
DYNAMIC BEHAVIOR OF A PACED CARDIAC FIBER*

JOHN W. CAIN†

† Department of Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014
(jwcain@vcu.edu).

Abstract
Consider a typical experimental protocol in which one end of a one-dimensional fiber of cardiac
tissue is periodically stimulated, or paced, resulting in a train of propagating action potentials. There
is evidence that a sudden change in the pacing period can initiate abnormal cardiac rhythms. In this
paper, we analyze how the fiber responds to such a change in a regime without arrhythmias. In
particular, given a fiber length L and a tolerance η, we estimate the number of beats N = N(η, L)
required for the fiber to achieve approximate steady-state in the sense that spatial variation in the
diastolic interval (DI) is bounded by η. We track spatial DI variation using an infinite sequence of
linear integral equations which we derive from a standard kinematic model of wave propagation.
The integral equations can be solved in terms of generalized Laguerre polynomials. We then estimate
N by applying an asymptotic estimate for generalized Laguerre polynomials. We find that, for fiber
lengths characteristic of cardiac tissue, it is often the case that N effectively exhibits no dependence
on L. More exactly, (i) there is a critical fiber length L* such that, if L < L*, the convergence to
steady-state is slowest at the pacing site, and (ii) often, L* is substantially larger than the diameter
of the whole heart.

Keywords
cardiac fiber; pacing; transient behavior; restitution; kinematic model; generalized Laguerre
polynomials

1. Introduction
Cardiac cells have the property of excitability: when a stimulus current of sufficient strength
is applied to a quiescent cell, the transmembrane voltage v undergoes a prolonged elevation,
called an action potential, before eventually returning to its resting value. Repeatedly
stimulated, or paced, cardiac cells exhibit sequences of action potentials. By specifying a
threshold voltage v = vthr, one may define the action potential duration (APD) as the amount
of time in which v > vthr during an action potential. The recovery time during which v < vthr
between successive action potentials is called the diastolic interval (DI). As illustrated in Figure
1, we shall denote the APD following the nth stimulus by An and the subsequent DI by Dn.

Periodic pacing leads to one of several types of phase-locked responses depending on the
underlying pacing period B. For large B, cells exhibit a 1:1 response in which every stimulus
yields an identical action potential. For smaller B, one sometimes observes a period-2 response,
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known as alternans, in which APD and DI values exhibit beat-to-beat alternation [21,23,24,
28,29]. If B is decreased even further, cells exhibit a 2:1 response in which only every other
stimulus yields an action potential [15,21,35]. In what follows, we shall assume that all pacing
periods are sufficiently large to ensure a 1:1 steady-state response.

In spatially extended tissue, neighboring cells are coupled electrically via gap junctions,
allowing action potentials to propagate through the tissue [19,25]. Below, we shall study the
dynamics of a paced cardiac fiber composed of cylindrical cells joined together in an end-to-
end fashion. We assume that voltage exhibits negligible radial dependence, varying only as a
function of a length variable x; that is, the fiber can be treated as one-dimensional. Moreover,
we shall assume that pacing is performed at one end of the fiber which we identify with x = 0.

Typically, propagation of action potentials in a one-dimensional fiber is modeled using a
reaction-diffusion equation known as the cable equation, which, after non-dimensionalization,
takes the form

(1)

Here, v = v(x, t) is the transmembrane voltage and w is a vector of various dynamic variables
that are used in modeling the ionic mechanism of the action potential. For a derivation of the
cable equation, see the texts of Plonsey and Barr [25] and Keener and Sneyd [19]. Examples
of studies in which the cable equation is used to model cardiac dynamics include [5,6,7,18,
22].

Although the cable equation serves as a popular model, we remark that arrhythmias, by nature,
concern the timing of excitation and recovery of the cells. Therefore, it is often desirable to
track the progress of propagating action potentials without regard to the structure of the voltage
profile. Indeed, many recent studies [4,8,11,12,16,30,34] have employed kinematic models
[19,27] of wave propagation in cardiac fibers.

In this paper, we use a kinematic model to investigate how a fiber of length L responds to a
sudden change in the pacing period, say from Bold to Bnew. Changing the pacing period
introduces spatial variation in APD and DI. Our primary goal is to estimate the number of beats
required for the fiber to “adjust” to the new pacing period, i.e., the number of beats required
to reach approximate steady-state in the sense that spatial variation in DI is small. No previous
studies have analyzed the transient behavior following a change in the pacing period. In the
course of solving our main problem, we shall provide such an analysis. Describing the
persistence of spatial DI variation under such a pacing protocol may lead to an improved
understanding of the mechanisms for initiation of arrhythmias such as discordant alternans
[34].

