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LINEAR VS. NONLINEAR DIFFUSION
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Abstract. The aim of this paper is to discuss the effects of linear and non-
linear diffusion in the Keller-Segel model of chemotaxis with volume filling

effect. In both cases we first cover the global existence and uniqueness theory
of solutions of the Cauchy problem on R

d. Then, we address the large time
asymptotic behavior. In the linear diffusion case we provide several sufficient
conditions such that the diffusion part dominates and yields decay to zero of

solutions. We also provide an explicit decay rate towards self–similarity. More-
over, we prove that no stationary solutions with positive mass exist. In the
nonlinear diffusion case we prove that the asymptotic behaviour is fully deter-
mined by the diffusivity constant in the model being larger or smaller than the

threshold value ε = 1. Below this value we have existence of non-decaying solu-
tions and their convergence (in terms of subsequences) to stationary solutions.
For ε > 1 all compactly supported solutions are proven to decay asymptot-

ically to zero, unlike in the classical models with linear diffusion, where the
asymptotic behaviour depends on the initial mass.

1. Introduction

This paper focuses on the mathematical analysis of a chemotaxis model in the
cases of linear and nonlinear diffusion. The general structure of the model we
consider is





∂ρ

∂t
= ∇ · (M(ρ)∇µ(ρ, S))

−∆S + S = ρ,
(1.1)

posed on R
d × R

+ subject to the initial condition

ρ(x, 0) = ρ0(x), ρ0 ∈ L1(Rd), 0 ≤ ρ0(x) ≤ 1, x ∈ R
d. (1.2)

The mobility term M is given by M(ρ) = ρ(1−ρ). Such a choice takes into account
the prevention of overcrowding effect, sometimes also referred to as ‘volume–filling’
effect (see the motivations and the references below). The potential µ reads

µ(ρ, S) =
δE

δρ
(ρ, S) (1.3)

where δE
δρ denotes the functional derivative of some energy functional with respect

to ρ.
1
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If we model the energy as a combination of a logarithmic entropy and an aggre-
gation part, i.e.,

E(ρ, S) = ε

∫

Rd

(ρ log ρ+ (1 − ρ) log(1 − ρ)) dx

−
∫

Rd

ρS dx+
1

2

∫

Rd

(
|∇S|2 + S2

)
dx, (1.4)

with ε > 0, then system (1.1) becomes




∂ρ

∂t
= ∇ · (ε∇ρ− ρ(1 − ρ)∇S)

−∆S + S = ρ,
(1.5)

which is a special case of the Keller-Segel model for chemotaxis, describing the
behaviour of a cell population ρ under the influence of the chemical S produced
by the cells themselves. Introduced in 1970 [KS70] to describe aggregation of slime
mold amoebae, this model has become one of the most widely studied models in
mathematical biology. The cell flux on the right hand side of (1.5) comprises two
counteracting phenomena: random motion of cells described by Fick’s law and cell
movement in direction of the gradient of the chemical S. In contrast to the equations
presented here, the gradient of S is multiplied by a linear instead of a nonlinear
function of ρ in the classical version of the model. An interesting feature of this
choice is the fact that solutions can become unbounded in finite time, thus giving
rise to concentration phenomena. Whether this blow-up of solutions occurs or not
depends typically on the initial data and the space dimension d, and conditions for
the blow-up of solutions have been derived by a large number of authors, see for
instance [JL92, HV96, HMV97, GZ98, Vel02]. Most studies focus on models where
the evolution of the chemical S is governed by a parabolic equation (as in the original
Keller-Segel model). We shall often refer to this model as the fully parabolic case.
Typical alternative formulations for the evolution of S are given either by an elliptic
equation in a more general form than that in (1.1) or by the Poisson equation. In
the majority of the cases, the model is considered on bounded domains, typically
with Neumann boundary conditions. Concerning the case of an unbounded domain,
an extensive analysis of the model on R

d, d ≥ 2, is performed in [CPZ04] (see also
the survey [Per04]), where the authors show that the global existence of solutions
occurs when the initial value of the Ld/2 norm is smaller than a certain critical
value. In the recent [DP04] it is proved that the critical value 8π of the initial mass
produces an optimal threshold between blow up and global existence when d = 2.
The situation in d > 2 is not fully understood, and there is a possible range of
choice of initial data where both blow-up and existence can occur. We refer to the
introduction of [CPZ04] for a detailed description of the subject. An interesting
question, in this framework, is whether is possible to give sense to the evolution of
the model after the blow up. This problem is studied in [Vel02, Vel04]. We mention
here (and refer the interested reader to) the survey papers [Hor03, Hor04], where
more general chemotaxis models are presented, together with an extensive list of
results and references.

Although of great mathematical interest, models allowing for the infinite growth
of solutions have often been criticized because their biological interpretation is not
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fully understood. As a consequence of that, several generalizations of the Keller–
Segel model, where the formation of singularities is prevented a priorily, have been
formulated recently. The basic assumption in these models is the existence of a
maximal value for the cell density, which is reasonable in certain physical situations
(see the introduction of [HP01]) where cells stop aggregating after a certain size
of the aggregate has been reached. In [HP01], a chemotaxis model featuring a
nonlinear flux term is presented, where the chemotactic response is shut off when a
certain cell density has been reached. This model, being of type (1.5), but with a
parabolic equation for S, prevents the overcrowding of cells, and the authors prove
global existence of solutions under Neumann boundary conditions. In a second
paper [PH03], the authors derive this model from a master equation describing
a biased random walk on the real line, assuming that the probability of a cell
moving to the right or the left depends on the difference in chemical concentration
as well as on the cell density. The resulting evolution law for the density is the first
equation of (1.1) with mobility M(ρ) = ρ(1 − ρ) and logarithmic entropy for ρ in
the energy (although there is no clear separation between energy and mobility in
[PH03], see also the considerations below on the relation between random mobility
and chemotactic sensitivity). Note that the main difference to a standard derivation
of the model without prevention of overcrowding is the additional factor (1− ρ) in
the mobility and the additional entropy term depending on (1 − ρ) in the energy
(see also [Wrz04a, Wrz04b], where the same entropy is used to study the asymptotic
behaviour in the fully parabolic case in a bounded domain). Intuitively, this change
of mobility seems obvious, since the possibility of cells to move freely is limited by
the cells around. Therefore, in the case of overcrowding (which happens in our
scaling for ρ ≥ 1), their motion would be stopped. The additional entropy term
depending on (1 − ρ) is less obvious to interpret, it somehow forces cells to diffuse
even in the case of overcrowding. On the other hand if the volume–filling mechanism
is thought of as a finite size effect really blocking the cells, then also no diffusion
would be allowed and the effect would have consequences only upon mobility but
not on the energy.

This argument is one reason why we shall also discuss a different choice in the
energy in this paper. More precisely, we shall use a quadratic energy of the form

E(ρ, S) =
ε

2

∫

Rd

ρ2 dx−
∫

Rd

ρS dx+
1

2

∫

Rd

(
|∇S|2 + S2

)
dx, (1.6)

yielding the degenerate parabolic-elliptic problem



∂ρ

∂t
= ∇ · (ρ(1 − ρ)∇(ερ− S))

−∆S + S = ρ.
(1.7)

Several reformulations of the Keller–Segel model have been studied recently, with
a nonlinear diffusion term in the evolution of the cell density replacing the linear
one. For an overview of the biological motivations and the existence theory for such
models we refer to [Hor03, Chapter6]. An interesting issue is whether is possible
to avoid blow up of solutions by introducing nonlinear diffusion effects without the
help of the volume–filling term in the mobility. A study towards this direction has
been recently carried out in [Kow05]. In [CC05] a simple threshold condition for
the nonlinear diffusion term of the density is established in order to achieve global
existence in time (in the special case where the balance law of the cell density is
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coupled with Poisson equation). We stress that the main feature in our nonlinear
model (1.7) is that the random mobility (i. e. the nonlinear diffusion coefficient) is
vanishing at the threshold value ρ = 1. Such a property is not usually covered in
the literature concerning chemotaxis models with nonlinear diffusion.

In addition to the remarks made above concerning the interplay between energy
and mobility, another motivation for our choice of the system (1.7) is a simplification
of an alternative formulation of the Keller-Segel model recently derived in [BO04].
Due to the physical observation that many chemicals appear both to stimulate
directed motion up the chemotactic gradient and to alter the random mobility
coefficient, the authors of [BO04] introduced a model based upon a multiphase
interpretation of the cell density (in an incompressible material composed of the
”phases” cells and water), where a direct relationship between the chemotaxis and
random motion coefficients is established. In particular, they both may vanish
at the threshold value of the density. A study of the well–posedness theory for
models of that type has been started in [LW04], in the fully parabolic case on
bounded domains, where the existence of nontrivial stationary solutions has been
proven. Using an interpretation as a multiphase system, it is natural to make the
connection to Cahn-Hilliard equations (cf. [CH58, CH71]), which have the same
structure as the first equation in (1.1), but with the potential µ determined as

µ = −∆ρ+W ′(ρ)

for some double-well potential function W having minimizers at zero and one. The
prevention of overcrowding by a mobility M(ρ) = ρ(1 − ρ) in the Cahn-Hilliard
equation is well motivated from physical arguments and has been studied in detail
(cf. [CENC96, CT94, EG96]).

Another argument in favour of (1.7) relies on the asymptotic behaviour, in par-
ticular on the existence both of decaying and of non-decaying solutions of (1.7). We
recall that the long-time asymptotics of (1.5) in bounded intervals (under Neumann
boundary conditions) have been recently studied in [DS05] and, with a parabolic
equation for S, in [PH05]. The observed behaviour is a coarsening process reminis-
cent of phase change models, where plateau-like peaks of the cell density form after
a short transition period and then merge exponentially slowly. Numerical studies
indicate that in most situations the only stable stationary states are single plateaus
located at boundary of the domain. It is therefore not surprising that the behav-
iour of solutions on the whole space is different. Roughly speaking, the cells are
not stopped by any boundaries and therefore the linear model would allow them
to spread out rather than aggregate. We shall make this statement more rigorous
by several results on the decay of the cell density ρ for large time. For the present
moment we emphasize that, to our knowledge, the choice of the system (1.7) is the
only known version that achieves stationary profiles on the whole space.

Nonlinear degenerate diffusion models have been used to describe various bio-
logical phenomena such as the dispersal of biological populations (cf. e.g. [GM77])
or aggregation of animal population (called ”swarming”, cf. e.g. [NM83, MCO05,
MEK99, TB04]), the latter exhibiting many further analogies to models for chemo-
taxis. In these applications, as well as in the model considered here, the main
advantages of nonlinear diffusions are a finite speed of propagation (which seems
more reasonable than infinite speed in particular in biological applications) and,
as mentioned above, the existence of nontrivial stationary and non-decaying time-
dependent solutions.
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In order to make the comparison between the linear and nonlinear diffusion case
more concrete, we give an overview of the main results of this paper in the following,
which also provides a guideline through the paper for readers rather interested on
the results than on the detailed proofs. Concerning existence, we have

• Global existence and uniqueness of weak solutions in the case of linear
diffusion (Section 2.1).

• Global existence of weak and entropy solutions, uniqueness of entropy so-
lutions of bounded variations in the case of nonlinear diffusion (Sections
3.1 and 3.2) and finite speed of propagation of the support in 1–d (Section
3.3).

The first step towards the large time behaviour of solutions is an investigation of
possible stationary solutions. Here we find a first difference between the two cases,
namely

• Non-existence of finite mass stationary solutions different from zero for
linear diffusion (Subsection 2.2.1).

• Existence of finite mass stationary solutions different from zero for non-
linear diffusion in the case ε < 1 (Subsection 3.4.2). A partly numerical
construction of stationary solutions even indicates their existence for arbi-
trary mass if ε < 1 (Section 3.5).

The detailed large-time behaviour is described by:

• Decay to zero of solutions in the linear diffusion case in the following two
cases:

– with arbitrary initial mass for ε > 1
4 in 1–d (Section 2.2),

– with small initial mass for arbitrary ε > 0 (Section 2.2).
In both cases, solutions converge in L1 towards the self–similar Gaussian
solution of the heat equation with variance ε (Section 2.3).

• Existence of non-decaying solutions for ε < 1 in the nonlinear case (Sub-
section 3.4.1), these solutions converge (along subsequences) to stationary
solutions (Subsection 3.4.2). For ε > 1 all compactly supported solutions
decay and their support must become unbounded as t → ∞ (Subsection
3.4.3).

The result summarized in the last item above, namely the possibility of achieving
two drastically different asymptotic behaviours (i. e. convergence to nontrivial
stationary solutions or decay to zero) by simply changing the diffusivity constant
ε in (1.7) is the main result of our paper. We stress here that the behaviour of
solutions for ε > 1 (i. e. their decay to zero) is independent of any initial parameter
such as the total mass or the second moment. This fact constitutes an essential
difference between (1.7) and classical models with linear diffusion on the whole
R
d. The main technique used throughout the paper is the use of suitable energy

functionals or Lyapunov functionals, which are already known to be extremely
helpful in order to achieve global existence for general nonlinear Keller–Segel models
(see [Hor03]).

2. Linear diffusion

In this section, we first cover the existence and uniqueness theory for weak solu-
tions of model (1.5). We then turn our attention to the asymptotic behaviour for
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large time. The local existence and uniqueness is achieved by means of a standard
fixed point technique. The continuation for any time of the solutions is a due to the
existence of the invariant domain 0 ≤ ρ ≤ 1, which is consistent with the volume
filling assumption discussed in the introduction. Similar results are presented in
case of bounded domains in [HP01] (for the fully parabolic model) and in [DS05].

