero phase shift T ∗/`:

α x(t +
T ∗

`
) = x(t) ∀ t. (2.9)

We call this spatio-temporal symmmetry the drift symmetry of the periodic orbit [25]. For
x∗ ∈ P define the Poincaré section as usual by S = x∗ + span(f(x∗))⊥. Then the reduced
Poincaré map is defined as

Πred = αΠ̂, Π̂ : S → α−1 S, (2.10)

where α is the drift symmetry of the periodic orbit, i.e., satisfies (2.9), and Π̂ maps x ∈ S into
the point where the positive semi-flow through x first hits α−1 S [9]. The fixed point equation
Πred(x) = x or, equivalently, the equation

F(x) = Πred(x) − x = 0, where F : S → S,

then determines periodic orbits with spatio-temporal symmetry L. Note that in the case of
trivial symmetry ` = 1, α = id, the reduced Poincaré map Πred becomes the standard Poincaré
map Π introduced in Section 2.1. In order to numerically exploit spatio-temporal symmetries
we proceed as in Section 2.1: Each point x on a T -periodic orbit with drift symmetry α satisfies
the underdetermined equation

F : R
n × R → R

n, F (x, T ) = αΦT
`
(x) − x = 0. (2.11)

This system is analogous to the corresponding underdetermined system (2.2) in the case of trivial
symmetry and reduces to it in the case α = id, ` = 1. It can also be solved by a Gauss-Newton
method. Note that it suffices to compute the flow Φt(·) and the Wronskian matrix DxΦt(·) only
up to time T

` instead of T , which is a remarkable reduction of the computational cost in the
case of high spatio-temporal symmetry. In a solution point (x∗, T ∗) we have

DF (x∗, T ∗) = [αDxΦT∗

`
(x∗) − id,

1

`
f(αΦT∗

`
(x∗))] = [αDxΦT∗

`
(x∗) − id,

1

`
f(x∗)], (2.12)

analogous to the case of trivial symmetry, c.f. (2.4). In particular DF (x∗, T ∗) is closely related
to DxF(x∗) = DxΠred(x)|x=x∗ − id. We extend the definition of non-degeneracy to symmetric
periodic orbits as follows:

Definition 2.5 We say that a symmetric periodic orbit P with drift symmetry α is non-degenerate
if DΠred(x∗) − id is regular for x∗ ∈ P where Πred is from (2.10).

From (2.12) we conclude that DF (x∗, T ∗) in the periodic orbit is regular if and only if the
periodic orbit is non-degenerate, and so we get the following proposition which is analogous to
Proposition 2.3:
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Proposition 2.6 If the symmetric periodic orbit through x∗ = αΦT∗

`
(x∗) is non-degenerate in

the sense of Definition 2.5 then there is a tubular neighbourhood U about the periodic orbit P
through x∗ with the property that there is no other periodic orbit with symmetry L and period
near T ∗ in U and which is such that the Gauss-Newton method (2.3) applied to (2.11) converges
for initial values x̂ ∈ U , T̂ ≈ T ∗.

2.3 Multiple shooting approach

In order to numerically compute unstable symmetric periodic solutions we use the just described
algorithm in the multiple shooting context (c.f. [5]): we compute k points on a periodic orbit
with spatio-temporal symmetry L = Z`, trivial isotropy and drift symmetry α by solving the
underdetermined equation

F (x1, . . . , xk, T ) = 0, F : R
N → R

M , (2.13)

where N = M + 1 = kn + 1, 0 = s1 < . . . < sk+1 = 1 is a partition of the unit interval,
∆si = si+1 − si for i = 1, . . . k, and

Fi(x1, . . . , xk, T ) =

{
Φ∆siT

`

(xi) − xi+1 for i = 1, . . . , k − 1,

αΦ∆skT

`

(xk) − x1 for i = k.
(2.14)

The linear systems which arise in the Gauss-Newton method are of the form Jy = b, where
y = (x, T ) ∈ Rnk+1, x = (x1, . . . , xk), b = (b1, . . . , bk),

J = DF (x, T ) =




G1 − id g1

G2 − id g2

. . .
. . .

...
Gk−1 − id gk−1

− id Gk gk




= [G, g], (2.15)

where G is an (nk, nk)-matrix, g an nk-vector, and

Gi = DxΦ∆siT

`

(xi), i = 1, 2, . . . , k − 1,

Gk = αDxΦ∆skT

`

(xk),

gi = DT Fi(x, T ) = DT Φ∆siT

`

(xi) = ∆si

` f(Φ∆siT

`

(xi)), i = 1, . . . , k − 1,

gk = ∆sk

` αf(Φ∆skT

`

(xk)).

We have

Jy = b ⇔ [G, g]

(
x

T

)
= b ⇔ Gx = b − gT,

so we can apply Gaussian block elimination to G to solve these linear systems. This yields the
following algorithm:

1.) Compute the condensed right hand side

bc := C(G, b, k) = bk + Gkbk−1 + · · · + Gk · · ·G2b1.

2.) Compute the condensed matrix [Gc, gc] with

Gc := Gk · · ·G1, gc := C(G, g, k). (2.16)
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3.) Compute a solution of the condensed system [Gc − id, gc]
(
x1

T

)
= bc, e.g.

(
x1

T

)
= [Gc − id, gc]

+ bc,

using QR-decomposition.

4.) Compute x via the explicit recursion

xi = Gi−1xi−1 − bi−1 + gi−1T for i = 2, . . . , k. (2.17)

We have now obtained a solution y = J−b where y = (x, T ) and J− is an outer inverse of J . In
order to compute the solution J+b where J+ is the Moore-Penrose pseudo-inverse of J we have
to add one more step:

5.) Compute the kernel vector t = (tx, tT ) of J , where tx = (t1, t2, . . . , tk). Starting from a
tangent of the condensed system

(
t1
tT

)

[Gc − id, gc]

(
t1
tT

)
= 0

we obtain a tangent t of the whole system by

ti = Gi−1ti−1 + gi−1tT for i = 2, . . . , k.

In the end we project y → y − 〈y,t〉
〈t,t〉 t.

An easy computation shows that in a solution point y∗ = (x∗, T ∗) we have

[Gc − id, gc] = [αDxΦT∗

`
(x∗

1) − id,
1

`
f(x∗

1)], (2.18)

so the condensed matrix Ec := [Gc − id, gc] equals the Jacobian (2.12) of the single shooting
approach in the point x∗

1. The Jacobian J is regular iff [Gc − id, gc] is regular. Hence we get the
following result which is analogous to Proposition 2.6:

Theorem 2.7 The Jacobian J of the multiple shooting system (2.13) is regular at the symmetric
periodic orbit if and only if the periodic orbit is non-degenerate in the sense of Definition 2.5. In
this case the Gauss-Newton method (2.3) applied to (2.13) converges for sufficiently good initial
data.

Remarks 2.8

a) The approach for symmetry exploitation in the multiple shooting approach can be trans-
ferred to collocation methods (used in AUTO and CONTENT [8, 17]) since collocation can
be viewed as a special case of a multiple shooting method where the number of grid points
corresponds to the number of multiple shooting points k and the initial value problem
solver consists of only one integration step of a collocation method. The advantage of the
multiple shooting approach is that it allows the use of adaptive order and stepsize initial
value problem solvers for the computation of the flow Φt(x) and the Wronskians DxΦt(x)
which we use for the evaluation of F rsp. DF , like the extrapolation codes of Deufhard [6].
These techniques have been implemented in the code SYMPERCON [22, 20], see Section
5.1 for a comparison with AUTO and CONTENT.
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b) Note that in the program packages AUTO and CONTENT [8, 17] a phase condition is used
to obtain a unique periodic orbit, whereas we solve an underdetermined equation for the
periodic orbit. Since we use the Moore-Penrose pseudo-inverse to compute the corrections
of the Gauss-Newton method ∆yk = −DF (yk)+F (yk), we have ∆yk⊥ ker(DF (yk)). Here

ker(DF (yk)) ≈ ker(DF (y∗)) = span(tf ),

where
tf = (f(x∗

1), . . . , f(x∗
k), 0, 0). (2.19)

The condition ∆yk⊥ ker(DF (yk)) is therefore an ”adaptive phase condition” which is such
that the correction ∆yk is the smallest solution of the equation for the Newton corrections
DF (yk)∆yk = −F (yk), c.f. Remark 2.2.

c) Dellnitz [3, 4] computes symmetric periodic orbits by a Galerkin ansatz based on Fourier
modes. This method is effective near Hopf bifurcations since in this situation periodic
orbits can be approximated by few Fourier modes.

2.4 Continuation of nondegenerate periodic orbits

In this section we show how the pathfollowing method for stationary solutions described in [7] can
be extended to the case of symmetric periodic solutions. We consider the parameter dependent
Γ-equivariant dynamical system ẋ = f(x, λ) from (1.1) again and first look at stationary solutions
of (1.1),

f(y) = 0, f : R
n+1 → R

n, y = (x, λ). (2.20)

If y∗ = (x∗, λ∗) is a stationary solution and Dyf(y) is regular at y∗ then (2.20) locally defines a
solution branch. We apply the tangential continuation method based on implicit reparametriza-
tion presented in [7] to compute this solution branch. By writing y = (x, λ) we want to express
that the parameter λ does not play any extraordinary role so that turning points can be treated
easily. The pathfollowing algorithm works as follows: if a solution y∗ is given a new guess ŷ is
computed by setting ŷ = y∗ + ε t(y∗) where t(y) is the normalized kernel vector of Dyf(y), and
hence the continuation tangent, and ε is a suitably chosen stepsize. Then an underdetermined
Gauss-Newton method as in (2.3) is used for the iteration from the guess ŷ back to the solution
path. The stepsize control is described in [7]. We now show how to apply this continuation
method to symmetric periodic orbits.

2.4.1 Single shooting method

In the case of symmetric periodic solutions we want to compute fixed points of the parameter
dependent reduced Poincaré map Πred : S × R → S

Πred(x, λ) = x ⇔ F(x, λ) := Πred(x, λ) − x = 0, (2.21)

or, equivalently, solutions of the parameter dependent nonlinear equation

F(x, λ) = 0, F : S × R → S.

We can in principle apply the above described continuation method to this equation. The
continuation tangent in a solution point (x∗, λ∗) is simply the kernel vector t∗F of DF(x∗, λ∗).
But in the numerical realization of this idea we want to use the method of adaptive Poincaré
sections of Sections 2.1, 2.2, c.f. Remark 2.2. So we again introduce the period as a new variable
and solve (in the single shooting approach) the underdetermined equation

F : R
n+2 → R

n, F (x, T, λ) = αΦT
`
(x, λ) − x = 0, (2.22)
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by a Gauss-Newton procedure. Now the kernel ker(DF ) of DF is two-dimensional. In a solution
point (x∗, λ∗) one kernel vector of DF is the tangent to the periodic orbit

tf = (f(x∗, λ∗), 0, 0) ∈ ker(DF (x∗, T ∗, λ∗)).

