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Abstract. A finite-difference method for integro-differential equations arising from Lévy
driven asset processes in finance is discussed. The equations are discretized in space by the col-
location method and in time by an explicit backward differentiation formula. The discretization
is shown to be second-order accurate independently of the degree of the singularity in the Lévy
measure. The singularity is dealt with by means of an integration by parts technique. An appli-
cation of the fast Fourier transform gives the overall amount of work O(MN log N), rendering the
method fast.
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1. Introduction. In a seminal paper from 1973, Fischer Black and Myron Sc-
holes [8] derived a partial differential equation for option prices, when asset prices
behave according to the Geometric Brownian Motion. The pricing formulas ob-
tained in this paper represented a major breakthrough in understanding financial
derivatives, to such an extent that financial institutions and traders immediately
adopted the new methodology.

Later empirical studies revealed that the normality of the log-returns, as as-
sumed by Black and Scholes, could not capture features like heavy tails and asym-
metries observed in market-data log-returns densities [13]. The Black-Scholes model
assumes in addition constant parameters, which contradicts the existence of the so-
called volatility smile: A numerical inversion of the Black and Scholes formula based
on data from different strikes and fixed maturity resembles a skew or a smile. This
inconsistency is said to be one of the causes for famous market crashes.

To explain these empirical observations, a number of alternate models have
appeared in the financial literature: Stochastic volatility [24, 26]; deterministic local
volatility [18, 21]; jump-diffusion [27, 31]; infinite activity Lévy models [7, 16, 22].
Each of these models has its advantages and disadvantages. Jump-diffusion and
infinite activity models are attractive since they can capture the jump patterns
exhibited by some stocks and they are more realistic when pricing options close
to maturity [19]. Processes with infinite activity, without a diffusion component

represent a family that describes the high activity of the prices, while at the same
time they reflect the empirical features, desirable in a good model. The pricing
equations are, however, numerically more challenging, and the market turns out to
be incomplete in the sense that a hedging strategy leading to instantaneous risk
free portfolio does not exist in general [17, 32].

Due to the close link between the martingale approach and the PDE approach
[23, 28] the field of computational finance has gained a tremendous impulse from
well-established numerical techniques for PDEs. For an overview we refer to the
introductory book [34]. The development of analogous reliable techniques under
Lévy markets is a subject of present research [5, 6, 20] for jump-diffusions and
[3, 4, 17, 25, 30] for the infinite activity case. In these papers the numerical solution

∗This research was supported by the Dutch government through the national program BSIK:
knowledge and research capacity, in the ICT project BRICKS (http://www.bsik-bricks.nl), theme
MSV1.

† Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer
Science, Mekelweg 4, 2628 CD Delft (ariel@math.uio.no).

‡Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer
Science, Mekelweg 4, 2628 CD Delft (c.w.oosterlee@math.tudelft.nl).

1



of a Partial Integro-Differential Equation (PIDE) has been addressed as a tool to
calculate option prices.

This paper deals with a fast, accurate evaluation of options when the underlying
process is a Carr-Geman-Madan-Yor (CGMY) process of infinite activity and finite
variation, considered in finance in [14]. In previous work [3, 4], we computed the
integral term in the PIDE by the trapezoidal rule, a choice that produces a first
order accurate overall convergence. Our contribution here is to show that second
order convergence may be obtained independently of the degree of the singularity.

The approach in this paper differs from existing methods in the literature. We
use an integration by parts technique to rewrite the integro-differential operator
in terms of Volterra operators with a weakly singular kernel. The vast classical
numerical literature on this type of operators [9, 11, 12, 29] proves very useful to
set up a high-order discretization method. Here we focus on one particular method
that has been thoroughly tested in [12], namely the collocation method for Volterra
equations.

The integro-differential operator in this new setting is not in the standard form
in the literature, so the techniques need to be adapted to this particular example.
The parameters of interest in the CGMY process (with no diffusion in particular)
make the equation formally hyperbolic, and therefore it should be treated as such.
We remark that this is one of the interesting cases considered in the empirical
financial literature of Lévy processes [14].

The computation of convolution integrals is expensive, since the number of
operations involved is in general of order O(N 2). With the help of the fast Fourier
transform (FFT) algorithm it is possible to speed up computations to gain an almost
linear complexity (O(N logN)), provided the grid employed is uniform. The method
proposed allows the application of the FFT algorithm.

The paper is organized as follows. Section 2 offers a brief introduction into finan-
cial derivatives under exponential Lévy models together with the integro-differential
equations of interest. Section 3 contains the core of the paper: the transformation
of the equation by integration by parts, the collocation method on the resulting
weakly singular Volterra equation and a time integration method. Finally, a se-
ries of experiments is presented in §4, confirming the second-order accuracy of the
discretization.

2. The exponential Lévy model in finance. Let us briefly introduce the
exponential Lévy model. By a Lévy process {Lt}t≥0 we mean any process starting
at the origin, with stationary, independent increments. We restrict ourselves to
those Lévy processes that can be expressed as follows

Lt = (r − q + ζ)t + σWt + Zt, (1)

where r ≥ 0 and q ≥ 0 denote the risk-free interest rate and the continuous dividend
paid by some asset St, respectively. The parameter σ denotes the volatility. This
process has a drift term controlled by ζ, a Brownian component {Wt}t≥0 and a
pure-jump component {Zt}t≥0. We focus on the case where the Lévy measure
associated to Zt (see [17]) can be written as dν(x) = k(x)dx, where the weight k(x)
is defined as

k(x) =





C
exp(−G |x|)

|x|
1+α

if x < 0,

C
exp(−M |x|)

|x|
1+α

if x > 0,

(2)
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for constants C > 0, G ≥ 0, M ≥ 0 and α < 2. The process {Zt}t≥0 is known
in the literature as the CGMY process [14]; it generalizes a jump-diffusion model
by Kou [27] (α = −1) and the VG process [16] (α = 0). The CGMY process is in
turn a particular case of the Kobol process studied in [10], where the constant C
is allowed to take on different values on the positive and negative semi-axes. For
convenience of notation, we have chosen α instead of Y as in [14].