2.1. Existence theory and preliminaries. We study the parabolic–elliptic sys-
tem {

∂ρ
∂t = ε∆ρ−∇ · (ρ(1 − ρ)∇S)

−∆S + S = ρ,
(2.1)

where x ∈ R
d, d ≥ 1, t ≥ 0, ε > 0, ρ and S are scalar functions. We recall that the

above system can be decoupled in order to get a nonlocal parabolic equation for ρ
by means of the convolution representation formula

S(x, t) =

∫

Rd

B(x− y)ρ(y, t)dy,

where B is the Bessel potential

B(x) =
1

(4π)d/2

∫ +∞

0

e−t−
|x|2

4t

td/2
dt. (2.2)

2.1.1. Existence of solutions. Let us consider the Cauchy problem
{
∂ρ
∂t = ε∆ρ−∇ · (ρ(1 − ρ)∇(B ∗ ρ))
ρ(x, 0) = ρ0(x).

(2.3)

We shall establish a local–in–time existence result for (2.3). First, let us recall some
elementary properties of the Bessel potential (2.2) and of the heat kernel

G(x, t) =
1

(4πεt)d/2
e−

|x|2

4εt , x ∈ R
d, t > 0. (2.4)

The proof of the following lemma follows by straightforward computations.

Lemma 2.1. The following estimates are satisfied,

‖B‖L1(Rd) = 1 (2.5)

‖∇B‖L1(Rd) < +∞ (2.6)

‖G(·, t)‖Lp(Rd) ≤ Ct−
d(p−1)

2p , p ≥ 1 (2.7)

‖∇G(·, t)‖Lp(Rd) ≤ Ct−
d(p−1)

2p
− 1

2 , p ≥ 1 (2.8)

Theorem 2.2 (Local existence). Let ρ0 ∈ L1(Rd)∩L∞(Rd) (resp. ρ0 ∈ L∞(Rd)).
Then, there exists a unique solution ρ(x, t) to (2.3) such that

ρ ∈ L∞
(
[0, T ], L1(Rd) ∩ L∞(Rd)

)

(resp. ρ ∈ L∞
(
[0, T ], L∞(Rd)

)
) for a small enough positive time T .

Proof. Let is first assume ρ0 ∈ L1(Rd) ∩ L∞(Rd). Given M,T positive constants ,
for ρ ∈ L∞

(
[0, T ], L1(Rd) ∩ L∞(Rd)

)
we define the norm

‖|ρ‖|T := sup
0≤t≤T

[
‖ρ(t) − G(t) ∗ ρ0‖L1(Rd) + ‖ρ(t) − G(t) ∗ ρ0‖L∞(Rd)

]
,
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the Banach space

XM
T :=

{
ρ ∈ L∞

(
[0, T ], L1(Rd) ∩ L∞(Rd)

) ∣∣∣ ‖|ρ‖|T ≤M
}
,

and the map ρ 7→ T ρ

(T ρ) (x, t) = (G ∗ ρ0) (x, t) +

∫ t

0

∫

Rd

∇G(x− y, s− t) (ρ(1 − ρ)∇(B ∗ ρ)) (y, s)dsdy.

Thanks to the Duhamel principle for the linear heat equation (and thanks to in-
tegration by parts), a fixed point for T is clearly a weak solution to the Cauchy
problem (2.3) with initial datum ρ0 on the strip [0, T ] × R

d. To establish the exis-
tence and uniqueness of the fixed point we first prove that T ρ ∈ XM

T , then we prove
that T : XM

T → XM
T is a strict contraction, and we deduce the desired assertion by

the Banach fixed point theorem. Let ρ ∈ XM
T . Young inequality for convolutions,

together with (2.6), (2.7) and (2.8) yield, for any 0 < t < T ,

‖(T ρ)(t) − G(t) ∗ ρ0‖L1(Rd) ≤
∫ t

0

‖∇G(t− s)‖L1‖(ρ(1 − ρ)∇(B ∗ ρ))(s)‖L1ds

≤ C

∫ t

0

(t− s)−1/2‖ρ(1 − ρ)(s)‖L∞‖∇B‖L1‖ρ(s)‖L1ds

≤ C

∫ t

0

(t− s)−1/2(‖ρ(s)‖L∞ + ‖ρ(s)‖2
L∞)‖ρ(s)‖L1ds

≤ C(M + ‖ρ0‖L∞)(M + ‖ρ0‖L∞ + 1)(M + ‖ρ0‖L1)T 1/2

Analogously,

‖(T ρ)(t) − G(t) ∗ ρ0‖L∞(Rd) ≤
∫ t

0

‖∇G(t− s)‖L1‖(ρ(1 − ρ)∇(B ∗ ρ))(s)‖L∞ds

≤ C

∫ t

0

(t− s)−1/2‖ρ(1 − ρ)(s)‖L∞‖∇B‖L1‖ρ(s)‖L∞ds

≤ C(M + ‖ρ0‖L∞)(M + ‖ρ0‖L∞ + 1)(M + ‖ρ0‖L∞)T 1/2

The two estimates above ensure T ρ ∈ XM
T provided T is small enough. We now

consider two elements ρ, ρ ∈ XM
T . For any 0 < t < T , in a similar fashion as above

we have

‖(T ρ)(t) − (T ρ)(t)‖L1(Rd)

≤
∫ t

0

‖∇G(t− s)‖L1‖(ρ(1 − ρ)∇(B ∗ ρ))(s) − (ρ(1 − ρ)∇(B ∗ ρ))(s)‖L1ds

≤
∫ t

0

‖∇G(t− s)‖L1‖(ρ(1 − ρ)∇(B ∗ ρ))(s) − (ρ(1 − ρ)∇(B ∗ ρ))(s)‖L1ds

+

∫ t

0

‖∇G(t− s)‖L1‖(ρ(1 − ρ)∇(B ∗ ρ))(s) − (ρ(1 − ρ)∇(B ∗ ρ))(s)‖L1ds

+

∫ t

0

‖∇G(t− s)‖L1‖(ρ(1 − ρ)∇(B ∗ ρ))(s) − (ρ(1 − ρ)∇(B ∗ ρ))(s)‖L1ds

≤ C(‖ρ0‖L1 ,M)T 1/2 sup
0<t<T

‖ρ(t) − ρ(t)‖L1 , (2.9)



8 M. BURGER, M. DI FRANCESCO, AND Y. DOLAK-STRUSS

and, analogously

‖(T ρ)(t) − (T ρ)(t)‖L∞(Rd) ≤ C(‖ρ0‖L∞ ,M)T 1/2 sup
0<t<T

‖ρ(t) − ρ(t)‖L∞ .

Hence, by choosing T small, we have

‖|T ρ− T ρ‖|T ≤ α‖|ρ− ρ‖|T ,
for some 0 < α < 1, which concludes the proof in case ρ0 ∈ L1(Rd)∩L∞(Rd). The
proof in case ρ0 ∈ L∞(Rd) can be obtained by modifying the norm ‖| · ‖|T and the
Banach space XM

T (by taking into account the L∞ norm only) and by repeating
the same steps as in the previous case. �

Remark 2.3 (Continuation principle). From the implicit representation formula

ρ(x, t) = (G ∗ ρ0) (x, t) +

∫ t

0

∫

Rd

∇G(x− y, t− s) (ρ(1 − ρ)∇(B ∗ ρ)) (y, s)dsdy

(2.10)
of the local solution ρ, we also deduce that, if TM is the maximal time of existence
of the solution, then there exist tj → T−

M as j → ∞ such that

lim
j→∞

[‖ρ(tj)‖L1 + ‖ρ(tj)‖L∞ ] = +∞.

Remark 2.4 (Higher regularity). The local–in–time solution ρ(x, t) provided by
theorem 2.2 is endowed with (at least) the same regularity with respect to x of the
initial datum. To see this, one can modify the space and the norm in the proof of
the previous theorem by taking into account some Lp norm of ∇ρ.

A bit of regularity for ρ without the help of any further requirements on the
initial datum can be obtained at least in 1–d.

Proposition 2.5 (Regularizing effect). Let the initial datum ρ0 ∈ L1(R)∩L∞(R).
Then, at any positive time t, the solution ρ(t) of (2.1) is continuous with respect to
x.

Proof. Since G ∗ ρ0 is a C∞ function, we only need to prove that ρ − G ∗ ρ0 is
continuous. By formula (2.10), we have for small h > 0

(ρ− G ∗ ρ0)(x+ h, t) − (ρ− G ∗ ρ0)(x, t)

=

∫ t

0

∫ +∞

−∞

[Gx(x+ h− y, t− s) − Gx(x− y, t− s)] (ρ(1 − ρ)∇(B ∗ ρ)) (y, s)dsdy.

We recall that the term (ρ(1 − ρ)∇(B ∗ ρ)) is (locally) bounded. Moreover, thanks
to (2.8) we can find nonnegative functions H(x, y, t, s) and K ∈ L1 such that

|Gx(x+ h− y, t− s) − Gx(x− y, t− s)| ≤ H(x, y, t, s) ≤ (t− s)−1K

( |x− y|2
t− s

)
.

Therefore, the limit as h→ 0 of the left hand side above is zero in view of Lebesgue’s
dominated convergence theorem. �

Theorem 2.6 (Continuity with respect to the initial data). Let ρ and ρ two local–
in–time solutions to (2.1) with initial data ρ0, ρ0 ∈ L1 ∩L∞ respectively. Then, for
a small T we have

‖ρ(t) − ρ(t)‖L1 ≤ C(T )‖ρ0 − ρ0‖L1 , (2.11)

for all t ∈ [0, T ].
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Proof. The proof can be performed by means of a similar argument as in (2.9).
Since, in this case, we have two different initial data, we easily obtain

‖ρ(t) − ρ(t)‖L1 ≤ CT 1/2 sup
0≤t≤T

‖ρ(t) − ρ(t)‖L1 + ‖ρ0 − ρ0‖L1 ,

where C depends on the two solutions. For small T we have the desired estimate
(2.11). �

2.1.2. Global existence. In the following, we will be interested in initial data ρ0 in
(2.3) satisfying the assumption

0 ≤ ρ0(x) ≤ 1, x ∈ R
d. (2.12)

Our aim is to prove that condition (2.12) is invariant under the flow induced by the
model (2.1). Similar properties are proven in [HP01] for the fully parabolic model
and in [DS05] in a bounded domain. Let us start with the following theorem.

Theorem 2.7 (Conservation of the total mass). Let ρ0 ∈ L1(Rd) satisfying (2.12).
Then, ∫

Rd

ρ(x, t)dx =

∫

Rd

ρ0(x)dx. (2.13)

Proof. Let ζn = ζn(x) be a sequence of cut–off functions such that ζn(x) = 1 as
|x| ≤ n, ζn(x) = 0 as |x| ≥ n+1, 0 ≤ ζn(x) ≤ 1 as n ≤ |x| ≤ n+1 and ζn ∈ C∞(Rd).
Multiplying the equation in (2.3) by ζn, after integration over R

d× [0, T ] we obtain
∫

Rd

ρ(x, t)ζndx−
∫

Rd

ρ0(x)ζndx =

∫ T

0

∫

Rd

ρtζndxdt

=

∫ T

0

∫

Rd

ζn[ε∆ρ−∇ · (ρ(1 − ρ)∇S)]dxdt

= ε

∫ T

0

∫

Rd

∆ζnρ+

∫ T

0

∫

Rd

ρ(1 − ρ)∇S · ∇ζndxdt → 0 as n→ +∞

The last step is justified by dominated convergence theorem. The whole calculations
are justified in case of smooth solutions. Hence, we shall assume that the initial
datum belongs in some suitable Sobolev space (see remark 2.4). The result for
a general initial datum ρ0 then follows by approximating ρ0 with a sequence of
smooth initial data and by using the continuity result in theorem 2.6 and Fatou’s
lemma. �

Theorem 2.8 (Global existence). Assume the initial datum ρ0 ∈ L1(Rd) satisfies
(2.12). Then, there exists a unique global solution to the Cauchy problem (2.3),
satisfying

0 ≤ ρ(x, t) ≤ 1 for any (x, t) ∈ R
d × [0,∞). (2.14)

In particular,

0 < ρ(x, t) < 1 if 0 < ρ0(x) < 1. (2.15)

Proof. Writing (2.3) as ρt+∇ρ ·∇S(1−2ρ)+ρ(1−ρ)(S−ρ) = ε∆ρ, it can be seen
immediately that ρ ≡ 0 and ρ ≡ 1 are lower and upper solutions, respectively. By
the mean value theorem of multidimensional calculus, the function w(x, t) = ρ− ρ
satisfies the inequality

wt +A(x, t)∇w +B(x, t)w − ε∆w ≥ 0,
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with bounded coefficients A(x, t) and B(x, t). For w(x, t) = ρ− ρ, the same equa-
tions with a reversed inequality sign holds, and the boundedness of ρ follows from
the Phragmèn-Lindelöf principle for parabolic equations [PW84]. Together with
theorem 2.7 and with remark 2.3, this implies the assertion. �

2.2. Decay of solutions as t → +∞. In this subsection we determine sufficient
conditions on the diffusivity constant ε in (2.1) and on the initial datum ρ0 such
that the L∞(Rd)–norm of the corresponding solution ρ(x, t) tends to zero as t →
+∞. When such a phenomenon occurs, the diffusion term ε∆ρ in (2.1) becomes
dominant. We prove here that this is the case when either the mass is small enough
for arbitrary ε > 0 or for any mass in case ε > 1/4 in 1–d.