To establish notation, refer to Figure 2, which illustrates both the spatial variation in DI induced
by changing the pacing period from Bold to Bnew < Bold and the aforementioned convergence
to a steady-state. Here, Dn = Dn(x) denotes the nth DI following the change in the pacing period
—in particular, n = 1 corresponds to the first beat with period Bnew. Figure 2(a) shows Dn(x)
for n = 1, . . . , 4 and Figure 2(b) shows Dn(x) for n = 7, 8. Note that Dn(x) appears to converge
pointwise to a constant  as n → ∞.

More quantitatively, our main problem may be stated as follows. Let η > 0 be a given tolerance,
and let n and  be as in the preceding paragraph.
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Goal: Estimate the number of beats N = N(η, L) such that  for all x ∈ [0, L],
n ≥ N.

Our analysis shows that, for fibers shorter than a critical length L = L*, the convergence is
slowest at the pacing site x = 0. In other words, N(η, L) does not depend on the fiber length L
provided that L < L*. Moreover, we find that L* → ∞ as the slope of the restitution curve at

 tends to 1. Hence, N (η, L) is especially unlikely to exhibit any length dependence
as we approach the bifurcation to alternans.

The remainder of this paper is organized as follows. In section 2, we recall a kinematic model
[19,27] of wave propagation, which allows us to follow the progress of each action potential
without tracking the complete voltage profile v(x, t). From the kinematic model, we derive a
recursive sequence of linear equations which can be solved to yield approximations yn(x) of

, allowing us to monitor the convergence to steady-state. As explained in section
3, the functions yn(x) can be expressed in terms of generalized Laguerre polynomials. The
behavior of the functions yn(x) can be approximated by recalling a large-n asymptotic estimate
for the generalized Laguerre polynomials. This allows us to estimate the maximum of |yn(x)|
on the interval [0, L], thereby leading to an estimate of N (η, L). The estimate of N(η, L) is
given by one of two formulas according to whether L < L* or L > L*. Section 4 contains a
summary and discussion of our results.

2. Derivation of the governing equations
We begin this section with a brief discussion of the restitution and dispersion curves. We then
recall a kinematic model of action potentials propagating in a paced fiber. From the equations
of the kinematic model, we derive a sequence of linear equations which will allow us to solve
the main problem.

2.1. Restitution and dispersion curves
Cardiac cells exhibit electrical restitution: The steady-state APD at a given pacing period B
decreases as B is shortened. Nolasco and Dahlen [23] were among the first to model restitution
with a mapping

(2)

Guevara et al. [14] later showed that alternans can result from a period-doubling bifurcation
of (2) as the pacing period B is decreased. The function f is called the restitution function, and
its graph is called the restitution curve. The restitution curve is typically monotone increasing;
i.e., more recovery time yields longer excitations. Many authors (see, for example, [1,2,15])
have fit restitution data with exponential functions of the form

(3)

where APDmax, k, and τ are positive constants. We shall not specify a functional form for the
restitution function but will assume that f has the same qualitative shape as (3).

Just as APD depends upon the preceding DI, the wave front velocity of an action potential in
a fiber depends upon the preceding (local) DI. This dependence is often displayed graphically
via the dispersion curve, which typically has the same qualitative shape as the restitution curve.
We shall denote the functional form of the dispersion curve by c(DI).
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2.2. Kinematic model of wave propagation
To solve the problem of estimating N(η, L), we need only track the progress of action potentials,
not their complete structure. Hence, we shall employ a kinematic model of wave propagation
[19,27]. In doing so, we implicitly assume that recovery always occurs via a phase wave [9,
33]; i.e. the wave back of each action potential is not greatly affected by diffusion. We also
adopt the following assumptions, the last two of which are specific to the pacing protocol
described in the introduction:

• (A1) To a reasonable approximation, the tissue does not exhibit memory: As implicitly
assumed in (2), An+1 depends only upon Dn and is not greatly influenced by the past
pacing history. Likewise, the wave front velocity of the (n + 1)st action potential
depends only upon Dn(x), the preceding local DI.