2.1. Option pricing under the CGMY process. Let a market consist of
one risky asset {St}t≥0 and a bank account {Bt}t≥0. Assume that the asset process
{St}t≥0 evolves according to the geometric law

St = S0 exp(Lt), (3)

where {Lt}t≥0 is the Lévy process defined in (1), and the bank account follows the
law Bt = exp(rt).

The standard tool to assign prices to options under Lévy processes consists in
changing to a convenient probability measure and taking the expectation of the dis-
counted prices. The new probability measure Q is known in the financial literature
as Equivalent Martingale Measure (EMM): It has the same null sets as the market
probability, and the discounted process {e−(r−q)tSt}t≥0 becomes a martingale. The
so-called EMM-condition EQ[St] = S0e

t(r−q) together with the following formula
for the characteristic exponent of Lt [17]:

EQ[exp(Lt)] = exp

{
t

[
(r − q + ζ) + σ2/2 +

∫

IR

(ex − 1)k(x)dx)

]}
(4)

implies the following “risk-neutral” form for ζ (denoted by $):

$ + σ2/2 +

∫

IR

(ex − 1)k(x)dx = 0. (5)

Techniques as used in Appendix A produce the following expression for $:

$ = −
σ2

2
− CΓ(−α) {(M − 1)α −Mα + (G+ 1)α −Gα} . (6)

Note that ζ controls the drift of the market process, whereas $ is a new parameter
controlling the drift in the artificial world described by the new probability measure
Q, under which options can be priced straightforwardly. The same notation is kept
for the risk-neutral parameters G and M . The other parameters σ, C and α remain
unchanged when passing to the Q measure (risk-neutral world), see e.g., [17]. M
must be larger than one for $ to be well defined.

European vanilla options. Consider a European option on the asset {St}t≥0,
with maturity time T , and strike priceK. Let v(s, t) denote its price, with t denoting
the time to expiration. It is well-known that v satisfies a Partial Integro-Differential
Equation (PIDE); see for example [17]. In order to write a convenient expression
for the PIDE, let s = exp(x) and consider the log-prices u(x, t). Then in general u
solves the following Cauchy problem:





ut −Lu = 0, t ∈ (0, T ], x ∈ IR,

u(x, 0) = ψ(x), x ∈ IR,
(7)

where L is an integro-differential operator of the form

Lϕ :=
σ2

2
ϕxx + (r − q −

σ2

2
)ϕx − rϕ

+

∫

IR

[ϕ(x+ y, t) − ϕ(x, t) − (ey − 1)ϕx(x, t)] k(y)dy, (8)
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and the so-called payoff function ψ defines the nature of the contract. For example,
for a put option ψ(x) = (K − ex)+, meaning that the holder of the option is
entitled to receive the payment K − ST , if the asset value falls below the threshold
K; otherwise the option expires worthless.

For the particular case under consideration, namely α < 1, the third term in
the integral operator may be computed explicitly (cf. (5)), resulting in the following
expression:

Lϕ :=
σ2

2
ϕxx + (r − q +$)ϕx − rϕ +

∫

IR

[ϕ(x+ y, t) − ϕ(x, t)] k(y)dy. (9)

This operator reduces to the Black-Scholes operator if no jumps are present, i.e.,
k ≡ 0.

American vanilla options. Consider as a matter of example an American
put option written on the underlying asset {St}t≥0. It is also well-known that its
price may be found by solving the following free-boundary problem [17]:





ut −Lu = 0, t > 0, x > xf (t),

u(x, t) = K − ex, t > 0, x ≤ xf (t),

u(x, t) ≥ (K − ex)+, t > 0, x ∈ IR,

ut −Lu ≥ 0, t > 0, x ∈ IR,

u(0, x) = (K − ex)+, x ∈ IR,

(10)

where the operator L is defined in (8) and the free-boundary is given by

xf (t) = inf
{
x ∈ IR | u(x, t) > (K − ex)+

}
, t ∈ (0, T ]. (11)

The set {x ∈ IR | x ≤ xf (t)} represents the exercise region for the logarithmic
prices. Hence, for asset prices s ≤ sf (t) := exp(xf (t)), the American put should be
exercised.

For numerical purposes, a useful reformulation of (10) is the following Linear
Complementarity Problem:






ut −Lu ≥ 0 in [0, T ]× IR,

u ≥ ψ in [0, T ]× IR,

(ut −Lu) (u− ψ) = 0 in [0, T ]× IR,

u(x, 0) = ψ(x).

(12)

This formulation does not make use of the free-boundary explicitly, and besides, it
does not rely on the form of the continuation region. The free boundary can be
obtained in a post-processing step by using the relation (11).

3. Discretization of the integral term.

3.1. Integral equation over the positive semi-axis. The core of the nu-
merical method that we propose in this paper lies on a proper discretization of
integral expressions of the form

f(x) =

∫ ∞

0

(u(x+ y) − u(x))
e−My

y1+α
dy, (13)
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that appear in the definition of L in (9). For ease of notation we have omitted the
time variable. Suppose that u is known and we would like to approximate f(x).
The reason for not solving with respect to u in the first place is that we will propose
an explicit time-stepping scheme to solve (7). In the applications, the function u(x)
can be continuous but need not be differentiable at certain points.