It is already known in case of models without prevention of overcrowding that
when the mass of the initial datum is much smaller than some constant depending
on ε, then the diffusion term becomes dominant and produces a long time decay of
the solution (see [CPZ04, DP04]). For the sake of completeness we shall reproduce
the same result for our model in the following proposition, the proof of which being
partly the same as in [CPZ04].

Proposition 2.9. Let ε > 0. Let ρ0 ∈ L1(Rd) satisfying (2.12). Then, there exists
a constant C(d, ε) depending only on the dimension and on the diffusivity ε, such
that, if the total mass satisfies

∫

Rd

ρ0dx < C(d, ε), (2.16)

then, the solution ρ(x, t) to (2.3) satisfies the decay estimates

‖ρ(t)‖Lp(Rd) ≤ C(t+ 1)−
d(p−1)

2p , 2 ≤ p ≤ ∞. (2.17)

Proof. Let us start with the Lp estimates for finite p. By multiplying the equation
in (2.3) by pρp−1 and after integration by parts we obtain

d

dt

∫

Rd

ρp(x, t)dx = εp

∫

Rd

ρp−1∆ρdx+ p(p− 1)

∫

Rd

(ρp−1 − ρp)∇S · ∇ρdx

≤ −ε4(p− 1)

p

∫

Rd

|∇ρp/2|2dx+ (p− 1)

∫

Rd

∇ρp · ∇Sdx

≤ −ε4(p− 1)

p

∫

Rd

|∇ρp/2|2dx+ (p− 1)

∫

Rd

ρp+1dx,

where we have used the a priori estimate 0 ≤ ρ ≤ 1 and S ≥ 0. By means of the
Gagliardo–Nirenberg inequality

∫

Rd

ρp+1dx ≤ C(p, d)‖ρ‖Lα(Rd)

∫

Rd

|∇ρp/2|2dx,

where α = 1 for d = 1, 2, α = d/2 for d > 2, we easily get

d

dt

∫

Rd

ρp(x, t)dx ≤ −(p− 1)

(
4ε

p
− C(p, d)

∫

Rd

ρ0dx

)∫

Rd

|∇ρp/2|2dx

Hence, for
∫

Rd ρ0dx <
4ε

pC(p,d) , we can write, for some C > 0,

d

dt

∫

Rd

ρp(x, t)dx+ C

∫

Rd

|∇ρp/2|2dx ≤ 0.
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Thanks to the following interpolation inequality (see e.g. [EZ91])

‖ρ‖
(d(p−1)+2)p

d(p−1)

Lp(Rd)
≤ C(p, d)‖∇ρp/2‖2

L2(Rd)‖ρ‖
2p

d(p−1)

L1(Rd)

we have

d

dt

∫

Rd

ρp(x, t)dx+ Cm

(∫

Rd

ρpdx

) d(p−1)+2
d(p−1)

≤ 0

which implies the desired polynomial time–decay in Lp

‖ρ(t)‖Lp(Rd) ≤ C(p, d)(t+ 1)−d(p−1)/2p (2.18)

where the (t + 1) instead of t is justified by the global–in–time control of all the
Lp norms proven in the previous subsection. In order to obtain the corresponding
L∞ estimate, we employ the implicit representation of the solution ρ provided by
Duhamel principle

ρ(x, 2t) = G(2t) ∗ ρ(t) +

∫ 2t

t

∇G(2t− σ) ∗ (ρ(1 − ρ)∇B ∗ ρ)(σ)dσ

= G(2t) ∗ ρ(t) +

∫ t

0

∇G(t− s) ∗ (ρ(1 − ρ)∇B ∗ ρ)(t+ s)ds. (2.19)

By taking the L∞ norm in (2.19), we obtain

‖ρ(2t)‖L∞(Rd) ≤ ‖G(t)‖L∞(Rd)‖ρ(t)‖L1(Rd)

+

∫ t

0

‖∇G(t− s)‖Lr(Rd)‖ρ(1 − ρ)∇B ∗ ρ(t+ s)‖Lr′ (Rd)ds

≤ Ct−
d
2 + C

∫ t

0

(t− s)−
d(r−1)

2r
− 1

2 ‖ρ(t+ s)‖2
L2r′ (Rd)

ds

≤ Ct−
d
2 +

∫ t

0

(t− s)−
d(r−1)

2r
− 1

2 (t+ s)−
d(2r′−1)

r′ ds = Ct−
d
2 + Ct

1
2−d

for r < d
d−1 , r′ = r

r−1 . Of course, since ‖ρ(t)‖L∞(Rd) is uniformly bounded and
since d ≥ 1, we have the estimate

‖ρ(t)‖L∞(Rd) ≤ C(t+ 1)−
d
2 .

�

In the next proposition we prove that solutions to (2.3) enjoy a time decay rate
as in (2.17) no matter how large the mass is, provided ε > 1/4 and d = 1. This
result constitutes an essential difference of the present model with respect to the
classical models where overcrowding phenomena (i. e. blow up) may occur in finite
time.

Proposition 2.10. Let ε > 1/4 and d = 1. Let ρ0 ∈ L1(R) satisfying (2.12).
Then, the solution ρ(x, t) to (2.3) satisfies the decay estimates

‖ρ(t)‖Lp(R) ≤ C(t+ 1)−
(p−1)

2p , 2 ≤ p ≤ ∞. (2.20)

Proof. We start by performing the following L2 estimate.

d

dt

∫

Rd

ρ2(x, t)dx = 2ε

∫

Rd

ρ∆ρdx+ 2

∫

Rd

ρ(1 − ρ)∇S · ∇ρdx

≤ −2ε

∫

Rd

|∇ρ|2dx+
1

2

∫

Rd

|∇ρ · ∇S|dx
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As a consequence of the Young inequality for convolutions we have
∫

Rd

|∇ρ · ∇S|dx ≤
∫

Rd

|∇ρ|2dx

and therefore
d

dt

∫

Rd

ρ2(x, t)dx ≤ −2

(
ε− 1

4

)∫

Rd

|∇ρ|2dx.

Then, by means of the Gagliardo–Nirenberg inequality, as in the previous proposi-
tion, we get the decay in L2

‖ρ(t)‖L2(R) ≤ C(t+ 1)−1/4.

By taking the L4 norm in the representation (2.19), in a similar fashion as in the
previous proposition, we obtain

‖ρ(2t)‖L4(R) ≤ C(t+ 1)−3/8 +

∫ t

0

‖∇G(t− s)‖L4‖ρ∇B ∗ ρ(t+ s)‖L1ds

≤ C(t+ 1)−3/8 +

∫ t

0

(t− s)−7/8(t+ s)−1/2ds ≤ C(t+ 1)−3/8 + Ct−3/8.

Finally,

‖ρ(2t)‖L∞(R) ≤ C(t+ 1)−1/2 +

∫ t

0

‖∇G(t− s)‖L2‖ρ∇B ∗ ρ(t+ s)‖L2ds

≤ C(t+ 1)−1/2 +

∫ t

0

(t− s)−3/4(t+ s)−3/4ds ≤ C(t+ 1)−1/2.

The remaining Lp estimates are easily obtained by interpolation. �

2.2.1. Some remarks and the nonexistence of stationary solutions. Clearly, an open
question is whether solutions to (2.3) decay for any ε and for arbitrarily large
masses. In bounded domains, for d = 1 and Neumann boundary conditions, system
(2.1) has been shown to decay to the constant solution if ε > 1

4 , but if ε is small

enough, stationary, periodic solutions in L1((0, L)) exist (see [DS05] and [PH05]).
However, one can easily prove that there exist no nonzero stationary solutions to
(2.1) in L1(Rd) in the case of unbounded domains: We define the energy functional
E(ρ, S) of system (2.1) by

E =
1

2

∫
(|∇S|2 + S2)dx−

∫
ρSdx+ ε

∫
[ρ log ρ+ (1 − ρ) log(1 − ρ)]dx, (2.21)

with
∂E

∂ρ
= −S + ε log

ρ

(1 − ρ)
and

∂E

∂S
= 0. (2.22)

Rewriting the first equation of (2.1) as

∂ρ

∂t
= ∇ ·

(
ρ(1 − ρ)∇∂E

∂ρ

)
, (2.23)

and differentiating the energy with respect to time, we obtain

dE

dt
=
∂E

∂S

∂S

∂t
+
∂E

∂ρ

∂ρ

∂t
=

∫
∇ ·
(
ρ(1 − ρ)∇∂E

∂ρ

)
∂E

∂ρ
dx

= −
∫
ρ(1 − ρ)

∣∣∣∇∂E

∂ρ

∣∣∣
2

dx ≤ 0.
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Hence, the energy is decreasing in time, and the stationary state dE
dt = 0 is only

reached if ρ = 0, ρ = 1 or ∂E
∂ρ = const., the latter implying that the stationary

solution (ρ, S) should satisfy, for some positive constant C,
ρ

1 − ρ
= e

S+C
ε ,

in some open set Ω ⊂ R
d, with ρ = 0 in some point of ∂Ω. However, this is incom-

patible with S being bounded, because of the continuity of ρ stated in proposition
2.5.

2.3. Self–similar long time behaviour. The aim of this subsection is to prove
that, under suitable assumptions on the initial datum ρ0, the solution to (2.3)
behaves asymptotically like the fundamental solution of the heat equation. A sim-
ilar result concerning self–similar asymptotic behaviour for the Keller–Segel model
without the volume filling effect, where the evolution of S is described by Poisson’s
equation has been proven by J. Dolbeault and A. Blanchel (private communication).

To perform this task we employ the entropy dissipation method (see [AMTU01,
CT00]). The long time decay properties of the solution ρ(x, t) are a crucial ingre-
dient in the arguments below. We shall prove our result by assuming a priori that
the solution ρ(x, t) satisfies the decay estimate

‖ρ(t)‖L∞(Rd) ≤ C(t+ 1)−
d
2 (2.24)

which we proved to be fulfilled under the assumptions in propositions 2.9 and 2.10.

2.3.1. Preliminaries. Our first step is the following standard (mass–preserving)
time dependent rescaling





ρ(x, t) = R(t)−
d
2 v(y, s)

y = R(t)−
1
2x

s = 1
2 logR(t)

R(t) = 2t+ 1.

(2.25)

Then, it is easily seen that v(y, s) satisfies the Cauchy problem
{
∂v
∂s = ∇ · (ε∇v + yv) − e−ds∇ · (v(1 − e−sv)Bs ∗ ∇v)
v(y, 0) = ρ0(y)

(2.26)

where
Bs(y) = esB(esy).

For future reference we write equation (2.26) as follows

∂v

∂s
= ε∇ ·

(
v∇
(

log v +
|y|2
2ε

))
− e−ds∇ · (v(1 − e−sv)Bs ∗ ∇v). (2.27)

We remark that the fundamental solution G(x, t) of the heat equation in rescaled
variables depends only on y; more precisely, it is given by

Um(y) = Ce−
|y|2

2ε ,

where C depends on the mass m of ρ0. Moreover, we recall that Um satisfies the
elliptic equation ∇· (ε∇Um + yUm) = 0. We shall make use of the classical entropy
functional

E(v) =

∫

Rd

v(y) log v(y)dy +
1

2ε

∫

Rd

|y|2v(y)dy, (2.28)
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and of the relative entropy

RE(v|Um) = E(v) − E(Um).

We observe that, thanks to the alternative form (2.27), equation (2.26) can be
written as

∂v

∂s
= ε∇ ·

(
v∇δE(v)

δv

)
− e−ds∇ · (v(1 − e−sv)Bs ∗ ∇v), (2.29)

where δE
δv is the first variation of the functional E. Once the mass m is fixed, the rel-

ative entropy functional attains zero as minimum value at the ground state Um (see
[CT00, MV00]). The following inequality (see [AMTU00] for the proof) establishes
a connection between the convergence in relative entropy and the convergence in
L1.

Theorem 2.11 (Csiszár–Kullback inequality). Let v ∈ L1(Rd) having mass m and
such that E(v) < +∞. Then, there exists a fixed constant C (depending on m) such
that

‖v − Um‖2 ≤ CRE(v|Um). (2.30)

For future reference, we recall the following logarithmic Sobolev inequality due
to Gross [Gro75] and subsequently generalized in [AMTU01].

Theorem 2.12 (Logarithmic Sobolev inequality). Let v ∈ L1(Rd) having mass m
and such that E(v) < +∞. Then, the following inequality is satisfied

RE(v|Um) ≤ ε

2
I(v|Um), (2.31)

where

I(v|Um) =

∫

Rd

v

∣∣∣∣∇
(

log
v

Um

)∣∣∣∣
2

dy =

∫

Rd

v

∣∣∣∣∇
(

log v +
|y|2
2ε

)∣∣∣∣
2

dy

is called (relative) Fisher information.

Finally, we remark that assumption (2.24) for ρ in the new variables v(y, s) reads

‖v(s)‖L∞(Rd) ≤ C (2.32)

for some fixed C > 0 depending only on the initial datum.

2.3.2. Trend to self–similarity. In this subsection we employ the tools introduced
above to prove the asymptotic self–similar behaviour of solutions satisfying (2.24).