• (A2) The restitution and dispersion curves are monotone increasing.
• (A3) To implement the pacing protocol outlined in the introduction, the interval

between the nth and (n + 1)st stimuli is Bold if n ≤ 0 and Bnew if n > 0.
• (A4) Prior to the change in the pacing period (i.e., for n ≤ 0), the long-term pacing

with period Bold leads to a 1:1 steady-state response in which DI is a constant,1 say
. In particular, .

We now recall how to use the information contained in the restitution and dispersion curves
to track the wave fronts and wave backs of the action potentials. If we pace one end (say x =
0) of a fiber and plot v(x, t) versus x and t, we obtain a surface in three-dimensional space.
Taking the intersection of this surface with the plane v = vthr, we generate a sequence of curves
which we identify with the wave fronts and wave backs of the action potentials. Projecting
these curves onto the xt plane yields a schematic space-time plot of the wave fronts and wave
backs as illustrated in Figure 3. Here, φn(x) (resp., βn(x)) denotes the time at which the nth
wave front (resp., wave back) arrives at x, and

(4)

is called the cycle length. Since

(5)

we may also express the cycle length as

(6)

From our assumption that recovery occurs via a phase wave, we may apply the restitution
function locally at each x along the fiber:

(7)

The slope of φn(x) is related to the speed of the nth wave front:

(8)

By (6) and (7), the cycle length satisfies an algebraic condition

1Referring to (2) with B = Bold, note that  is the unique DI satisfying the equation DI + f(DI) = Bold.
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(9)

and by (4) and (8), the cycle length also satisfies a differential equation

(10)

Combining (9) and (10), we obtain a sequence of differential equations involving only DI
values:

(11)

where

(12)

From assumption (A3) above, pacing at x = 0 yields the boundary condition

(13)

while assumption (A4) yields an initial condition

(14)

Combining (11), (13), and (14), we obtain a sequence of equations that can be solved iteratively
to determine Dn(x) for n > 0 and 0 ≤ x ≤ L.

2.3. Derivation of the main sequence of equations
To analyze the transient behavior following the change in the pacing period, we linearize (11),
(13) for n ≥ 0. The resulting sequence of initial value problems (see (16), (17)) leads to our
main sequence of equations (see (23)), which we solve exactly in the next section to obtain
approximations of the functions Dn(x) for n ≥ 0.

To linearize (11), (13) for n ≥ 0, let  denote the steady-state DI associated with long-term
pacing with period Bnew and let yn(x) denote our approximation of . By (14), we
have

(15)

a constant. For n > 0, the linearization of (11), (13) about  is given by

(16)

(17)

where

(18)
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denotes the slope of the restitution curve evaluated at  and

(19)

The negative sign in (19) emphasizes that G(DI) = 1/c(DI) is a monotone decreasing function,
which follows from assumption (A2) in the previous subsection. We remark that

• α is dimensionless and λ has units of (length)−1;
• in the linearized dynamics, the rate of convergence to steady-state at the x = 0

boundary is determined by α, the Floquet multiplier [31] of the map An+1 = f(Bnew −
An).

Let us solve (16), (17) for yn(x) in terms of yn−1(x), resulting in a recursive sequence of
equations. Rewriting (16) as

(20)

we use eλx as an integrating factor to obtain

(21)

Integration yields

(22)

Finally, applying boundary condition (17) and rearranging terms, we obtain our main sequence
of equations,

(23)

Numerical evidence suggests that solutions of the linearized equations (23) exhibit good
quantitative agreement with solutions of the original nonlinear equations (11) and (13). Figure
4 shows the relative error  versus x for n = 1, . . . , 4 after shortening
the pacing period from Bold = 340 ms to Bnew = 320 ms. The functions Dn(x) were generated
by numerical solution of (11) and (13) with f and c chosen as in (73) and (74), respectively.
The functions yn(x) were generated by numerical solution of (23) with the same choices for f
and c. We remark that these restitution and dispersion curves provide physiologically realistic
APD values and propagation speeds for mammalian ventricular tissue [1, 13]. Note that the
relative error (at least through four beats) never exceeds 0.012 even at the “un-physiological”
distance of one meter from the stimulus site.