Integration by parts of (13) yields

f(x) = −[u(x+ y) − u(x)]k̂(y)
∣∣∣
∞

0
+

∫ ∞

0

u′(x+ y)k̂(y)dy, (14)

where we have introduced the function

k̂(w) :=

∫ ∞

w

e−Mζ

ζ1+α
dζ, w > 0. (15)

This new kernel may be written in terms of the upper incomplete gamma func-
tion, see (79) in Appendix A for a definition and also [1] for some properties. The
following expression holds

k̂(w) = MαΓ(−α,Mw). (16)

Under rather general conditions on the function u(x), the first term in (14) vanishes.
A possible set of sufficient conditions is the following:

? The function u satisfies the Lipschitz condition, i.e., there is a constant C0

such that

|u(z1) − u(z2)| ≤ C0 |z1 − z2| , ∀z1, z2 ∈ IR. (17)

? There exist constants C1 ≥ 0 and 0 ≤ C2 < M such that

|u(z)| ≤ C1e
C2z, z → +∞. (18)

If these two conditions hold, it is not difficult to show that

lim
y→0

[u(x+ y) − u(x)]k̂(y) = lim
y→∞

[u(x+ y) − u(x)]k̂(y) = 0. (19)

For commonly used functions in option pricing like u(x) = (K − ex)+ and u(x) =
(ex −K)+, both conditions above hold.

Changing variable z = x + y, integral equation (13) reduces to a Volterra
equation of the first kind:

f(x) =

∫ ∞

x

u′(z)k̂(z − x)dz. (20)

This kind of equation has been intensively studied in the last century, both
theoretically and numerically; see [11, 12, 29] and the references therein. In this
paper we follow very closely the notation in [12].

3.1.1. Collocation method on positive semi-axis. The first observation
concerns the order of the singularity of the kernel k̂. It is not difficult to realize
that k̂ behaves like y−α, as y → 0. Hence, the integral equation (20) classifies as a
weakly singular Volterra equation.

Motivated by the above observations, let us introduce a notation for a new
kernel k̃ and the derivative v of u, i.e,

k̃(w) := wαk̂(w), v := u′. (21)
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From now on we focus on the discretization of the integral equation

f(x) =

∫ ∞

x

(z − x)−αv(z)k̃(z − x)dz, (22)

following [12] closely. In this form it resembles the well-studied Abel’s equation [29].
In the examples considered in this paper, the functions u have a fastly decaying
derivative at infinity. Thus, one may truncate this integral to a finite interval
x ∈ [a, b] while having control of the error. A brief analysis on the size of the
truncation domain is given in Appendix B.

Let us consider the following (not necessarily uniform) spatial mesh

x0 = a; xn+1 = xn + hn, n = 0, . . . , N − 1; xN = b. (23)

Equation (22) is discretized by the collocation method. Only 2 collocation points
for each mesh point are considered here. For a more general treatment we refer to
[12].

The first step is to choose two numbers c1 and c2 such that

0 ≤ c1 < c2 < 1. (24)

The reason for not including the case c2 = 1 will be clarified later in this section.
With these constants the collocation mesh is defined as follows (see Fig. 1):

xn,j = xn + cjhn, n = 0, . . . , N − 1; j = 1, 2. (25)

xn xn,1 xn+1xn,2

hn

Fig. 1. Collocation mesh and spatial mesh

Let us discretize (22) in the interval x ∈ [a, b]. The polynomial spline collocation
method consists, roughly speaking, in finding a polynomial spline V (z), replacing
the function v(z), such that equation (22) holds exactly at each of the collocation
points xn,j . That is, one looks for a piece-wise linear function, defined as Vl on each
interval [xl, xl+1], such that

fn,j =

∫ b

xn,j

(z − xn,j)
−αV (z)k̃(z − xn,j)dz. (26)

The notation fn,j means the values f(xn,j). Splitting the integral term gives the
following sum

fn,j = An,j + Pn,j , n = 0, . . . , N − 1, j = 1, 2, (27)

where the first term is the integral from collocation point xn,j until the next mesh
point xn+1:

An,j :=

∫ xn+1

xn,j

(z − xn,j)
−αVn(z)k̃(z − xn,j)dz; j = 1, 2, (28)

and the ’lag term’ Pn,j takes into account the intervals [xl, xl+1]:

Pn,j :=
N−1∑

l=n+1

∫ xl+1

xl

(z − xn,j)
−αVl(z)k̃(z − xn,j)dz; j = 1, 2. (29)
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With the change of variables z = xl+νhl, bothAn,j and Pn,j transform, respectively,
into

An,j = h1−α
n

∫ 1

cj

(ν − cj)
−αVn(xn + νhn)k̃(hn(ν − cj))dν, (30)

and

Pn,j =

N−1∑

l=n+1

h1−α
l

∫ 1

0

[
xl − xn,j

hl

+ ν

]−α

Vl(xl + νhl)k̃(xl − xn,j + νhl)dν. (31)

3.1.2. Product integration formulas on positive semi-axis. Formulas
(30) and (31) are not suitable for straightforward evaluation. One would rather
prefer some numerical approximation that keeps the order of accuracy. One possi-
bility is to use an interpolatory quadrature rule.

Let us start by fixing two interpolation points belonging to the interval [cj , 1) :

cj,p := cj + (1 − cj)cp, j, p = 1, 2.

In words: the same collocation points cp are used through a linear mapping of the
interval [0, 1] (where they are located) into the interval [cj , 1), see [12]. Figure 2
illustrates the relative positions of these points. Let Lj,p represent the Lagrange

cj,1cj cj,2 1

Fig. 2. Interpolation points

interpolation polynomials associated to the points cj,p. The product integration
rule consists in approximating the integrand (except for the singular part) by a
piece-wise linear polynomial, i.e., one employs in (30) the following approximation

Vn(xn + νhn)k̃(hn(ν − cj)) ≈

2∑

p=1

Lj,p(ν)Vn(xn + cj,phn)k̃(hn(cj,p − cj)), (32)

for ν ∈ [cj , 1]. This formula requires the values Vn(xn + cj,phn). Let Lq and Vn,q

denote the Lagrange interpolation polynomials at xn,q , for q = 1, 2 and the nodal
values of Vn at the same collocation points, respectively. It follows that

Vn(xn + cj,phn) =

2∑

q=1

Lq(cj,p)Vn,q , j = 1, 2. (33)

The function V (z) need not be continuous. Upon substitution of (33) into (32)
and thereafter into (30), one arrives at the following formulas suitable for numerical
evaluation:

Ân,j = h1−α
n

2∑

p=1

2∑

q=1

λj,pLq(cj,p) Vn,q k̃(hn(1 − cj)cp),

n = 0, . . . , N − 1; j = 1, 2, (34)

where we introduced the (α-dependent) weights

λj,p :=

∫ 1

cj

(ν − cj)
−αLj,p(ν)dν, j, p = 1, 2. (35)
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An analytic expression for these weights will be given in short. For the integrals in
the lag term Pn,j the analysis goes similarly. There the interpolation nodes are the
same as the collocation points cj , so

Vl(xl + νhl)k̃(xl − xn,j + νhl) ≈

2∑

q=1

Lq(ν) Vl,q k̃(xl − xn,j + cqhl), (36)

which gives the product integration rule for the lag term

P̂n,j =

N−1∑

l=n+1

h1−α
l

(
2∑

q=1

ωl,j,q Vl,q k̃(xl − xn,j + cqhl)

)
, (37)

and the weights are defined as:

ωl,j,q :=

∫ 1

0

[
xl − xn,j

hl

+ ν

]−α

Lq(ν)dν,

j, q = 1, 2; l = n+ 1, . . . , N − 1. (38)

To conclude, the entries fn,j are approximated as follows

fn,j ≈ P̂n,j + Ân,j , n = 0, . . . , N − 1, j = 1, 2. (39)

3.1.3. Weights on positive semi-axis. Formulas for the weights in (35) and
(38) are derived next. We start with ωl,j,q in (38). To simplify the notation let us
introduce the numbers

dl,j =
xl − xn,j

hl

. (40)

This accounts to saying that the following integral is to be evaluated analytically:

∫ 1

0

(dl,j + ν)−αLq(ν)dν. (41)

Recall that the Lagrange interpolation polynomials Lq(ν) are given by the formulas

L1(ν) =
ν − c2
c1 − c2

, L2(ν) =
ν − c1
c2 − c1

. (42)

We carry out the computation only for L1, as for L2 it goes similarly. Adding and
subtracting dl,j in the expression ν − c2 produces two integrals that may be easily
evaluated, indeed,

∫ 1

0

(dl,j + ν)−α(ν − c2)dν =

∫ 1

0

(dl,j + ν)−α+1dν − (dl,j + c2)

∫ 1

0

(dl,j + ν)−αdν.

Integrating above yields the following formulas for the weights




ωl,j,1 =
(dl,j + 1)2−α − (dl,j)

2−α

(2 − α)(c1 − c2)
− (dl,j + c2)

(dl,j + 1)1−α − (dl,j)
1−α

(1 − α)(c1 − c2)
,

ωl,j,2 =
(dl,j + 1)2−α − (dl,j)

2−α

(2 − α)(c2 − c1)
− (dl,j + c1)

(dl,j + 1)1−α − (dl,j)
1−α

(1 − α)(c2 − c1)
.

(43)
To compute λj,p, let us change to the variable ν = cj +(1−cj)ρ. This operation

simplifies the Lagrange interpolation polynomials Lj,q(ν) as the following equalities
show

Lj,1(ν) =
ν − cj,1
cj,2 − cj,1

=
v − cj − (1 − cj)ρ

(1 − cj)(c2 − c1)
=

ρ− c1
c2 − c1

= L1(ρ).
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Notice that cj 6= 1 to simplify in this expression. Analogously one finds that
Lj,2(ν) = L2(ρ). Consequently, the expression

λj,p = (1 − cj)
1−α

∫ 1

0

ρ−αLp(ρ)dρ,

gives an alternative way to evaluate these weights. Thus, we may use the previously
derived formulas for the ω-weights with dl,j ≡ 0 to arrive at the following expressions
for the λ-weights:





λj,1 =
(1 − cj)

1−α

c1 − c2

[
1

2 − α
−

c2
1 − α

]
,

λj,2 =
(1 − cj)

1−α

c2 − c1

[
1

2 − α
−

c1
1 − α

]
.

(44)

3.1.4. Smoothing the kernel. A simple numerical experiment with equation
(22) reveals that the order of the discretization is only O(h) (cf. Table 1). At first
glance it seems that the problem is caused by the non-smooth payoff. However, the
true cause of this loss of accuracy is the lack of smoothness of the kernel k̃. This
can, however, be easily remedied by a convenient rewriting of the integral equation.
One possible remedy is based on a expansion of the kernel such that the non-smooth
component can be identified. For future reference, we will add a subscript ′+′ or
′−′ to the kernels to indicate that we work with the positive or negative part of the
Lévy measure respectively.

A first integration by parts yields

k̂(x) =

∫ ∞

x

e−My

y1+α
dy =

e−Mxx−α

α
−
M

α

∫ ∞

x

e−Myy−αdy.

A second integration by parts for the integral on the right-hand side gives rise to
the identity

∫ ∞

x

e−My

y1+α
dy =

e−Mxx−α

α
+
Me−Mxx1−α

α(1 − α)
−

M2

α(1 − α)

∫ ∞

x

e−Myy1−αdy.

So, if we define the constant

θ+ :=
M2

α(1 − α)

∫ ∞

0

e−Myy1−αdy,

the new kernel

k+(x) := k̃(x) + θ+x
α =

e−Mx

α
+
Me−Mxx

α(1 − α)
−

M2xα

α(1 − α)

∫ x

0

e−Myy1−αdy,

becomes a differentiable function, in contrast to the original kernel k̃(x) in (21)
which is only continuous. Moreover, due to the second integration by parts, k+

is even twice continuously differentiable. Indeed, differentiating twice the relevant
term on the right-hand side, and neglecting the smooth terms, gives

xα−2

∫ x

0

e−Myy1−αdy

which is continuous, but not differentiable. A final observation is that θ+ may be
written in terms of the gamma function Γ(·) (see Appendix A), i.e.,

θ+ =
MαΓ(2 − α)

α(1 − α)
. (45)

9



The observations lead us to the following integral equation

f(x) =

∫ ∞

x

(z − x)−αv(z)k+(z − x)dz − θ+

∫ ∞

x

v(z)dz. (46)

Notice that (46) is merely a rewriting of (22), but the kernels present in (46) are
however smoother. One could continue integrating by parts and extract the smooth
components of k̃. For numerical efficiency this is not advisable as each additional
term means a new integral to be computed numerically, increasing therefore the
complexity. In order to avoid truncation errors we treat both terms on the right-
hand side in (46) numerically.