Theorem 2.13. Let ρ ∈ L1(Rd) satisfying (2.12) and such that E(ρ0) <∞, where
E(ρ0) is defined in (2.28). Suppose that the corresponding solution ρ(x, t) to (2.3)
satisfies the time decay condition (2.24). Then,

‖ρ(t) − G(t)‖L1(Rd) =

{
o(t−

1
2+δ) for arbitrary 0 < δ ≪ 1 if d = 1

O(t−
1
2 ) if d > 1,

(2.33)

where G is the fundamental solution of the heat equation (2.4) with same mass as
ρ0.
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Proof. In what follows, we shall denote a generic positive constant independent on

s by C. Let us multiply equation (2.26) by log v(y) + |y|2

2ε and integrate over R
d.

Then, integration by parts and conservation of the total mass yield

d

ds
E(v(s)|Um) = −ε

∫

Rd

v

∣∣∣∣∇
(

log
v

Um

)∣∣∣∣
2

dy + Ce−ds
∫

Rd

v∇Bs ∗ v ·∇
(

log v +
|y|2
2ε

)
dy

≤ −εI(v|Um) + Ce−ds
(∫

Rd

v |∇Bs ∗ v|2 dy
)1/2

(∫

Rd

v

∣∣∣∣∇
(

log v +
|y|2
2ε

)∣∣∣∣
2

dy

)1/2

=: −εI(v|Um) + J. (2.34)

We now estimate the term J by using (2.32) and Young’s inequality.

J ≤ Ce−ds
(∫

Rd

1

v
|∇v|2 dy

)1/2

I(v|Um)1/2

= Ce−ds
(
I(v|Um) + 2d

∫

Rd

v − 1

ε

∫

Rd

v|y|2dy
)1/2

I(v|Um)1/2

≤ Ce−ds
(
I(v|Um) + I(v|Um)1/2

)
.

Therefore, for fixed C1, C2 > 0, inequality (2.34) implies,

d

ds
E(v(s)|Um) ≤ −(ε− C1e

−ds)I(v|Um) + C2e
−dsI(v|Um)1/2

and, for an arbitrarily small δ > 0,

d

ds
E(v(s)|Um) ≤ −(ε− Ce−ds − Ce−2δs)I(v|Um) + Ce−2ds+2δs.

For s ≥ s0(ε) we have ε−Ce−ds −Ce−2δs > 0 and we can use inequality (2.31) to
obtain

d

ds
E(v(s)|Um) ≤ −2(ε− Ce−ds − Ce−2δs)

ε
E(v(s)|Um) + Ce−2ds+2δs.

Hence, thanks to the variation of constants formula we obtain the following decay
rates as s→ +∞ (here 0 < δ ≪ 1)

E(v(s)|Um) =

{
O(e−2(1−δ)s) if d = 1

O(e−2s) if d > 1.
(2.35)

Finally, by means of the Csiszár–Kullback inequality (2.30) and by using the original
variables ρ(x, t) according to (2.25), we obtain the desired estimate (2.33). �

3. Nonlinear diffusion

In this section we focus our attention on the nonlinear model



∂ρ

∂t
= ∇ · (ρ(1 − ρ)∇(ερ− S))

−∆S + S = ρ,
(3.1)

subject to the initial condition

ρ(x, 0) = ρ0(x), ρ0 ∈ L1(Rd), 0 ≤ ρ0(x) ≤ 1, x ∈ R
d. (3.2)
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3.1. Existence of Weak Solutions. We start by providing a suitable definition
of weak solutions. In order to simplify the notation, we fix ε = 1 throughout this
section, the value of ε not being relevant in the existence theory. We denote

A(ρ) =

∫ ρ

0

ξ(1 − ξ)dξ =
ρ2

2
− ρ3

3
, A(ρ) =

∫ ρ

0

A(ξ)dξ =
ρ3

6
− ρ4

12
.

Definition 3.1. A function ρ ∈ L2([0,+∞) × R
d) is called a weak solution of

the Cauchy problem (3.1)–(3.2) on R
d × [0, T ] (T eventually +∞) if the following

conditions are satisfied,

(i) A(ρ) ∈ L∞([0, T ];L1(Rd))
(ii) ∇A(ρ) ∈ L2([0, T ] × R

d)
(iii) 0 ≤ ρ(x, t) ≤ 1 almost everywhere in [0, T ] × R

d.
(iv) For all ϕ ∈ C∞

c ([0, T ) × R
d)., the following relation holds

∫ T

0

∫

Rd

ρϕtdxdt−
∫ T

0

∫

Rd

∇A(ρ) · ∇ϕdxdt

+

∫ T

0

∫

Rd

ρ(1 − ρ)∇S · ∇ϕdxdt+

∫

Rd

ρ(x, 0)ϕ(x, 0)dx = 0,

where S = S[ρ] is the unique H1 solution to −∆S + S = ρ.

In order to prove local–in–time existence of weak solutions to the Cauchy problem
(3.1)–(3.2), we use the following strategy. We first regularize the parabolic equation
in (3.1) by adding a small linear diffusion term and we solve the Cauchy–Dirichlet
problem on a bounded domain via a priori estimates and Schauder’s fixed point
theorem. At this level, we prove that the condition 0 ≤ ρ ≤ 1 is preserved. We then
extend the result to the Cauchy problem (3.1)–(3.2) by a compactness argument.
Such a procedure is inspired by a similar argument in [BCM03]. The main technical
problem in our case relies on the degeneracy of the nonlinear diffusion coefficient
at the threshold value ρ = 1, which renders existence a non trivial issue. We
overcome this difficulty by including the invariant domain property 0 ≤ ρ ≤ 1 in
our definition of solutions. This property prevents the overrunning of the mobility
coefficient ρ(1 − ρ) into the backward diffusion range.

Remark 3.2. Unlike the notion of weak solution given in definition 3.1 for problem
(3.1)–(3.2), we shall usually refer to an L2 distributional solution of any of the
various approximating problems treated below as a weak solution.

3.1.1. Non degenerate approximation in a bounded domain. Let Ω ⊂ R
d be a

bounded domain with smooth boundary. For fixed T > 0 we denote as usual
ΩT = Ω × [0, T ]. For small µ, ν > 0, we study the approximating IBV problem





∂ρ

∂t
= ∇ · (aµ,ν(ρ)∇ρ− bν(ρ)∇S) as (x, t) ∈ ΩT

−∆S + S = ρ, as (x, t) ∈ ΩT ,

ρ(x, t) = S(x, t) = 0 as x ∈ ∂Ω,

ρ(x, 0) = ρ0(x),

(3.3)

where aµ,ν(ρ) = µ + bν(ρ) and bν(ρ) is a uniformly bounded (with respect to ν),
smooth approximation of the function

ρ ∈ R 7→ [ρ(1 − ρ)]+
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as ν → 0+, such that bν(ρ) ≥ 0 for all ρ and bν(ρ) > 0 if and only if ρ ∈ (0, 1). In
order to prove existence of solutions for small T , we first define the operator

L2([0, T ];H1(Ω)) ∋ S 7→ U(S)

as follows

U(S) = ρ where ρ solves





∂ρ

∂t
= ∇ · (aµ,ν(ρ)∇ρ− bν(ρ)∇S) as (x, t) ∈ ΩT

ρ(x, t) = S(x, t) = 0 as x ∈ ∂Ω,

ρ(x, 0) = ρ0(x).

(3.4)
For a given S ∈ L2([0, T ];H1(Ω)), the existence and the uniqueness of a weak
(smooth) solution to (3.4) is guaranteed by the smoothness of the diffusion coeffi-
cient aµ(ρ) and by aµ(ρ) ≥ µ > 0 (see [LSU67], Chapter V, Subsection 6, Theorem
6.1). Moreover, it is easily checked that the operator U : L2([0, T ];H1(Ω)) →
L2(ΩT ) is well defined.

Then, we denote by D : L2(Ω) → H1(Ω) the solution operator of the elliptic
equation

−∆S + S = ρ, (3.5)

more precisely we set D(ρ) = S. Finally, we set

T = U ◦ D.
In what follows we recover some properties of the maps U and D needed to apply
Schauder’s fixed point theorem.

Proposition 3.3. The map U : L2([0, T ];H1(Ω)) → L2(ΩT ) is continuous and
compact.

Proof. We denote by ∆−1 : H−1(Ω) → H1
0 (Ω) the inverse of the Laplacian on Ω

with Dirichlet boundary conditions. Multiplication of equation (3.4) by ∆−1 ∂ρ
∂t and

integration by parts over Ω yield

d

dt

∫

Ω

Aµ,ν(ρ(t))dx+

∫

Ω

∣∣∣∣∇∆−1 ∂ρ

∂t

∣∣∣∣
2

dx =

∫

Ω

bν(ρ)∇S · ∇∆−1 ∂ρ

∂t
dx

≤ sup
ρ
bν(ρ)

∫

Ω

|∇S|
∣∣∣∣∇∆−1 ∂ρ

∂t

∣∣∣∣ dx,

where Aµ,ν(z) =
∫ z
0

∫ ξ
0
aµ,ν(ζ)dζdξ. Hence, by Young’s inequality we obtain

d

dt

∫

Ω

Aµ,ν(ρ(t))dx+
1

2

∫

Ω

∣∣∣∣∇∆−1 ∂ρ

∂t

∣∣∣∣
2

dx ≤ 1

2

(
sup
ρ
bν(ρ)

)2 ∫

Ω

|∇S|2dx, (3.6)

and, after integration on [0, T ],
∫ T

0

∫

Ω

∣∣∣∣∇∆−1 ∂ρ

∂t

∣∣∣∣
2

dx ≤ C

∫ T

0

∫

Ω

|∇S|2dx+

∫

Ω

Aµ,ν(ρ0)dx. (3.7)

Moreover, multiplication of (3.4) by Aµ,ν(ρ) :=
∫ ρ
0
aµ,ν(ζ)dζ and integration by

parts imply

d

dt

∫

Ω

Aµ,ν(ρ(t))dx+

∫

Ω

|∇Aµ,ν(ρ)|2 dx =

∫

Ω

bν(ρ)∇S · ∇Aµ,ν(ρ)dx. (3.8)
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By means of Young’s inequality one can manipulate (3.8) in a similar fashion as
before and obtain, after double integration on [0, T ],

1

T

∫ T

0

∫

Ω

Aµ,ν(ρ(t))dx+

∫ T

0

∫

Ω

|∇Aµ,ν(ρ)|2 dxdt

≤ C

∫

Ω

Aµ,ν(ρ0)dx+ C

∫ T

0

∫

Ω

|∇S|2dxdt. (3.9)

The definition of aµ,ν implies

ρ2 ≤ C(µ)Aµ,ν(ρ), A′
µ,ν(ρ) ≥ µ.

Therefore, inequalities (3.9) and (3.7) imply the following statement

‖ρ‖L2([0,T ];H1(Ω)) + ‖∂tρ‖L2([0,T ];H−1(Ω)) ≤ C(µ, T )
[
‖S‖L2([0,T ];H1(Ω)) + C(ρ0)

]
,

(3.10)
where we have used the fact that ∆−1 : H−1(Ω) → H1

0 (Ω) is an isomorphism.
Let us now take a sequence {Sn}n uniformly bounded in L2([0, T ];H1(Ω)) and
consider the corresponding ρn = U(Sn). Inequality (3.10) and an embedding result
by Lions and Aubin (see for instance [Sho97], Chapter III, Section 1, Proposition
1.3) imply that {ρn} is compact in L2(ΩT ). To prove continuity, take a sequence

Sn ∈ L2([0, T ];H1(Ω)) such that Sn → S̃. Then, by compactness of U , U(Sn) = ρn
has a convergent subsequence in L2(ΩT ). Therefore, ρn has a subsequence ρnk

converging almost everywhere to some ρ̃ ∈ L2(ΩT ). By using the weak formulation
of problem (3.4) with S = Snk

and ρ = ρnk
, we can easily deduce that ρ̃ is the

unique weak solution to (3.4) where S = S̃. Therefore, the whole sequence ρn
converges to U(S̃) and the proof is complete. �

For the sake of completeness, we provide the details about the continuity of D,
which is of course straightforward.

Proposition 3.4. The (linear) operator D : L2(ΩT ) → H1(ΩT ) is continuous.

Proof. It follows from the estimate

‖S(t)‖H1(Ω) ≤ ‖ρ(t)‖L2(Ω), (3.11)

which can be easily proven by multiplying equation (3.5) by S and by integrating
over Ω. �

Theorem 3.5. There exists at least one local–in–time solution of problem (3.3).

Proof. Relation (3.9) clearly implies that

‖ρ‖L2(ΩT ) ≤ C(µ)
√
T
[
C(ρ0) + ‖S‖L2([0,T ];H1(Ω))

]

and this, together with (3.11), implies

‖ρ‖L2(ΩT ) ≤ C(µ)
√
T
[
C(ρ0) + ‖ρ‖L2(ΩT )

]
. (3.12)

Hence, for M > 0 we can consider the Banach space

XM =

{
ρ ∈ L2(ΩT )

∣∣∣
∫ ∫

ΩT

|ρ|2dxdt ≤M

}
.

Estimate (3.12), then, clearly implies that T = U ◦ D is well defined as a map
from XM into itself provided that T is small enough and M large enough. More-
over, thanks to propositions 3.3 and 3.4, T : L2(ΩT ) → L2(ΩT ) is continuous and
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compact. Therefore, T has a fixed point thanks to Schauder’s fixed point Theo-
rem (see e.g. [Tay97], Chapter 14, Corollary B.3), which means that (3.3) has a
local–in–time solution ρ ∈ L2(ΩT ). �

Remark 3.6. A continuation principle in the spirit of remark 2.3 holds in this
case too, where the L1 and the L∞ norms are replaced by the L2 norm. Moreover,
by integrating once with respect to time in the identity (3.8), one easily gets an
estimate of the local solution ρ in L∞([0, T ], L2(Ω)).