We want to determine the continuation tangent t∗ in such a way that it corresponds to the
theoretical tangent vector t∗F . First the continuation tangent has to be in the kernel of DF ,
and second the continuation tangent should lie in the Poincaré section S. Since we choose the
Poincaré section orthogonal to the orbit, this leads to the conditions

t∗ ∈ ker(DF ), t∗ ⊥ tf . (2.23)

The Jacobian in the solution point (x∗, T ∗, λ∗) is given by

DF (x∗, T ∗, λ∗) = [αDxΦT∗

`
(x∗, λ∗) − id,

1

`
f(x∗, λ∗), αDλΦT∗

`
(x∗, λ∗)], (2.24)

and therefore we get the following proposition, analogous to Proposition 2.6:

Proposition 2.9 Let x∗ lie on a T ∗-periodic orbit P of (1.1) with symmetry L = Z` and drift
symmetry α. Then the Jacobian DF (x∗, T ∗, λ∗) is regular if and only if

DF(x∗, λ∗) = [DxF(x∗, λ∗), DλF(x∗, λ∗)] = [DxΠred(x
∗) − id, DλΠred(x∗)] (2.25)

is regular. In this case the path of periodic solutions given by (2.21) is locally unique in the
following sense: there is a tubular neighbourhood U of the periodic orbit P such that every
periodic solution x̂(t) in this neighbourhood with period T̂ close to T ∗, parameter λ̂ close to λ∗

and drift symmetry α lies on the path of periodic solutions defined by (2.21). Moreover the
Gauss-Newton method (2.3) applied to (2.22) converges to a periodic solution on this path for

initial data x̂ ∈ U , T̂ ≈ T ∗, λ̂ ≈ λ∗.

Note that for non-degenerate periodic orbits the condition of Proposition 2.9 is always satisfied,
but it also holds in a turning point bifurcation, see Section 2.5.

2.4.2 Multiple shooting ansatz

In the multiple shooting approach we solve the parameter dependent equation

F (x1, . . . , xk, T, λ) = 0, F : R
nk × R × R → R

nk, (2.26)

where F is as in (2.14). Nearly everything carries over from Section 2.3, we just have one more
column in the Jacobian consisting of the parameter derivatives

Pi = DλΦ∆siT

`

(xi, λ), i = 1, . . . , k − 1, Pk = αDλΦ∆skT

`

(xk , λ).

Therefore, to solve the linear equations Jy = b, y = (x1, . . . , xk, T, λ), we have to compute an
additional condensed vector (step 1 in the Gaussian block elimination algorithm), namely

pc := C(P ) = Pk + GkPk−1 + · · · + Gk · · ·G2P1.

The condensed matrix in steps 2 and 3 is of the form [Gc − id, gc, pc], the recursion (step 4) has
to be modified to

xi = Gi−1xi−1 − bi−1 + gi−1T + Pi−1λ for i = 2, . . . , k,
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and in step 5 we compute an orthonormal basis of the 2-dimensional kernel of J and project the
preliminary solutions y = J−b onto the orthogonal complement of this kernel.

As can be seen from the Gaussian block elimination, J has full rank if the condensed matrix
Ec := [Gc − id, gc, pc] has full rank. A simple computation shows that the matrix Ec equals the
Jacobian of the single shooting approach (2.24). Thus the Gauss-Newton method (2.3) applied
to the multiple shooting system of equations (2.26) converges under the same conditions to a
solution as the Gauss-Newton method of the single shooting method, namely if the assumptions
of Proposition 2.9 are satisfied.

As in the case of the single shooting method, we choose the continuation tangent t∗ as the
kernel vector of DF (y∗) (with F from (2.26)) which is orthogonal to tf from (2.19).

2.5 Turning points

Before we come to the detection and computation of bifurcations of symmetric periodic orbits
in Sections 3 and 4 we first consider turning points of symmetric periodic orbits. We saw that
periodic orbits are solutions of the equation F(x, λ) = 0 where F is as in (2.21). Turning points
are characterized by the condition that DxF(x∗, λ∗) from (2.25) is singular, but that DF(x∗, λ∗)
has full rank. In this case the solution path (x(s), λ(s)), of (2.21), s ∈ R, x(0) = x∗, λ(0) = λ∗,
satisfies λ′(0) = 0. Generically λ′′(0) 6= 0 so that the solution path has a turning point in λ.
Turning points can be detected by a change of sign of the λ-component t∗λ of the continuation
tangent t∗ of the periodic solution provided this test is done after the tests of other bifurcations.
This ordering of the monitoring tests for bifurcations is important, because, as we will see in
Sections 3.2, 3.5 and 4, a change of sign of the λ-component t∗λ of the continuation tangent t∗

also occurs at flip up bifurcations and Hopf points along periodic orbits.
A turning point between two points y(0) = (x(0), T (0), λ(0)) and y(1) = (x(1), T (1), λ(1)) with

continuation tangents t(0), t(1) respectively is detected if

t
(0)
λ t

(1)
λ < 0.

The λ-component of the turning point is then computed by Hermite interpolation exactly in
the same way as in the case of stationary solutions, see [7]: We construct a cubic polynomial
y(τ) = (x(τ), T (τ), λ(τ)), where y : [0, 1] → RN , over the line y(0) + τ(y(1) − y(0)), τ ∈ [0, 1],
such that

y(0) = y(0), y′(0) = ‖y(1)−y(0)‖2

〈y(1)−y(0),t(0)〉
t(0),

y(1) = y(1), y′(1) = ‖y(1)−y(0)‖2

〈y(1)−y(0),t(1)〉
t(1),

(2.27)

and solve the quadratic equation dλ
dτ (τ) = 0 for its unique root τ̂ ∈ [0, 1]. We then take the value

ŷ = y(τ̂ ) of the Hermite polynomial at τ̂ as initial guess for a Gauss-Newton iteration. The
periodic solution y∗ obtained in this way is accepted as turning point if

|t∗λ| < tol

where t∗ is the continuation tangent at y∗ and tol is the required accuracy of the computation.

Otherwise we replace y(0) or y(1) by y∗ so that t
(0)
λ t

(1)
λ < 0 and repeat the procedure.

3 Computation of flip down and flip up bifurcations

In this section we show how generic bifurcations of symmetric periodic orbits to other periodic
orbits can be computed numerically. This involves the detection and numerical computation of
bifurcation points and the computation of the start off directions for the bifurcating branches.
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We only have to follow non-conjugate branches and distinguish between two types of symmetry
changing bifurcations: there are symmetry increasing bifurcations which lead to a super group
of the symmetry group of the original solution, i.e., the bifurcating solutions possess more sym-
metry, and we have symmetry breaking bifurcations which lead to a subgroup of the symmetry
group of the original solution.

In this section we only treat bifurcations from periodic orbits to periodic orbits, not Hopf
bifurcations (from periodic orbits to stationary solutions) - we will treat these in the next
section. Such bifurcations have been classified by Fiedler [9] in the case of cyclic symmetry
groups. Bifurcations of periodic orbits in systems with arbitrary finite symmetry group were
classified by Lamb and Melbourne [18], see also [19].

In this paper we assume that the symmetry group of the dynamical system is discrete and
that the isotropy K of the periodic orbit is trivial, i.e., we restrict the dynamical system to the
corresponding fixed point space Fix(K). In other words, we do not treat bifurcations to periodic
orbits with smaller or bigger isotropy group K. The methods we present extend the techniques of
Gatermann and Hohmann [10] for the numerical computation of symmetry changing bifurcations
of stationary solutions to the case of periodic solutions. In particular, the symmetry monitoring
functions which are used for the detection of symmetry changing bifurcations are related to
those used in [10].

Generic bifurcations of periodic orbits with trivial isotropy to other periodic orbits are caused
by a period doubling (flip down) or period halving (flip up) bifurcation of the reduced Poincaré
map [18, 19]. We start with generic bifurcations without symmetry where the ODE (1.1) is not
assumed to be equivariant.

3.1 Detection and computation of period doubling bifurcations

t̃x

Figure 1: Period doubling bifurcation in phase space. The bifurcating periodic orbit lies on a
Mobius strip. Dashed line: original periodic orbit, solid line: bifurcating periodic orbit with
twice the period, t̃x: x-component of the continuation tangent for the bifurcating branch.

A point (x∗, λ∗) characterizing a periodic solution with period T ∗ is a period doubling bifurcation
point (flip down point) if the Jacobian DxΠ of the Poincaré map has a single eigenvalue −1 in
(x∗, λ∗) with eigenvector v∗

S ∈ S and if this is the only eigenvalue on the complex unit circle, see
e.g. [13, 16]. Let x(λ) be the solution branch of Π(x, λ) = x with x(λ∗) = x∗. Then we moreover
require that the path µ(λ) of eigenvalues of DxΠ(x(λ), λ) with µ(λ∗) = −1 satisfies the generic
transversality condition

∂µ

∂λ
(λ∗) 6= 0. (3.1)
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Under these assumptions (x∗, λ∗) is a pitchfork bifurcation point of the map

F̃(x, λ) = Π(Π(x, λ), λ) − x = 0, (3.2)

see [13, 16]. The normal form of this bifurcation is

f̃(z, λ) = z3 − λz. (3.3)

By a Lyapounov-Schmidt reduction (3.2) can be reduced to a scalar equation in z = 〈x−x∗, v∗S〉.
After a suitable change of coordinates this scalar equation takes the form (3.3), up to order 3,
see [13, 16]. The vector t̃F̃ = (v∗S , 0) is the tangent vector of the bifurcating branch in (x∗, λ∗).
The bifurcating periodic orbits correspond to fixed points of Π2 and hence have approximately
twice the period of the original periodic solution. They lie on a Mobius strip around the original
periodic orbit, see Figure 1. The map F̃ is Z2-equivariant where the nonlinear Z2-action is given
by the Poincaré map (x, λ) → (Π(x), λ) (in the normal form (3.3) this Z2-symmetry becomes
z → −z). So a period doubling bifurcation is a Z2-symmetry breaking bifurcation of equilibria of

F̃ . If we consider the T -periodic solutions on the original branch as T̃ -periodic, where T̃ := 2T ,
the original branch has temporal Z2-symmetry for the action of the spatio-temporal symmetry
group Γ × R given by (2.7):

(id, θ)x(t) = x(t + θT̃ ) = x(t) for θ = 1/2,

and the branching solutions are not Z2-symmetric. So we see that even in the case of a triv-
ial symmetry group Γ = {id} the period doubling bifurcation corresponds to a Z2-symmetry
breaking bifurcation as the phase shift symmetry (temporal symmetry) of the periodic orbit is
broken.

In the following we briefly describe how to numerically detect and compute period doubling
bifurcations in non-symmetric systems. We adapt standard techniques used in the context of
collocation methods [1, 8, 17] to our approach for the computation of periodic orbits as solutions
of underdetermined systems, as described in Section 2. In Section 3.5 we show how to adapt
these methods to the numerical computation of symmetry breaking bifurcations of symmetric
periodic orbits.

3.1.1 Numerical detection of period doubling bifurcations

Period doublings can be detected by a change of sign of

d(λ) := det(DxΦT∗(x∗, λ∗) + id)

which occurs due to the transversality condition (3.1). The matrix DxΦT∗(x∗, λ∗) is computed
in the single shooting approach to obtain DF (x∗, T ∗, λ∗), see (2.4), and also in the multiple
shooting approach in the computation of the condensed matrix Gc, see (2.18) with ` = 1 and
α = id.