One of the advantages of the collocation method as presented here is that one
can deal with complicated payoffs, e.g., as for butterflies options, straddles, etc,
without affecting the accuracy. The numerical experiments in §4 will confirm this
statement.

3.1.5. Integral equation over the negative semi-axis. In the previous
section we explained the treatment of the Volterra equation when the variable of
integration runs through the positive semi-axis. For the negative semi-axis the
discretization is very similar so we keep the same notation from the positive situation
and summarize the procedure. However, the collocation mesh is different. In §3.2
we couple both integrals with the use of a common spatial mesh.

The integral equation for the negative semi-axis reads

g(x) =

∫ 0

−∞

(u(x+ y) − u(x))
e−G|y|

|y|
1+α

dy. (47)

This expression reduces, after integration by parts, to the following

g(x) = −

∫ 0

−∞

v(x+ y)k̂(y)dy. (48)

Here we have introduced the function

k̂(−w) :=

∫ −w

−∞

e−G|ζ|

|ζ|1+α
dζ, w > 0, (49)

and v stands for the derivative of u with respect to the space variable. The subscript
′−′ for the negative kernel is again omitted. An expression in terms of the incomplete
gamma function exists, namely, k̂(−w) = GαΓ(−α,Gw). The Lipschitz property
(17) is now invoked to allow the above integration by parts, along with a growth
property for large negative values, i.e.,

? There exist constants C3 > 0 and 0 < C4 < G such that |u(z)| ≤ C3e
C4|z|

for z → −∞.
The analysis for the negative semi-axis has been included in short here. Even

if the positive case can be reduced to the negative case by changing variables, we
have chosen here the route of separating these two problems.

Similarly to the situation on the positive semi-axis, one takes into account the
singularity of the kernel k̂. It is therefore convenient to introduce the kernel

k̃(w) := wαk̂(−w), w > 0, (50)

and focus on the discretization of the integral equation

g(x) = −

∫ x

−∞

(x − z)−αv(z)k̃(x− z)dz. (51)

10



Considering the collocation parameters

0 < c1 < c2 ≤ 1, (52)

the collocation mesh is defined as in (23), however, these two meshes are typically
different. This time c1 6= 0. To discretize (51) write:

gn,j = −

∫ xn,j

a

(xn,j − z)−αV (z)k̃(xn,j − z)dz. (53)

As for the positive semi-axis, one applies the product integration rule with a suitable
choice of interpolation points. Summarizing, the quantities gn,j are approximated
as follows

gn,j ≈ B̂n,j + Q̂n,j , n = 0, . . . , N − 1, j = 1, 2. (54)

The first component is computed with the formula

B̂n,j = −h1−α
n

2∑

p=1

2∑

q=1

λj,pLq(cj,p) Vn,q k̃(hncj(1 − cp)), j = 1, 2, (55)

the weights λj,p being






λj,1 =
(cj)

1−α

c2 − c1

[
1

2 − α
−

1 − c2
1 − α

]
,

λj,2 =
(cj)

1−α

c1 − c2

[
1

2 − α
−

1 − c1
1 − α

]
.

(56)

The second component in this sum corresponds to an approximation of the lag-term:

Q̂n,j = −

n−1∑

l=0

h1−α
l

[
2∑

q=1

ωl,j,q Vl,q k̃(xn,j − xl − cqhl)

]
, (57)

where the weights for the negative semi-axis are






ωl,j,1 = −
(dl,j)

2−α − (dl,j − 1)2−α

(2 − α)(c1 − c2)
+ (dl,j − c2)

(dl,j)
1−α − (dl,j − 1)1−α

(1 − α)(c1 − c2)
,

ωl,j,2 = −
(dl,j)

2−α − (dl,j − 1)2−α

(2 − α)(c2 − c1)
+ (dl,j + c1)

(dl,j)
1−α − (dl,j − 1)1−α

(1 − α)(c2 − c1)
.

(58)
As for the positive integral, a compensation constant is necessary to smooth

the kernel. The constant in this situation is

θ− =
GαΓ(2 − α)

α(1 − α)
, (59)

so that

k−(x) := k̃(x) + θ−x
α,

and the splitting of integral equation with respect to the new kernel reads

g(x) = −

∫ x

−∞

(x− z)−αv(z)k−(z − x)dz + θ−

∫ x

−∞

v(z)dz. (60)

11



3.1.6. Intermezzo. In this section we first show that the collocation method
applied to equation (46) gives at least a quadratic discretization error. We choose
the payoff function for a put option u(x) = (1−ex)+, and compare with the analytic
formula for f(x) derived in Appendix A (81). Moreover, we check that indeed the
same method applied to (22) gives only a linear order, so that the smoothing of the
integrand as explained §3.1.4 is necessary for second order accuracy. The results
are displayed in Table 1. The parameters used are α = 0.8 and M = 5 and the
mesh is uniform. The same convergence results subsist on a non-uniform grid, but
we are then not able to apply the FFT algorithm (discussed in §3.4 and in detail
in [3]) to make computations fast. On the other hand, the discretization order
depends on the choice of the collocation parameters c1 and c2, as Table 1 shows.
We actually observe superconvergence at the collocation points with the Radau
parameters c1 = 0 and c2 = 2/3. This is in accordance with the results from [12].

Eq. (46) Eq. (22)
c1 = 0, c2 = 0.5 c1 = 0, c2 = 2/3 c1 = 0, c2 = 0.5

N `∞-error rate `∞-error rate `∞-error rate
20 0.0839 0.02314 0.248
40 0.0240 3.4 0.00366 6.3 0.148 1.6
80 0.0065 3.6 0.00057 6.4 0.079 1.8
160 0.0017 3.8 0.00009 6.3 0.041 1.9

Table 1

Discretization errors with the collocation method.