Our next aim is to prove that condition (3.2) is preserved by the local solution
ρ(t) of problem (3.3) at any t ∈ [0, T ].

Lemma 3.7. Let ρ(x, t) be the local solution to (3.3) provided by Theorem 3.5,
with initial datum ρ0 satisfying (3.2). Then, for any 0 ≤ t ≤ T , we have

0 ≤ ρ(x, t) ≤ 1, a. e. in x.

Proof. We claim that ρ(x, t) can be obtained as a uniform limit of the sequence
ρn(x, t) recursively defined by

ρn solution of





∂ρ

∂t
= ∇ · (aµ,ν(ρn−1)∇ρ− bν(ρ)∇S) as (x, t) ∈ ΩT

−∆S + S = ρ, as (x, t) ∈ ΩT ,

ρ(x, t) = S(x, t) = 0 as x ∈ ∂Ω,

ρ(x, 0) = ρ0(x),

where the local existence for the above equation can be proven in the same way
as before (the diffusion term is linear!). To see this, one can apply the argument
in the proof of proposition 3.3 to the semi–linear equation satisfied by ρn and get
the estimate (3.10) uniformly in n. Then, in the same way we get compactness in
L2(ΩT ) of the family ρn, and this is enough to get a weak solution to the nonlinear
equation (3.3) in the limit as n → ∞. Now, by means of the same comparison
argument as in Theorem 2.8, we get the desired estimates for any n (the parabolic
part of the operator is linear and nondegenerate), and the same relation holds as
n→ ∞. �

Remark 3.8. As a consequence of the previous lemma and thanks to the continu-
ation principle 3.6, the local–in–time solution to (3.3) is actually globally defined.

Remark 3.9. Higher regularity of the local solution when the initial datum ρ0 is
smooth enough can be proven by modifying the fixed point argument, involving
higher Sobolev norms and exploiting the regularizing properties of the solution
operator S of the elliptic equation −∆S+S = ρ, the nondegeneracy of the parabolic
equation in (3.3) and the result in Lemma 3.7 (we omit the details).

Our next step is the limit as ν → 0 in (3.3). We have the following theorem.

Theorem 3.10 (Existence for the nondegenerate approximation). For any small
µ > 0, there exists at least one global–in–time weak solution to the problem





∂ρ

∂t
= ∇ · (aµ(ρ)∇ρ− [ρ(1 − ρ)]+∇S) as (x, t) ∈ ΩT

−∆S + S = ρ, as (x, t) ∈ ΩT ,

ρ(x, t) = 0 as x ∈ ∂Ω,

ρ(x, 0) = ρ0(x),

(3.13)
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where aµ = µ + [ρ(1 − ρ)]+, with ρ0 satisfying (3.2). Moreover, the local–in–time
solution ρ satisfies

0 ≤ ρ(x, t) ≤ 1 (3.14)

almost everywhere.

Proof. Let µ > 0 be fixed. For any small ν > 0, let us consider the solution provided
by Theorem 3.5. We observe that estimate (3.10) is independent on ν. Hence, by
the same argument in the proof of Proposition 3.3, we deduce that the family of
solutions {ρµ,ν}ν>0 is relatively compact in L2(ΩT ). By extracting a convergent
a. e. subsequence, one can easily prove the consistency of the limit procedure as
ν → 0. Estimate (3.14) is a consequence of Lemma 3.7. �

Remark 3.11. By means of similar arguments as those in Remark 3.9, one can
prove that the solution provided by the above theorem enjoys more regularity if so
does the initial datum.

Remark 3.12. In view of (3.14), the global solution ρ provided in Theorem 3.10
solves the equation

∂ρ

∂t
= ∇ · (aµ(ρ)∇ρ− ρ(1 − ρ)∇S) ,

where we have removed the positive part in the term ρ(1 − ρ).

3.1.2. Existence via approximation. In this subsection we prove global existence
of solutions to the problem (3.1)–(3.2) via approximation by the solution to the
regularized problem analyzed in the previous subsection. For a fixed n ∈ N we
define ρn0 := ρ0θn, where θn is a smooth cutoff function such that θn(x) ≡ 1
if |x| ≤ n − 1, θn(x) = 0 if |x| ≥ n and 0 ≤ θn ≤ 1 otherwise. For a small
positive µ, let ρµn be the solution to (3.13) provided in the previous subsection with
Ω = {|x| ≤ n} and initial datum ρn0 . We aim to prove that the family of solutions
{ρµn}n,µ enjoys the suitable uniform estimates need to be relatively compact in a
certain sense. This time, the estimates on the approximating solution of problem
(3.13) developed in Proposition 3.3 cannot be used to get the desired compactness,
since they blow up as µ tends to zero. We aim to improve them in the following
Theorem.

Theorem 3.13 (Global existence in a closed ball). For any fixed integer n, there
exists a weak solution ρn to the problem





∂ρ

∂t
= ∇ · (ρ(1 − ρ)∇(ρ− S)) as (x, t) ∈ B(0, n) × [0,+∞)

−∆S + S = ρ, as (x, t) ∈ B(0, n) × [0,+∞),

ρ(x, t) = 0 as x ∈ ∂B(0, n),

ρ(x, 0) = ρ0(x),

(3.15)

with initial datum ρn0 .

Proof. We prove several energy estimates, obtained after suitable manipulations of
the approximating equation

∂ρ

∂t
= ∇ · (aµ(ρ)∇ρ− ρ(1 − ρ)∇S) . (3.16)

In the computations below, as usual, we suppose the solution to be smooth enough
in order to perform integration by parts, thus requiring the initial datum to be
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smooth enough. The result for general initial datum follows by approximation. In
what follows, C shall denote a generic positive constant independent on µ and on
n, and T is a positive time.

Step 1. Multiplying (3.16) by ρ and integrating by parts we obtain

d

dt

∫

Ω

ρ2dx = −2

∫

Ω

aµ(ρ)|∇ρ|2dx+ 2

∫

Ω

ρ(1 − ρ)∇ρ · ∇Sdx

≤ −C
∫

Ω

aµ(ρ)|∇ρ|2dx+ C

∫

Ω

|∇S|2,

where we have used the Cauchy–Schwarz inequality and the uniform bound for
aµ(ρ). Since

‖S‖H1(Ω) ≤ ‖ρ‖L2(Ω), (3.17)

integration over [0, T ] and Gronwall inequality yield

sup
0≤t≤T

∫

Ω

ρ(t)2dx+

∫ T

0

∫

Ω

aµ(ρ)|∇ρ|2dxdt ≤ eCT . (3.18)

Step 2. Given Aµ(ρ) =
∫ ρ
0
aµ(ξ)dξ, we compute (as in (3.9))

d

dt

∫

Ω

Aµ(ρ(t))dx+

∫

Ω

|∇Aµ(ρ)|2 dx =

∫

Ω

ρ(1 − ρ)∇S · ∇Aµ(ρ)dx (3.19)

and, integrating over [0, T ] and using (3.18)

1

T

∫ T

0

∫

Ω

Aµ(ρ(t))dx+

∫ T

0

∫

Ω

|∇Aµ(ρ)|2 dx ≤ C

∫

Ω

Aµ(ρ0)dx+ CeCT . (3.20)

Step 3. We have the estimate

d

dt

∫

Ω

|∇Aµ|2 dx = 2

∫

Ω

∇Aµ(ρ) · ∇Aµ(ρ)tdx = −2

∫

Ω

Aµ(ρ)t∆Aµ(ρ)dx

= −2

∫

Ω

ρtAµ(ρ)tdx− 2

∫

Ω

Aµ(ρ)t∇ · (ρ(1 − ρ)∇S) dx

= −2

∫

Ω

1

aµ(ρ)
Aµ(ρ)

2
tdx− 2

∫

Ω

Aµ(ρ)tρ(1 − ρ)∆Sdx

− 2

∫

Ω

Aµ(ρ)t(1 − 2ρ)∇ρ · ∇Sdx

≤ −C
∫

Ω

Aµ(ρ)
2
tdx+ C

∫

Ω

ρ2dx+ C

∫

Ω

ρ(1 − ρ)|∇ρ|2dx,

where we have used ‖∇S‖L∞ ≤ C‖ρ‖L∞ , which can be easily obtained thanks to
(2.6) and the Green function method on the ball B(0, n) by means of maximum
principle for the operator −∆ + I, and the uniform bound for ρ. We observe that
such an estimate is independent on the diameter of Ω. Multiplying by t ∈ [0, T ] the
above computation and integrating over [0, T ], using (3.18) and (3.20) we get

∫ T

0

∫

Ω

tAµ(ρ)
2
tdxdt ≤ −C

∫ T

0

t
d

dt

∫

Ω

|∇Aµ|2 dxdt+ CTeCT

≤ C

∫ T

0

∫

Ω

|∇Aµ|2 dxdt+ CTeCT ≤ C(1 + TeCT ). (3.21)

Collecting estimates (3.18), (3.20) and (3.21), by Sobolev embedding we recover
√
tAµ(ρ)t ⊂⊂ L2(ΩT ).
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Hence, there exists a sequence µk → 0 (as k → ∞) such that Aµk
(ρµk
n ) converges

almost everywhere in ΩT to some function A(x) as k → ∞. Since Aµ(ρ) → A(ρ) :=
ρ2

2 − ρ3

3 as µ → 0, then it is easy to see that A(ρµk
n ) converges to A almost every-

where, and since A has continuous inverse on [0, 1], this implies that ρµk
n has an

almost everywhere limit defined on ΩT . Such limit is a weak solution of problem
(3.15). �

As usual, it can be easily seen that the solution provided by the above theorem
satisfies (3.14).

The last step in our approximation argument consists in taking the limit of ρn
as n→ ∞. We can skip the details about this procedure, which is rather standard,
and it is based on the same estimate and compactness arguments as above. In fact,
it can be easily checked that all the estimates above are uniform with respect to
the domain Ω. We are ready to state our final existence theorem.

Theorem 3.14 (Global existence of solutions). There exists at least a global weak
solution ρ(x, t) to the Cauchy problem (3.1)–(3.2) in the sense of definition 3.1.

Proof. We only need to check that the distributional solution ρ = limn→∞ ρn sat-
isfies the properties of definition 3.1. Conditions (i) and (ii) can be easily recovered
thanks to estimate (3.19), which can be easily obtained in the limiting case µ = 0,
Ω = R

d. Condition (iii) is a trivial consequence of the same condition satisfied by
the approximating solutions. Condition (iv) is a consequence of (ii). �

Remark 3.15. The conservation of the total mass can be proven in the same way
as in Theorem 2.7.

3.2. Entropy solutions. In the following we turn our attention to the problem of
uniqueness of suitable solutions. For equations with an interaction of nonlocal fluxes
and degenerate diffusions there is no straightforward way to prove the uniqueness
of weak solutions (cf. also [BCM03]) and one might even expect non-uniqueness as
for nonlocal transport equations (cf. [DGT00]). We therefore turn our attention to
a rather natural restriction of weak solutions to so-called entropy solutions. Apart
from uniqueness, the main motivation for considering entropy solutions is the pos-
sibility to obtain correct dissipation of entropy functionals, which will be discussed
in the subsections below.

Due to the fact that the convolution B ∗ ρ is smooth anyway, the behaviour
of dissipation functionals on this part seems not important and we shall therefore
adapt the definition of entropy solutions for fixed flux ∇S(x, t) (cf. [BCM03] for a
more detailed discussion).

Definition 3.16 (Entropy Solutions). We shall say that a nonnegative function
ρ ∈ L1([0, T ]×R

d)∩C(0, T ;L1(Rd)) is an entropy solution of the Cauchy problem
(3.1)–(3.2) on R

d × [0, T ] if the following conditions are satisfied:

(i) For all c ∈ R and all non-negative test functions ϕ ∈ C∞
c ([0, T ) × R

d), the
following entropy inequality holds
∫ T

0

∫

Rd

[
|ρ− c|ϕt + sign (ρ− c) (ρ(1 − ρ) − c(1 − c))∇S · ∇ϕ

+ ε|A(ρ) −A(c)|∆ϕ− sign (ρ− c)c(1 − c)∆Sϕ
]
dx dt ≥ 0, (3.22)

where S = S[ρ] is the unique H1 solution to −∆S + S = ρ.
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(ii) A(ρ) ∈ L2(0, T ;H1(Rd))
(iii) 0 ≤ ρ(x, t) ≤ 1 almost everywhere in [0, T ] × R

d.
(iv) Essentially, as t ↓ 0,

∫

Rd

|ρ(x, t) − ρ0(x)| dx→ 0.

We start by verifying the existence of entropy solutions. For this sake we take
a closer look at our preceding construction of weak solutions. In the first step,
namely the nondegenerate approximation on a bounded domain, we obtain even a
unique classical solution of (3.3) and (3.13). The classical solution clearly satisfies
the corresponding entropy condition (with smoothed nonlinearities on the bounded
domain). Due to a-priori bounds on ρ, A(ρ), and S = B ∗ ρ we always extract
suitably convergent subsequences when passing from (3.13) and (3.15) and from
(3.15) and (3.1), so that the entropy inequality (3.22) carries over to the limit.
Hence, we obtain the following results

Theorem 3.17. Let ρ0 ∈ L1(Rd) satisfy 0 ≤ ρ0 ≤ 1. Then there exists an entropy
solution of (3.1), (3.2) according to Definition (3.16).