3.1.2 Computation of period doubling bifurcation points

If a period doubling point has been detected it can be computed by use of linear interpolation
and a Gauss-Newton procedure to iterate back to the solution path: If there is a period doubling
point between two consecutively computed periodic solutions y(0) and y(1) then

d(λ(0))d(λ(1)) < 0.
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By linear interpolation of the two points (λ(0), d(λ(0))) and (λ(1), d(λ(1))) we obtain a point (λ̂, 0)

which gives us an approximation for the parameter value λ̂ of the bifurcation point. Linear
interpolation between the points y(0) and y(1) provides a first guess ŷ with parameter λ̂ for the
period doubling point. This guess is then iterated back to a point y∗ on the solution path by a
Gauss-Newton procedure. If

‖y∗ − ŷ‖ ≤ tol,

y∗ is accepted as period doubling point. If not, then either y(0) or y(1) is replaced by y∗, such
that the condition d(λ(0))d(λ(1)) < 0 is satisfied, and the procedure is repeated.

Doubling the number of multiple shooting points for the bifurcating branch If we
fix the number of multiple shooting points on the bifurcating branch of 2T -periodic solutions,
then after some period doubling bifurcations the multiple shooting method is likely to diverge
because the initial number of multiple shooting points will not be appropriate for a periodic
solution with a much higher period than the original period. Therefore it is preferable to
compute the bifurcating branch of periodic orbits with twice as many multiple shooting points,
i.e., to set k̃ = 2k as the number of multiple shooting points of the bifurcating branch. The
bifurcation point ỹ = (x̃1, . . . , x̃k̃ , T̃ , λ̃) on the bifurcating branch is given by

x̃i = x∗
i , x̃i+k = x∗

i for i = 1, . . . , k, T̃ = 2T ∗, λ̃ = λ∗,

and the multiple shooting nodes s̃i, i = 0, 1, . . . , k̃, of the bifurcating branch are set to

s̃i =
si

2
, s̃i+k =

1 + si

2
, i = 1, . . . , k.

3.1.3 Computation of start off directions for the bifurcating branch

After a period doubling bifurcation point has been found the start off direction for the bifurcating
branch has to be computed. The continuation tangent of the original periodic branch is just the
usual continuation tangent. The start off direction for the bifurcating branch is computed as
follows:

Single shooting ansatz We first consider the single shooting approach: we want the start
off direction for the bifurcating branch of periodic orbits to be orthogonal to the T ∗-periodic
orbit, so that it lies in the Poincaré section S. In S ×R the tangent of the bifurcating branch in
the bifurcation point should be the vector t̃F̃ = (v∗S , 0) where v∗

S is the eigenvector of DxΠ(x∗)
to the eigenvalue −1, see above. It can be computed by projecting the kernel vector v∗ of
DxΦT (x∗, λ∗) + id onto the orthogonal complement of the tangent f(x∗) to the periodic orbit
through x∗: Let

t̃x = v∗ −
〈v∗, f(x∗)〉

〈f(x∗), f(x∗)〉
f(x∗). (3.4)

Then we take
t̃ = (t̃x, t̃T , t̃λ) = (t̃x, 0, 0)

as the start off direction for the bifurcating periodic solutions. In phase space the bifurcating
periodic solutions lie on a Moebius band in the middle of which is the original T ∗-periodic
solution. The start off direction is tangential to the Moebius band and orthogonal to the original
solution (see Figure 1).
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Multiple shooting ansatz As preliminary tangent vector v∗
1 of the bifurcating branch for the

first multiple shooting point we choose the eigenvector of Gc + id to −1 where Gc ≈ DxΦT∗(x∗)
is the condensed matrix, see (2.16, 2.18). As preliminary tangent start off directions at the
multiple shooting points x∗

2,. . . , x∗
k we take

v∗j = Gjv
∗
j−1, j = 2, . . . , k.

The first nk components of the start off tangent t̃ of the bifurcating branch in the multiple shoot-
ing approach are then obtained by projecting v∗ = (v∗1 , . . . , v∗k) to the orthogonal complement
of the vector tf = (f(x∗

1), . . . , f(x∗
k)).

Since the number of multiple shooting points is doubled on the bifurcating branch (see Section
3.1.2), this gives us only the first half of the x-component

t̃x = (t̃1, t̃2, . . . , t̃k, t̃k+1, . . . , t̃2k)

of the start off tangent t̃ = (t̃x, 0, 0) of the bifurcating branch. The whole x-component of t̃ is
obtained by copying the first half into the second half and multiplying it with −1, i.e.,

t̃k+i = −t̃i, i = 1, . . . k. (3.5)

As in the single shooting approach we have t̃T = t̃λ = 0.

3.2 Detection and computation of period halving bifurcations

In this section we describe an algorithm for the detection and computation of period halving
bifurcations (flip up points) along branches of periodic orbits. Again, we assume that the sym-
metry group Γ of the dynamical system (1.1) is trivial.

3.2.1 Detection of period halving bifurcations

Period halvings can be detected as follows: for a solution point y = (x1, . . . , xk, T, λ) of (2.26)
we compute

u(y) := ΦT
2
(x1, λ) − x1 = xj − x1.

Here one multiple shooting node sj is set to sj = 1/2 so that no additional initial value problem
has to be solved.

If there is a period halving point y∗ = (x∗, T ∗, λ∗) between two consecutively computed
periodic solutions y(0) and y(1) the vector u goes through zero. As we saw before, a flip bifurcation
corresponds to a pitchfork bifurcation of (3.2). Figure 2 shows the normal form (3.3) of the
pitchfork bifurcation and points x(0) and x(1) corresponding to periodic orbits before and after
passing the bifurcation. For each parameter value λ, the corresponding point on the solid and
dashed curve belong to the same periodic orbit, and are conjugate points with respect to the
Z2-symmetry action which, for (3.2), is given by x → Π(x, λ), see above. For the points x(0) and
x(1) we denote the difference vectors by u(ν) = Π(x(ν), λ(ν))−x(ν), ν = 0, 1. From Figure 2 we see
that the vectors u(0) and u(1) are approximately parallel with opposite sign. At the numerically
computed solutions y(0) and y(1) the vectors u(y(0)) and u(y(1)) are good approximations for
u(0) and u(1). Therefore a period halving point can be detected by the following condition on
the angle between u(y(0)) and u(y(1)):

〈u(y(0)), u(y(1))〉

‖u(y(0))‖‖u(y(1))‖
< 0. (3.6)
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Figure 2: Detection of period halvings using (3.6). Solid curve: branch of periodic orbits before
passing the flip up point; dashed curve: branch of periodic orbits after passing the flip up point;
See text for more explanations.

3.2.2 Computation of period halving bifurcation points and start off directions

Assume that a period halving bifurcation has been detected between two consecutively computed
periodic solutions y(0) and y(1). We now describe a method for the computation of period halving
points which is based on existing methods for detecting period doubling points. The algorithm
consists of the following steps:

1. We obtain a first guess for the location of the flip up point by approximating the solution
branch by a Hermite interpolating polynomial, c.f. Figure 2. We compute a Hermite poly-
nomial y(τ) of degree 3 through the two points y(0) = y(0), y(1) = y(1) of the bifurcation
diagram in between of which a period halving has been detected. This is analogous to
the Hermite interpolation used to locate turning points, see Section 2.5. By computing
the extremum λ(τ̂ ) of the polynomial λ(τ) where y(τ) = (x(τ), T (τ), λ(τ)) we obtain a

first guess ŷ = y(τ̂ ) = (x̂1, . . . , x̂k , T̂ , λ̂) for the flip up point. We now halve the period
T̂ := T̂ /2. Again, as in the case of period doubling bifurcations, the number of multiple
shooting points is adapted with respect to changes of the period. In this case the number
of multiple shooting points is k̃ = j where j is such that sj = 1

2 . Decreasing the number of
multiple shooting points at flip up bifurcations obviously speeds up the calculation time.

2. Now we use this first guess as starting value for a flip down point computation. We look
for a flip down point in the parameter scope [λmin, λmax] where

λmin = λ̂ − ε, λmax = λ̂ + ε, ε = max(tol, min(|λ(0) − λ̂|, |λ(1) − λ̂|)),

and tol is the prescribed accuracy. The period doubling bifurcation point on this branch
is then accepted as period halving point for the original branch.

Remarks 3.1

a) In AUTO and CONTENT period halving bifurcations are not properly detected: the pro-
grams detect bifurcation points of ”unknown type”, but does not compute the bifurcating
branch of periodic solutions with halved period.

b) Note that period halving bifurcations can not be detected by a change of sign of a de-
terminant, in contrast to transcritical and saddle node bifurcations of equilibria. The
monitoring function that we use is inspired by the monitoring functions for symmetry
increasing bifurcations of equilibria developed by Gatermann and Hohmann [10].
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c) In the computation of bifurcations of equilibria numerical methods based on extended
systems are frequently employed (see e.g. [1, 16]). One could of course also use such a
method to locate period halving bifurcations. A period halving point could for example
be computed by solving the system

0 = F (x, T, λ, v) :=




ΦT/2(x; λ) − x
DxΦT/2(x; λ)v + v
‖v‖2 − 1




using a Newton type method. But since this requires the approximation of the second
derivative of the flow map it would be more expensive than the method that we suggest.

3.3 Bifurcations of periodic orbits with Zp-symmetry

In this section we deal with generic symmetry changing but isotropy preserving secondary bi-
furcations of symmetric periodic orbits. The right hand side f of the ODE (1.1) is assumed
to be Γ-equivariant under a finite group Γ ⊂ GL(n), as in Section 2.2. We assume that the
spatial symmetry K of the periodic orbit is trivial (or restrict the dynamics to Fix(K)). This
implies that the spatio-temporal symmetry of the periodic orbits is cyclic: L ' Z`. We can then,
without loss of generality, restrict to the case Γ ' Zp for p a multiple of `, see [18]. We describe
how the generic secondary bifurcations of periodic orbits with Zp-symmetry, which have been
classified by Fiedler [9], can be treated numerically. In this section we only deal with bifurcations
of periodic orbits into other periodic orbits (not Hopf bifurcations along branches of periodic
orbits).

So let x∗ lie on a periodic orbit P with period T ∗, trivial isotropy K, spatio-temporal
symmetry L = Z` and drift symmetry α. Define the Poincaré section as usual by S = x∗ +
span(f(x∗))⊥. To examine bifurcations of symmetric periodic orbits the reduced Poincaré map

Πred = αΠ̂, Π̂ : S → α−1S,

from (2.10) is used where Π̂ maps points of S into the points where the positive semi-flow through
x first hits α−1 S. In the case of trivial isotropy K the relationship between the full Poincaré
map Π and the reduced Poincaré map Πred is given by

Π = α−`Π`
red = Π`

red. (3.7)

Here we used that α` = id. Generic bifurcations of symmetric periodic orbits are bifurcations of
the reduced Poincaré map Πred which arise from an eigenvalue ±1 of the Jacobian DxΠred, see
[9, 18].

Generic bifurcations of Πred without breaking of the spatial symmetry are turning points
and period doublings/halvings (flip down and flip up bifurcations); turning points of Πred lead
to turning points of the full Poincaré map Π. They can be detected and computed in the same
way as in the case of no symmetry, see Section 2.5.

Flip down bifurcations of the reduced Poincaré map Πred lead to pitchfork bifurcations re-
spectively period doubling bifurcations of Π depending on whether ` is odd or even, see [9]. If
` is odd, in particular if the symmetry is trivial (i.e. ` = 1), we have a flip doubling (period
doubling) bifurcation. If ` is even then a flip pitchfork bifurcation takes place where the period
is preserved, but the spatio-temporal symmetry halved.