In order to obtain superconvergence on the negative semi-axis, the Radau points
must be chosen as c1 = 1/3 and c2 = 1.

3.2. Assembling the PIDE. Recall that our main goal is to solve a PIDE of
the form (7) with the operator L given by (9). The interesting case is when σ = 0,
i.e., no smoothing takes place caused by a diffusion component. In case we deal
with σ > 0, the ideas exposed in this paper still apply, but then special care of the
diffusion needs to be taken by means of an implicit-explicit scheme as for example
in [3, 4, 17].

The considerations from previous sections lead us to consider the following
rewriting of (7):

ut + ru = CI+(ux) + CI−(ux) + µux, (61)

with the constant (cf. (6))

µ := r − q +$, (62)

and the following operators:

I+(ux) :=

∫ +∞

x

(x− z)−αux(z)k+(z − x)dz − θ+

∫ +∞

x

ux(z)dz, (63)

I−(ux) := −

∫ x

−∞

(x− z)−αux(z)k−(z − x)dz + θ−

∫ x

−∞

ux(z)dz. (64)

Note that these operators involve both the function u and its derivative v = ux.
To our knowledge, PIDEs like (61)-(64) have not been considered in the existing
literature on Volterra equations.

If one applies a time integration procedure, one faces the problem of finding
the numerical derivative of the unknown for a next time step, discussed in §3.2.1 .
This is related to the treatment of the term µux in a consistent way.

12



In (61) we make a “superposition” of two operators. The positive operator be-
haves essentially as a “convection term”, in that the solution is “transported” in the
negative direction. The negative operator behaves exactly opposite, “transporting”
the solution in the positive direction.

Remark 3.1. We observed that optimal convergence properties are attained
when considering Radau points, as in Table 1. For the positive part this accounts
to taking the collocation mesh X+ as xn,0 = xn and xn,1 = xn + 2

3hn; whereas
for the negative operator the Radau collocation mesh X− is xn,0 = xn + 1

3hn and
xn,1 = xn+1. To couple the partial results over these two different meshes we
propose here a straightforward interpolation: the evaluation of the integral on X+

and X− mesh is interpolated to the ”base mesh” X+ ∪X−. We use a simple linear
interpolation, though a higher order interpolation is in principle also applicable.

3.2.1. Local differentiation formulas due to the collocation method.
There are several choices to discretize the numerical derivative in (63)-(64). The
stable one is to apply once more the collocation method to the equation:

u(x) = −

∫ b

x

v(s)ds+ u(b). (65)

for the positive integral. For the negative integral one should instead use the formula

u(x) =

∫ x

a

v(s)ds− u(a). (66)

The formulas for the negative operator were derived in [12]. We have derived
the following formulas for the positive operator. All the formulas are summarized
below for the sake of completeness. We call the formulas associated to (65) “forward
formulas”, and the ones associated to (66) “backward formulas”. As remarked in
[12], to be able to obtain stable local differentiation formulas, one of the collocation
points must coincide with one extreme of the interval, namely, 0 = c1 < c2 < 1. For
the backward formulas one must have 0 < c1 < c2 = 1. One picks two arbitrary
numbers ν1, ν2 ∈ [0, 1], that need not be the same for the forward and backward
formulas.

Forward formulas
On collocation point xn,1:

Vn,1 =
1

hnc2(1 − c2)
[c2(2ν1 − c2)u(xn + hn)+

(1 − 2ν1)u(xn + c2hn) + ((c2)
2 + 2(1 − c2)ν1 − 1)u(xn)] (67)

On collocation point xn,2:

Vn,2 =
1

hnc2(1 − c2)
[c2(2ν2 − c2)u(xn + hn)+

(1 − 2ν2)u(xn + c2hn) + ((c2)
2 + 2(1 − c2)ν2 − 1)u(xn)] (68)

Backward formulas [12]:

Vn,1 =
1

hnc1(1 − c1)
[c1(2ν1 − c1)u(xn + hn)+

(1 − 2ν1)u(xn + c1hn) + ((c1)
2 + 2(1 − c1)ν1 − 1)u(xn)] (69)

Vn,2 =
1

hnc1(1 − c1)
[c1(2ν2 − c1)u(xn + hn)+

(1 − 2ν2)u(xn + c1hn) + ((c1)
2 + 2(1 − c1)ν2 − 1)u(xn)] (70)

13



We know explain the treatment of the term µux. The consistent way of dis-
cretizing this term is by taking into account the transport of information produced
by each of the integral operators. We may summarize the criterion as follows.

Remark 3.2. The term µux is discretized according to the sign of µ: by
a forward collocation derivative (formulas (67)-(68)) if µ > 0, or by a backward
collocation derivative (formulas (69)-(70)) if µ < 0.

3.3. Time integration. Let k be the time step size, tm = mk, for m =
0, . . . ,M . For a European option, the explicit BDF2 method reads

3

2
um − 2um−1 +

1

2
um−2 + krum = k[I+(v̄m) + I−(v̄m) + µv̄m], (71)

where v̄m = 2vm−1 − vm−2, and I+, I− denote the discretizations by collocation of
the operators I+ and I−, respectively. The addition on the right-hand side needs to
be properly defined, as we add quantities that are not defined over the same mesh.
To give a meaning to this sum, consider the base mesh X+ ∪ X−, i.e., the mesh
where these additions make sense. Let us consider the case of Radau points. Let
P+ denote the prolongation operator from X+ to X+ ∪X−. An example of such a
prolongation is the following:

P+(w)3k = wk,1, (72)

P+(w)3k+1 = (wk,1 + wk,2)/2, (73)

P+(w)3k+2 = wk,2, (74)

for k = 0, . . . , N − 1. A negative prolongation P− may be defined likewise. Then,
the sum of integrals in (71) is in the sense P+(I+(v̄m)) + P−(I−(v̄m)). If the
collocation parameters are chosen to be c1 = 0, c2 = 0.5 for the positive situation
and c1 = 0.5, c2 = 1 for the negative situation, one does not need to interpolate
as the meshes coincide, except for boundary points. However, this choice is less
accurate as pointed out in §3.1.6.