In order to prove uniqueness of the entropy solution, we shall use continuous
dependence of entropy solutions on the flux in the L1-norm:

Lemma 3.18. Let S1, S2 ∈ C(0, T ;H1(Rd)) ∩ L∞([0, T ] × R
d), with

∇Sj ∈ C(0, T ;W 1,1
loc (Rd)) ∩ C([0, T ] × R

d), ∆Sj ∈ L∞([0, T ] × R
d)

be given and let uj ∈ L∞(0, T ;BV (Rd)) be entropy solutions of

ujt = ∇ ·
(
uj(1 − uj)∇(εuj − Sj)

)

with initial values uj0 ∈ BV (Rd) for j = 1, 2.

‖u1(t) − u2(t)‖L1(Rd) ≤ ‖u1
0 − u2

0‖L1(Rd) +
t

4
‖∇S1 −∇S2‖L∞(0,t;BV (Rd))

+tmax{V1, V2}‖∇S1 −∇S2‖L∞([0,t]×Rd), (3.23)

where Vj = ‖uj‖L∞(0,t;BV (Rd)).

Proof. The proof can be carried out in an analogous way to the proof of Theorem 1.3
in [KR03] by appropriately using the time-dependence of the flux in the estimates
and the fact that the function p 7→ p(1−p) has Lipschitz constant 1 and supremum
1
4 on the interval [0, 1]. �

Below we shall prove a uniqueness result in the smaller class of entropy solutions
of bounded variation in the case of spatial dimension one. Before proving their
uniqueness, we verify the existence of such entropy solutions:

Proposition 3.19 (Regularity of entropy solutions). Let ρ0 ∈ BV (R1; [0, 1]), then
an entropy solution of (3.1), (3.2) satisfies

ρ ∈ L∞(0, T ;BV (R1)).

Proof. We construct the BV-solution by smooth approximation. Let ρ be an L1

viscosity solution of (3.1), (3.2) and let ρδ ∈ C(0, T ;C1(R1)) such that 0 ≤ ρδ ≤ 1
almost everywhere and ρδ → ρ in C(0, T ;BV (R1)). Then we also have

Sδ = B ∗ ρδ ∈ C(0, T ;BV (R1))
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and consequently
Sδxx = Sδ − ρδ ∈ C(0, T ;BV (Rd)).

The results of [KR01] imply the existence of an entropy solution uδ of

uδt −
(
uδ(1 − uδ)(εuδ − Sδ)x

)
x

= 0

with initial value u(0) = ρ0, u
δ belonging in the space ∈ L∞(0, T ;BV (R1)). More-

over, since uδh(x, t) = uδ(x+ h, t) is an entropy solution of the same equation with
Sδ(x.t) replaced by Sδh(x, t) := Sδ(x+h, t) and initial value ρ0(.+h), we may apply
the continuous dependence estimate to deduce

‖uδh(t) − uδ(t)‖L1(R1) ≤ ‖ρ0(.+ h) − ρ0‖L1(R1) +
t

4
‖Sδx − (Sδh)x‖L∞(0,t;BV (R1))

+tV δ‖Sδx − (Sδh)x‖L∞([0,t]×R1),

with V δ = ‖uδ‖L∞(0,t;BV (R1)). After division by h we obtain in the limit h→ 0

V δ ≤ ‖ρ0‖BV (R1) +
t

4
‖Sδxx‖L∞(0,t;BV (R1)) + tV δ‖Sδxx‖L∞([0,t]×R1),

From the uniform bounds for ρδ in L∞(R1) ∩ L1(R1) one can easily deduce a
uniform estimate for ‖Sδxx‖L∞([0,t]×R1). Moreover, there exists a constant c > 0
(independent of δ and t) such that

‖Sδxx‖L∞(0,t;BV (R1)) ≤ c‖ρδ‖L∞(0,t;BV (R1)).

Hence, we deduce

(1 − Ct)‖uδ‖L∞(0,t;BV (R1)) ≤ ‖ρ0‖BV (R1) +
ct

4
‖ρδ‖L∞(0,t;BV (R1))

As δ → 0, one can prove in a standard way that uδ → ρ. Now let t be such that
(2C + c

2 )t < 1, then by lower semicontinuity

1

2
‖ρ‖L∞(0,t;BV (R1)) ≤ lim inf

(
(1 − Ct)‖uδ‖L∞(0,t;BV (R1)) −

ct

4
‖ρδ‖L∞(0,t;BV (R1))

)

≤ ‖ρ0‖BV (R1),

and hence, ρ ∈ L∞(0, t;BV (R1)).
By applying the same argument consecutively to time intervals of length smaller

than 2
4C+c we finally obtain that ρ ∈ L∞(0, T ;BV (R1)). �

Finally, from the continuous dependence it is a small step to prove the main
uniqueness result:

Theorem 3.20 (Uniqueness). The entropy solution ρ of (3.1), (3.2) is unique in
the space L∞(0, T ;BV (R1))

Proof. Assume that ρ1 and ρ2 be two different entropy solutions belonging in the
space L∞(0, T ;BV (R1)). Then we can assume without restriction of generality
that ‖ρ1(t) − ρ2(t)‖ 6= 0 for t > 0 arbitrarily small (otherwise we can take τ as the
maximal time before which the solutions are equal and rescale time to t− τ).

One can verify in a straight-forward way that S1 and S2 satisfy the assumptions
of Lemma 3.18 and that there exists a constant C > 0 such that

‖S1
x − S2

x‖L∞(0,t;BV (R1)) ≤ C‖ρ1 − ρ2‖L∞(0,t;L1(R1))

and
‖S1

x − S2
x‖L∞([0,t]×R1) ≤ C‖ρ1 − ρ2‖L∞(0,t;L1(R1)).
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Hence, by Lemma 3.18 the estimate

‖ρ1(t) − ρ2(t)‖L1(R1) ≤ C̃t‖ρ1(t) − ρ2(t)‖L1(R1)

holds for some constant C̃. Since we can choose t small enough such that Ct < 1
this yields a contradiction. �

3.3. Finite speed of propagation in one space dimension. In this subsection
we focus our attention on the Cauchy problem in one space dimension

{
∂tρ = ∂x (ρ(1 − ρ)∂x (ερ− S))

ρ(x, 0) = ρ0(x),
(3.24)

where ρ0 is compactly supported and satisfying the usual condition 0 ≤ ρ0 ≤ 1.
Our aim is to prove that the solution ρ(t) at any time t > 0 is still compactly
supported. This feature is usually referred to as the the finite rate of propagation
property, and it is typically satisfied by nonlinear diffusion equations of the form

ρt = A(ρ)xx,

when A : R+ → R+ is a smooth nondecreasing function such that A′(0) = 0 (see
for instance [Kal87, CT05]). Our approach in proving such a property is based
upon certain estimates of the moments of a solution. This is closely related with
the estimates of the Wasserstein distances between any two solutions to a nonlinear
diffusion equation developed in [CGT04].

For a positive integer n, we define the 2n–th moment of a nonnegative, integrable
function ρ as

M2n(ρ) :=

∫ +∞

−∞

x2nρ(x)dx.

The distribution function of ρ is given by

F (x) =

∫ x

−∞

ρ(y)dy.

The pseudo inverse function of F , defined on the interval [0,m], m =
∫ +∞

−∞
ρ(x)dx,

is given by

F−1(ξ) = inf
{
x ∈ R

∣∣∣ F (x) > ξ
}
.

If ρ(x) > 0 almost everywhere, then F−1 is a real inverse, and the change of
variables

x ∈ supp(ρ) 7→ ξ = F (x) ∈ [0,m]

is a bijection. Therefore, one can change variable into the definition of the moments
above and get

M2n(ρ) =

∫ +∞

−∞

x2nρ(x)dx =

∫ m

0

F−1(ξ)2ndξ.

Obviously we have
[

1

m

∫ m

0

F−1(ξ)2ndξ

]1/2n
→ ‖F−1‖L∞([0,m]),

as n→ +∞. Moreover, it is clear that

meas(supp(ρ)) ≤ 2‖F−1‖L∞([0,m]). (3.25)
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Thus, a uniform estimate with respect to n of M
1/2n
2n (ρ(t)) where ρ(t) is the solution

to (3.24) at time t automatically provides the finiteness of the size of the support
of ρ(t). We shall prove that such an estimate is true. In our proof we shall suppose
that ρ is strictly positive on its support. The general result follows by the same
approximation argument developed in [CGT04]. For further reference we briefly
recall the following result in [Kne77, CDFG05] for a nonlinear friction equation.

Theorem 3.21. Let A(ρ) = ρ2

2 − ρ3

3 . Let ρ(t) be a nonnegative solution to the
equation

ρt = A(ρ)xx. (3.26)

Let F
−1

(t) be the pseudo–inverse of the distribution function of ρ(t). Then, there
exists a continuous (increasing) function of time t 7→ C(t) such that

‖F−1
(t)‖L2n ≤ C(t), (3.27)

where C(t) does not depend on n.

We now state our result for equation (3.24).

Theorem 3.22 (Finite speed of propagation). Let ρ(x, t) be the unique entropy
solution to (3.24) with compactly supported initial datum ρ0. Then, the profile ρ(t)
has compact support at any positive time t.

Proof. As pointed out before, to pursue our aim we only need to control M
1/2n
2n

uniformly in n in any finite time interval [0, T ]. In the sequel we shall suppose that
ρ enjoys enough regularity in order to justify integration by parts in the estimates
of the moments. The rigorous result in the general case follows as usual by approx-
imation. Moreover, in order to deal with some boundary term we shall encounter
in our computations, we shall need to work with an approximation of the Cauchy
problem (3.24) in a bounded domain [−b, b] for b positive integer. The compactness
estimates proven in section 3.1 then allow us to take the limit as b→ ∞, since our
estimate does not depend on b. The same technique is used in [CGT04].

We denote by ρb the solution of (3.24) on [−b, b] with Dirichlet boundary condi-
tions and with an initial datum ρ0,b having massm =

∫
ρ0 and converging uniformly

to ρ0 as b → ∞. Let ub(t) : [0,m] → R be the pseudo–inverse of the distribution
function of ρb. Let us also consider the solution ρ(t) to the nonlinear diffusion equa-
tion (3.26) on [−b, b] having ρ0,b as initial datum and satisfying Dirichlet boundary
conditions. Let ub(t) the pseudo inverse of its distribution function. We shall omit
the subscript b in the computations below for simplicity. A standard computation
with pseudo–inverses (see e.g. [CT05]) shows that u and u satisfies the following
equations

∂tu = −∂ξA
(
(∂ξu)

−1
)

+
(
1 − (∂ξu)

−1
)∫ m

0

B′(u(ξ) − u(η))dη

∂tu = −∂ξA
(
(∂ξu)

−1
)
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For fixed n we have, after integration by parts

d

dt

∫ m

0

[u(t) − u(t)]2ndξ = −2n(u− u)2n−1
[
A((∂ξu)

−1) −A((∂ξu)
−1)
] ∣∣∣
ξ=m

ξ=0

+ 2n(2n− 1)

∫ m

0

(u− u)2n−2 [∂ξu− ∂ξu]
[
A((∂ξu)

−1) −A((∂ξu)
−1)
]
dξ

+ 2n

∫ m

0

(u− u)2n−1
(
1 − (∂ξu)

−1
)∫ m

0

B′(u(ξ) − u(η))dηdξ.

Hence, since u and u take values in a bounded interval and since A((∂ξu)
−1) and

A((∂ξu)
−1) are zero when ξ = 0, 1 (we recall that (∂ξu)

−1 = ρ, see [CGT04]),
the boundary term above disappears. Moreover, since the function t → A(t−1) is
non increasing we can get rid of the second addend in the right hand side above.
Therefore, due to the uniform bound of ρ in L∞ and to the definition of B, there
exists a fixed constant C > 0 such that

d

dt

∫ m

0

[u(t) − u(t)]2ndξ ≤ Cn

[∫ m

0

[u(t) − u(t)]2ndξ + 1

]
,

and, by Gronwall inequality,

‖u(t) − u(t)‖L2n[0,m] ≤ eCt

for some positive constant C. Now, (3.27) and a similar estimate for ub as in
[CGT04] imply

‖ub(t)‖L2n[0,m] ≤ C(t)

and C(t) is independent of b and n. This fact yields

‖u(t)‖L2n[0,m] ≤ C(t)

for some function C(t) of time independent of b and n. We now want to send b→ ∞
in order to extend the result to the solution ρ of the original Cauchy problem.
By using the same technique as in section 3.1 we can recover some compactness
estimates for the family ρb in such a way that, up to subsequences, ρb → ρ almost
everywhere in R × [0,+∞). Recalling that

‖ub(t)‖L2n[0,m] = d2n(ρb, δ0),

where dp(·, ·) is the p–Wasserstein distance between two measures with finite p–
th moment (see e. g. [Vil03]), and where δ0 is the Dirac delta measure centered
at zero, we use the lower semi continuity of such a distance with respect to the
weak convergence in the sense of measures (see [Vil03]) and we obtain the desired
estimate for the original solution ρ and the corresponding pseudo–inverse u

(M2n(ρ(t)))
1/2n = ‖u(t)‖L2n[0,m] ≤ C(t).