3.3.1 Flip pitchfork bifurcation

First we consider the flip pitchfork bifurcation. Let ` be even. Assume that the reduced Poincaré
map Πred undergoes a flip down bifurcation. Then the bifurcating solutions x̃(s), s ∈ R, x̃(0) =
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x∗, are fixed points of Π2
red. By (3.7),

Π(x̃(s)) =
(
Π2

red

)`/2
(x̃(s)) = x̃(s),

and so the Poincaré map Π undergoes a pitchfork bifurcation. Hence the branching solutions
have approximately the same period but their spatio-temporal symmetry L̃ = Z`/2, ˜̀= `/2 has
been halved. The drift symmetry of the bifurcating periodic orbits is α̃ = α2.

3.3.2 Flip doubling bifurcation

Next we consider the flip doubling bifurcation, ie, let ` be odd. Since Π2
red(x̃(s)) = x̃(s) and ` is

odd the following can be concluded:

Π2(x̃(s)) = Π2`
red(x̃(s)) = x̃(s) and Π(x̃(s)) = Π`

red(x̃(s)) = Πred(x̃(s)) 6= x̃(s).

So the Poincaré map Π undergoes a period doubling bifurcation without breaking the symmetry
Z`: the spatio-temporal symmetry group of the bifurcating branch is L̃ = Z˜̀ where ˜̀ = ` and
is generated by the order ` element α̃ = α. Note that the flip doubling bifurcation reduces to
the period doubling bifurcation of non-symmetric systems, see Section 3.1, with ` = 1, α = id
whereas the flip pitchfork bifurcation does not occur for non-symmetric systems.

3.4 Numerical computation of symmetry breaking bifurcations

Since the generic bifurcations of periodic orbits with underlying symmetry group Zp described
above are generated by periodic doubling bifurcations of the reduced Poincaré map they can be
treated numerically with the methods for the period doubling bifurcation described in Section
3.1.

3.4.1 Detection and computation of flip down bifurcations

Flip down bifurcations are detected by the a sign change of

d(λ) = det(αDxΦT∗

`
(x∗) + id), where αDxΦT∗

`
(x∗) = Gc,

analogously to the case of no symmetry, see Section 3.1.1. Once a flip down bifurcation has been
detected it can be computed analogously as in the case of non-symmetric systems, see Section
3.1.2.

3.4.2 Initialization of the bifurcating branch

Once a flip down point (x∗, T ∗, λ∗) on the original branch has been found, the starting point
ỹ = (x̃, T̃ , λ̃) for the bifurcating branch has to be computed. We set T̃ = T ∗ for a flip pitchfork
bifurcation and T̃ = 2T ∗ otherwise, and λ̃ = λ∗. Since the number of multiple shooting points is
doubled the second half of x̃ = (x̃1, . . . , x̃2k) will be computed by applying the symmetry matrix
to the first points:

x̃i = x∗
i for i = 1, . . . , k,

x̃i+k = α−1x∗
i for i = 1, . . . , k.

The tangent vector t̃ = (t̃x, 0, 0) of the bifurcating branch is computed in a similar way: The
first nk components (t̃1, . . . , t̃k) of the x-component t̃x of the tangent t̃ of the bifurcating branch
are computed as in Section 3.1.3, with DxΦT∗(x∗) replaced by αDxΦT∗

`
(x∗). Then the second

half of t̃x = (t̃1, . . . , t̃2k) is computed by applying the symmetry matrix to the first half and
multiplying it with −1:

t̃i+k = −α−1t̃i for i = 1, . . . , k. (3.8)
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3.5 Numerical computation of symmetry increasing bifurcations

In this section we extend the algorithms for the detection and computation of period halving
points for non-symmetric systems (Section 3.2) to systems with symmetry. The main issue here
is the identification of the possible spatio-temporal symmetries of the bifurcating solutions which
are needed for both, the detection of bifurcations and the computation of the bifurcating branch.

3.5.1 Detection of flip up bifurcations

Similarly as in the non-symmetric case, see Section 3.2, flip up points on a branch of periodic
orbits with spatio-temporal symmetry L = Z`, trivial isotropy and drift symmetry α are detected
by the angle condition (3.6)

〈u(y(0)), u(y(1))〉

‖u(y(1))‖‖u(y(1))‖
< 0

where y(0) and y(1) are two consecutive points on a branch of periodic solutions and

u(x) := α̃Φ T
2`

(x1, λ) − x1 = α̃xj − x1.

Here the multiple shooting node sj is set to sj = 1
2 and α̃ is a group element α̃ which satisfies

α̃2 = α. (3.9)

We now need to classify the possible choices of α̃ and decide whether a flip up doubling or a flip
up pitchfork bifurcation occurs.

Theorem 3.2 Let i be such that α = γi
p where γp generates the symmetry group Γ = Zp of

(1.1). Similarly, write α̃ = γ ĩ
p. Then we have:

a) Either ĩ = i
2 or ĩ = i+p

2 . Both these values for ĩ are possible if p and i are even, ĩ = i
2 is

a possible solution for p odd, i even, and ĩ = i+p
2 for p and i odd.

b) (i) If
`̃i = 0 mod p

then a flip up doubling bifurcation takes place. The order ˜̀ of the drift symmetry α̃
of the bifurcating branch and its period T̃ in the bifurcation point then satisfy

˜̀= `, T̃ =
T ∗

2
,

where T ∗ is the period of the original periodic orbit at the bifurcation point.

(ii) If
`̃i 6= 0 mod p

then a flip up pitchfork bifurcation takes place. The order ˜̀ of the drift symmetry α̃
of the bifurcating branch and its period T̃ in the bifurcation point then satisfy

˜̀= 2`, T̃ = T ∗.

Proof. From (3.9) we get
2ĩ = i mod p,

and so
ĩ = (i + jp)/2, j ∈ N. (3.10)
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Possible solutions to (3.10) which are different modulo p are

ĩ = i/2, ĩ = (i + p)/2.

This proves part a) of the theorem. The rest follows from the definitions of flip pitchfork and
flip doubling bifurcations, see Sections 3.3.1 and 3.3.2.

Remark 3.3 Consider a periodic orbit with trivial spatio-temporal symmetry, i.e., α = id,
i = 0. Then, if the order p of the symmetry group Γ = Zp is odd and the Γ-action is free, every
flip up bifurcation is a period halving bifurcation. If p is even then a flip up bifurcation of Πred

can be a period halving bifurcation or a flip up pitchfork bifurcation with α̃ = γ
p
2
p .

3.5.2 Computation of flip up points and start off tangents

Once the spatio-temporal symmetry of the bifurcating periodic orbit is identified the flip up
point and the start off directions for the bifurcating branch can be computed in the same way
as for non-symmetric systems, see Section 3.2.

4 Computation of equivariant Hopf points

In this section we show how equivariant Hopf points along branches of periodic orbits can be
detected and computed. For sake of simplicity, we first consider the case of a trivial symmetry
group Γ = {id}.

4.1 Hopf bifurcations for non-symmetric systems

x2

x1

λ

x∗

f (0)

t(1)
f (1)

x(1)

f (0) = f(x(0))

f (1) = f(x(1))

Figure 3: Detection of Hopf points between two periodic orbits y(0) = (x(0), T (0), λ(0)) and
y(1) = (x(1), T (1), λ(1)) (single shooting method). Here t(1) is the continuation tangent at the
point y(1).

A Hopf bifurcation point is a stationary solution (x∗, λ∗), for which the Jacobian Dxf(x∗, λ∗)
has a pair of purely imaginary eigenvalues ±ω∗i, ω∗ 6= 0. We make the generic assumptions that
these eigenvalues are simple, and that there is no resonance, i.e., no multiple iω∗j, j ∈ N0 \ {1},
is an eigenvalue of Dxf(x∗, λ∗). Denote by x(λ) the path of equilibria of (1.1) with parameter
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λ, so that in particular x(λ∗) = x∗. Let µ(λ) be the path of eigenvalues of Dxf(x(λ), λ) such
that µ(λ∗) = iω∗ and assume that the generic transversality condition

Re

(
∂µ

∂λ
(λ∗)

)
6= 0 (4.1)

is satisfied. Then (see e.g. [13, 16]) a unique branch x(t; ε) of periodic solutions emanates from
the stationary solution with small amplitude O(ε) and period T (ε) ≈ T (0) = 2π/ω∗. This
surface of periodic solutions is tangential to the real eigenspace Nω∗ of ±ω∗i, ie Dεx(t; 0) ∈ Nω∗ ,
and generically agrees (after a smooth coordinate change) to second order with a paraboloid
λ−λ∗ = C(z2

1 +z2
2), see e.g. [13, 16]. We can consider the Hopf point (x∗, λ∗) as an S1-invariant

2π/ω∗-periodic solution with respect to the action (2.7) of the temporal symmetry group on the
periodic solutions x(t) of (1.1):

x∗(t) ≡ x∗ ∀ t =⇒ (id, θ) x∗(t) = x∗(t) ∀ t.

Hence the Hopf bifurcation is an S1-symmetry breaking bifurcation.

4.1.1 Detection of Hopf points along branches of periodic orbits

If a pathfollowing algorithm for periodic solutions runs through a Hopf point the continuation
direction changes its sign and the same path of periodic orbits is computed again. Therefore
Hopf points which occur during the pathfollowing of periodic orbits should be detected so that
the pathfollowing routine can be stopped at the Hopf point. If there is a Hopf point between two
consecutively computed periodic orbits y(0) and y(1), where y = (x, T, λ), x = (x1, . . . , xk), then
the vectors f(xi), which are the infinitesimal generators of the S1-symmetry in the point xi, go
through zero. Thus f(xi) is a symmetry monitoring function in this case. If the angle between
the vectors f(xi) of two consecutively computed periodic orbits is greater than 90 degree, i.e.,
if for some i ∈ {1, . . . , k},

〈f(x
(0)
i ), f(x

(1)
i )〉

‖f(x
(0)
i )‖‖f(x

(1)
i )‖

< 0

then there is a Hopf point on the branch of periodic orbits between the y(0) and y(1), c.f. Figure
3.

Remark 4.1 Note that in the program packages AUTO [8] and CONTENT [17] the numerical
part of which is based on AUTO Hopf points along periodic orbits are not detected properly.
They are detected as general cycle branching points, but when switching to the bifurcating
branch of stationary solutions an error occurs.

4.1.2 Computation of Hopf bifurcations of non-symmetric systems

If a Hopf point along a path of periodic orbits is detected, it can be computed by an extended
system [12, 14], see also the review in [1]. We use a slightly different form of extended system
which is underdetermined and does not fix the phase of the Hopf eigenvector to be computed.
We present this extended system briefly in this subsection.

Let x∗ be Hopf point, i.e., an equilibrium f(x∗, λ∗) = 0, the Jacobian Dxf(x∗, λ∗) of which
has a pair of purely imaginary eigenvalues ±iω∗. Hence

Dxf(x∗, λ∗)(v∗ + iw∗) = iω∗(v∗ + iw∗).

So we get

Dxf(x∗, λ∗)v∗ = −ω∗w∗, Dxf(x∗, λ∗)w∗ = ω∗v∗, ‖w∗‖2 + ‖v∗‖2 = 1.
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Define F : R3n+2 → R3n+1 where

F (x, λ, v, w, ω) =




f(x, λ)
Dxf(x, λ)v + ωw
Dxf(x, λ)w − ωv
〈v, v〉 + 〈w, w〉 − 1


 . (4.2)

Then F = 0 yields the Hopf point and its imaginary eigenvalue and corresponding eigenvector.
Moreover we have:

Theorem 4.2 If the eigenvalue ±iω∗ is simple, if Dxf(x∗, λ∗) is invertible and if the transver-
sality condition (4.1) holds, then the Gauss-Newton method applied to (4.2) converges for suffi-
ciently good initial data.