3. Estimating the rate of convergence to steady-state
Equation (23) allows us to determine yn provided that yn−1 is known. In our case, y0(x) is a
constant since . We remark that, due to the simple form of y0(x), the recursive
sequence of equations (23) can be solved exactly by successive substitutions. In doing so, it is
advantageous to introduce some abstract notation (subsections 3.1 and 3.2) which helps us
recognize that solutions of (23) can be expressed in terms of generalized Laguerre polynomials.
Then, by applying a large-n asymptotic approximation of the Laguerre polynomials, we derive
the desired estimate of N(η, L) (see subsections 3.3 and 3.4).
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3.1. Step 1: A Volterra integral operator
Motivated by (23), we define an operator T = −αI + (α + 1)λK on the Banach space (C[0, L], ||
· ||∞), where I denotes the identity operator and

(24)

Then clearly yn = Tyn−1 = Tny0. Our goal is to estimate the rate of convergence2 of yn = T
ny0 to 0. To do so, we exploit the fact that y0 is a constant function; i.e.,

(25)

where y0 is a constant. Our main problem can now be stated as

(26)

In the next subsection, we derive a formula for the function (Tn1)(x). Later, we will use
asymptotics to learn more about the extrema of this function, using our results to estimate ||
Tn1||∞.

3.2. Step 2: Computing powers of the operator T
Recalling that T = −αI + (α + 1)λK, we may apply the binomial theorem to obtain

(27)

Powers of the operator K are straightforward to compute. For m ≥ 1, we find that

(28)

Reversing the order of integration, the iterated integral (28) simplifies to a single integral

(29)

Combining (27) and (29) yields

(30)

where

(31)

It follows that

(32)

2We remark that the trivial estimate ||yn||∞ = ||Tny0||∞ ≤ ||T||n||y0||∞ is too weak since ||T|| can exceed 1. This is especially true close to
the onset of alternans (i.e., as α → 1−), in which case T is a contraction only for very short fiber lengths. However, it is straightforward
[10,26] to show that the spectral radius of T is simply α. Hence, if α < 1, then ||Tny0||∞ converges to 0 as n → ∞.
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The functions Ψn can be expressed in terms of generalized Laguerre polynomials, a well-known
class of special functions which can be defined as in the following definition (see Szegö
[32]).

Definition 3.1—Let β > −1 and n ≥ 0. Then the generalized Laguerre polynomial  is
defined by

(33)

Comparing (31) and (33) with β = 1, it is straightforward to verify that

(34)

By (32) and (34), we have

(35)

3.3. Step 3: Large-n asymptotic estimate of ||Tn1||∞
In order to estimate ||Tn1||∞ we must approximate the integral in (35). To do so, we will make
use of an asymptotic estimate for the generalized Laguerre polynomials. However, because the
estimate we will use is not uniformly valid throughout the region of integration, we will split
the region of integration into two subregions.

The following asymptotic approximation as n → ∞ for the generalized Laguerre polynomials
appears in Szegö [32, p. 199].

Theorem 3.2—Let β > −1 and n → ∞. Then

(36)

Moreover, given positive constants c and ω, the error term holds uniformly on the interval
cn−1 ≤ x ≤ ω.

Because the asymptotic approximation given by Theorem 3.2 breaks down for x small, we
estimate (35) by splitting the interval of integration into two subintervals. For the boundary

between the two subintervals, we use an approximation of the first root of . Setting β = 1,
note that the first two zeros of the approximation given by (36) occur when the argument of
the cosine term is −π/2 or π/2. The (nx)−1/2 error term influences the location of the first zero
of (36) because it is not negligible for x = O(1/n). Figure 5 suggests that we may
approximate3 the first root of  as the value of x for which the cosine term in (36) is π/2,
not −π/2. That is, x = C/n, where

3A more precise estimate of , the first root of , appears in Szegö [32]: , where

 denotes the first positive zero of the Bessel function Jβ(x).
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(37)

In what follows, we will use C/(n − 1) as the boundary between the two subintervals of
integration.

To estimate the integral in (35), we write

Our expression for (Tn1)(x) now reads

(39)

Estimating I1: To estimate the integral I1 in (38), we treat the two factors in the integrand

separately. The factor  can be approximated by a quadratic function qn−1(s) by matching

 and its derivative at s = 0 and using the fact that . By algebra, we
find that the polynomial

(40)

approximates the function  in the interval [0, C/(n − 1)]. Because the exponential factor
in the integrand of I1 is 1+ O(1/n) throughout the region of integration, we neglect this factor
and compute

(41)

In what follows, we will approximate I1 by

(42)

Estimating I2: Integral I2 in (38) can be approximated by applying Theorem 3.2 with β = 1.
Setting