We can now send n→ ∞ to get

‖u(t)‖L∞[0,m] ≤ C(t)

and the proof is complete. �



28 M. BURGER, M. DI FRANCESCO, AND Y. DOLAK-STRUSS

3.4. Asymptotic behaviour. In the following we investigate the asymptotic be-
haviour of weak solutions to (3.1), (3.2) for large time. The main idea in this case
is the analysis of the behaviour of the associated energy functional

Ẽ(ρ) :=

∫

Rd

[ρ(ερ− S(ρ)] dx, (3.28)

where S(ρ) is the unique solution to −∆S+S = ρ decaying at infinity. This energy
functional is to be considered on the admissible set

K := {ρ ∈ L2(Rd) ∩ L1(Rd) | 0 ≤ ρ ≤ 1 a.e. }. (3.29)

For the nonlinear diffusion case, the change from ε > 1 to ε < 1 is of particular
interest, since Ẽ(ρ) changes from a strictly convex (for ε > 1) to a nonconvex
functional, which we verify in the following:

Lemma 3.23. The functional Ẽ : K → R is bounded below by −
∫

Rd ρ dx for ε > 0.

Moreover, Ẽ is positive and strictly convex for ε > 1.

Proof. First of all, since ρ ≤ 1 and S(ρ) ≥ 0, we have

Ẽ(ρ) :=

∫

Rd

[ρ(ερ− S(ρ)] dx ≥ −
∫

Rd

S(ρ) dx.

The property
∫

Rd S(ρ) dx =
∫

Rd ρ dx can be deduced immediately from the elliptic
equation satisfied by S(ρ) and hence,

Ẽ(ρ) ≥ −
∫

Rd

ρ dx.

Since Ẽ is a quadratic functional, convexity is equivalent to strict positivity.
From the Cauchy-Schwarz inequality we have

Ẽ(ρ) =

∫

Rd

ρ(ερ− S(ρ)) dx ≥ (ε− 1)

∫

Rd

ρ2 dx+
1

2

∫

Rd

(
ρ2 − S(ρ)2

)
dx.

Finally, a standard energy estimate for the elliptic equation satisfied by S(ρ) shows
that the second term is nonnegative, and hence,

Ẽ(ρ) ≥ (ε− 1)

∫

Rd

ρ2 dx > 0

for ρ 6= 0 and ε > 1. �

A fundamental property of the model is the dissipation of the energy Ẽ. For-
mally, if we compute the time derivative of E(ρ(t)), insert the equations and apply
Gauss’ Theorem, then we obtain

d

dt
Ẽ(ρ(t)) =

∫

Rd

ρt(2ερ− B ∗ ρ) dx−
∫

Rd

ρB ∗ ρt dx

= 2

∫

Rd

ρt(ερ− B ∗ ρ) dx

= 2

∫

Rd

∇ · [ρ(1 − ρ)∇(ερ− B ∗ ρ)] (ερ− B ∗ ρ) dx

= −2

∫

Rd

ρ(1 − ρ) |∇(ερ− B ∗ ρ)|2 dx := −2I(ρ, S) < 0. (3.30)

This estimate can be made rigorous by standard smooth approximation techniques,
and thus, we have derived the following result:
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Proposition 3.24 (Energy Dissipation). Let ρ be a weak solution of (3.1), (3.2).
Then the functional

e : R
+ → R, t 7→ e(t) := Ẽ(ρ(t))

is nonincreasing. Moreover e(s) = e(t) for s > t if and only if ρ is stationary in
the interval [s, t] and

ρ(1 − ρ)∇(ερ− S(ρ)) = 0 a.e. in R
d × [s, t].

3.4.1. Non decaying solutions in 1–d for moderate diffusivity. In one space dimen-
sion and for ε < 1, we can verify that the functional Ẽ is not positive by an explicit
construction of appropriate densities:

Proposition 3.25. Let d = 1 and ε < 1, then for each m > 0 there exists ρ ∈ K
satisfying

Ẽ(ρ) < 0, and

∫

Rd

ρ dx = m. (3.31)

Proof. Let 0 < α2 < 1
ε − 1 and let ψα be a continuous function satisfying

−d2ψα

dx2 + ψα = 1
c 0 ≤ x < a

−d2ψα

dx2 − α2ψα = 0 a ≤ x ≤ b

−d2ψα

dx2 + ψα = 0 x > b

with boundary conditions ψα(0) = 1, dψα

dx (0) = 0 and ψα(x) → 0 as x → ∞, and
some constant c satisfying

0 < ε < c <
1

α2 + 1
< 1. (3.32)

We find that if a < ln c
1−c , a continuously differentiable, nonnegative solution exists

and is given by

ψα(x) =





1
c (1 − (c− 1) coshx) 0 ≤ x < a
c1 sin(α(x− a)) + c2 cos(α(x− a)) a ≤ x ≤ b
c3e

b−x b < x,

where the constants satisfy

c1 = c−1
αc sinh a < 0

c2 = (1 + (c− 1) cosh a)/c
c3 = c1 sin(α(b− a)) + c2 cos(α(b− a)),

and the length of the second interval is fixed by the relation

b = a+
1

α
arctan

(
−c2 + αc1
c1 − αc2

)
.

If we choose S as the symmetric extension of cψα to R and

ρ(x) =





1 −a < x < a
c(α2 + 1)ψα(x) a ≤ x ≤ b
c(α2 + 1)ψα(−x) −b ≥ x ≥ −a
0 |x| > b,

then S satisfies −d2S
dx2 + S = ρ and ρ ∈ K. Moreover, we have

Ẽ(ρ) =

∫

Rd

ρ(ερ− S) dx = 2
[∫ a

0

(ε− S) dx+ (ε(α2 + 1) − 1)(α2 + 1)

∫ b

a

S2 dx
]
.
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This expression is negative if a < arccosh
(

1−ε
1−c

)
. The mass m is given by

1

2
m = a+(α2 +1)

∫ b

a

S dx = a+c(α2 +1)

∫ b

a

c1 sin(α(x−a))+c2 cos(α(x−a)) dx.

Because of (3.32), we have that 1
2m < a+

∫ b
a
c1 sin(α(x− a)) + c2 cos(α(x− a)) dx.

If α is chosen small enough, we can choose the constant c to be so close to 1 that
the restraints on a, and hence on m become arbitrarily large. Thus, for any given
mass m, we can always construct a solution ρ ∈ K such that (3.31) holds. �

If we now consider an initial value ρ0 for (3.1) such that Ẽ(ρ0) < 0, then due to

the energy dissipation we have Ẽ(ρ(t)) ≤ Ẽ(ρ) < 0 and hence, such solutions cannot

decay for t → ∞ (since otherwise one would have lim inf Ẽ(ρ(t)) ≥ Ẽ(0) = 0).
Together with Proposition 3.25 this implies that there exist non-decaying solutions
for every ε < 1 and m > 0.

3.4.2. Attractors of the semigroup in 1–d. As another interesting consequence of the
energy estimate (3.30), for any positive ε we can characterize the set of attractors
of the semigroup (3.1), (3.2) as the set of its stationary entropy solutions, i. e. the
set of all ρ ∈ L1, 0 ≤ ρ ≤ 1 such that

ρ(1 − ρ)∇(ερ− S(ρ)) = 0 a.e. in R × [0,+∞), (3.33)

where S(ρ) is the unique solution to −∆S + S = ρ decaying at infinity. To this
aim, we set

B(ρ) =

∫ ρ

0

√
r(1 − r)dr

and we observe that (3.30) implies that the quantity
∫ +∞

0

I(ρ(t), S(t))dt =

∫ +∞

0

∫ +∞

−∞

[
ε2B(ρ)2x − 2εA(ρ)xSx + ρ(1 − ρ)S2

x

]
dxdt

is uniformly bounded. Therefore, any sequence of times tending to infinity has a
subsequence tk → +∞ such that I(ρ(tk), S(tk)) → 0 as k → ∞. Since

∫ +∞

−∞

ρ(1 − ρ)S2
xdx ≤ 1

4

∫

Rd

ρ2dx,

and ρ(t) is uniformly bounded in L1 ∩ L∞, and because of

−2ε

∫

Rd

A(ρ)xSxdx = 2ε

∫

Rd

A(ρ)(ρ− S)dx,

we easily get a uniform (with respect to time) bound for
∫ +∞

−∞

B(ρ(tk))
2
xdx.

By means of the uniform bound in L1 ∩ L∞ for the solution ρ(t), by Sobolev
embedding we can extract a new subsequence of times (still denoted by tk for
simplicity) such that





ρ(tk) → ρ∞ a. e. in R × [0 + ∞)

ρ(tk) → ρ∞ in L2
loc(R)

B(ρ(tk))x → v∞ weakly in L2(R)

I(ρ(tk), S(tk)) → 0,



CHEMOTAXIS WITH PREVENTION OF OVERCROWDING 31

as k → ∞. Now, for any test function φ ∈ C∞
0 (R) we have

∫ +∞

−∞

v∞φ dx = lim
k→∞

∫ +∞

−∞

B(ρ(tk))xφ dx

= − lim
k→∞

∫ +∞

−∞

B(ρ(tk))φxdx = −
∫ +∞

−∞

B(ρ∞)φxdx

and therefore v∞ = B(ρ∞)x almost everywhere. Hence, denoting by S∞ the so-
lution to −Sxx + S = ρ∞, by weak lower semi–continuity of the L2 norm and by
the strong compactness of Sx = B′ ∗ ρ in L2, by extracting another subsequence we
have

I(ρ∞, S∞) = ε2
∫ +∞

−∞

εB(ρ∞)2xdx− 2ε

∫ +∞

−∞

A(ρ∞)xS
∞
x dx

+

∫ +∞

−∞

ρ∞(1 − ρ∞)(S∞
x )2dx ≤ lim inf

k→∞

{∫ +∞

−∞

B(ρ(tk))xdx

−2ε

∫ +∞

−∞

A(ρ(tk))xS(tk)xdx+

∫ +∞

−∞

ρ(tk)(1 − ρ(tk))S(tk)
2
xdx

}

= lim
k→∞

I(ρ(tk), S(tk)) = 0.

Recalling that I(ρ, S) =
∫ +∞

−∞
ρ(1−ρ)(ερ−S)2xdx, we have thus proven the following

Theorem 3.26 (Attractors of the semigroup). Let ρ(t) be the solution to (3.1),
(3.2) in one space dimension. Then, any sequence of times admits a subsequence
tk such that ρ(tk) → ρ∞ almost everywhere. Moreover, ρ∞ is a solution to (3.33).

Remark 3.27. In the arguments above we have implicitly supposed existence
of stationary solutions. Actually, the convergence of subsequences in the above
theorem is strong enough to prove existence of stationary, weak, entropy solutions
of (3.1), (3.2) in one space dimension. Thanks to the non decay result in subsection
3.4.1, we deduce existence of stationary solutions which are not identically zero in
case of ε < 1.

3.4.3. Characterization of the attractors for large diffusivity in 1–d. In this subsec-
tion we prove that the only attractor of the semigroup, and hence the only solution
to the stationary problem (3.33), in case of large diffusivity ε > 1 is the constant
solution ρ∞ ≡ 0. To perform this task, we need an additional energy estimate,
namely, we compute the evolution of the logarithmic functional

L(ρ) =

∫ +∞

−∞

[ρ log ρ+ (1 − ρ) log(1 − ρ)]dx.

As for the energy estimate in the previous subsections, we compute the evolution
of L(ρ) by means of a formal computation which can be made rigorous by approx-
imation. Integration by parts and conservation of the total mass yield

L(ρ(t)) − L(ρ(0)) =

∫ t

0

∫
(log ρ− log(1 − ρ))ρtdxdτ

= −
∫ t

0

∫ (
ρx
ρ

+
ρx

1 − ρ

)
(ερ(1 − ρ)ρx − ρ(1 − ρ)Sx) dxdτ

= −ε
∫ t

0

∫
ρ2
xdxdτ +

∫ t

0

∫
ρxSxdxdτ ≤ −(ε− 1)

∫ t

0

∫
ρ2
xdxdτ. (3.34)
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The logarithmic functional L cannot be used directly to achieve an asymptotic
behaviour of the solution ρ. However, the estimate performed above can be used to
characterize the stationary solutions in case ε > 1. We have the following theorem.

Theorem 3.28 (Attractors for large diffusivity in 1–d). Let ρ, S be a solution to
(3.1) with ε > 1 such that ρ has finite support at any time. Then, the support of ρ
is not uniformly bounded with respect to t. As a consequence of that, there exist no
nonzero compactly stationary solutions ρ, S to (3.1) if ε > 1.

Proof. Suppose that ρ(t) is a solution with uniformly bounded support. Since the
function

[0, 1] ∋ ρ 7→ ρ log ρ+ (1 − ρ) log(1 − ρ)

is bounded, then L(ρ(t)) is uniformly bounded in time. Therefore, in a similar way
as in the proof of Theorem 3.26, we can handle the right hand side of estimate
(3.34) in a clever way in order to get some strong compactness. More precisely,
there exists a divergent sequence of times tk such that ρ(tk) converge to some ρ∞

almost everywhere and strongly in L2
loc, and such that ρ(tk)x converges to zero

strongly in L2. As in Theorem 3.26, we can easily prove that ρ∞x = 0 and, by
Fatou’s lemma we conclude that ρ∞ = 0. By Sobolev interpolation lemma we
get ρ(tk) → 0 uniformly, and this is in contradiction with ρ(t) having uniformly
bounded support because of the conservation of the mass. This proves the first
assertion of the theorem. In particular, we have also proven that any compactly
supported stationary solution must equal zero. �

As a consequence of the previous theorem, we have the following asymptotic
decay result in case of large diffusivity.

Corollary 3.29 (Decay of solutions in 1–d for large diffusivity). Let ρ be the
solution to (3.1) with compactly supported initial datum ρ0 satisfying (3.2). Then,

lim
t→∞

‖ρ(t)‖L∞(R) = 0.