The proof of this theorem is basically contained in [1, 12, 14]. As shown there the transversality
condition Re µ′(λ∗) 6= 0 implies that any kernel vector t = (tx, tλ, tv , tw, tω) of the derivative
DF (x∗, λ∗, v∗, w∗, ω∗) of F in the Hopf point satisfies tω = 0, tλ = 0 and tx = 0 and hence
(tv , tw) satisfies the equations

0 = Dxf(x∗, λ∗)tv + ω∗tw (4.3)

0 = Dxf(x∗, λ∗)tw − ω∗tv (4.4)

0 = 2〈v∗, tv〉 + 2〈w∗, tw〉. (4.5)

Therefore tv + itw is a Hopf eigenvector. Equation (4.5) and the fact that the Hopf eigenvalue
iω∗ is a simple eigenvalue of Dxf(x∗, λ∗) imply that the kernel of DF in the Hopf point is one-
dimensional. Hence DF has full rank in the Hopf point and the Gauss-Newton method applied
to (4.2) converges for sufficiently good initial data. As we will see later (see Sections 4.2.1 and
5.2), symmetry often inforces multiple Hopf eigenvalues, so that the extended system (4.2) has
to be modified in the case of equivariant Hopf points.

Initial guess for the Gauss-Newton iteration An initial guess for a Hopf point detected
between two periodic orbits y(0) = (x(0), T (0), λ(0)) and y(1) = (x(1), T (1), λ(1)), where x =
(x1, . . . , xk), can be obtained by Hermite interpolation y(τ) between those points over the line
y(0) + τ(y(1) − y(0)), τ ∈ [0, 1], such that y(0) = y(0), y(1) = y(1), and by computing the point
ŷ = y(τ̂ ) = (x(τ̂ ), T (τ̂), λ(τ̂ )) such that λ′(τ̂ ) = 0, analogously to the computation of initial
guesses for a turning point, see Section 2.5. We then set

x̂ := x1(τ̂ ),

define an approximation for the Hopf frequency ω̂ as

ω̂ =
2π

T̂
, where T̂ = T (τ̂),

and an approximation for the parameter value of the Hopf point as

λ̂ = λ(τ̂ ).

We moreover define initial guesses v̂ + iŵ for the Hopf eigenvector as

v̂ = c
d

dτ
x1(τ̂ ), ŵ = −

1

ω̂
Dxf(x̂, λ̂)v̂

with c such that
‖v̂‖2 + ‖ŵ‖2 = 1.

The point (x̂, λ̂, v̂, ŵ, ω̂) is then used as initial guess for the Newton iteration applied to (4.2).
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4.2 Detection and computation of equivariant Hopf points

In this section we extend the methods for the computation of Hopf points of non-symmetric
systems from Section 4.1 to systems with symmetry. The main issue here is how to deal with
multiple Hopf eigenvalues forced by symmetry which lead to convergence failure of the extended
system (4.2) for the computation of Hopf points of non-symmetric systems.

4.2.1 Equivariant Hopf points

We are starting from a Γ-invariant stationary solution (x∗, λ∗), i.e., Γx∗ = Γ. We assume that
the Jacobian Dxf(x∗, λ∗) has a pair ±ω∗i of purely imaginary eigenvalues, ω∗ 6= 0, and that
there are no resonances, i.e., ±jiω∗, j = 0, 2, 3, 4, . . ., is not an eigenvalue of Dxf(∗, λ∗). As
before let Nω∗ be the real eigenspace of Dxf(x∗, λ∗).

Lemma 4.3 [11] If γ ∈ Γx then γDxf(x, λ) = Dxf(x, λ)γ. Moreover, every eigenspace of
Dxf(x, λ) is Γx-invariant.

Proof. The first statement follows from the Γ-equivariance of f and the γ-invariance of x. For
the second statement let u be a complex eigenvector of A = Dxf(x, λ) to the eigenvalue µ. Since
γA = Aγ we have Aγu = γAu = γµu so that γu is an eigenvector of A to the eigenvalue µ as
well.

As a consequence, Dxf(x∗, λ∗) is Γ-equivariant and Nω∗ is Γ-invariant. Hence Nω∗ can be
decomposed into irreducible Γ-invariant subspaces, see Remark 2.4.

Definition 4.4 [11] We call an eigenvalue µ of a Γ-equivariant matrix A a Γ-simple eigenvalue
of A if the real eigenspace N of A to the eigenvalue µ is irreducible.

We make the generic assumption that iω∗ is a Γ-simple eigenvalue of Dxf(x∗, λ∗). This means
that iω∗ has the lowest multiplicity allowed by the symmetry group Γ.

Since Dxf(x∗, λ∗) is invertible, by the implicit function theorem applied to Fix(Γ) = R
nred

there is a path x(λ) of Γ-invariant equilibria of (1.1) with x(λ∗) = x∗. As in the case of the
standard Hopf bifurcation we assume that the transversality condition (4.1) holds for the path
µ(λ) of the pair of eigenvalues of Dxf(x(λ), λ) with µ(λ∗) = iω∗.

We define the operation of Γ × S1 on a T -periodic solution x(t) as in (2.7)

(γ, θ)x(t) = γx(t + θ T ) for (γ, θ) ∈ Γ × S1,

and the operation of Γ × S1 on the real eigenspace Nω∗ of ±ω∗i of Dxf(x∗, λ∗) by

(γ, θ)u = γeθDxf(x∗,λ∗)T∗

u, (γ, θ) ∈ Γ × S1, u ∈ Nω∗ , (4.6)

where T ∗ = 2π
ω∗

.

Theorem 4.5 [11] (Equivariant Hopf Theorem) Let the above conditions be satisfied. If then
for a subgroup L ⊂ Γ × S1 the fixed point space

NL
ω∗ := {u ∈ Nω∗ : (γ, θ)u = u ∀ (γ, θ) ∈ L} (4.7)

satisfies the condition
dim NL

ω∗ = 2, (4.8)

then there is a unique branch x(t; ε) of periodic solutions with amplitude O(ε) bifurcating from
(x∗, λ∗) with Dεx(t; 0) ∈ NL

ω∗, with parameter λ(ε), such that λ(0) = λ∗, with minimal periods
T (ε), such that T (0) = 2π/ω∗, and with L as spatio-temporal symmetry group.
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As in the non-symmetric case the bifurcating periodic orbits generically lie on a paraboloid, see
Figure 3.

Remark 4.6 The equivariant Hopf theorem provides the spatio-temporal symmetries L of the
bifurcating periodic orbits and the planes NL

ω∗ from which the start off directions for the em-
anating periodic orbits can be chosen: We define the phase space for the bifurcating periodic
orbit with symmetry L as Fix(K) where K, the group of spatial symmetries of the periodic
orbit, is the kernel of the homomorphism Θ of the periodic orbit, see (2.6), and thus

K = {γ ∈ Γ, (γ, 0) ∈ L}.

We compute the integer ` such that L/K ' Z`, see (2.8), and the drift symmetry α of the
periodic orbit by determining the element (α, θ∗) in L with the smallest non-zero phase shift
θ∗ = 1

` , c.f. (2.9). We identify the Hopf point (x∗, λ∗) with a periodic orbit which has period
T ∗ = 2π

ω∗
, multiple shooting points x∗

i = x∗ for i = 1, . . . k and the parameter λ∗. Similarly as
in the non-symmetric case (c.f. [1]) we then define the continuation tangent t∗ = (t∗x, t∗T , t∗λ) at
this Hopf periodic orbit as follows:

t∗T = 0, t∗λ = 0, t∗x = (t∗1, . . . , t
∗
k),

where
t∗i = cos(siT

∗/`)v∗ + sin(siT
∗/`)w∗, i = 1, . . . , k.

Here v∗ + iw∗ is the eigenvector to the purely imaginary eigenvalue ω∗i of Dxf(x∗, λ∗) which is
determined by the condition v∗, w∗ ∈ NL

ω∗ . See Sections 5.2 and 5.3 for applications.

4.2.2 Detection of equivariant Hopf points

Equivariant Hopf points along branches of periodic orbits are detected in the same way as Hopf
points of non-symmetric systems, see Section 4.1.1.

4.2.3 Computation of equivariant Hopf bifurcations

As mentioned in Section 4.1.2 the extended system (4.2) for the computation of Hopf points
of non-symmetric systems only converges if the Hopf eigenvalue iω∗ is simple. In the case
of symmetric dynamical systems this assumption can only be satisfied if the corresponding
irreducible representation is one-dimensional. In general the symmetry might enforce multiple
eigenvalues (see Section 5.2 for an example). Therefore the numerical method for computing
Hopf points from Section 4.1.2 has to be modified in the case of symmetric dynamical systems.
In this section we present an efficient algorithm for computing equivariant Hopf points which
applies to Hopf points which satisfy the conditions of the equivariant Hopf theorem.

Assume that an equivariant Hopf point (x∗, λ∗) with Hopf eigenvalue ±iω∗, ω∗ > 0, has been
detected numerically along a branch of periodic orbits of the Γ-equivariant ODE (1.1) with drift
symmetry α of order ` and, for simplicity, trivial isotropy K (restrict the dynamics to Fix(K)
and replace Γ by N(K)/K otherwise). As before we denote by L ' Z` the spatio-temporal
symmetry of the branch of periodic orbits. Then the Hopf point x∗ is L-invariant: L ⊆ Γx∗ . We
make the assumptions of the equivariant Hopf Theorem 4.5 replacing Γ by Γx∗ and denote the
plane tangent to the branch of periodic orbits at the Hopf point by NL

ω∗ , as in (4.7).
We will now formulate an algorithm for the computation of the equivariant Hopf point (x∗, λ∗)

along with the Hopf frequency ω∗ and the corresponding Hopf eigenvector v∗ + iw∗ satisfying
v∗, w∗ ∈ NL

ω∗ .
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Note that the condition of the equivariant Hopf Theorem 4.5 that NL
ω∗ is 2-dimensional is

equivalent to requiring that there is only one eigenvector v∗+iw∗ of Dxf(x∗, λ∗) to the eigenvalue
±iω∗ satisfying

v∗ + iw∗ = αe
2π

ω∗`
Dxf(x∗,λ∗)(v∗ + iw∗). (4.9)

Solving the nonlinear equation (4.9) numerically using an extended system would involve the
computation of the exponential exp( 2π

ω`Dxf(x∗, λ∗)) of Dxf(x∗, λ∗) which is in general expensive.
An extended system involving Dxf(x∗, λ∗) rather than its exponential, like the system (4.2) in
the case of non-symmetric systems, is therefore preferable. To derive such a system we use the
following approach: Note that

Dxf(x∗, λ∗)(v∗ + iw∗) = iω∗(v∗ + iw∗)

and so

exp

(
2π

ω∗`
Dxf(x∗, λ∗)

)
(v∗ + iw∗) = e

2πi
` (v∗ + iw∗)

and hence
α(v∗ + iw∗) = e−

2πi
` (v∗ + iw∗). (4.10)

So v∗ +iw∗ lies in the the complex eigenspace of α to the eigenvalue e−2πi/` which we denote by
Xc

` ⊂ Xc = Cn, and v∗ and w∗ lie in the real eigenspace of α to the eigenvalue e−2πi/` which we
denote by X`. So X` is the L-invariant subspace of X = Rn where α, the generator of L ' Z`,
acts as a rotation by −2π/`.