(43)

we have

(44)

Upon substituting , (44) becomes
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(45)

Integrating (45) by parts,

(46)

At first, the two terms in (46) appear to be of the same order, namely O(n−1/4). However, for
large n the rapid oscillation of the integrand of the volume term leads to cancellation, and hence
the volume term is small relative to the boundary term. (This can also be seen by integrating
by parts a second time.) Thus, we approximate I2 by retaining only the boundary terms in (46):

(47)

where

(48)

The first term in (47) is bounded by

(49)

and, for large n, the second term of (47) is approximately

(50)

By (39), (42), (49), and (50), we obtain the following approximate upper bound for |(Tn1)
(x)|:

(51)

3.4. Step 4: Estimates for N (η, L)
Referring to the definition (48) of u(x), note that the x−1/4 factor is dominant for small x while
the exponential factor is dominant for large x. Hence, we expect u(x) to have a single extremum
—a global minimum. Letting L* denote the x value at which the global minimum of u(x) is
attained (see (53) below), we are led to consider two cases when estimating N(η, L): the case
L < L* and the case L > L*. In the former case, we shall demonstrate that |(Tn1)(x)| is always
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maximal at x = 0, indicating that the convergence to steady-state is slowest at the pacing site.
In the latter case, |(Tn1)(x)| is maximal either at x = 0 or near x = L.

To determine L*, we differentiate u(x) with respect to x:

(52)

The unique x value for which u′ (x) has a root is

(53)

With the above considerations in mind, we now derive our estimates for N(η, L).

Case 1—L < L*. From our preceding remarks, we see that the function (Tn1)(x) exhibits
damped oscillatory behavior for x < L*. Hence, |(Tn1)(x)| is maximal either at x = 0 or at the
first local extremum of (Tn1)(x). In fact, we shall see that |(Tn1)(x)| is always maximal at x =
0.

Proposition 3.3—Let   denote the first root of  . Then the first local extremum
of (Tn1)(x) occurs at

(54)

Proof: Differentiating (32) with respect to x, we obtain

(55)

The only factor in (55) that can change sign as x varies is . Hence, the first sign change of

Ψn(x) occurs when the  factor has its first root, which occurs at x = xext. This x value
corresponds to the first local extremum of (Tn1)(x).

Equation (35) gives the exact value of |(Tn1)(x)| at the x = 0 boundary, namely

(56)

To estimate the value of (Tn1)(x) at its first local extremum, we refer to (51) and (54). By (54),
we obtain the approximation

(57)

and (51) yields

(58)

Note that the coefficient of αn in (58) is less than 1. Therefore, if L < L*, we conclude that the
convergence to steady-state is slowest at the x = 0 boundary. That is,
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(59)

With η and y0 as in (26), we can now estimate the number of beats required to reach approximate
steady-state:

(60)

The subscript on N emphasizes that we presently consider the first case, L < L*. Note that
N1 does not depend upon L, and the convergence to steady-state is slowest at the pacing site,
x = 0.

Case 2: L > L*. In this case, the function u(x) may achieve its maximum at the right boundary
of the interval [C/(n − 1), L]. By (51),

(61)

We wish to determine N(η, L) such that

(62)

Taking logarithms and dividing through by ln α, we obtain

(63)

where N1 is given by (60) above. Motivated by inequality (63), we define the function

(64)

and estimate the value of n for which g(n) has a root. Because N1 is large if η/|y0| ≪ 1, we use
it as an initial guess and calculate

(65)

An improved estimate for the root of g(n) is then given by

(66)

Comparing (66) with the expression (60), we obtain the desired estimate for N(η, L) by taking
the maximum of these two expressions:

(67)
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where

(68)

In summary, the above approximations demonstrate that |yn(x)| = |y0|·|(Tn1)(x)| is maximal
near the boundaries of the interval [0, L]. The location of the maximum of |(Tn1)(x)| depends
in part on whether the fiber length L exceeds a critical value L*. The function (Tn1)(x) exhibits
damped oscillatory behavior for x < L*. Hence, if L < L*, we conclude that |(Tn1)(x)| is
maximal either at x = 0 or at the first local extremum of the function (Tn1)(x). Our computations
rule out the latter case, and we find that |(Tn1)(x)| is always maximal at x = 0 if L < L*. For x
> L*, the function (Tn1)(x) exhibits oscillations of growing amplitude and, in the worst case
scenario, |(Tn1)(x)| is maximal at x = L. Our estimate of N(η, L) is given by either (60) or (67)
depending on whether L exceeds L*.