Proof. From Theorem 3.26, any divergent sequence of times admits a subsequence
tk such that ρ(tk) converges almost everywhere to a stationary solutions satisfying
(3.33). Thanks to the results in theorems 3.22 and 3.28, such a solution must be
the constant solution ρ ≡ 0. Moreover, the convergence to zero holds in L∞ in view
of B(ρ(tk) → 0 in L2 and by Sobolev interpolation lemma. �

3.5. Stationary solutions. As stated in proposition 3.25, stationary solutions of
(3.1), (3.2) have to satisfy ρ = 0, ρ = 1 or ε∇ρ = ∇S. In one space dimension, this
means that we can construct stationary solutions by arranging subintervals on R

such that ρ is in the admissible set K and satisfies one of these conditions in every
interval.

Proposition 3.30. Let d = 1 and ε < 1, then for each m > 0 small enough there
exists a stationary solution of (3.1) satisfying ρ ∈ K.

Proof. Let ρ and S be the symmetric extension to R of

S̄(x) =

{
ε
ε−1c1 + c2 cos(

√
1−ε
e x) 0 ≤ x ≤ a

c3e
a−x a ≤ x,

ρ̄(x) =

{
1
εS + c1 0 ≤ x ≤ a
0 a ≤ x,
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Figure 1. Stationary solutions ρ (dark lines) and S (light lines)
of (3.1), (3.2).

and let the constants satisfy

c1 = c

√
ε− 1√
ε

< 0, c2 =
c(ε

√
ε− ε)

ε− 1
> 0, c3 = −εc1,

where c is the maximal value of ρ and a is given by

a =

√
ε

1 − ε
arccos(−

√
ε).

Then, a simple calculation shows that for any given values of ε < 1 and 0 ≤ c ≤ 1,
a non-negative solution ρ ∈ C(R) and S ∈ C1(R) exists. Moreover, S and ρ are
decreasing functions on [0, a], implying the assertion. �

An example of this type of solution is shown in fig. 1(a), where we set c = 0.9
and ε = 0.6.

In general, also more complicated stationary solutions can be constructed, for
instance solutions with

ρ̄(x) =





1 0 ≤ x ≤ a
1
εS + c1 a ≤ x ≤ b
0 b ≤ x,

(3.35)

or solutions with several peaks (see fig. 1(b)-1(d)). It is no longer straightforward to
show that these solutions exist for any choice of ε < 1, but there is strong numerical
evidence. As an example, we chose a stationary solution of type (3.35): it seems
that for any mass m large enough and ε < 1, a solution can be uniquely determined.
Fig. 3.5 shows the interval a as a function of the mass for different values of ε (left
to right: ε = 10−3, ε = 0.2, ε = 0.6 and ε = 0.9). Depending on ε, there exists a
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Figure 2. Dependence on the parameter a on m for different val-
ues of ε.

minimal value for m, which is due to the fact that the slope of ρ, and hence also
the minimal distance between intervals where ρ = 1 and ρ = 0 is proportional to ε.

4. Numerical Simulation

In the following we discuss the numerical simulation of the linear and nonlinear
model. In order to obtain a unified presentation, we start from the general model
(1.1) specifying the particular form of the potential if needed.

4.1. Numerical Schemes. In the following we briefly discuss two different schemes
for the simulation of (1.1), both being based on forward Euler time and upwind
finite difference space discretizations. The difference in the methods is the per-
spective used for their construction, in the first case we use an Eulerian approach,
i.e., we directly discretize (1.1), while in the second case we take a Lagrangian per-
spective, i.e., we discretize the equation for the pseudo-inverse of the distribution
function. The main advantage of the second method is that it is posed on the
interval (0, 1) and therefore does not require any artificial cut of the computational
domain. On the other hand, the distribution function and its pseudo-inverse do not
exist in multiple dimensions so that the Lagrangian method cannot be used any-
more. We will therefore carry out most computations using the Eulerian method,
but use the Lagrangian approach as a reference to check the error caused by cutting
the domain in the Eulerian approach.

4.1.1. Eulerian Approach. A straightforward approach to solve (2.1) and (3.1) nu-
merically is to apply a finite difference method to the original equation: for each
time step, S is computed using an implicit discretization of the elliptic equation,
then the cell density ρ is calculated using the updated value for S. This is done
by standard operator splitting of the equation for ρ. First the advection term is
calculated with an upwind scheme (cf. [LeV90]). The solution obtained from this
step is subsequently used as an initial value for a time step in the diffusion problem
ρt = ε∆ρ and ρt = ε∆A(ρ) for the linear and the nonlinear case respectively. If

ε is relatively large and the parabolic CFL condition ∆t ≤ C∆x2

ε becomes too ex-
pensive compared to the hyperbolic CFL condition for the advection term, we use
a Crank-Nicholson scheme (an implicit, weighted average method, cf. [Qua03]) for
the time integration linear diffusion term.
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4.1.2. Lagrangian Approach. In spatial dimension one, we can use the equation
satisfied by the pseudo-inverse of the distribution function (as used in the proof of
finite speed above) to construct a numerical scheme that avoids approximation by
a finite domain. Let F : R × [0, T ] → [0,m] be the distribution function satisfying

Fx(x, t) = ρ(x, t) a.e, lim
x→−∞

F (x, t) = 0 ∀ t.

The pseudo-inverse u : [0,m] × [0, T ] → R is defined via

u(ξ, t) = sup{ x ∈ R | F (x, t) ≤ ξ }.
By analogous reasoning as in [GT05, LT04] we can derive the equation

∂tu = −∂ξA
(
(∂ξu)

−1
)

+
(
1 − (∂ξu)

−1
)∫ m

0

B′(u− u(η, .))dη (4.1)

to be satisfied by the pseudo-inverse u. Note that this equation corresponds to the
Eulerian description of the system, roughly speaking the pseudo-inverse describes
the location of particles (which would be exact for piecewise constant u). In the
construction of a finite-difference method we follow the approach [GT05], which
can be carried over in a one-to-one fashion and we only have to take care of the
additional term 1 − (∂ξu)

−1 not appearing in [GT05].
If we use a grid 0 = ξ0 < ξ1 < . . . < ξN = m and denote uk(t) = u(xk, t), then a

step of an explicit upwind finite difference method can be written as

uk(t+ τ) = u(t) − τD+A

(
1

D−uk(t)

)
+ τ

(
1 − 1

Duk(t)

)∑

j

wjB′(uk(t) − uj(t)),

where D+ and D− denote the standard forward and backward difference quotients.

4.2. Numerical Tests. In the following we present the results of some numerical
examples carried out in spatial dimension one and two, respectively.

4.2.1. Comparison of Eulerian and Lagrangian Approaches. As mentioned above,
the Eulerian method for the numerical solution of (1.1) requires the approximation
of the solution on an unbounded domain by (artificial) boundary conditions on a
bounded domain. For the numerical simulations presented below, we take Dirichlet
boundary conditions for S and ρ and perform the computations on large domains.

In order to check whether this method is reliable, we compare solutions of the
nonlinear model (3.1) obtained by the Eulerian and the Lagrangian approach, where
the latter is used as a reference due to the fact that it does not need any domain
approximation. Figure 3 illustrates the resulting solutions ρ at different time steps.
Here we used the parameter value ε = 0.1, the time step ∆t = 5 × 10−4, and the
grid sizes ∆x = 10−2 (Eulerian) and ∆ξ = 10−2 (Lagrangian).

Figure 4 provides a plot of the 2-Wasserstein distance between the numerical
solutions as a function of time. One can observe that the error grows only moder-
ately in the beginning, and then stops when the solution gets close to the stationary
state. The maximal value of the error is approximately ∆x and thus of the same
order as the as the error caused by the discretizations anyway. Hence, the error
due to the cutting of the domain in the Eulerian method seems to introduce only a
negligible error, and we will apply this approach in the following numerical experi-
ments. As an additional test, the numerical results in one and two space dimensions
were checked by successively doubling the size of the domain and comparing the
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Figure 3. Comparison of the Eulerian and the Lagrangian Method
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Figure 4. Wasserstein-distance between the solutions obtained
with the Eulerian and the Lagrangian method as a function of time

corresponding numerical solutions, which also produced negligible variations for
reasonably large domain size.

4.2.2. One-dimensional Simulations. The evolution of the cell density in (1.1) is
illustrated in figures 5 and 6 for the linear and the nonlinear case, respectively:
starting with a symmetrical initial condition for ρ consisting of two peaks both
with mass 1

2 , we compute the solutions with the Eulerian scheme described above,

using ∆x = 10−2, ∆t = 5 × 10−3 in the linear and ∆x = 10−2, ∆t = 5 × 10−4

in the nonlinear case, respectively. In order to reduce the computation time, we
consider symmetrical initial data with compact support on 0 ≤ x ≤ a and prescribe
Neumann boundary conditions at x = 0, so that we only have to compute on half
of the domain.

¿From Figure 5 one observes that the two initial peaks merge into a single peak
that eventually decays with time. In Figure 6 the time evolution of the nonlinear
diffusion problem (3.1) is illustrated. In order to have more fair comparison with
the linear case we set ε = 0.5, i.e., ten times the value we took for the linear
case (but simulations with smaller ε, e.g. ε = 0.2 showed a very similar behavior).
Starting with the same initial conditions, the solution first behaves as in the linear
case: there is attraction between the two peaks and they merge to a single one. In
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Figure 6. Nonlinear problem, ε = 0.5

contrast to to the linear case, however, this peak does not decay, but approaches a
nontrivial stationary solution as characterized in Proposition 3.30.

4.2.3. Two-dimensional Simulations. In two space dimensions, we perform numer-
ical experiments on a rectangular grid with ∆x = ∆t = 5 × 10−2 for the linear,
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Figure 8. Nonlinear problem, ε = 0.2

and ∆x = 5 × 10−2, ∆t = 4 × 10−4 for the nonlinear model, respectively. The
diffusivities are ε = 0.04 for the linear and ε = 0.2 for the nonlinear model. Figure
7 illustrates the temporal evolution of the solution ρ of the linear problem, starting
from the initial condition shown in the first picture. Similar to the 1−d case, we see
that the maximal value of the density remains one for a long time interval. How-
ever, for even larger time diffusion dominates aggregation and the density starts to
decay. In Figure 8 the behaviour of the nonlinear model starting with the same
initial conditions is shown. One observes that the solution is not decaying and a
stationary state with finite support is obtained in the limit.
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[MCO05] D. Morale, V. Capasso, and K. Oelschläger, An interacting particle system modelling

aggregation behavior: from individuals to populations, J. Math Biology 50 (2005),

49–66.
[MEK99] A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math Biology

38 (1999), 534–570.

[MV00] P. A. Markowich and C. Villani, On the trend to equilibrium for the Fokker-Planck

equation: an interplay between physics and functional analysis, Mat. Contemp. 19

(2000), 1–29.
[NM83] T. Nagai and M. Mimura, Asymptotic behavior for a nonlinear degenerate diffusion

equation in population dynamics, SIAM J. Appl. Math. 43 (1983), 449–464.
[Per04] B. Perthame, PDE models for chemotactic movements: parabolic, hyperbolic and

kinetic, Appl. Math. 49 (2004), no. 6, 539–564.

[PH03] K. Painter and T. Hillen, Volume-filling and quorum sensing in models for chemosen-

sitive movement, Canadian Applied Mathematics Quaterly 10 (2003), no. 4, 280–301.
[PH05] A. B. Potapov and T. Hillen, Metastability in chemotaxis models, J. Dyn. Diff. Eq.

17 (2005), to appear.



CHEMOTAXIS WITH PREVENTION OF OVERCROWDING 41

[PW84] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations,
Spinger, New York, 1984.

[Qua03] A. Quarteroni, Numerical modelling for differential problems, Springer, Milano, 2003.
[Sho97] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differen-

tial equations, Mathematical Surveys and Monographs, vol. 49, American Mathemat-
ical Society, Providence, RI, 1997.

[Tay97] M. E. Taylor, Partial differential equations. III, Applied Mathematical Sciences, vol.
117, Springer-Verlag, New York, 1997, Nonlinear equations, Corrected reprint of the

1996 original.
[TB04] C. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic

model for biological groups, SIAM J. Appl. Math. 65 (2004), 152–174.

[Vel02] J. J. L. Velázquez, Stability of some mechanisms of chemotactic aggregation, SIAM
J. Appl. Math. 62 (2002), no. 5, 1581–1633 (electronic).

[Vel04] , Point dynamics in a singular limit of the Keller-Segel model. II. Forma-

tion of the concentration regions, SIAM J. Appl. Math. 64 (2004), no. 4, 1224–1248

(electronic).
[Vil03] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics,

vol. 58, American Mathematical Society, Providence, RI, 2003.

[Wrz04a] D. Wrzosek, Global attractor for a chemotaxis model with prevention of overcrowding,
Nonlinear Anal. 59 (2004), no. 8, 1293–1310.

[Wrz04b] , Long time behaviour of solutions to a chemotaxis model with volume filling

effect, Preprint 2004-166, HYKE-IHP, 2004.

Martin Burger – Industrial Mathematics Institute, Johannes Kepler University, Al-

tenbergerstr. 69, A-4040 Linz, Austria
E-mail address: martin.burger@jku.at

Marco Di Francesco – Johann Radon Institute for Computational and Applied Math-

ematics (RICAM) Austrian Academy of Sciences (ÖAW), Altenbergerstr. 69, A-4040
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