Each derivative vj present in the integrands is evaluated by the local differen-
tiation formulas of §3.2.1. An iteration of the form

um = J(vm−1, vm−2) (75)

is then found after collecting the prolongation terms. Recall that this iteration
is computed over the base mesh X+ ∪ X−. The first input to this iteration is
the collocation derivative of the payoff v0, and the second, v1, is the result of
differentiating one explicit Euler iteration.

For American options the iteration is similar:





um ≥ J(vm−1, vm−2)

um ≥ ψ

(um − J(vm−1, vm−2), um − ψ) = 0

u0 = ψ.

(76)

Here (·, ·) is the standard inner product in IR3N , because these iterations are carried
out in a mesh of size 3N due to the collocation points and the size of the base mesh.
The solution of this discrete LCP problem is simply um = max(J(vm−1, vm−2), ψ).
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3.4. The algorithm. We summarize the techniques discussed in an algorithm.
The notations vf and vb stand for the forward and backward collocation derivative,
respectively, as in §3.2.1. The operator P+(u) means the prolongation operator by
interpolation from collocation mesh X+ to the base mesh X+ ∪X−. The operator
P−(u) defines likewise the prolongation from X−. Finally, the term µux is prolon-
gated similarly and added to one of the integrals according to Remark 3.2.

Algorithm
(1) Initialize u0, and define the starting derivatives v0

f , v
0
b according to (67)-

(70).
(2) Compute the integral I0

+ := I+(v0
f ) from (39) and I0

− := I−(v0
b ) from

(54). Make prolongations P+(I0
+), P−(I0

+) using (73)-(74) and build the
right-hand side vector J(v0) (similar to (75)).

(3) Compute one step Euler u1; thereafter compute v1
f and v1

b .

(4) Compute I1
+ := I+(v1

f ) and I1
− := I−(v1

b ). Make prolongations P+(I1
+),

P−(I1
−) and build the right-hand side vector J(v0, v1) as in (75).

(5) Compute a BDF2 step u2 (cf. (71)), to obtain v2
f and v2

b .

(6) Update u1 → u0 , u2 → u1, v1 → v0 , v2 → v1. Let m → m + 1 and
repeat steps (4)-(6) until m = M .

Whenever we compute the integrals I+ and I− we apply the FFT algorithm
to accelerate the computation of the convolution. This is standard practice so the
details are left out. In previous work [3, 4] we made use of this technique to reduce
computational time. We only point out that formulas (37) and (57) take on a special
form when the mesh is uniform, representing, for each j, the multiplication of a
Toeplitz matrix by a vector. These matrix-vector multiplications can be efficiently
implemented following the explanation in [33].

4. Numerical experiments. The experiments in this section are performed
on a AMD Athlon(TM) XP 2700. The first experiment consists in computing
European put options with different values of α in order to verify that the order
of convergence is quadratic and independent of α, see Table 2. We compare the
numerical values with the Carr-Madan formula [15]. We note that with increasing
α, the number of time-steps should be increased to obtain a stable solution. The
stability analysis is an interesting subject that will be studied in a future paper.
Numerical tests indicate that in order for the solution to exhibit a stable behaviour,
a stability condition k ≤ C(α)h should be fulfilled, as expected from hyperbolic
problems. The experiments show also that the stability constant C(α) increases
when α approaches 1.

Since the grid convergence rate is also deteriorating with increasing α (Table
2), one does not expect the superconvergence for α close to one. However, O(h2)
accuracy is clearly observed.

A second experiment consists in computing an American put option (Table 3).
We again observe the second order accuracy of the scheme. The CPU times behave
as predicted by the application of FFT for each time-step, with O(MN logN) com-
plexity. Pictures of the American put option values at t = 0 and the time-dependent
early exercise boundaries for different values of parameter α are shown in Figure
3. Increasing α means an increase of the intensity of small jumps. Loosely speak-
ing, the prices behave similarly to a volatility increase in the classical Black-Scholes
framework.

In a third experiment, European and American butterfly options are considered
(Table 4 and Figure 4). A butterfly spread is the result of buying call options
with strikes K1 and K2 respectively, and selling two call options with strike price
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K3 = (K1 +K2)/2. That is, the payoff is of the form

ψ(x) = (ex −K1)
+ − 2(ex −

K1 +K2

2
)+ + (ex −K2)

+.

A European style butterfly is appropriate when the investor thinks large moves in
the price of the underlying asset are unlikely. Usually the middle strike K3 is close
to today’s spot price S0, so that it pays off when the underlying asset price stays
close to S0. In Figure 4 we show American style butterflies (in S coordinate) with
different values of α and in Table 4 the second order convergence of a European
style butterfly is shown experimentally. The reason for including a butterfly option
example is to show that the method discussed in this paper is rather general and
provides accurate numerical results for other kinds of payoffs (non-convex payoffs
for example), without any further complications.

A final remark is concerning the so-called smooth-fit or smooth-paste principle.
This principle essentially states that the derivative of the Black-Scholes American
option price is a continuous function, also at the exercise boundary. It is known
that this property does not generally hold true when the underlying follows a Lévy
process (for a partial proof see [4] and for a complete characterization for perpetual
options see [2]). The butterfly payoff has the feature of combining both the put and
the call properties. We observe on the left-hand side of the “hat payoff” in Figure 4
(the call part) that the solution enters the payoff smoothly, whereas, for the right-
hand side the smooth-fit is not observable. In this example two free boundaries
appear despite the continuous dividend yield q = 0. This is in contrast to the
well-known Black-Scholes situation of a call option for which early exercise is not
favorable with q = 0.