A discussion of the physiological interpretation of the above results is provided in the next
section.

4. Discussion and conclusions
We have described how a paced cardiac fiber responds when the pacing period is suddenly
changed from Bold to Bnew, providing the first analysis of the transient behavior resulting from
such a pacing protocol. We estimated the number of beats N(η, L) required for the spatial
variation in DI to be small in the sense that

The estimate is given by either (60) or (67) depending on whether the fiber length exceeds the
critical value L* defined by (53). According to our approximations, for L < L*, the convergence
to steady-state is slowest at the pacing site and the rate of convergence is determined by the
slope α of the restitution curve evaluated at .

To test these predictions, we performed numerical simulations of (11), (13), and (14) for a
range of parameter values. In particular, we used the restitution and dispersion curves in the
appendix (see (73), (74)), varying the parameters (69) within physiologically reasonable
regimes for the mammalian ventricular action potential [1,13] (e.g., peak conduction velocity
of 60±20 cm/sec). We also repeated the numerical simulations using simple exponential
restitution and dispersion curves (see (3)), again for a range of parameter values. As expected,
for short fiber lengths (L < L*) the convergence is always slowest at the pacing site, and the
transient lasts much longer as α → 1−. Moreover, the estimate of N(η, L) given by (60) typically
provides a very accurate estimate (within several beats) of the actual number of beats required
to achieve approximate steady-state. Not surprisingly, the estimate given by (60) breaks down
if |Bold − Bnew| is large (on the order of hundreds of milliseconds) or if α is very close to 1.

For long fibers (L > L*), the spatial DI profiles generated by numerical simulations are
qualitatively similar to those shown in Figure 2(a)—in particular, the convergence

 is slowest at the far end of the fiber. In this case, (67) typically provides an
accurate estimate of N(η, L), with the same notable exceptions as in the case of short fibers
(see preceding paragraph).

We remark that L* is often so large that fibers of length L > L* are unrealistically long—on
the order of tens of centimeters or even meters. For example, consider the restitution and
dispersion curves in the appendix with parameter values given by (69). Using Bnew = 266 ms,
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one computes that α = 0.900 and λ = 0.127 cm−1, which by (53) yields a critical fiber length
L* in excess of 35 cm. Equation (53) suggests that the critical length blows up as we approach
the bifurcation to alternans: L* → ∞ as the slope , a prediction consistent
with all of our numerical simulations. Therefore, N is especially unlikely to exhibit any length
dependence if we are pacing in a regime close to the onset of alternans.

In closing, we remark that extending our results to the case of alternans may be quite
challenging. If α > 1, the operator T no longer has the property that ||Tnϕ||∞ → 0 as n → ∞ for
all ϕ ∈ C[0, L]. Thus, a similar analysis of the alternans regime would require a substantially
different approach, which we hope to provide in a future study.
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Appendix

Sample restitution and dispersion curves
For the purpose of numerical simulation, we provide sample formulas for restitution and
dispersion curves (73) and (74) for a particular choice of parameters. Using asymptotics, such
formulas can be derived [4,20] from the equations of an idealized ionic model [17,20]; we omit
the details here. Below, we measure DI values in ms and we use the following parameters:

(69)

Let

(70)

and

(71)
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where

(72)

Note that h(DI) and V±(DI) are dimensionless. In all numerical simulations, we use the
restitution function

(73)

and the dispersion function

(74)

Note that f(DI) has units of ms and c(DI) has units of cm/ms.
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Fig. 1.
Voltage trace of several action potentials in a paced cardiac cell.
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Fig. 2.
Spatial variation in DI after changing the pacing period from Bold to Bnew < Bold. (a) the curves
Dn(x) for n = 1, . . . , 4; (b) the curves Dn(x) for n = 7, 8.
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Fig. 3.
Schematic diagram of wave fronts (solid curves) and wave backs (dashed curves).
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Fig. 4.
Relative error in using yn(x) to approximate  * for n = 1, . . . , 4.
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Fig. 5.
Comparison of the generalized Laguerre polynomial  with the approximation given by
Theorem 3.2 for n = 10 and β = 1. As indicated in the figure, the first two roots of the
approximation (36) occur when the argument of the cosine function is −π/2 or π/2.
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