The following lemma is crucial for the numerical computation of equivariant Hopf points.

Lemma 4.7 Let the assumptions of the equivariant Hopf theorem 4.5 hold. If then v +iw ∈ X c
`

is an eigenvector of Dxf(x∗, λ∗) to the eigenvalue iω∗ then v + iw = c(v∗ + iw∗) for some c ∈ C

where v∗ + iw∗ is a Hopf eigenvector with v∗, w∗ ∈ NL
ω∗ .

Proof. The vector v +iw satisfies (4.9) and by the assumption of the equivariant Hopf theorem
4.5 there is only one such eigenvector (over C), namely v∗ + iw∗. This proves the lemma.

Due to this lemma, we can solve (4.9) as follows: We first compute the space X `
c . Then we

compute the L-invariant Hopf point together with a Hopf eigenvector which lies in X` by an
extended system.

First step of the algorithm. We compute an orthonormal basis of X c
` and store it as row

vectors of a matrix E`. We assume that ` > 1, i.e., that the branch of periodic orbits along
which a Hopf bifurcation has been detected has non-trivial spatio-temporal symmetry L = Z`.
We consider two cases:

Case 1: ` = 2. We compute the kernel X2 = ker(B2) of B2 = α + idn and store an orthonormal
basis of it in the row vectors of the (d, n)-matrix E2. Here d = dim X2 and X2 is the L-invariant
subspace of Rn where the action of the symmetry group L = Z2 generated by α is given by
α|X2 = −1. Hence,

ET
2 E2 = id |X2 . (4.11)

Case 2: ` > 2. In this case we compute the null space of the (2n, 2n)-matrix

B` :=

(
α − cos(2π/`) idn − sin(2π/`) idn

sin(2π/`) idn α − cos(2π/`) idn

)
. (4.12)

We store an orthonormal basis of ker(B`) in the row vectors of the matrix E` = [EV , EW ] ∈
Mat(d, 2n) where EV , EW ∈ Mat(d, n).

Before we continue with the description of the algorithm we present the following lemma:
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Lemma 4.8 Let ` > 2. Then the following holds true:

a) If (v, w) ∈ kerB`, v, w ∈ Rn, we have v + iw ∈ Xc
` .

b) If (v, w) ∈ kerB`, then so is (−w, v). In particular, kerB` has even dimension d = 2d̂,

d̂ ∈ N, the eigenvalue e−2πi/` of α has geometric multiplicity d̂ , and d = dim X`.

c) For any x ∈ Rd we have ET
V x + iET

W x ∈ Xc
` .

d) Both ET
V and ET

W have X` as range.

Proof.

a) By Definition, v +iw ∈ Xc
` if and only if v +iw satisfies (4.10). Taking real and imaginary

parts of the left and right hand side of (4.10) we see that v + iw satisfies (4.10) iff (v, w) ∈
kerB`.

b) follows from a) and the fact that (v, w) ' v + iw and i(v + iw) ∼ (−w, v) are linearly
independent over R.

c) follows from the definition of E`.

d) follows from a) and b).

Second step of the algorithm. Again we consider two cases: ` = 2, ` > 2.

Case 1: ` = 2. We solve an extended system

F (xred, λ, vred, wred, ω) = 0,

similarly to (4.2), where now

vred, wred ∈ X` ' R
d, xred ∈ Fix(L) ' R

nred

and
F : R

nred+2d+2 → R
nred+2d+1.

Let fred := f |Fix(L) and let Q : Rn → Rnred be the matrix which contains an orthonormal basis
of Fix(L), dim Fix(L) = nred, as row vectors. Then we define F as

F (xred, λ, vred, wred, ω) =




fred(xred, λ)
E2Dxf(x, λ)|x=QT xred

ET
2 vred + ωwred

−ωvred + E2Dxf(x, λ)|x=QT xred
ET

2 wred

〈vred, vred〉 + 〈wred, wred〉 − 1


 . (4.13)

Case 2: ` > 2. In this case the real part v∗ of the Hopf eigenvector v∗ + iw∗ and the knowledge
of the drift symmetry α of the branch of periodic orbits along which a Hopf bifurcation was
detected determines the Hopf eigenvector uniquely since v∗ + iw∗ satisfies (4.10) and so

w∗ =
1

sin(2π/`)
(αv∗ − cos(2π/`)v∗) .
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Therefore only the real part of the Hopf eigenvector, the Hopf point, its parameter and the Hopf
frequency need to be computed by an extended system. We define F : Rnred+d+2 → Rnred+d+1

by

F (xred, λ, vred, ω) =




fred(xred, λ)
EV (Dxf(x, λ)|x=QT xred

ET
V vred + ωET

W vred)
〈vred, vred〉 − 1


 . (4.14)

Proposition 4.9

a) If ` = 2 and (x∗
red, λ∗, v∗red, w∗

red, ω
∗) is a solution to F = 0 as defined in (4.13) then

x∗ = QT x∗
red is an equivariant Hopf point with Hopf frequency ω∗. Moreover a Hopf

eigenvector v∗ + iw∗ with v∗, w∗ ∈ NL
ω∗ is given by v∗ = ET

2 v∗red, w∗ = ET
2 w∗

red.

b) Similarly, if ` > 2, and (x∗
red, λ∗, v∗red, ω

∗) is a solution to F = 0 as defined in (4.14)
then x∗ = QT x∗

red is an equivariant Hopf point with Hopf frequency ω∗. Moreover a Hopf
eigenvector v∗ + iw∗ with v∗, w∗ ∈ NL

ω∗ is given by v∗ = ET
V v∗red, w∗ = ET

W v∗red.

For the proof we need the following lemma:

Lemma 4.10 Let A be an (n, n)-matrix which is equivariant with respect to a linear Z`-action
on Rn. Let α generate Z` and define X` as before. Then X` is A-invariant.

Proof. Let v ∈ X`. Then there is some w ∈ X` such that v + iw is an eigenvector of α to the
eigenvalue exp(−2πi/`). By Z`-equivariance of A also A(v + iw) is an eigenvector of α to the
eigenvalue exp(−2πi/`) and so both Av and Aw lie in X`.

Note that X` is an isotypic component of the Z` action on Rn, and that generally isotypic com-
ponents for a linear action of a group Γ are invariant under Γ-equivariant matrices [11].

Proof of Proposition 4.9.

a) Case ` = 2. The first equation fred(x, λ) = 0 of F = 0 implies that x∗
red is an equilibrium

of fred(·, λ
∗). Hence x∗ = QT x∗

red is an L-invariant equilibrium of f(·, λ∗). From the other
equations in F = 0 we conclude that v∗

red + iw∗
red is an eigenvector of E2Dxf(x∗, λ∗)ET

2

to the eigenvalue iω∗. Since x∗ ∈ Fix(L) the derivative Dxf(x∗, λ∗) is L-equivariant
by Lemma 4.3 and therefore, by Lemma 4.10, maps X2 into itself. Let v∗ = ET

2 v∗red,
w∗ = ET

2 w∗
red. Because of (4.11), v∗ + iw∗ ∈ Xc

2 is an eigenvector of Dxf(x∗, λ∗) to the
eigenvalue iω∗. Hence (x∗ = QT x∗

red, λ∗) is a Hopf point. Lemma 4.7 now implies that
v∗, w∗ ∈ NL

ω∗ .

b) Case ` > 2. As in the case ` = 2 the first equation of F = 0 implies that x∗ = QT x∗
red is an

L-invariant equilibrium of f(·, λ∗). Let v∗ = ET
V v∗red and w∗ = ET

W w∗
red. From Lemma 4.8

c) we conclude that v∗ + iw∗ ∈ Xc
` . Since Dxf(QT xred(λ), λ) is L-equivariant by Lemma

4.3 and hence maps X` into itself by Lemma 4.10 and since EV |X`
is an isomorphism by

Lemma 4.8 d), the other equations in F = 0 imply that

Dxf(x∗, λ∗)v∗ + ω∗w∗ = 0 (4.15)

and so
Re(Dxf(x∗, λ∗)(v∗ + iw∗) − iω∗(v∗ + iw∗)) = 0.

Multiplying (4.15) by α and using the L-equivariance of Dxf(x∗, λ∗) we obtain

Dxf(x∗, λ∗)αv∗ + ω∗αw∗ = 0.
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From the fact that v∗ + iw∗ ∈ Xc
` we conclude

Re
(
e−2πi/`(Dxf(x∗, λ∗)(v∗ + iw∗) − iω∗(v∗ + iw∗))

)
= 0.

Since e2πi/` /∈ R this implies that

Dxf(x∗, λ∗)(v∗ + iw∗) = iω∗(v∗ + iw∗)

and therefore (x∗, λ∗) is a Hopf point and v∗ + iw∗ ∈ Xc
` a Hopf eigenvector. By Lemma

4.7 we then get v∗, w∗ ∈ NL
ω∗ .

Analogously to Theorem 4.2 we have:

Theorem 4.11 If the assumptions of the equivariant Hopf Theorem 4.5 hold and if the initial
guess is good enough then the Gauss-Newton method applied to (4.13) for ` = 2 and applied to
(4.14) for ` > 2 converges.

Proof. Similarly as in the non-symmetric case (Theorem 4.2, see [1, 12, 14]) we show that DF ,
with F from (4.13) for ` = 2 and from (4.14) for ` > 2, has full rank in the Hopf point. As
before we consider the cases ` = 2 and ` > 2 separately.

Case ` = 2. The assumptions of the equivariant Hopf theorem imply that iω∗ is a simple eigen-
value of Dxf(x∗, λ∗)|X2 and hence, due to (4.11), also of E2Dxf(x∗, λ∗)ET

2 . The proof that DF
has full rank in the Hopf point is therefore very similar to the non-symmetric case: the only
difference is that we require v, w ∈ X2 and x ∈ Fix(L). We omit the details.

Case ` > 2. In this case we have

D(xred,λ,vred,ω)F (xred, λ, vred, ω) =



Dxred
fred(xred, λ) Dλfred(xred, λ) 0 0

EV D2
xfET

V vredQ
T EV DxDλfET

V vred EV (DxfET
V + ωET

W ) EV ET
W vred

0 0 2vT
red 0


 ,

where f is short for f(QT xred, λ). Let t = (txred
, tλ, tvred

, tω) be a kernel vector of DF in the
equivariant Hopf point:

0 = Dxred
fred(x

∗
red, λ∗)txred

+ Dλfred(x
∗
red, λ∗)tλ,

0 = EV D2
xfET

V v∗redQT txred
+ EV DxDλfET

V v∗redtλ

+EV (DxfET
V + ω∗ET

W )tvred
+ EV ET

W v∗redtω ,

0 = 2〈v∗
red, tvred

〉.

(4.16)

We need to show that ker(DF ) is one-dimensional. Similarly, as in the proof of convergence for
the non-symmetric case, Theorem 4.2, see e.g. [1, 12, 14], we conclude from the first equation of
(4.16) that

(txred
, tλ) = tλ(x′

red(λ∗), 1).

Since

D2
xf(x∗, λ∗)x′(λ∗) + DxDλf(x∗, λ∗) =

d

dλ
Dxf(x(λ), λ)|λ=λ∗ ,
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where x(λ) = QT xred(λ), we deduce from the second equation of (4.16) that

EV

(
tλ

d

dλ
Dxf(x(λ), λ)|λ=λ∗ET

V v∗red + (Dxf(x∗, λ∗)ET
V + ω∗ET

W )tvred
+ tωET

W v∗red

)
= 0.