α N M error at x = 0 rate Ref. value

0.1

100 20 9.73E-4

0.06353404
200 80 1.82E-4 5.3
400 160 3.18E-5 5.7
800 320 5.70E-6 5.5

α = 0.5

100 40 1.58E-3

0.10296690
200 80 3.26E-4 4.8
400 160 6.38E-5 5.1
800 320 1.21E-5 5.2

α = 0.8

100 200 8.19E-3

0.14789424
200 400 1.96E-3 4.1
400 800 4.47E-4 4.3
800 1600 9.99E-5 4.4

Table 2

Computation of European options for different values of α. Other parameters: r = 0.1, q =
0, K = 1, C = 1,M = G = 5, T = 1.

5. Conclusions. In this paper we have proposed a numerical procedure to
solve integro-differential scalar equations that arise in finance, when pricing options
for which the underlying asset follows a Lévy process. The main idea is to inte-
grate by parts in order to transform the integral operator into a sum of Volterra
operators with weakly singular kernels. Known numerical techniques like the collo-
cation method for Volterra equations with weakly singular kernels prove useful to
set up a high order discretization. Throughout a series of experiments it has been
shown that an explicit method is a natural choice for this kind of problems, as they
essentially behave like transport equations. The method proposed can deal with
complicated payoffs in a natural way. Due to the FFT algorithm, the complexity
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N M error at x = 0 rate CPU-time (s)
100 40 1.73E-3 0.65
200 80 3.36E-4 5.1 1.27
400 160 4.80E-5 7 5.05
800 320 6.80E-6 7 20.55
ref. value 0.112171

Table 3

Grid convergence for an American put. Parameters: r = 0.1, q = 0, K = 1, C = 1, M = G =
5, α = 0.5, T = 1.

N M `∞-errors rate
50 30 1.22E-2
100 60 3.22E-3 3.8
200 120 5.94E-4 5.4
400 240 6.28E-5 9.4

Table 4

Computation of a European butterfly with parameters: r = 0.1, q = 0, K = 1, T = 1, C =
1, G = 3,M = 5, α = 0.5.

of the method is close to linear. With a fast, second order method at hand, the
calibration problem for American options under Lévy processes is now within reach.

Appendix A. Analytic evaluation of integral equation (13). In the
numerical experiments in §3.1.6 we make use of the analytic expression for

f(x) =

∫ ∞

0

(u(x+ y) − u(x))
e−My

y1+α
dy.

where u(x) = (1 − ex)+. In this paragraph we derive an expression for f(x).
Note that f(x) = 0 for x > 0. For x < 0 we have

∫ +∞

0

[
(1 − ex+y)+ − (1 − ex)+

] e−My

y1+α
dy

= ex

∫ −x

0

(1 − ey)
e−My

y1+α
dy + (ex − 1)

∫ +∞

−x

e−My

y1+α
dy

= ex

∫ +∞

0

(1 − ey)
e−My

y1+α
dy + ex

∫ +∞

−x

e−(M−1)y

y1+α
dy −

∫ +∞

−x

e−My

y1+α
dy. (77)

To compute the first term, observe that for α < 0 the formula
∫ ∞

0

e−My

y1+α
dy = MαΓ(−α),

holds. Therefore,

∫ +∞

0

(1 − ey)
e−My

y1+α
dy = Γ(−α)[Mα − (M − 1)α]. (78)

However, this formula also admits an extension to the complex plane excluding
α 6= 1, 2, . . . ; see [1]. The second and the third term in (77) can be computed with
some quadrature rule, but here we opt for the following approach. These integrals
can be written in terms of the so-called upper incomplete gamma function:

Γ(β, y) =

∫ +∞

y

tβ−1e−tdt. (79)
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That is, for instance

∫ +∞

−x

e−My

y1+α
dy = MαΓ(−α,−Mx). (80)

An efficient algorithm to compute the incomplete gamma function is discussed in
[35].

To summarize, we found that f(x) = 0 for x > 0 and

f(x) = exΓ(−α)[Mα − (M − 1)α]+

ex(M − 1)αΓ(−α,−(M − 1)x) −MαΓ(−α,−Mx), x < 0. (81)

Appendix B. Analysis of the truncation error. We sketch here an argu-
ment that provides us with an estimate for the truncation error. The details have
been omitted for clarity.

It is known that the solution u of (7) admits the stochastic interpretation

u(x, t) = e−rtEQ[ψ(x+ Lt)]. (82)

Consider the case of a put option, i.e., ψ(x) = (K − ex)+. Denoting by q̂(y) the
probability density function of the variable Lt, we may write

u(x, t) = e−rt

∫ log K−x

−∞

(K − ex+y)q̂(y)dy.

Differentiating this expression with respect to x yields

ux(x, t) = −e−rt+x

∫ log K−x

−∞

eyq̂(y)dy.

Since ey ≤ Ke−x for y ≤ log(K) − x, the following estimate holds:

|ux(x, t)| ≤ Ke−rt. (83)

This is a global estimate. A more detailed analysis shows that the derivative of a
put decays exponentially, giving a sharper estimate. For our purposes this bound
is sufficient. An estimate for the truncation error may be obtained as follows

∣∣∣∣
∫ a

−∞

ux(z, t)k̂−(z − x)dz +

∫ +∞

b

ux(z, t)k̂+(x− z)dz

∣∣∣∣ ≤

Ke−rt

[∫ a

−∞

k̂−(z − x)dz +

∫ +∞

b

k̂+(x − z)dz

]
. (84)

Both integrals on the right-hand side have exponential decay as a → −∞ and
b→ +∞, i.e., the first integral behaves like e−G|x−a| and the second like e−M |x−b|.
Therefore, for x far from the end points the error is kept under control. For x
close to the boundary the exponential decay of the derivative ux will play a role in
reducing the error by truncation.
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Fig. 3. American put option prices at t = T (left) and early exercise boundaries (right) for
different values of α. Other parameters: r = 0.1, q = 0, K = 1, T = 2, C = 1, G = 5, M = 5.
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Fig. 4. American butterfly prices at t = T (left) and early exercise boundaries for α = 0.1
and α = 0.7. Other parameters: r = 0.1, q = 0, K1 = 1, K2 = 3, T = 1, C = 1, G = 3, M = 5.
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