(4.17)
Since ET

V v∗red, ET
V tv, E

T
W v∗red, E

T
W tv ∈ X` and EV |X`

is an isomorphism by Lemma 4.8 d) and
since Dxf(x(λ), λ) maps X` into itself by Lemmata 4.3 and 4.10, (4.17) implies that

tλ
d

dλ
Dxf(x(λ), λ)|λ=λ∗ET

V v∗red + Dxf(x∗, λ∗)ET
V tv + ω∗ET

W tv + tωET
W v∗red = 0.

Let tv = ET
V tvred

and tw = ET
W tvred

. By Lemma 4.8 c) we have tv +itw ∈ Xc
` which we will need

later on. Denote v∗ = ET
V v∗red, w∗ = ET

W v∗red such that, by Proposition 4.9 b), v∗ +iw∗ is a Hopf
eigenvector. Then we get

0 = tλ
d

dλ
Dxf(x(λ), λ)|λ=λ∗v∗ + Dxf(x∗, λ∗)tv + ω∗tw + tωw∗

= Re

(
tλ

d

dλ
Dxf(x(λ), λ)|λ=λ∗ (v∗ + iw∗) + Dxf(x∗, λ∗)(tv + itw)

)

−Re (iω∗(tv + itw) + itω(v∗ + iw∗)) .

By Lemma 4.8 c), v∗ + iw∗ ∈ Xc
` . Therefore

0 = αtλ
d
dλ Dxf(x(λ), λ)|λ=λ∗v∗ + αDxf(x∗, λ∗)tv + ω∗αtw + tωαw∗

= tλ
d
dλ Dxf(x(λ), λ)|λ=λ∗αv∗ + Dxf(x∗, λ∗)αtv + ω∗αtw + tωαw∗

= Re
(
e−2πi/`(tλ

d
dλ Dxf(x(λ), λ)|λ=λ∗ (v∗ + iw∗) + Dxf(x∗, λ∗)(tv + itw))

)

−Re
(
e−2πi/`(iω∗(tv + itw) − itω(v∗ + iw∗))

)
,

where we used the L-equivariance of Dxf(x(λ), λ) (Lemma 4.3) in the second line. Since e−2πi/` /∈
R for ` > 2 these last two equations imply that

0 = tλ
d
dλ Dxf(x(λ), λ)|λ=λ∗ (v∗ + iw∗)

+Dxf(x∗, λ∗)(tv + itw) − iω∗(tv + itw) − itω(v∗ + iw∗).
(4.18)

Let v(λ) + iw(λ), v(λ∗) = v∗, w(λ∗) = w∗, v(λ), w(λ) ∈ X`, be the path of eigenvectors of
Dxf(x(λ), λ) to the eigenvalues µ(λ) with ‖v(λ)‖ = 1. Let u∗ = v∗ + iw∗ and let u∗

L ∈ Xc
` be

the uniquely determined left eigenvector of Dxf(x∗, λ∗) to the eigenvalue iω∗ with 〈u∗
L, u∗〉 = 1.

As in the non-symmetric case, see [1, 14, 12], (4.18) then implies that

tλu∗
L

d

dλ
Dxf(x(λ), λ)λ=λ∗u∗ = itω .

This combined with

〈u∗
L,

d

dλ
Dxf(x(λ), λ)λ=λ∗u∗〉 = µ′(λ∗)

and the assumption that Re µ′(λ∗) 6= 0 gives tλ = 0. Hence tx = 0 and tω = 0. As in the proof
of Theorem 4.2, (4.18) reduces to

Dxf(x∗, λ∗)(tv + itw) − iω∗(tv + itw) = 0
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so that tv + itw is a Hopf eigenvector. Since tv + itw ∈ Xc
` we deduce from Lemma 4.7 that

tv + itw = c(v∗ + iw∗) for some c ∈ C. By the definition of v∗, w∗ and tv, tw this is equivalent to

ET
V tvred

+ iET
W tvred

= c(ET
V v∗red + iET

W v∗red). (4.19)

By Lemma 4.8 the map EV ET
V ∈ Mat(d) is invertible. Therefore we conclude from (4.19) that

tvred
∈ span(v∗red, w∗

red), where w∗
red := (EV ET

V )−1EV ET
W v∗red. From the last row of DF we get

the additional condition 〈v∗
red, tvred

〉 = 0 on tvred
. Hence the kernel of DF is one-dimensional and

DF has full rank in the Hopf point.

Initial guess for the Gauss-Newton iteration As in the non-symmetric case, see Section
4.1.2, we use Hermite interpolation between two consecutive periodic orbits y(0) and y(1) be-
tween of which a Hopf bifurcation was detected and determine the point τ̂ on the interpolating
polynomial y(τ) = (x(τ), T (τ), λ(τ)) with λ′(τ̂ ) = 0. This way we obtain an initial approxima-

tion x̂ = x(τ̂ ) for the Hopf point, an initial approximation λ̂ = λ(τ̂ ) for its parameter, and an
initial approximation ω̂ = 2π

T̂
for its frequency, where T̂ = T (τ̂). If ` = 2 we let

v̂ = c E2
d

dτ
x1(τ̂ ), ŵ = −c

1

ω̂
Dxf(x̂, λ̂)

d

dτ
x1(τ̂ )

where c is such that 〈v̂, v̂〉+ 〈ŵ, ŵ〉 = 1 and take the point (x̂red = Qx̂, λ̂, v̂, ŵ, ω̂) as initial guess
for the Gauss-Newton iteration applied to (4.13). If ` > 2 we define

v̂ = cEV
d

dτ
x1(τ̂ )

with c ∈ R such that 〈v̂, v̂〉 = 1 and use (x̂red, λ̂, v̂, ω̂) as initial guess for the Gauss-Newton
iteration applied to (4.14).

5 Applications

In this section we illustrate the numerical methods for the continuation of symmetric periodic
orbits which we presented in the preceding sections and implemented in the code SYMPERCON
[20] with some examples.

5.1 The Lorenz model - comparison with AUTO and CONTENT

There are many programs for the numerical continuation of periodic orbits of non-symmetric
systems. Two of the most well known and widely used programs are AUTO [8] and CONTENT
[17] the numerical part of which is based on AUTO. In both programs collocation is used to
find periodic solutions. This approach is equivalent to the multiple shooting ansatz with the
multiple shooting points being the grid points and the IVP solver having only one step.

One of the key new features of SYMPERCON compared to those program packages is the
exploitation of symmetries of periodic orbits and the computation of symmetry breaking and
symmetry increasing bifurcations, and we present some applications of these methods in the next
sections. In this section we give numerical evidence that the program package SYMPERCON
is also competitive when applied to continuation of non-symmetric periodic orbits. We compare
the programs AUTO, CONTENT and SYMPERCON using an example which is taken from
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λ

x2

λ

x2

Figure 4: Feigenbaum cascade in the Lorenz model as computed by SYMPERCON. The right
figure is a zoom of the lower left corner of the left figure.

the CONTENT Tutorial (ver 1.4) [17] ”ODEs: Lorenz system: Continuation of limit cycles and
branch switching”. Starting with the Lorenz system

x′
1 = −σx1 + σx2,

x′
2 = −x1x3 + λx1 − x2.

x′
3 = x1x2 − bx3,

where
σ = 10, b = 8/3,

all programs find a periodic solution for the initial guess

(x∗, T ∗, λ∗) = ((16.2, 57.4, 250.8), 0.411, 312)

from [17]. We continue this limit cycle with respect to the parameter λ with required relative
error tol = 10−5. The Lorenz system has the Z2-symmetry (x1, x2, x3) → (−x1,−x2, x3) and the
above periodic orbit is Z2-symmetric. All programs detect a bifurcation of this periodic orbit at
λ = 312.97. This is a symmetry breaking flip pitchfork bifurcation, so the bifurcating periodic
orbits are non-symmetric. The bifurcating branch of non-symmetric periodic orbits which we
take as primary branch in this comparison subsequently undergoes a period doubling cascade,
and we compared AUTO, CONTENT and SYMPERCON in their performance computing this
bifurcation cascade.

While SYMPERCON automatically doubles the number of multiple shooting points at each
flip bifurcation up to a given maximum, in AUTO and CONTENT the entered number of grid
points has to be set by the user. Since this number of grid points has to be increased at period
doubling bifurcations - otherwise the Newton method fails to converge - we doubled the number
manually. But after the 4th period doubling we did not manage to configure CONTENT in
such a way that it would find any more period doubling points. With AUTO we found a
5th period doubling bifurcation. In comparison, SYMPERCON found periodic orbits of 26

times the original period, with period-doubling bifurcations starting from the primary branch
at parameters λ = 229.41, λ = 218.21, λ = 215.97, λ = 215.49, λ = 215.39, and λ = 215.37,
see Figure 4, and (when run with the compiler gcc under linux) even a 7th period doubling
point at λ = 215.36. But all programs were very sensitive to changes of the parameters of the
computation (like the number of initial grid points m, the initial continuation steplength etc)
and the choice of C compiler used.
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5.2 Symmetry breaking bifurcations in coupled cells
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Figure 5: Equivariant Hopf bifurcation of Z4-symmetric periodic orbits of the Brusselator
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Figure 6: Z4-symmetric periodic orbits near an equivariant Hopf point of the Brusselator - the
bold parts of the trajectories are computed numerically.

In this section we apply our methods to compute equivariant Hopf points and symmetry
breaking flip pitchfork bifurcations in the Brusselator model of coupled cells with parameters
as in [3]. We consider four identical cells in which the same reaction takes place and which are
coupled by diffusion. The equations for the 4-cell Brusselator are the following (j = 1, 3, 5, 7,
xi := xi−8 for i > 8)

x′
j = A − (B + 1)xj + x2

jxj+1 + λ(−3xj + xj+2 + xj+4 + xj+6)/1000,

x′
j+1 = Bxj − x2

jxj+1 + λ(−3xj+1 + xj+3 + xj+5 + xj+7)/1000,

where A = 2.0, B = 5.9. The problem is invariant with respect to permutations of the cells,
thus the equations are S4-equivariant. We denote the elements of Γ = S4 by γijkl , e.g.,

γ2314 =




0 0 id 0
id 0 0 0
0 id 0 0
0 0 0 id .


 , id ∈ Mat(2, 2).
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From [3] we took the following equivariant Hopf point

(x∗, λ∗) = (2.0, 2.95, 2.0, 2.95, 2.0, 2.95, 2.0, 2.95, 20.45).

The corresponding imaginary eigenvalue ω∗i has the value ω∗ = 0.62058 and belongs to an
absolutely irreducible 3-dimensional representation, c.f. Remark 2.4. The real eigenspace Nω∗

of ω∗i is of the form Nω∗ = V ⊕ W with

V = {(v1, 0, v2, 0, v3, 0,−v1 − v2 − v3, 0) | v1, v2, v3 ∈ R},

W = {(0, w1, 0, w2, 0, w3, 0,−w1 − w2 − w3) | w1, w2, w3 ∈ R}.

Let eV
j , eW

j be the j-th unit vector of V and W respectively. Then the vectors eV
j + ieW

j ,
j = 1, 2, 3, are eigenvectors to the Hopf eigenvalues iω∗:

Dxf(x∗, λ∗)(eV
j + ieW

j ) = iω∗(eV
j + ieW

j ), j = 1, . . . , 3. (5.1)

Using the equivariant Hopf Theorem (Theorem 4.5) we can now compute the symmetries and
initial planes of the emanating periodic solutions, as in [3]. As an example we consider periodic
orbits with spatio-temporal symmetry group

L = {id, (γ3142,
3

4
), (γ4321,

1

2
), (γ2413,

1

4
)},

which means
L = Z4, K = {id}.

In order to compute the starting plane NL
ω∗ we need to know how S1 acts on Nω∗ . Let u =

(v, w) ∈ Nω∗ = V ⊕ W . Due to (5.1) and (4.6) we have for θ ∈ S1 ' R/Z

(id, θ)u =

(
cos(2πθ)v − sin(2πθ)w
sin(2πθ)v + cos(2πθ)w

)
.

By the equivariant Hopf Theorem 4.5 the starting plane NL
ω∗ is determined by the condition

NL
ω∗ = {u ∈ Nω∗ | (γ, θ)u = u ∀ (γ, θ) ∈ L} = {u ∈ Nω∗ | (γ2413,

π

2
)u = u}.

Here we used that L = Z4 is generated by γ2413. After a short computation we obtain

NL
ω∗ = {(u1, u2,−u2, u1, u2,−u1,−u1,−u2) | u1, u2 ∈ R}.

The Z4-symmetric periodic orbits bifurcating from the equivariant Hopf point are shown in
Figures 5 and 6. These solutions have already been computed in [3] by a Galerkin method based
on Fourier modes.

Using the methods of Section 3, SYMPERCON finds that this branch of Z4-symmetric
periodic orbits undergoes a flip pitchfork bifurcation at λ∗ = 2.6738. A point x∗ on the periodic
orbit at the symmetry breaking bifurcation point is given by

x∗ = (1.7041, 3.0132, 0.86523, 4.8152, 3.6590, 1.5591, 0.92057, 6.0440),

and the period of this periodic solution is T ∗ = 5.0410. The Z4-periodic solution close to the
symmetry breaking bifurcation (at the parameter λ = 2.7904) and a Z2-symmetric periodic
orbit after the bifurcation (at the parameter λ = 2.6734) can be seen in Figure 8, the bifurcation
diagram is shown in Figure 7.
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Figure 7: Flip pitchfork bifurcation from Z4 to Z2-symmetry in the 4-cell Brusselator
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Figure 8: Symmetric periodic orbits of the 4-cell Brusselator before and after a flip pitchfork
bifurcation from Z4-symmetry to Z2-symmetry - the bold parts of the trajectories are computed
numerically.

5.3 Electronic ring oscillator

In this section we a simulate an electrical circuit consisting of n MOSFET-inverters taken from
Kampowsky, Rentrop, Schmidt [15]. Such a circuit can be modelled in the following way: let Ui

be the voltage at the i-th node, then using Kirchhoff’s law we get the differential equations

f , f̃ : R
n → R

n, U̇ = f(U), f(U) = −C−1f̃(U)

for the vector U = (U1, . . . , Un) of the voltages. Here C is the capacity matrix

C =




2Cp + C −Cp −Cp

−Cp 2Cp + C −Cp

. . .
. . .

−Cp −Cp 2Cp + C


 ,
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Figure 9: Circuit of ring oscillator

and the function f is given by

f̃(U) =




1/R(U1 − Uop) + g(Un, U1, U0)
1/R(U2 − Uop) + g(U1, U2, U0)

...
1/R(Un − Uop) + g(Un−1, Un, U0)


 ,

where

g(UG, UD, US) = K max{(UG − US − UT ), 0}2

−K max{(UG − UD − UT ), 0}2.

The constants K, UT , U0, Uop, R and the capacities C and Cp are technical parameters,
which have (after appropriate scaling) the values K = 0.2, UT = 1, U0 = 0, Uop = 5, R = 5,
C = 0.21, Cp = 5 · 10−3, see [15]. From [15] we took the initial values of a periodic solution,
namely U1 = 4.2087, U2 = 0.917, U3 = 2.6534, U4 = 4.2762, U5 = 0.6928, T = 6.298. This
periodic solution is shown in Figure 10. Furthermore there is a stationary solution given by
Ui(t) ≡ 2.56155, i = 1, . . . , 5. Our aim is now the numerical simulation of oscillations of large
electrical circuits, i.e., the computation of periodic orbits for large n.

The function f : Rn → Rn is Zn-equivariant where the generating element γn of

Zn = {id, γn, . . . γn−1
n }

is acting on Rn by shifting the components to the right

γn(x1, . . . , xn) = (x2, . . . , xn, x1).

This representation of Zn is called the regular representation of Zn, see [21]. Using SYMPER-
CON we checked that the above periodic solution (with n = 5) has spatio-temporal symmetry
L = Z5. Since the stationary solution is Zn-invariant the periodic solution might have branched
from the stationary solution via an equivariant Hopf bifurcation. So we introduce Uop as a
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Figure 10: Periodic solution for 5 inverters

continuation parameter and examine the stationary Zn-invariant solutions U = (u, . . . , u) ∈ Rn,
u ∈ R, which are given by the equation

1/R(u− Uop) + g(u, u, U0) = 0

⇐⇒ 1/R(u− Uop) + K(max(u − UT , 0))2 = 0.

In U = (u, . . . , u) the Jacobian DUf(U) is Zn-symmetric:

γ DU f(U) = DUf(U) γ ∀ γ ∈ Γ = Zn. (5.2)

From elementary representation theory it is known that in a regular representation each irre-
ducible representation ϑi is contained ni times, where ni is the dimension of the representation
ϑi, see [21]. Finite cyclic groups Zn only have two dimensional complex irreducible representa-
tions (as defined in Remark 2.4). Over C they are given by

ϑj(γn) = e
2πij

n , j = 0, . . . n − 1, (5.3)

see [21]. Let Xj denote the Γ-irreducible subspace of Rn belonging to ϑj . Then Xj , j =
0, . . . , n − 1, is spanned by the real part vj and imaginary part wj of the vector

vj + iwj = (1, e
2πij

n , e
2πi2j

n , . . . , e
2πi(n−1)j

n ).

Using (5.2) we conclude that the Jacobian DUf(U) can be diagonalised over C. Here vj + iwj

is an eigenvector to the eigenvalue

λj =
1/R + 2K max(u − UT , 0)e

2πi(n−1)j
n

C + (2 − 2 cos 2πj
n )Cp

, (5.4)

as can be computed easily. Setting Re(λj) = 0 we get simple expressions for the stationary

solution u = u(j) and the corresponding parameter U
(j)
op for which an equivariant Hopf bifurcation

can occur, and also for the Hopf frequency ωj . Using the equivariant Hopf Theorem 4.5 we
conclude that every bifurcating periodic solution has the symmetry L = Zn. But we also have
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Table 1: Amount of work for the computation of symmetric periodic orbits with trivial isotropy
of the electrical circuit depending on the number n of inverters

with exploitation
of symmetry

without exploita-
tion of symmetry

flow Φt(x) O(n) Nstep ∗ O(n)

Wronskian matrix DxΦt(x) O(n) Nstep ∗ O(n2)

linear algebra O(n) O(n3)

to determine the homomorphism Θ of the bifurcating periodic orbits and thereby their isotropy
K and drift symmetry α. For this we have to know the operation of Γ × S1 on the Hopf
eigenspace Nω∗ = Xj , see (4.6). We compute that Γ × S1 operates on the irreducible subspace
Xj = span(vj , wj) in the following way

(γ, θ)(vj + iwj) = ϑj(γ)e2πiθ(vj + iwj), (5.5)

where γ ∈ Γ, θ ∈ S1 ≡ R/Z. We can characterize the homomorphism Θj of the bifurcating
periodic orbits tangential to Nω∗ = Xj by the homomorphism Θj(γn) applied to the generating
element γn of Zn. From (5.5) and (5.3) we get

Θj(γn) = −j/n.

Let r be the greatest common divisor of n and j and nred := n/r. Then K is generated by γnred
n ,

and the fixed point space Fix(K) contains all vectors in Rn which consist of r equal sections of
length nred. Therefore nred is the dimension of the reduced system.

After restriction onto the fixed point space Fix(K) = Rnred we obtain L = Znred
, K = {id}.

Then γnred
≡ γnK is a generating element of Znred

. The group Znred
also acts on Rnred by

cyclically permuting the components of every x ∈ R
nred . The representation ϑjred with jred :=

j/r is the irreducible representation of Znred
on Rnred which corresponds to ϑj . Thus,

N red
ω∗ = 〈Vjred , Wjred 〉 ⊂ R

nred

is the initial plane for the periodic solutions in the reduced coordinates. Finally we have to
determine the element α ∈ Znred

with the smallest phase shift Θred(α). Let α = γk
nred

, where k
is an integer between 1 and nred − 1. Then α is given by the equation Θred(α) = 1/nred, i.e.,

ϑjred (α)e2πi/nred = 1 ⇔ jred k ≡ 1 (mod nred).

By the just described method we can compute initial values for periodic solutions for arbitrary
n, and by exploiting symmetry we can reduce the amount of work effectively: if the considered
periodic solution has large spatial symmetry then the ODE is reduced to a system with small
dimension nred. For example, in the case n = 1000, there is a periodic solution with K = Z200,
nred = 5, which corresponds to the above computed solution with n = 5.

If the periodic solution does not have any spatial symmetry, but only spatio-temporal sym-
metry then only the integration interval can be reduced by exploitation of symmetry. Let Nstep

be the number of integration steps for the full integration interval [0, T ]. If the symmetry is not
exploited, Nstep ∗O(n) multiplications and divisions are needed for the computation of the flow;
exploiting the symmetry we can reduce the number of integration steps from Nstep to Nstep/n,
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since the integration interval is only [0, T/n]. Hence for large n the number of time steps is O(1),
and so the number of multiplications and divisions for the computation of the flow is O(n) when
symmetry is exploited. Since the derivatives Dxf(x) are tridiagonal matrices and hence contain
only O(n) non-zero components, Nstep ∗ O(n2) multiplications are needed for the computation
of the Wronskian matrices DxΦt(x) by integration of the variational equation if the symmetry
is not exploited; if the symmetry is exploited then for large n only few steps of integration are
necessary for the computation of the Wronskian matrices. Therefore the Wronskian matrices
are sparse, and only contain non-zero entries close to the diagonal. Hence by exploitation of
symmetry the amount of work for the computation of the Wronskian reduces to O(n). For the so-
lution of the linear equations which arise in the Gauss-Newton method O(n3) multiplications are
needed if the symmetry is not exploited, and the amount of work for the linear algebra reduces
to O(n) due to the sparse structure of the Wronskians if the symmetry is exploited. Altogether
we obtain a remarkable reduction of the computational cost by exploitation of symmetry, c.f.
Table 1.

Conclusion and future directions

In this paper we have presented efficient algorithms for the computation of generic symmetry
changing but isotropy preserving bifurcations of periodic orbits in systems where the symmetry
group is discrete. These bifurcations were analyzed by Golubitsky et al (equivariant Hopf bifur-
cation, see eg [11]) and Fiedler (flip doubling and flip pitchfork bifurcations, see [9]). General
symmety breaking bifurcations of periodic orbits in systems with discrete symmetry group were
classified by Lamb and Melbourne [18], see also [19] and [24] for the case of continuous symme-
try groups. In future work we will extend our numerical results to compute symmetry changing
bifurcations of periodic orbits of arbitrary Lie group actions. In the paper [26] we extend the
methods presented here to Hamiltonian systems with continuous symmetries building on the
persistence results of [25].
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